3.1.3二倍角的正弦、余弦、正切公式(二课时)
- 格式:doc
- 大小:120.00 KB
- 文档页数:2
2019-2020学年高一数学必修四校本作业课题:3.1.3 二倍角的正弦、余弦、正切公式 (二)班级_______姓名________座号________一、选择题1.若tan α=3,则sin 2αcos 2α的值为( ) A .2 B .3 C .4 D .6考点 利用二倍角公式化简求值题点 利用正弦的二倍角公式化简求值答案 D解析 因为tan α=3,则sin 2αcos 2α=2sin αcos αcos 2α=2tan α=6.故选D. 2.对于函数f (x )=2sin x cos x ,下列选项中正确的是( )A .f (x )在⎝⎛⎭⎫π4,π2上是递增的B .f (x )的图象关于原点对称C .f (x )的最小正周期为2πD .f (x )的最大值为2解析:显然,函数f (x )=2sin x cos x =sin2x 是奇函数,所以f (x )的图象关于原点对称. 答案:B3.已知向量a =(3,1),b =(sin α,cos α),且a ∥b ,则tan 2α等于( )A.35 B .-35 C.34 D .-34考点 和、差角公式的综合应用题点 和、差角公式与其他知识的综合应用答案 D解析 因为a ∥b ,所以3cos α-1×sin α=0,所以tan α=3,所以tan 2α=2tan α1-tan 2α=2×31-32=-34,故选D. 4.函数f (x )=tan x 1+tan 2x的最小正周期为( ) A.π4B.π2 C .πD .2π解析:f (x )=tan x 1+tan 2x =sin xcos x 1+sin 2x cos 2x=sin x cos x cos 2x +sin 2x =sin x cos x =12sin2x , 所以f (x )的最小正周期T =2π2=π.故选C. 答案:C5.若cos2αsin ⎝⎛⎭⎫α-π4=-22,则cos α+sin α的值为( ) A .-72 B .-12 C.12 D.72解析:∵cos2αsin (α-π4)=cos 2α-sin 2α22sin α-22cos α =-2(cos α+sin α)=-22, ∴cos α+sin α=12. 答案:C6.已知f (x )=sin 2⎝⎛⎭⎫x +π4,若a =f (lg 5),b =f ⎝⎛⎭⎫lg 15,则( ) A .a +b =0B .a -b =0C .a +b =1D .a -b =1考点 利用简单的三角恒等变换化简求值题点 利用降幂公式化简求值答案 C解析 f (x )=sin 2⎝⎛⎭⎫x +π4=1-cos ⎝⎛⎭⎫2x +π22=1+sin 2x 2, ∵a =f (lg 5),b =f ⎝⎛⎭⎫lg 15=f (-lg 5), ∴a +b =1+sin (2lg 5)2+1-sin (2lg 5)2=1,a -b =1+sin (2lg 5)2-1-sin (2lg 5)2=sin(2lg 5).7.若f (x )=cos x -sin x 在[-a ,a ]上是减函数,则a 的最大值是( )A.π4B.π2C.3π4D .π 考点 简单的三角恒等变换的综合应用题点 辅助角公式与三角函数的综合应用答案 A解析 f (x )=cos x -sin x =-2⎝⎛⎭⎫sin x ·22-cos x ·22=-2sin ⎝⎛⎭⎫x -π4, 当x ∈⎣⎡⎦⎤-π4,3π4,即x -π4∈⎣⎡⎦⎤-π2,π2时, y =sin ⎝⎛⎭⎫x -π4单调递增, f (x )=-2sin ⎝⎛⎭⎫x -π4单调递减. ∵函数f (x )在[-a ,a ]上是减函数,∴[-a ,a ]⊆⎣⎡⎦⎤-π4,3π4, ∴0<a ≤π4,∴a 的最大值为π4. 故选A.二、填空题8.已知关于x 的方程3sin x +cos x =4-m 有解,则实数m 的取值范围是________. 答案 [2,6]解析 ∵3sin x +cos x =4-m ,∴32sin x +12cos x =4-m 2, ∴sin π3sin x +cos π3cos x =4-m 2,∴cos ⎝⎛⎭⎫x -π3=4-m 2. ∵⎪⎪⎪⎪cos ⎝⎛⎭⎫x -π3≤1,∴⎪⎪⎪⎪4-m 2≤1,∴2≤m ≤6. 9.在△ABC 中,cos ⎝⎛⎭⎫π4+A =513,则cos 2A =________. 考点 应用二倍角公式化简求值题点 综合应用二倍角公式化简求值答案 12016910.若f (x )=2tan x -2sin 2x 2-1sin x 2cos x 2,则f (π12)=________.答案:8解析:f (x )=2tan x +1-2sin 2x 212sin x =2tan x +2cot x =2(sin x cos x +cos x sin x) =2sin 2x +cos 2x sin x cos x=2sin x cos x =4sin2x, ∴f (π12)=4sin π6=8. 11.若3π2<α<2π,则12+1212+12cos2α的值为________. 答案 -cos α2 解析 12+1212×2cos 2α=12+12|cosα|,因为32π<α<2π,所以|cosα|=cosα. 所以原式=12+12cosα=cos 2α2. 又因为34π<α2<π,所以原式=-cos α2. 三、解答题12.已知tan ⎝⎛⎭⎫π4+α=12.(1)求tan α的值;(2)求sin 2α-cos 2α1+cos 2α的值. 考点 利用简单的三角恒等变换化简求值题点 利用简单的三角恒等变换化简求值解 (1)因为tan ⎝⎛⎭⎫π4+α=12,所以tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫π4+α-π4 =tan ⎝⎛⎭⎫π4+α-tan π41+tan ⎝⎛⎭⎫π4+α·tan π4=12-11+12=-13. (2)由(1)知,原式=2sin αcos α-cos 2α2cos 2α=tan α-12 =-13-12=-56. 13.已知函数f (x )=2sin x ·cos x +1-2sin 2x .(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值与最小值. 考点 简单的三角恒等变换的应用题点 辅助角公式与三角函数的综合应用解 (1)因为f (x )=sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4, 所以f (x )的最小正周期为π.(2)因为-π3≤x ≤π4,所以-5π12≤2x +π4≤3π4. 当2x +π4=π2,即x =π8时,f (x )取得最大值2; 当2x +π4=-5π12,即x =-π3时, f (x )min =f ⎝⎛⎭⎫-π3=sin ⎝⎛⎭⎫-2π3+cos ⎝⎛⎭⎫-2π3=-3+12, 即f (x )的最小值为-3+12.14.如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”.给出下列函数:①f (x )=2sin x cos x +1;②f (x )=2sin ⎝⎛⎭⎫x +π4;③f (x )=sin x +3cos x ;④f (x )=2sin 2x +1. 其中是“同簇函数”的有( )A .①②B .①④C .②③D .③④考点 简单的三角恒等变换的综合应用题点 简单的三角恒等变换与三角函数的综合应用答案 C15.在北京召开的国际数学家大会的会标是以我国古代数学家赵爽的弦图为基础设计的,弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图3),如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值等于________.图3解析:由题意有5cos θ-5sin θ=1,即cos θ-sin θ=15, ∴sin2θ=2425,∵0<θ<π4,∴0<2θ<π2, ∴cos2θ=1-sin 22θ=725. 答案:725。
3.1.3 二倍角的正弦、余弦、正切公式整体设计一、教学分析“二倍角的正弦、余弦、正切公式”是在研究了两角和与差的三角函数的基础上,进一步研究具有“二倍角”关系的正弦、余弦、正切公式的,它既是两角和与差的正弦、余弦、正切公式的特殊化,又为以后求三角函数值、化简、证明提供了非常有用的理论工具、通过对二倍角的推导知道,二倍角的内涵是:揭示具有倍数关系的两个三角函数的运算规律、通过推导还让学生加深理解了高中数学由一般到特殊的化归思想、因此本节内容也是培养学生运算和逻辑推理能力的重要内容,对培养学生的探索精神和创新能力、发现问题和解决问题的能力都有着十分重要的意义.本节课通过教师提出问题、设置情境及对和角公式中α、β关系的特殊情形α=β时的简化,让学生在探究中既感到自然、易于接受,还可清晰知道和角的三角函数与倍角公式的联系,同时也让学生学会怎样发现规律及体会由一般到特殊的化归思想.这一切教师要引导学生自己去做,因为,《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验”.在实际教学过程中不要过多地补充一些高技巧、高难度的练习,更不要再补充一些较为复杂的积化和差或和差化积的恒等变换,否则就违背了新课标在这一章的编写意图和新课改精神.二、教学目标1.知识与技能:通过让学生探索、发现并推导二倍角公式,了解它们之间、以及它们与和角公式之间的内在联系,并通过强化题目的训练,加深对二倍角公式的理解,培养运算能力及逻辑推理能力,从而提高解决问题的能力.2.过程与方法:通过二倍角的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明.体会化归这一基本数学思想在发现中和求值、化简、恒等证明中所起的作用.使学生进一步掌握联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题、解决问题的能力.3.情感态度与价值观:通过本节学习,引导学生领悟寻找数学规律的方法,培养学生的创新意识,以及善于发现和勇于探索的科学精神.三、重点难点教学重点:二倍角公式推导及其应用.教学难点:如何灵活应用和、差、倍角公式进行三角式化简、求值、证明恒等式.四、课时安排1课时五、教学设想(一)导入新课思路1.(复习导入)请学生回忆上两节共同探讨的和角公式、差角公式,并回忆这组公式的来龙去脉,然后让学生默写这六个公式.教师引导学生:和角公式与差角公式是可以互相化归的.当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?今天,我们进一步探讨一下二倍角的问题,请同学们思考一下,应解决哪些问题呢?由此展开新课.思路2.(问题导入)出示问题,让学生计算,若sinα=53,α∈(2,π),求sin2α,cos2α的值.学生会很容易看出:sin2α=sin(α+α)=sinαcosα+cosαsinα=2sinαcosα的,以此展开新课,并由此展开联想推出其他公式.(二)推进新课、新知探究、提出问题①还记得和角的正弦、余弦、正切公式吗?(请学生默写出来,并由一名学生到黑板默写)②你写的这三个公式中角α、β会有特殊关系α=β吗?此时公式变成什么形式?③在得到的C 2α公式中,还有其他表示形式吗?④细心观察二倍角公式结构,有什么特征呢?⑤能看出公式中角的含义吗?思考过公式成立的条件吗?⑥让学生填空:老师随机给出等号一边括号内的角,学生回答等号另一边括号内的角,稍后两人为一组,做填数游戏:sin( )=2sin( )cos( ),cos( )=cos 2( )-sin 2( ).⑦思考过公式的逆用吗?想一想C 2α还有哪些变形?⑧请思考以下问题:sin2α=2sinα吗?cos2α=2cosα吗?tan2α=2tanα?活动:问题①,学生默写完后,教师打出课件,然后引导学生观察正弦、余弦的和角公式,提醒学生注意公式中的α,β,既然可以是任意角,怎么任意的?你会有些什么样的奇妙想法呢?并鼓励学生大胆试一试.如果学生想到α,β会有相等这个特殊情况,教师就此进入下一个问题,如果学生没想到这种特殊情况,教师适当点拨进入问题②,然后找一名学生到黑板进行简化,其他学生在自己的座位上简化、教师再与学生一起集体订正黑板的书写,最后学生都不难得出以下式子,鼓励学生尝试一下,对得出的结论给出解释.这个过程教师要舍得花时间,充分地让学生去思考、去探究,并初步地感受二倍角的意义.同时开拓学生的思维空间,为学生将来遇到的3α或3β等角的探究附设类比联想的源泉.(S 2α);cos(α+β)=cosαcosβ-sinαsi 2α-sin 2α(C 2α); tan(α+β)=)(tan 1tan 22tan tan tan 1tan tan 22ααααβαβαT -=⇒-+ 这时教师适时地向学生指出,我们把这三个公式分别叫做二倍角的正弦,余弦,正切公式,并指导学生阅读教科书,确切明了二倍角的含义,以后的“倍角”专指“二倍角”、教师适时提出问题③,点拨学生结合sin 2α+cos 2α=1思考,因此二倍角的余弦公式又可表示为以下右表中的公式.这时教师点出,这些公式都叫做倍角公式(用多媒体演示).倍角公式给出了α的三角函数与2α的三角函数之间的关系.问题④,教师指导学生,这组公式用途很广,并与学生一起观察公式的特征与记忆,首先公式左边角是右边角的2倍;左边是2α的三角函数的一次式,右边是α的三角函数的二次式,即左到右→升幂缩角,右到左→降幂扩角、二倍角的正弦是单项式,余弦是多项式,正切是分式.问题⑤,因为还没有应用,对公式中的含义学生可能还理解不到位,教师要引导学生观察思考并初步感性认识到:(Ⅰ)这里的“倍角”专指“二倍角”,遇到“三倍角”等名词时,“三”字等不可省去;(Ⅱ)通过二倍角公式,可以用单角的三角函数表示二倍角的三角函数;(Ⅲ)二倍角公式是两角和的三角函数公式的特殊情况;(Ⅳ)公式(S 2α),(C 2α)中的角α没有限制,都是α∈R .但公式(T 2α)需在α≠21kπ+4π和α≠kπ+2π(k ∈Z )时才成立,这一条件限制要引起学生的注意.但是当α=kπ+2π,k ∈Z 时,虽然tanα不存在,此时不能用此公式,但tan2α是存在的,故可改用诱导公式.问题⑥,填空是为了让学生明了二倍角的相对性,即二倍角公式不仅限于2α是α的二倍的形式,其他如4α是2α的二倍,2a 是4a 的二倍,3α是23a 的二倍,3a 是6a 的二倍,2π-α是4π-2a 的二倍等,所有这些都可以应用二倍角公式.例如:sin 2a =2sin 4a cos 4a ,cos 3a =cos 26a -sin 26a 等等. 问题⑦,本组公式的灵活运用还在于它的逆用以及它的变形用,这点教师更要提醒学生引起足够的注意.如:sin3αcos3α=21sin6α,4sin 4a cos 4a =2(2sin 4a cos 4a )=2sin 2a ,40tan 140tan 22-=tan80°,cos 22α-sin 22α=cos4α,tan2α=2tanα(1-tan 2α)等等. 问题⑧,一般情况下:sin2α≠2sinα,cos2α≠2cosα,tan2α≠2tanα.若sin2α=2sinα,则2sinαcosα=2sinα,即sinα=0或cosα=1,此时α=kπ(k ∈Z ).若cos2α=2cosα,则2cos 2α-2cosα-1=0,即cosα=231-(cosα=231+舍去). 若tan2α=2tanα,则aa 2tan 1tan 2-=2tanα,∴tanα=0,即α=kπ(k ∈Z ). 解答:①—⑧(略)(三)应用示例思路1例1 已知sin2α=135,4π<α<2π,求sin4α,cos4α,tan4α的值. 活动:教师引导学生分析题目中角的关系,观察所给条件与结论的结构,注意二倍角公式的选用,领悟“倍角”是相对的这一换元思想.让学生体会“倍”的深刻含义,它是描述两个数量之间关系的.本题中的已知条件给出了2α的正弦值.由于4α是2α的二倍角,因此可以考虑用倍角公式.本例是直接应用二倍角公式解题,目的是为了让学生初步熟悉二倍角的应用,理解二倍角的相对性,教师大胆放手,可让学生自己独立探究完成.解:由4π<α<2π,得2π<2α<π. 又∵sin2α=135, ∴cos2α=a 2sin 12--=1312)135(12-=--. 于是sin 4α=sin[2×(2α)]=2sin2αcos2α=2×135×(1312-)=169120-; cos4α=cos[2×(2α)]=1-2sin 22α=1-2×(135)2=129119; tan4α=a a 4cos 4sin =(-169120)×119169=119120-. 点评:学生由问题中条件与结论的结构不难想象出解法,但要提醒学生注意,在解题时注意优化问题的解答过程,使问题的解答简捷、巧妙、规范,并达到熟练掌握的程度.本节公式的基本应用是高考的热点.变式训练1.不查表,求值解:原式=2615cos 15sin 215sin )15cos 15(sin 222=++=+点评:本题在两角和与差的学习中已经解决过,现用二倍角公式给出另外的解法,让学生体会它们之间的联系,体会数学变化的魅力.2.(2007年高考海南卷,9) 若22)4sin(2cos -=-πa a,则cosα+sinα的值为 A.27- B.21- C.21 D.27 答案:C3.(2007年高考重庆卷,6) 下列各式中,值为23的是( ) A.2sin15°-cos15° B.cos 215°-sin 215° C.2sin 215°-1 D.sin 215°+cos2答案:B例2 证明θθθθ2cos 2sin 12cos 2sin 1++-+=tanθ. 活动:先让学生思考一会,鼓励学生充分发挥聪明才智,战胜它,并力争一题多解.教师可点拨学生想一想,到现在为止,所学的证明三角恒等式的方法大致有几种:从复杂一端化向简单一端;两边化简,中间碰头;化切为弦;还可以利用分析综合法解决,有时几种方法会同时使用等.对找不到思考方向的学生,教师点出:可否再添加一种,化倍角为单角?这可否成为证明三角恒等式的一种方法?再适时引导,前面学习同角三角函数的基本关系时曾用到“1”的代换,对“1”的妙用大家深有体会,这里可否在“1”上做做文章?待学生探究解决方法后,可找几个学生到黑板书写解答过程,以便对照点评及给学生以启发.点评时对能够善于运用所学的新知识解决问题的学生给予赞扬;对暂时找不到思路的学生给予点拨、鼓励.强调“1”的妙用很妙,妙在它在三角恒等式中一旦出现,在证明过程中就会起到至关重要的作用,在今后的证题中,万万不要忽视它.证明:方法一:左=)1cos 21(cos sin 2)cos 211(cos sin 2)2cos 1(2sin )2cos 1(2sin 22-++-++=+-+θθθθθθθθθθ =θθθθθθ22cos cos sin cos 1cos sin +-+ =θθθθθθ22cos cos sin sin cos sin ++ )cos (sin cos )sin (cos sin θθθθθθ++=tanθ=右. 所以,原式成立.方法二:左=θθθθθθθθθθθθθθ22222222222cos 22sin sin 22sin sin cos 2sin cos sin cos sin sin cos sin ++=-+++-+++=)cos (sin cos 2)cos (sin sin 2θθθθθθ++=tanθ=右. 方法三:左=)sin (cos )cos sin 2cos (sin )sin (cos )cos sin 2cos (sin 2cos )2sin 1(2cos )2sin 1(22222222θθθθθθθθθθθθθθθθ-+∙++--∙++=++-+ =)sin )(cos sin (cos )cos (sin )sin )(cos sin (cos )cos (sin 22θθθθθθθθθθθθ-+++-+-+ =)sin cos cos )(sin cos (sin )cos sin cos )(sin cos (sin θθθθθθθθθθθθ-+++-+++ =θθθθθθcos 2)cos (sin sin 2)cos (sin ∙+∙+=tanθ=右. 点评:以上几种方法大致遵循以下规律:首先从复杂端化向简单端;第二,化倍角为单角,这是我们今天刚刚学习的;第三,证题中注意对数字的处理,尤其“1”的代换的妙用,请同学们在探究中仔细体会这点.在这道题中通常用的几种方法都用到了,不论用哪一种方法,都要思路清晰,书写规范才是.思路2例1 求sin10°sin30°sin50°sin70°的值.活动:本例是一道灵活应用二倍角公式的经典例题,有一定难度,但也是训练学生思维能力的一道好题.本题需要公式的逆用,逆用公式的先决条件是认识公式的本质,要善于把表象的东西拿开,正确捕捉公式的本质属性,以便合理运用公式.教学中教师可让学生充分进行讨论探究,不要轻易告诉学生解法,可适时点拨学生需要做怎样的变化,又需怎样应用二倍角公式.并点拨学生结合诱导公式思考.学生经过探索发现,如果用诱导公式把10°,30°,50°,70°正弦的积化为20°,40°,60°,80°余弦的积,其中60°是特殊角,很容易发现40°是20°的2倍,80°是40°的2倍,故可考虑逆用二倍角公式.解:原式=cos80°cos60°cos40°cos20° =20sin 2280cos 40cos 20cos 20sin 233∙∙ =.16120sin 1620sin 20sin 16160sin == 点评:二倍角公式是中学数学中的重要知识点之一,又是解答许多数学问题的重要模型和工具,具有灵活多变,技巧性强的特点,要注意在训练中细心体会其变化规律.例2 在△ABC 中,cosA=54,tanB=2,求tan(2A+2B)的值. 活动:这是本节课本上最后一个例题,结合三角形,具有一定的综合性,同时也是和与差公式的应用问题.教师可引导学生注意在三角形的背景下研究问题,会带来一些隐含的条件,如A+B+C=π,0<A<π,0<B<π,0<C<π,就是其中的一个隐含条件.可先让学生讨论探究,教师适时点拨.学生探究解法时教师进一步启发学生思考由条件到结果的函数及角的联系.由于对2A+2B 与A,B 之间关系的看法不同会产生不同的解题思路,所以学生会产生不同的解法,不过它们都是对倍角公式、和角公式的联合运用,本质上没有区别.不论学生的解答正确与否,教师都不要直接干预.在学生自己尝试解决问题后,教师可与学生一起比较各种不同的解法,并引导学生进行解题方法的归纳总结.基础较好的班级还可以把求tan(2A+2B)的值改为求tan2C 的值.解:方法一:在△ABC 中,由cosA=54,0<A<π,得 sinA=.53)54(1cos 122=-=-A 所以tanA=A A cos sin =53×45=43, tan2A=724)43(1432tan 1tan 222=-⨯=-A A 又tanB=2,所以tan2B=.342122tan 1tan 222-=-⨯=-B B 于是tan(2A+2B)=.17744)34(7241347242tan 2tan 12tan 2tan =-⨯--=-+B A B A 方法二:在△ABC 中,由cosA=54,0<A<π,得 sinA=.53)54(1cos 122=-=-A 所以tanA==A A cos sin 53×45=43.又tanB=2, 所以tan(A+B)=2112431243tan tan 1tan tan -=⨯-+=-+B A B A 于是tan(2A+2B)=tan[2(A+B)] =.11744)211(1)211(2)(tan 1)tan(222=---⨯=+-+B A B A 点评:以上两种方法都是对倍角公式、和角公式的联合运用,本质上没有区别,其目的是为了鼓励学生用不同的思路去思考,以拓展学生的视野.变式训练 化简:.4sin 4cos 14sin 4cos 1aa a a +-++ 解:原式=aa a a a a 2cos 2sin 22sin 22cos 2sin 22cos 222++ =)2cos 2(sin 2sin 2)2sin 2(cos 2cos 2a a a a a a ++=cot2α.(四)知能训练(2007年高考四川卷,17) 已知cosα=71,cos(α-β)=1413,且0<β<α<2π, (1)求tan2α的值;(2)求β.解:(1)由cosα=71,0<α<2π,得sinα=a 2cos 1-=.734)71(12=- ∴tanα=a a cos sin =17734⨯=43.于是tan2α=.4738tan 1342tan 1tan 222-=-⨯--aa a (2)由0<α<β<2π,得0<α-β<2π. 又∵cos(α-β)=1413,∴sin(α-β)=.1433)1413(1)(cos 122=-=--βa 由β=α-(α-β),得cosβ=cos [α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)=71×1413+1433734⨯=21. ∴β=3π. 点评:本题主要考查三角恒等变形的主要基本公式、三角函数值的符号,已知三角函数值求角以及计算能力.(五)课题小结1.先由学生回顾本节课都学到了什么?有哪些收获?对前面学过的两角和公式有什么新的认识?对三角函数式子的变化有什么新的认识?怎样用二倍角公式进行简单三角函数式的化简、求值与恒等式证明.2.教师画龙点睛:本节课要理解并掌握二倍角公式及其推导,明白从一般到特殊的思想,并要正确熟练地运用二倍角公式解题.在解题时要注意分析三角函数名称、角的关系,一个题目能给出多种解法,从中比较最佳解决问题的途径,以达到优化解题过程,规范解题步骤,领悟变换思路,强化数学思想方法之目的.。
2019-2020学年高一数学必修四校本作业课题:3.1.3 二倍角的正弦、余弦、正切公式 (二)班级_______姓名________座号________一、选择题1.若tan α=3,则sin 2αcos 2α的值为( ) A .2 B .3 C .4 D .62.对于函数f (x )=2sin x cos x ,下列选项中正确的是( )A .f (x )在⎝⎛⎭⎫π4,π2上是递增的B .f (x )的图象关于原点对称C .f (x )的最小正周期为2πD .f (x )的最大值为23.已知向量a =(3,1),b =(sin α,cos α),且a ∥b ,则tan 2α等于( )A.35 B .-35 C.34 D .-344.函数f (x )=tan x 1+tan 2x的最小正周期为( ) A.π4 B. π2C .πD .2π 5.若cos2αsin ⎝⎛⎭⎫α-π4=-22,则cos α+sin α的值为( ) A .-72 B .-12 C. 12 D. 726.已知f (x )=sin 2⎝⎛⎭⎫x +π4,若a =f (lg 5),b =f ⎝⎛⎭⎫lg 15,则( ) A .a +b =0 B .a -b =0 C .a +b =1 D .a -b =17.若f (x )=cos x -sin x 在[-a ,a ]上是减函数,则a 的最大值是( ) A.π4 B.π2 C.3π4D .π 二、填空题8.已知关于x 的方程3sin x +cos x =4-m 有解,则实数m 的取值范围是________.9.在△ABC 中,cos ⎝⎛⎭⎫π4+A =513,则cos 2A =________. 10.若f (x )=2tan x -2sin 2x 2-1sin x 2cos x 2,则f (π12)=________. 11.若3π2<α<2π,则12+1212+12cos2α的值为________. 三、解答题12.已知tan ⎝⎛⎭⎫π4+α=12.(1)求tan α的值;(2)求sin 2α-cos 2α1+cos 2α的值.13.已知函数f (x )=2sin x ·cos x +1-2sin 2x .(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值与最小值.14.如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”.给出下列函数:①f (x )=2sin x cos x +1;②f (x )=2sin ⎝⎛⎭⎫x +π4;③f (x )=sin x +3cos x ;④f (x )=2sin 2x +1. 其中是“同簇函数”的有( )A .①②B .①④C .②③D .③④15.在北京召开的国际数学家大会的会标是以我国古代数学家赵爽的弦图为基础设计的,弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图),如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值等于________.。
3.1.3二倍角的正弦、余弦、正切公式[知识探究]二倍角公式S(α+β)S2αC(α+β)C2α利用sin2α+cos2α=1T(α+β)T2α题型一化简求值【例1】求下列各式的值:(1)cosπ12cos5π12;(2)2cos2π12-1;(3)22tan1501tan150-.解:(1)原式=cosπ12sinπ12=12×2cosπ12sinπ12=12sinπ6=14.(2)原式=cos(2×π12)=cosπ6.(3)原式=tan 300°=tan(360°-60°)=-tan 60°题后反思 (1)同角三角函数关系式、两角和与差的三角函数公式、二倍角公式等都可应用于三角函数式的化简.在应用时,应找到化简思路后再动手化简.(2)注意观察式子的特点及角之间的特殊关系,灵活运用二倍角公式解题,通过观察角度的关系,发现其特征(二倍角形式),创造条件正用或者逆用二倍角公式,使得问题得以解决.跟踪训练11:(2014公安一中、宜昌一中、沙市一中期末)在直角坐标系xOy 中,若角α的始边为x 轴的非负半轴,终边为射线l:y=2x(x≤0). (1)求tan 2α的值;(2)求22cos 2sin(π)127π)4ααα----的值.解:(1)在终边l 上取一点P(-1,-2),则tan α=21--=2, ∴tan 2α=22tan 1tan αα-=22212⨯-=-43.(2)22cos 2sin(π)127π)4ααα----=cos 2sin π)4ααα++ =cos 2sin cos sin αααα+-=12tan 1tan αα+-=51-=-5. 题型二 条件求值【例2】 (1)设α为锐角,若cos (α+π6)=45,则sin (2α+π12)的值为 .(2)已知sin (π4-x )=513,0<x<π4,则cos 2πcos()4xx +的值为 . 解析:(1)∵α为锐角, ∴α+π6∈(π6,2π3).又∵cos(α+π6)=45,∴sin(α+π6)=35,∴sin(2α+π3)=2sin(α+π6)cos(α+π6)=2425,cos(2α+π3)=2cos2(α+π6)-1=725∴α∈(0,π2),∴sin(2α+π12)=sin[(2α+π3)-π4]=sin(2α+π3)cos π4-cos(2α+π3)sin π4=2425-725.(2)∵0<x<π4,∴0<π4-x<π4.又∵sin(π4-x)=513,∴cos(π4-x)=1213.∵cos 2x=sin(π2-2x)=2sin(π4-x)cos(π4-x)=2cos[π2-(π4-x)]cos(π4-x)=2cos(π4+x)cos(π4-x),∴cos2πcos()4xx=2cos(π4-x)=2413.答案:(1)(2)2413题后反思 (1)解决给值求值问题的关键是找到已知角与未知角之间的关系并选择恰当的公式求解.(2)遇到角π4±x时可借助诱导公式进行转化求解.如①cos 2x=sin(π2-2x)=2sin(π4-x)cos(π4-x);②cos 2x=sin (π2+2x )=2sin (π4+x )cos (π4+x ); ③sin 2x=cos (π2-2x )=2cos 2(π4-x )-1; ④cos (π4-x )=sin[π2-(π4-x )]=sin (π4+x );⑤sin (π4-x )=cos[π2-(π4-x )]=cos (π4+x )等. 跟踪训练21:(2014石家庄第一中学期末)已知tan (α+π4)=12,且-π2<α<0,则22sin sin 2πcos()4ααα+-= . 解析:tan (α+π4)=tan 11tan αα+-=12解得tan α=-13, ∵-π2<α<0,∴sin α=∴22sin sin 2πcos()4ααα+-2sin sin cos ααα+.答案 题型三 给值求角【例3】 已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β. 解:∵tan α=tan[(α-β)+β] =tan()tan 1tan()tan αββαββ-+--=112711127-⎛⎫-⨯- ⎪⎝⎭=13>0,且α∈(0,π),且tan 2α=22tan 1tan αα-=2123113⨯⎛⎫- ⎪⎝⎭=34. ∵tan β=-17<0,且β∈(0,π), ∴β∈(π2,π),∴-π<α-β<0.∵tan(α-β)=12>0, ∴-π<α-β<-π2, ∴2α-β=α+(α-β)∈(-π,0). ∵tan(2α-β)=tan 2tan 1tan 2tan αβαβ-+=314731147⎛⎫-- ⎪⎝⎭⎛⎫+⨯- ⎪⎝⎭=1,∴2α-β=-3π4. 题后反思 解决给值求角问题的关键:根据角的取值范围及题目条件中函数名称选择求解一个适当的三角函数值.跟踪训练31:已知A 、B 均为钝角,且sin A=55,sin B=1010求A+B 的值. 解:∵A 、B 均为钝角且sin A=, ∴, , ∴cos(A+B)=cos Acos B-sin Asin B ×(), ① 又∵π2<A<π,π2<B<π, ∴π<A+B<2π, ② 由①②得,A+B=7π4. 【自主练习】1. 已知sin 22α+sin 2αcos α-cos 2α=1,α∈(0,π2).求sin α,tan α的值.解:由倍角公式,得sin 2α=2sin αcos α,cos2α=2cos2α-1,由原式得4sin 2αcos 2α+2sin αcos 2α-2cos2α=0,即2cos 2α(2sin 2α+sin α-1)=0⇔2cos 2α(2sin α-1)(sin α+1)=0.因为α∈(0,π2),所以sin α+1≠0,cos 2α≠0.所以2sin α-1=0,即sin α=12.所以α=π6.所以2.已知α,β为锐角,且3sin2α+2sin2β=1,3sin 2α-2sin 2β=0.求证α+2β=π2 .证明:由已知得3sin2α=cos 2β,①3sin 2α=2sin 2β.②①②,得tan α=cos2sin2ββ=πsin22πcos22ββ⎛⎫-⎪⎝⎭⎛⎫-⎪⎝⎭=tan(π2-2β)因为α,β为锐角,所以0<β<π2,则0<2β<π,则-π<-2β<0,所以-π2<π2-2β<π2,所以α=π2-2β,即α+2β=π2.3∈(0,π)).解:原式=︱sin2θ+cos2θ︱-︱sin2θ-cos2θ︱.∵θ∈(0,π),∴2θ∈(0,π2). (1)当2θ∈(0,π4]时,cos 2θ≥sin 2θ>0,此时原式=sin2θ+cos2θ-cos2θ+sin2θ=2sin2θ.(2)当2θ∈(π4,π2)时,cos 2θ<sin 2θ, 此时原式=sin2θ+cos2θ-sin2θ+cos2θ=2cos2θ.4.已知sin α-∈(0,π),则sin 2α等于( A )(A)-1 (D) 1解析:∵sin α-∴(sin α-cos α)2=2, ∴sin 2α=-1,故选A.5.若cos (π4-θ)cos (π4+θ)(0<θ<π2),则 sin 2θ的值为( B )(A)解析:cos (π4-θ)cos[π2-(π4-θ)]=,即cos (π4-θ)sin (π4-θ),即12sin (π2-2θ),∴cos 2θ=3. 又∵0<θ<π2, ∴0<2θ<π,∴sin 2θ. 故选B. 6.已知sin x=14,则cos 2x= . 解析:cos 2x=1-2sin 2x=1-2×(14)2=78. 答案:78课堂小结1.二倍角公式是两角和公式的特例.公式中的“倍角”是相对的.如“α是2的2倍,2α是α的2倍”. 2.二倍角的余弦公式有三个cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,要注意根据条件选取合适的公式.。
3.13 二倍角的正弦、余弦、正切公式知识点一 二倍角公式的推导sin2α=sin(α+α)=sin αcos α+cos αsin α=2sin αcos α;cos2α=cos(α+α)=cos αcos α-sin αsin α=cos 2α-sin 2α;tan2α=tan(α+α)=2tan α1-tan 2α(α≠π2+k π,2α≠π2+k π,k ∈Z ). cos2α=cos 2α-sin 2α=cos 2α-(1-cos 2α)=2cos 2α-1;cos2α=cos 2α-sin 2α=(1-sin 2α)-sin 2α=1-2sin 2α.知识点二 二倍角公式的变形1.公式的逆用2sin αcos α=sin2α, sin αcos α=12sin2α, cos 2α-sin 2α=cos_2α, 2tan α1-tan 2α=tan2α. 2.二倍角公式的重要变形——升幂公式和降幂公式升幂公式 1+cos2α=2cos 2α,1-cos2α=2sin 2α,1+cos α=2cos 2α2,1-cos α=2sin 2α2.降幂公式 cos 2α=1+cos2α2,sin 2α=1-cos2α2.类型一 给角求值对于给角求值问题,一般有两类(1)直接正用、逆用二倍角公式,结合诱导公式和同角三角函数的基本关系对已知式子进行转化,一般可以化为特殊角.(2)若形式为几个非特殊角的三角函数式相乘,则一般逆用二倍角的正弦公式,在求解过程中,需利用互余关系配凑出应用二倍角公式的条件,使得问题出现可以连用二倍角的正弦公式的形式.1.cos 2π12-sin 2π12;2.1-tan 275°tan75°;3. 12-cos 2π84. sin15°sin75°5. cos20°cos40°cos80° 6.cos π7cos 3π7cos 5π77.sin 4π12-cos 4π12 8.3tan π81-tan 2π8类型二 给值求值(1)条件求值问题常有两种解题途径:①对题设条件变形,把条件中的角、函数名向结论中的角、函数名靠拢;②对结论变形,将结论中的角、函数名向题设条件中的角、函数名靠拢,以便将题设条件代入结论.(2)一个重要结论:(sin θ±cos θ)2=1±sin 2θ.1.已知cos x =34,则cos2x 等于( )2、若sin α-cos α=13,则sin2α=________.若改为sin α+cos α=13,求sin2α.3、若tan α=34,则cos 2α+2sin2α等于4、若sin(π-α)=13,且π2≤α≤π,则sin2α的值为( )5、已知α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=35,则cos ⎝⎛⎭⎪⎫2α-π6=________.类型三 利用二倍角公式化简证明三角函数式化简、证明的常用技巧(1)特殊角的三角函数与特殊值的互化.(2)对于分式形式,应分别对分子、分母进行变形处理,有公因式的提取公因式后进行约分.(3)对于二次根式,注意二倍角公式的逆用.(4)利用角与角之间的隐含关系,如互余、互补等.(5)利用“1”的恒等变形,如tan 45°=1,sin 2α+cos 2α=1等.1α为第三象限角,则1+cos2αcos α-1-cos2αsin α=________.2、1+sin2θ-cos2θ1+sin2θ+cos2θ.3、4sin αcos α1+cos2α·cos 2αcos 2α-sin 2α=tan2α.。
3.1.3二倍角的正弦、余弦、正切公式【知识导航】1.会推导二倍角的正弦、余弦、正切公式.2.灵活应用二倍角的正弦、余弦、正切公式解决有关的求值、化简、证明等问题.【知识梳理】【做一做1】已知sin α=3,cos α=4,则sin 2α等于 ()A.7B.12C.12D.24解析:sin2α=2sinαcosα=2425.答案:D【做一做2】已知cos α=13,则cos 2α等于()A.13B.23C.−79D.79解析:cos2α=2cos2α-1=2−1=−7.答案:C【做一做3】已知tan α=3,则tan 2α等于()A.6B.−34C.−38D.98解析:tan2α=2tanα1-tanα=2×31-32=−3.答案:B二倍角公式的变形公式剖析:(1)公式的逆用:2sinαcosα=sin2α;sinαcosα=1sin2α; cosα=sin2α;cos2α-sin2α=cos2α;2tanα1-tan2α=tan2α.(2)公式的有关变形:1±sin2α=sin2α+cos2α±2sinαcosα=(sinα±cosα)2;1+cos2α=2cos2α;1-cos2α=2sin2α.(3)升幂和降幂公式:升幂公式:1+sinα=sinα2+cosα22;1-sinα=sinα2-cosα22;1+cosα=2cos2α2;1−cosα=2sin2α2.降幂公式:cos2α=1+cos2α2;sin2α=1-cos2α2.【典例分析】题型一利用二倍角公式求值【例1】求下列各式的值:(1)co sπcos2π;(2)12−cos2π8;(3)ta nπ−1tanπ12.分析:第(1)题可根据2π5是π5的2倍构造二倍角的公式求值;第(2)(3)题需将所求的式子变形,逆用二倍角公式化简求值.解:(1)原式=2sinπ5cosπ5cos2π52sinπ5=sin2π5cos2π52sinπ5=sin4π54sinπ=sinπ54sinπ=14.(2)原式=1-2cos2π8=−2cos2π8-1=−12cosπ4=−24.(3)原式=tan2π12-1tanπ12=−2×1-tan2π122tanπ12=-2×1tanπ6=33=-2 3.【变式训练1】求下列各式的值:(1)si nπ12cos π12; (2)1-2sin 2750°; (3)1sin10°− 3cos10°. 解:(1)原式=2sin π12cos π122=sin π62=14.(2)原式=cos(2×750°)=cos1500° =cos(4×360°+60°)=cos60°=1.(3)原式=cos10°- 3sin10°=2 12cos10°- 32sin10°=4(sin30°cos10°-cos30°sin10°)=4sin20°=4.题型二知值求值【例2】已知si n π4-x =513,0<x <π4,求cos2xcos π4+x的值. 分析:注意角的关系 π4+x + π4-x =π2,注意诱导公式的应用cos2x=si n π2+2x ,利用倍角公式解题.解:原式=sin π2+2x cos π4+x=2sin π4+x cos π4+xcos π4+x=2si n π+x .∵si n π-x =cos π+x =5,且0<x <π,∴π+x ∈ π,π,sin π+x = 1-cos 2 π+x =12,∴原式=2×12=24.反思已知某角的三角函数值求值,要认真观察已知角与所求的和或差是特殊角或二倍角等,用诱导公式变形后,利用有关公式求值.【变式训练2】(1)已知si n α-π6 =35,且α是锐角,则sin 2α-π3 =__________,cos 2α-π3 =__________,tan 2α-π=__________;(2)若si n π+θ =30<θ<π,则cos 2θ=__________. 解析:(1)由题意知co s α-π6 =45,∴si n 2α-π3 =2sin α-π6 cos α-π6 =2425,cos 2α-π3 =725,tan 2α-π3 =247. (2)∵si n π4+θ =35,0<θ<π4,∴co s π4+θ =45.∴cos2θ=si n π+2θ =sin2 π+θ=2si n π+θ cos π+θ =2×3×4=24. 答案:(1)24724(2)24题型三化简与证明【例3】化简:(1 3tan10cos70° 1+cos40°(2)2cos 2α-12tan π4-α sin π4+α. 分析:先把切化弦,再结合三角函数公式求解。
3.1.3 二倍角的正弦、余弦、正切公式知识梳理1.二倍角的正弦、余弦、正切公式 【问题导思】在公式C (α+β),S (α+β),T (α+β)中,若α=β公式还成立吗?二倍角的正弦、余弦、正切公式2.正弦、余弦的二倍角公式的变形 (1)余弦的二倍角公式的变形(2)正弦的二倍角公式的变形sin αcos α= , (sin α±cos α)2= .知识点一 利用二倍角公式给角求值 例1 求下列各式的值:(1)cos π5cos 2π5;(2)2tan 150°1-tan 2150°变式 求下列各式的值.(1)cos 72°cos 36°; (2)1sin 50°+3cos 50°.知识点二 利用二倍角公式给值求值 例2 已知sin(π4-x )=513,0<x <π4,求cos 2cos 4xx π⎛⎫+ ⎪⎝⎭的值.变式 在例题条件不变的情况下,求sin 2cos 4xx π⎛⎫+ ⎪⎝⎭的值.知识点三 二倍角公式的综合应用 例3(1)化简:1+cos 2θ-sin 2θ1-cos 2θ-sin 2θ;(2)化简:1+sin 10°-1-sin 10°变式 化简下列各式.(1)π4<α<π2,则1-sin 2α=________. (2)α为第三象限角,则1+cos 2αcos α-1-cos 2αsin α=________.巩固练习1.12sin 15°cos 15°的值等于( ) A.14 B.18 C.116 D.12 2.下列各式中,值为32的是( ) A .2sin 15°-cos 15° B .cos 215°-sin 215° C .2sin 215°-1D .cos 215°+sin 215°3.已知tan α=12,则tan 2α=__________.4.若tan(α+π4)=3+22,求1-cos 2αsin 2α的值.知能检测一、选择题1.2sin 2α1+cos 2α·cos 2αcos 2α=( ) A .tan 2α B .tan α C .1 D.122.函数f (x )=sin x cos x 的最小值是( )A .-1B .-12 C.12 D .13.设sin(π4+θ)=13,则sin 2θ=( )A .-79B .-19 C.19 D.794.设sin α=35(π2<α<π),tan(π-β)=12,则tan(α-2β)=( )A .-247B .-724 C.247 D.7245.2-2cos 8+21-sin 8的化简结果是( )A .2cos 4-4sin 4B .2sin 4C .2sin 4-4cos 4D .-2sin 4二、填空题6.已知sin(π4-x )=35,则sin 2x 的值等于________.7.在△ABC 中,已知cos 2C =-14,则sin C 的值为________.8.函数f (x )=sin(2x -π4)-22·sin 2x 的最小正周期是________.三、解答题9.求函数f (x )=cos(x +23π)+2cos 2x2,x ∈R 的值域;10.已知tan α=3,α∈(π4,π2),求sin 2α,cos 2α,tan 2α的值.11.已知sin(π4+α)sin(π4-α)=16,且α∈(π2,π),求sin 4α的值.答案例1 (1)原式=2sin π5cos π5cos 2π52sin π5=sin 2π5cos 2π52sin π5=sin 4π54sin π5=sinπ54sinπ5=14.(2) 原式=tan 300°=tan(360°-60°)=-tan 60°=- 3.变式 (1)cos 36°cos 72°=2sin 36°cos 36°cos 72°2sin 36°=2sin 72°cos 72°4sin 36°=sin 144°4sin 36°=14.(2)原式=cos 50°+3sin 50°sin 50°cos 50°=2 12cos 50°+32sin 50° 12×2sin 50°cos 50°=2sin 80°12sin 100°=2sin 80°12sin 80°=4.例2∵0<x <π4,∴π4-x ∈(0,π4).又∵sin(π4-x )=513,∴cos(π4-x )=1213.又cos 2x =sin(π2-2x )=2sin(π4-x )cos(π4-x )=2×513×1213=120169,cos(π4+x )=sin[π2-(π4+x )]=sin(π4-x )=513,∴原式=120169513=2413.变式 ∵x ∈(0,π4),∴π4-x ∈(0,π4).又∵sin(π4-x )=513,∴cos(π4-x )=1213.又sin 2x =cos(π2-2x )=cos 2(π4-x )=2cos 2(π4-x )-1=119169.∴原式=1191691213=119156.例3(1) 1+cos 2θ-sin 2θ1-cos 2θ-sin 2θ=2cos 2θ-2sin θcos θ2sin 2θ-2sin θcos θ==-1tan θ,∴原式=-1tan θ. (2)1+sin 10°-1-sin 10°=1+2sin 5°cos 5°-1-2sin 5°cos 5° =(cos 5°+sin 5°)-(cos 5°-sin 5°)=2sin 5°.∴原式=2sin 5°.变式 (1)∵α∈(π4,π2),∴sin α>cos α,∴1-sin 2α=1-2sin αcos α=sin 2α-2sin αcos α+cos 2α= sin α-cos α 2=sin α-cos α. (2)∵α为第三象限角,∴cos α<0,sin α<0, ∴1+cos 2αcos α-1-cos 2αsin α=2cos 2αcos α-2sin 2αsin α=-2cos αcos α--2sin αsin α=0.巩固练习1.B 2.B 3.434.由tan(α+π4)=1+tan α1-tan α=3+22,∴tan α=22,∴1-cos 2αsin 2α=2sin 2α2sin αcos α=tan α=22.知能检测一、选择题ABADA二、填空题6.725 7.104 8.π三、解答题9.f (x )=cos x cos 23π-sin x sin 23π+cos x +1=-12cos x -32sin x +cos x +1=12cos x -32sin x +1=sin(x +5π6)+1,因此f (x )的值域为[0,2]. 10.∵α∈(π4,π2),tan α=3,∴sin α=31010,cos α=1010.∴sin 2α=2sin αcos α=2×31010×1010=35,cos 2α=2cos 2α-1=2×110-1=-45,∴tan 2α=sin 2αcos 2α=-34.11.因为(π4+α)+(π4-α)=π2.所以sin(π4-α)=cos(π4+α)因为sin(π4+α)sin(π4-α)=16,所以2sin(π4+α)·cos(π4+α)=13,即sin(π2+2α)=13.所以cos 2α=13.又因为α∈(π2,π),所以2α∈(π,2π),所以sin 2α=-1-cos 2 2α=-223.所以sin 4α=2sin 2αcos 2α=-429.。
3.1.3 二倍角的正弦、余弦、正切公式(2个课时)
学习目标:以两角和的正弦、余弦和正切公式为基础,推导二倍角的正弦、余弦和正切公式,
记忆公式并能灵活应用公式. 学习重点:1、推导二倍角的正弦、余弦和正切公式; 2、二倍角公式的灵活应用。
学习难点:二倍角的理解及其公式的灵活运用.
第一课时 一、知识链接:
1、sin()=αβ+
2、cos()=αβ+
3、tan()=αβ+ 思考1:上述公式中当αβ=时,你能得到什么结论? 二、新课导学 (一)新知探究
二倍角的正弦、余弦、正切公式
sin 2cos 2tan 2ααα=
==
思考2:观察二倍角的余弦公式,里面有2
2
sin cos αα和,而我们知道2
2
sin cos 1αα+=,由此,你还能得到余弦的其他二倍角公式吗?
cos 2α= cos 2α=
注意:对于“二倍角”要有广义的理解,如4α是2α的二倍角,α是2
α的二倍角,3α是
32α
的二倍角等等。
(二)新知运用
1、在括号里填上适当的角,使等式成立。
(
)()()()()()()()
22
2(1)sin 42sin cos ;(2)sin 2sin cos ;
2tan (3)cos cos sin ;(4)tan 3.
21tan αααα===-=-
2、求下列各式的值:
3、自学课本135P 例5
22(1)2sin
cos
12
12
(2)2cos
18
(3)2sin 151π
π
π
=
-=
-=
(重在求解思路的探求上)
三、练习:135P 5、 1、2、
四、小结:1、二倍角公式及记忆; 2、“倍半关系”的相对性;公式的灵活应用。
五、作业: 课本138P 14、15
第二课时
一、复习:二倍角的正弦、余弦、正切公式 二、新课:1、二倍角公式的变形:
(1)由二倍角的正弦公式可得sin cos αα=
; (2)由二倍角的余弦公式可得2sin α= ;2
cos α= ;
2
tan α= 。
这三个公式从左边到右边,次数有什么变化,角又有什么变化?(我们把它们称为降幂扩角公式)另外,我们经常用到的公式还有:
21sin 2(sin cos )ααα+=+, 同理,1sin 2α-=( 2
)
2、自学课本133P 例6(重在解题思路的探求上),你能求出tan 2C 的值吗? 三、练习:课本135P
3、4 课本138P 18、19
四、小结:1、二倍角公式的灵活应用;
2、综合应用公式求值、化简。
五、作业:课本138P 16、17。