人教版数学九上《第21章 一元二次方程复习》同课异构教案 (vip专享)
- 格式:doc
- 大小:255.50 KB
- 文档页数:3
21.1一元二次方程教学目标:一、基本目标【知识与技能】1.理解一元二次方程及相关概念.2.掌握一元二次方程的一般形式.3.了解一元二次方程根的概念,会检验一个数是不是一元二次方程的解.【过程与方法】从实际问题中建立方程模型,体会一元二次方程的概念.【情感态度与价值观】通过从实际问题中抽象出方程模型来认识一元二次方程,培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.二、重难点目标【教学重点】1.一元二次方程的概念及其一般形式.2.判断一个数是不是一元二次方程的解.【教学难点】能准确判断一元二次方程的二次项、二次项系数、一次项、一次项系数及常数项.教学过程:环节1自学提纲,生成问题【5 min阅读】阅读教材P1~P4的内容,完成下面练习.【3 min反馈】1.解决下列问题:问题1:如图,有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样大小的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?【解析】设切去的正方形的边长为x cm,则盒底的长为__(100-2x)_cm__,宽为__(50-2x)_cm__.列方程,得__(100-2x)(50-2x)=3600__,化简,整理,得__x 2-75x +350=0__.①问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?【解析】全部比赛的场数为__4×7=28(场)__.设应邀请x 个队参赛,每个队要与其他__(x -1)__个队各赛一场.因为甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共__12x (x -1)__场. 列方程,得__12x (x -1)=28__. 化简、整理,得 __x 2-x -56=0__.②归纳总结:方程①②的共同特点是:方程的两边都是__整式__,只含有__一个__未知数,并且未知数的最高次数是__2__.2.一元二次方程的定义:等号两边都是__整式__,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程.3.一元二次方程的一般形式是__ax 2+bx +c =0(a ≠0)__.其中__ax 2__是二次项,__a __是二次项系数,__bx __是一次项,__b __是一次项系数,__c __是常数项.环节2 合作探究,解决问题【活动1】 小组讨论(师生互学)【例1】判断下列方程,哪些是一元二次方程?(1)x 3-2x 2+5=0;(2)x 2=1;(3)5x 2-2x -14=x 2-2x +35; (4)2(x +1)2=3(x +1);(5)x 2-2x =x 2+1;(6)ax 2+bx +c =0.【互动探索】(引发学生思考)要判断一个方程是一元二次方程,那么它应该满足哪些条件?【解答】(2)(3)(4)是一元二次方程.【互动总结】(学生总结,老师点评)判断一个方程是不是一元二次方程,首先看方程等号两边是不是整式,然后移项,使方程的右边为0,再观察左边是否只有一个未知数,且未知数的最高次数是否为2.【例2】将方程2x ⎝⎛⎭⎫12-x +2=5(x -1)化成一元二次方程的一般形式,并指出各项系数.【互动探索】(引发学生思考)一元二次方程的一般形式是怎样的?【解答】去括号,得x -2x 2+2=5x -5.移项,合并同类项,得一元二次方程的一般形式:2x2+4x-7=0.其中二次项系数是2,一次项系数是4,常数项是-7.【互动总结】(学生总结,老师点评)将一元二次方程化成一般形式时,通常要将二次项化负为正,化分为整.【例3】下面哪些数是方程2x2+10x+12=0的解?-4,-3,-2,-1,0,1,2,3,4.【互动探索】(引发学生思考)你能类比判断一个数是一元一次方程的解的方法判断一元二次方程的解吗?【解答】将上面的这些数代入后,只有-2和-3满足等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的解.【互动总结】(学生总结,老师点评)要判断一个数是否是方程的解,只要把这个数代入等式,看等式两边是否相等即可.若相等,则这个数是方程的解,若不相等,则这个数不是方程的解.【活动2】巩固练习(学生独学)1.下列方程是一元二次方程的是(D)A.ax2+bx+c=0 B.3x2-2x=3(x2-2)C.x3-2x-4=0 D.(x-1)2+1=02.已知x=2是一元二次方程x2-2mx+4=0的一个解,则m的值为(A)A.2B.0C.0或2D.0或-2【教师点拨】将x=2代入x2-2mx+4=0得,4-4m+4=0.再解关于m的一元一次方程即可得出m的值.3.把一元二次方程(x+1)(1-x)=2x化成二次项系数大于0的一般式是__x2+2x-1=0__,其中二次项系数是__1__,一次项系数是__2__,常数项是__-1__.【活动3】拓展延伸(学生对学)【例4】求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.【互动探索】(引发学生思考)已知关于x的方程,且含有字母系数,要证明该方程是一元二次方程,则该方程的二次项系数必须满足什么条件?【证明】m2-8m+17=m2-8m+42+1=(m-4)2+1.∵(m-4)2≥0,∴(m-4)2+1>0,即(m-4)2+1≠0,∴不论m取何值,该方程都是一元二次方程.【互动总结】(学生总结,老师点评)要证明不论m取何值,该方程都是一元二次方程,只需证明二次项系数恒不为0,即m 2-8m +17≠0.环节3 课堂小结,当堂达标(学生总结,老师点评)1.一元二次方程⎩⎪⎨⎪⎧ 必须满足的三要素⎩⎪⎨⎪⎧ 是整式方程只有一个未知数未知数的最高次数是2 一般形式:ax 2+bx +c =0(a ≠0)2.判断一个数是否是一元二次方程解的方法:将这个数分别代入方程的左右两边,如果“左边=右边”,则这个数是方程的解;如果“左边≠右边”,则这个数不是方程的解.练习设计:请完成本课时对应练习!。
第21章一元二次方程一、复习目标1.了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题.2.通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型.•根据数学模型恰如其分地给出一元二次方程的概念.3.通过掌握缺一次项的一元二次方程的解法──直接开方法,•导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程.4.通过用已学的配方法解ax2+bx+c=0(a≠0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2—4ac〉0,b2—4ac=0,b2-4ac<0.5.用因式分解法解一元二次方程,并用练习巩固它.6.提出问题、分析问题,建立一元二次方程的数学模型,•并用该模型解决实际问题.二、课时安排2课时三、复习重难点1.一元二次方程及其它有关的概念.2.用配方法、公式法、因式分解法降次──解一元二次方程.3.利用实际问题建立一元二次方程的数学模型,并解决这个问题.四、教学过程(一)知识梳理1、一元二次方程的概念:等号两边都是整式,只含有一个求知数(一元),并且求知数的最高次数是 2 (二次)的方程,叫做一元二次方程.2、一元二次方程的一般形式是:ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数,bx 是一次项,b 是一次项系数,c 是常数项。
3、一元二次方程的解法:①直接开方法、②配方法、③公式法、④因式分解法4、一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式是△= b 2-4ac ,当⊿>0时,方程有两个不相等的实数根;当⊿=0时,方程有两个相等的实数根;当⊿〈0时,方程没有实数根;当⊿≥0时,方程有实数根。
5、一元二次方程的根与系数的关系:(韦达定理)当⊿=b 2-4ac ≥0时,一元二次方程ax 2+bx +c =0(a ≠0)的求根公式为x 一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1、x 2,则x 1+x 2=a b -,x 1•x 2=ac 。
一元二次方程的复习一. 知识梳理考点1 形如20(0)ax bx c a ++=≠叫做一元二次方程的一般形式,其中ax 2是二次项,a 是二次项的系数;bx 是一次项,b 是一次项系数;c 是常数项。
一元二次方程的定义满足的三个条件: (1)整式方程 (2)只含一个未知数(3)未知数的最高次数是2。
考点2 1.解一元二次方程的一般解法有(1)_________;(2)________;(•3)•_________;•(•4)•求根公式法,•求根公式是______________.①直接开平方法解一元二次方程:若()02≥=a a x ,则x 叫做a 的平方根,表示为a x ±=,这种解一元二次方程的方法叫做直接开平方法。
②配方法解一元二次方程:将一元二次方程配成完全平方的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法。
③公式法解一元二次方程:一元二次方程)0(02≠=++a c bx ax ,当042≥-ac b 时,它有两个实数根:)04,0(2422≥-≠-±-=ac b a aacb b x ④因式分解法解一元二次方程:若一元二次方程的一边是0,而另一边易于分解成两个一次因式时,令每个因式分别等于零,得到两个一元一次方程,通过解这两个一次方程就可得到原方程的解.这种解一元二次方程的方法叫做因式分解法.因式分解法解一元二次方程的一般步骤(1)将方程的右边化为零;(2)将方程左边分解成两个一次因式的乘积; (3)令每个因式分别为零,得两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解。
2.形如()002≠=+a bx ax 的方程,可用提公因式法求方程的根:()0,021≠-==a abx x 。
3.形如()()022=+-+n bx m ax )(22b a ≠的方程,可用平方差公式把左边分解。
考点3 1.一元二次方程ax 2+bx+c=0(a≠0)中,b 2-4ac 叫做一元二次方程ax 2+bx+c=0(a≠0)的根的判别式,通常用“”来表示,即△=b 2-4ac(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根;(3)当△<0时,一元二次方程没有实数根.2.“一元二次方程ax 2+bx+c =0,如果方程有两个不相等的实数根,则△>0;如果方程有两个相等的实数根,则△=0;如果方程没有实数根,则△<0.”即根据方程的根的情况,可以决定△值的符号,‘△’的符号,可以确定待定的字母的取值范围.利用根的判别式判定一元二次方程根的情况的步骤:①一元二次方程化为一般形式;②确定abc 的值;③计算b 2-4ac 的值;④根据b 2-4ac 的符号判定方程根的情况.考点4 一元二次方程根与系数的关系(1)韦达定理:对于一元二次方程,如果方程有两个实数根,那么 证明:∵20(0)ax bx c a ++=≠,当240b ac -≥时根为:∆20(0)ax bx c a ++=≠12,x x 1212,b cx x x x a a+=-=2b x a-±=设12b x a -+=,22b x a-=,则∴122222b b b bx x a a a a-+---+=+==-221222(4)42244b b b b ac ac cx x a a a a a-+----⋅=⋅===考点5 注意一元二次方程根与系数的关系的前提条件和变形公式。
课题:《一元二次方程的解法》复习教案一、教材分析:解一元二次方程是人教版九年级上册第21章第二节的内容,本节的主要内容是一元二次方程的解法(直接开方法、因式分解法、配方法、公式法)。
解一元二次方程在课标中的要求是:理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程。
一元二次方程的解法是中学方程教学的重要环节,又是后续内容学习解决实际问题的基础和工具。
一元二次方程是对一元一次方程知识的延续和深化,同时为二次函数的学习作好准备。
学好这部分内容,对增强学生学习代数的信心具有十分重要的意义。
二、学情分析:学生已经学习了一元二次方程的解法:直接开方法、配方法、公式法、因式分解法后的一节复习课,已经掌握了学生的薄弱点:1.易错点:直接开平方法中,学生容易只取正的这一个根;2.配方法中,学生容易把一次项系数不除以2直接平方,个别学生会忘记平方,方程左边加了常数项,右边忘记加;公式法中,学生容易把公式中的-b记错成b,个别学生再代入系数的时候会忘记前面的负号;等等。
2.不能灵活选择解法,由于不会根据方程系数的特征找到最优解法,造成错误率提高,用时过长的弊端,从而影响到了少数学生对数学的自信心。
三、教学目标:(一)知识与技能:1.掌握一元二次方程的四种解法,会根据方程的不同特点,灵活选用适当的方法解方程。
2.避免易错点,提高解方程的正确率。
(二)过程与方法通过观察方程的特征选择不同解法,培养学生的观察猜想、归纳总结、分析问题、解决问题等能力,同时还培养学生化归的思想。
(三)情感态度价值观通过对一元二次方程解法的复习,使学生进一步理解“降次”的数学方法,进一步获得对事物可以转化的认识。
通过小组合作的形式,培养合作的习惯,提高分析的能力。
四、教学重点:掌握解一元二次方程的四种方法。
五、教学难点:会根据方程的特征灵活选用适当的方法解方程。
六、教学过程:(一)全班纠错,激发热情:教材P17习题21.2 6(3)3(1)2(1)x x x -=-作业完成中的不同解法展示:A :解:32x =∴ 23x = ∴原方程的解是:23x = B :解:23322x x x -=- C :解: 23322x x x -=-235+2=0x x - 235+2=0x x -252=33x x -- 252=33x x -- 22552+()=363x x -- 2225525+()=+()3636x x -- 252()=63x -- 251()=636x - ∴原方程无解 51=66x -∴=1x∴原方程的解为:=1xD :解:23322x x x -=-235+2=0x x -3,5,2a b c ==-=224(5)4321b ac ∆=-=--⨯⨯=21,2451223b b ac x a ±--±==⨯ ∴12213x x =-=-, ∴原方程的解是:12213x x =-=-,E :解:3(1)2(1)0x x x ---= (1)(32)0x x --=12213x x ==, ∴原方程的解是:12213x x ==, 提出问题,小组讨论:1.以上几位同学的解法是否正确,如果不正确请指出并改正,并小组内总结出哪些地方是易错点。
21.3实际问题与一元二次方程第1课时一、教学目标【知识与技能】会根据具体问题中的数量关系,列出一元二次方程并求解,能根据问题中的实际意义,检验所得结果的合理性.【过程与方法】经过“问题情境——建立模型——求解——解释与应用”的过程中,进一步锻炼学生的分析问题,解决问题的能力.【情感态度与价值观】通过建立一元二次方程解决实际问题,体验数学的应用价值,增强学习数学的兴趣.二、课型新授课三、课时第1课时,共3课时。
四、教学重难点【教学重点】构建一元二次方程解决实际问题.【教学难点】会用代数式表示问题中的数量关系,能根据问题的实际意义,检验所得结果的合理性.五、课前准备课件六、教学过程(一)导入新课有一人患了流感,经过两轮传染后共有121个人患了流感,每轮传染中平均一个人传染了几个人?(出示课件2)你能解决这个问题吗?(出示课件4)(二)探索新知出示课件5:设每轮传染中平均一个人传染了x个人.传染源记作小明,其传染示意图如下:(1)第一轮传染后共有人患了流感;(2)第二轮传染后共人患了流感.根据示意图,列表如下:(出示课件6)第1轮传染后的人数第2轮传染后的人数传染源人数1最后师生共同完成解答过程:解:设每轮传染中平均一个人传染了x个人,列方程为1+x+(1+x)·x=121提取公因式,得(1+x)(1+x)=121,即(1+x)2=121.∴x1=10,x2=-12(不合题意,应舍去),故平均一个人传染了10个人.教师强调:一元二次方程的解有可能不符合题意,所以舍去.想一想:如果按照这样的传染速度,三轮传染后有多少人患流感?(出示课件7)师生共同分析:第一轮传染后的人数第二轮传染后的人数第三轮传染后的人数生1口答:第1种做法:以1人为传染源,3轮传染后的人数是:(1+x)3=(1+10)3=1331(人).生2口答:第2种做法:以第2轮传染后的人数121为传染源,传染一次后就是:121(1+x)=121(1+10)=1331(人).思考:如果按这样的传染速度,n轮后传染后有多少人患了流感?(出示课件8)师生共同分析:传染源新增患者人数本轮结束患者总人数第一轮第二轮第三轮第n轮达成共识:经过n轮传染后共有(1+x)n人患流感.出示课件9:例1某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支?师生共同分析后解答如下:解:设每个支干长出x个小分支,由题意可列方程为1+x+x2=91,即x2+x-90=0.解得x1=9,x2=-10(不合题意,应舍去),答:每个支干长出9个小分支.出示课件10:引导学生思考并解答如下问题:1.在分析引例和例1中的数量关系时它们有何区别?答案:每个树枝只分裂一次,每名患者每轮都传染.2.解决这类传播问题有什么经验和方法?答案:(1)审题,设元,列方程,解方程,检验,作答;(2)可利用表格梳理数量关系;(3)关注起始值、新增数量,找出变化规律.教师问:运用一元二次方程模型解决实际问题的步骤有哪些?(出示课件11)学生自主思考后,教师归纳如下:出示课件12:电脑勒索病毒的传播非常快,如果开始有6台电脑被感染,经过两轮感染后共有2400台电脑被感染.每轮感染中平均一台电脑会感染几台电脑?学生思考后自主解决.解:设每轮感染中平均一台电脑会感染x台电脑.依题意得6+6x+6x(1+x)=2400.6(1+x)²=2400.解得x1=19或x2=-21(舍去).答:每轮感染中平均一台电脑会感染19台电脑.出示课件13:例2一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共多少人?引导学生积极思考,寻求出实际问题中所蕴含的等量关系,最后师生共同完成解答过程.解:设这个小组共x人,根据题意列方程,得x(x-1)=72.化简,得x2-x-72=0.解方程,得x1=9,x2=-8(舍去).答:这个小组共9人.出示课件14:生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,求全组有多少名同学?学生独立思考,自主探究,找出题目中的等量关系后自主解答:解:全组有x名同学,根据题意,得x(x-1)=182.解得x1=14,x2=-13(不合题意,舍去).答:全组有14名同学.(三)课堂练习(出示课件15-22)1.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人2.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4B.5C.6D.73.元旦将至,九年级一班全体学生互赠贺卡,共赠贺卡1980张,问九年级一班共有多少名学生?设九年级一班共有x名学生,那么所列方程为()A.x2=1980B.x(x+1)=1980C.x(x-1)=1980D.x(x-1)=19804.有一根月季,它的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干、小分支的总数是73,设每个枝干长出x个小分支,根据题意可列方程为()A.1+x+x(1+x)=73B.1+x+x2=73C.1+x2=73D.(1+x)²=735.早期,甲肝流行,传染性很强,曾有2人同时患上甲肝.在一天内,一人平均能传染x人,经过两天传染后128人患上甲肝,则x的值为()?A.10B.9C.8D.76.为了宣传环保,小明写了一篇倡议书,决定用微博转发的方式传播,他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发倡议书,每个好友转发倡议书之后,又邀请n个互不相同的好友转发倡议书,以此类推,已知经过两轮传播后,共有111个人参与了传播活动,则n=______.7.某校初三各班进行篮球比赛(单循环制),每两班之间共比赛了6场,求初三有几个班?8.某生物实验室需培育一群有益菌,现有60个活体样本,经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后共有多少个有益菌?参考答案:1.C2.C3.D4.B5.D6.107.解:初三有x个班,根据题意列方程,得1(1) 6.x x-=2化简,得x2-x-12=0.解方程,得x1=4,x2=-3(舍去).答:初三有4个班.8.分析:设每轮分裂中平均每个有益菌可分裂出x个有益菌.传染源本轮分裂成有益菌数目本轮结束有益菌总数第一轮6060x60(1+x)第二轮60(1+x)60(1+x)x60(1+x)2第三轮60(1+x)260(1+x)2x60(1+x)3解:设每个有益菌一次分裂出x个有益菌.60+60x+60(1+x)x=24000.x1=19,x2=-21(舍去).因此每个有益菌一次分裂出19个有益菌.三轮后有益菌总数为24000×(1+19)=480000.(四)课堂小结通过这节课的学习,你对传播类的应用问题的处理有哪些体会和收获?谈谈你的看法.(五)课前预习预习下节课(21.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.教师引导学生熟悉列一元二次方程解应用题的步骤,创设问题推导出列一元二次方程解应用题的步骤,有利于学生熟练掌握用一元二次方程解应用题的步骤.2.传播类和增长率问题是一元二次方程中的重点问题,本设计问题中反映出不同的“传播”和增长率,有利于学生更好地掌握这一问题.。
一元二次方程单元复习教案复习目标1.知识与技能.(1)了解一元二次方程的有关概念.(2)能运用直接开平方法、配方法、公式法、•因式分解法解一元二次方程.(3)会根据根的判别式判断一元二次方程的根的情况.(4)知道一元二次方程根与系数的关系,并会运用它解决有问题.(5)能运用一元二次方程解决简单的实际问题.(6)了解数学解题中的方程思想、转化思想、分类讨论思想和整体思想.2.过程与方法.(1)经历运用知识、技能解决问题的过程.(2)发展学生的独立思考能力和创新精神.3.情感、态度与价值观.(1)初步了解数学与人类生活的密切联系.(2)培养学生对数学的好奇心与求知欲.(3)养成质疑和独立思考的学习习惯.重难点、关键1.重点:运用知识、技能解决问题.2.难点:解题分析能力的提高.3.关键:引导学生参与解题的讨论与交流.复习过程一、复习联想,温故知新基础训练.1.方程中只含有_______•未知数,•并且未知数的最高次数是_______,•这样的______的方程叫做一元二次方程,通常可写成如下的一般形式:_______()其中二次项系数是______,一次项系数是______,常数项是________.例如:一元二次方程7x-3=2x2化成一般形式是________•其中二次项系数是_____、一次项系数是_______、常数项是________.2.解一元二次方程的一般解法有(1)_________;(2)________;(•3)•_________;•(•4)•求根公式法,•求根公式是______________.3.一元二次方程ax2+bx+c=0(a≠0)的根的判别式是____________,当_______时,它有两个不相等的实数根;当_________时,它有两个相等的实数根;当_______时,•它没有实数根.例如:不解方程,判断下列方程根的情况:(1)x(5x+21)=20 (2)x2+9=6x (3)x2-3x=-54.设一元二次方程x2+px+q=0的两个根分别为x1,x2,则x1+x2=_______,x1·x2=______.例如:方程x2+3x-11=0的两个根分别为x1,x2,则x1+x2=________;x1·x2=_______.5.设一元二次方程ax2+bx+c=0(a≠0)的两个根分别为x1,x2,则x1+x2=•_______,•x1·x2=________.二、范例学习,加深理解例:解下列方程.(1)2(x+3)2=x(x+3)(2)x2-2 x+2=0(3)x2-8x=0 (4)x2+12x+32=0点拨:选择解方程的方法时,应先考虑直接开平方法和因式分解法;再考虑用配方法,最后考虑用公式法.三、合作交流,探索新知1.已知关于x的方程x2-mx-3=0的两实根为x1,x2,若x1+x2=2,求x1,x2的值.2.将一块正方形铁皮的四角各剪去一个边长为4cm的小正方形,做成一个无盖的盒子,已知盒子的容积是400cm3,求原铁皮的边长.3.如图,某海关缉私艇在点O处发现在正北方向30海里的A•处有一艘可疑船只,测得它正以60海里/小时的速度向正东方向航行,随即调整方向,以75海里/•小时的速度准备在B处迎头拦截,问经过多少时间能赶上?4.某工厂一月份生产零件2万个,一季度共生产零件7.98万个,•若每月的增长率相同,求每月产量的平均增长率.5.已知x=1是一元二次方程(a-2)x2+(a2-3)x-a+1=0的一个根,求a的值.四、归纳总结,提高认识1.综述本节课的主要内容.2.谈谈本节课的收获与体会.五、布置作业,专题突破1.课本P38复习题第1.(1)、(3)、(5)、(6),2.(1),3.5.6.9.(4),10.(1)题.2.选用课时作业设计.3.预习作业:本章复习提纲.六、课后反思(略)课时作业设计1.一元二次方程3x2+x=0的根是________.2.一元二次方程(1+3x)(x-3)=2x2+1化为一般形式为:________,•二次项系数为:________,一次项系数为:________,常数项为:________.3.方程2x2=4x的解是()A.x=0 B.x=2 C.x1=0,x2=2 D.以上都不对4.某商品连续两次降价,每次都降20%后的价格为m元,则原价是()A.D.0.8m2元5.解下列方程.(1)3x2-x=4 (2)(x+3)(x-4)=6(3)(x+3)2=(1-2x)2 (4)3x2+5x-2=0(5)x2+2 x-4=06.已知直角三角形三边长为连续整数,则它的三边长是_________.7.用22cm长的铁丝,折成一个面积是30cm2的矩形,求这个矩形的长和宽.又问:能否折成面积是32cm2的矩形呢?为什么?8.某科技公司研制成功一种产品,决定向银行贷款200万元资金用于生产这种产品,贷款的合同上约定两年到期时,一次性还本付息,利息为本金的8%.该产品投放市场后,由于产销对路,使公司在两年到期时除还清贷款的本息外,还盈余72万余.若该公司在生产期间每年比上一年资金增长的百分数相同,试求这个百分数.。
一元二次方程单元复习教案复习目标1.知识与技能.(1)了解一元二次方程的有关概念.(2)能运用直接开平方法、配方法、公式法、•因式分解法解一元二次方程.(3)会根据根的判别式判断一元二次方程的根的情况.(4)知道一元二次方程根与系数的关系,并会运用它解决有问题.(5)能运用一元二次方程解决简单的实际问题.(6)了解数学解题中的方程思想、转化思想、分类讨论思想和整体思想.2.过程与方法.(1)经历运用知识、技能解决问题的过程.(2)发展学生的独立思考能力和创新精神.3.情感、态度与价值观.(1)初步了解数学与人类生活的密切联系.(2)培养学生对数学的好奇心与求知欲.(3)养成质疑和独立思考的学习习惯.重难点、关键1.重点:运用知识、技能解决问题.2.难点:解题分析能力的提高.3.关键:引导学生参与解题的讨论与交流.复习过程一、复习联想,温故知新基础训练.1.方程中只含有_______•未知数,•并且未知数的最高次数是_______,•这样的______的方程叫做一元二次方程,通常可写成如下的一般形式:_______()其中二次项系数是______,一次项系数是______,常数项是________.例如:一元二次方程7x-3=2x2化成一般形式是________•其中二次项系数是_____、一次项系数是_______、常数项是________.2.解一元二次方程的一般解法有(1)_________;(2)________;(•3)•_________;•(•4)•求根公式法,•求根公式是______________.3.一元二次方程ax2+bx+c=0(a≠0)的根的判别式是____________,当_______时,它有两个不相等的实数根;当_________时,它有两个相等的实数根;当_______时,•它没有实数根.例如:不解方程,判断下列方程根的情况:(1)x(5x+21)=20 (2)x2+9=6x (3)x2-3x=-54.设一元二次方程x2+px+q=0的两个根分别为x1,x2,则x1+x2=_______,x1·x2=______.例如:方程x2+3x-11=0的两个根分别为x1,x2,则x1+x2=________;x1·x2=_______.5.设一元二次方程ax2+bx+c=0(a≠0)的两个根分别为x1,x2,则x1+x2=•_______,•x1·x2=________.二、范例学习,加深理解例:解下列方程.(1)2(x+3)2=x(x+3)(2)x2-2 x+2=0(3)x2-8x=0 (4)x2+12x+32=0点拨:选择解方程的方法时,应先考虑直接开平方法和因式分解法;再考虑用配方法,最后考虑用公式法.三、合作交流,探索新知1.已知关于x的方程x2-mx-3=0的两实根为x1,x2,若x1+x2=2,求x1,x2的值.2.将一块正方形铁皮的四角各剪去一个边长为4cm的小正方形,做成一个无盖的盒子,已知盒子的容积是400cm3,求原铁皮的边长.3.如图,某海关缉私艇在点O处发现在正北方向30海里的A•处有一艘可疑船只,测得它正以60海里/小时的速度向正东方向航行,随即调整方向,以75海里/•小时的速度准备在B处迎头拦截,问经过多少时间能赶上?4.某工厂一月份生产零件2万个,一季度共生产零件7.98万个,•若每月的增长率相同,求每月产量的平均增长率.5.已知x=1是一元二次方程(a-2)x2+(a2-3)x-a+1=0的一个根,求a的值.四、归纳总结,提高认识1.综述本节课的主要内容.2.谈谈本节课的收获与体会.五、布置作业,专题突破1.课本P38复习题第1.(1)、(3)、(5)、(6),2.(1),3.5.6.9.(4),10.(1)题.2.选用课时作业设计.3.预习作业:本章复习提纲.六、课后反思(略)课时作业设计1.一元二次方程3x2+x=0的根是________.2.一元二次方程(1+3x)(x-3)=2x2+1化为一般形式为:________,•二次项系数为:________,一次项系数为:________,常数项为:________.3.方程2x2=4x的解是()A.x=0 B.x=2 C.x1=0,x2=2 D.以上都不对4.某商品连续两次降价,每次都降20%后的价格为m元,则原价是()A.D.0.8m2元5.解下列方程.(1)3x2-x=4 (2)(x+3)(x-4)=6(3)(x+3)2=(1-2x)2 (4)3x2+5x-2=0(5)x2+2 x-4=06.已知直角三角形三边长为连续整数,则它的三边长是_________.7.用22cm长的铁丝,折成一个面积是30cm2的矩形,求这个矩形的长和宽.又问:能否折成面积是32cm2的矩形呢?为什么?8.某科技公司研制成功一种产品,决定向银行贷款200万元资金用于生产这种产品,贷款的合同上约定两年到期时,一次性还本付息,利息为本金的8%.该产品投放市场后,由于产销对路,使公司在两年到期时除还清贷款的本息外,还盈余72万余.若该公司在生产期间每年比上一年资金增长的百分数相同,试求这个百分数.。
第二十一章一元二次方程21.1 一元二次方程教师备课素材示例●归纳导入如图,现在要将一块矩形绿地扩大,长、宽各增加2,求长、宽各增加的长度.引导学生分析:等量关系为__扩大后的长×宽=扩大后的面积__,则矩形的长为__(30+x)__m,宽为__(20+2,得方程__(30+x)(20+x)=936__.整理,得__x2+50x-336=0__.【归纳】一元二次方程是只含有__一个未知数x的整式__方程,并且都可以化成__ax2+bx+c=0(a,b,c为常数,a≠0)__的形式.【教学与建议】教学:通过图形的变化让学生感知等量关系,通过整理所得到的方程的特征归纳出一元二次方程的定义.建议:讲解一元二次方程定义要抓住三个关键点:一是整式方程;二是只含有一个未知数;三是未知数的最高次数是2.●复习导入(教师)同学们,至今为止我们学习了哪些方程?它们都有什么特点?能举例说明吗?类似于5x2+4x-2=0的方程我们学习过吗?这类方程有什么特点?属于什么方程呢?它们存在于我们的实际生活中吗?下面我们一起探索新知——一元二次方程!【教学与建议】教学:复习回顾前面学过的一元一次方程,二元一次方程,分式方程,为继续探索和学习一元二次方程的特点和定义做好铺垫,同时对新方程产生疑问,激发学生探索新知的兴趣.建议:通过复习,让学生明确“元”和“次”在方程中的含义.一元二次方程化简后的特征:①是整式方程;②只含有一个未知数;③未知数的最高次数是2.【例1】(1)下列方程中,是关于x的一元二次方程的是(D)A.ax2+bx+c=0B.1x2+x=2C.2x=1D.2+x2=10(2)在下列方程中,是一元二次方程的有__①__.(填序号)①3x 2+7=10;②ax 2+bx +c =0;③(x-2)(x +5)=x 2-1;④3x 2-5x=0.根据一元二次方程的定义可以求方程中待定字母的值或取值范围.【例2】(1)若关于x 的方程(a -1)x |a|+1-3x +2=0是一元二次方程,则 (C)A .a ≠±1B .a =1C .a =-1D .a =±1(2)如果方程ax 2-7=x +2是关于x 的一元二次方程,则a__≠0__.一元二次方程的根就是方程的解,它能使方程左右两边相等.【例3】(1)若x =1是方程ax 2+bx +c =0的解,则(C)A .a +b +c =1B .a -b +c =0C .a +b +c =0D .a -b -c =0(2)关于x 的一元二次方程(p -1)x 2-是方程2x 2-32-9m +的值为__2__018__.寻找等量关系,利用一元二次方程来解决实际问题(只列方程).【例4】用一条长100cm 的绳子围成一个面积为128cm 2的矩形.设矩形的长为xcm ,则可列方程为(B)A .x(50+x)=128B .x(50-x)=128C .x(100+x)=128D .x(100-x)=128高效课堂 教学设计1.理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程化成一般式,正确识别二次项系数、一次项系数和常数项.2.会判断一个数是否是一元二次方程的根.3.经历由实际问题中抽象出一元二次方程等有关概念的过程,让学生体会到方程是刻画现实世界中数量关系的一个有效数学模型.▲重点理解一元二次方程的概念,认识一元二次方程的一般形式.▲难点1.在一元二次方程化成一般形式后,如何确定一次项和常数项.2.从实际问题中抽象出一元二次方程.◆活动1 新课导入1.你能举例说出一元一次方程的概念吗?解:如+18x=这样只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程.2.下列是一元一次方程的是:__①④__.(填序号)①x-1=2x+1;②x-3;③4x+3y=1;④x2-x(x+1)=0.◆活动2 探究新知1.教材P2问题1.提出问题:(1)本问题中的等量关系是什么?应该设哪个量为未知数?(2)若设切去的正方形的边长为xcm,则盒底的长为__(100-2;(3)请根据题意列出方程,你能化简该方程吗?学生完成并交流展示.2.教材P2问题2.提出问题:(1)说说“每两个队之间比赛一场”的含义,甲队对乙队和乙队对甲队的比赛是同一场比赛吗?(2)问题中比赛总场次是多少?等量关系是什么?(3)请设出未知数,列出方程式,并将所列方程化简.学生完成并交流展示.3.小明用30cm的铁丝围成一斜边长等于13cm的直角三角形,求该直角三角形的两直角边长.提出问题:本题必须设两个未知数吗?如果只设一个未知数,那么方程应该怎样列?◆活动3 知识归纳提出问题:(1)请谈谈上述方程有什么共同特点;(2)归纳一元二次方程的概念.1.等号两边都是__整式__,只含有一个未知数,并且未知数的最高次数是__2__的方程,叫做一元二次方程.2.一元二次方程的一般形式是__ax2+bx+c=0(a≠0)__,其中__ax2__是二次项,__a__是二次项系数;__bx__是一次项,__b__是一次项系数;__c__是常数项.提出问题:(1)二次项系数a为什么不能为0?(2)一元二次方程ax2+bx+c=0,a,b,c可以是些什么样的数?3.方程-x2+3x=0中二次项系数是__-1__,一次项系数是__3__,常数项是__0__.4.使一元二次方程的左右两边相等的未知数的值就是这个一元二次方程的__解__,也叫做一元二次方程的__根__.◆活动4 例题与练习例1 判断下列各方程是不是一元二次方程.①x2-3xy+4y2=0;②y2=3y+2;③x+1x2-3=0.解:②是,①③不是.例2 将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:一般形式为3x2-8x-10=0.其中二次项系数为3,一次项系数为-8,常数项为-10.例3 已知a是方程2x2+x-2=0的根,求代数式4a2+2a的值.解:由已知得2a2+a-2=0,∴2a2+a=2,∴4a2+2a=4.练习1.教材P4练习第1,2题.2.(教材P4T3变式)下列数:6,-6,8,-8,12,-12,2,-2,是方程x2-2x-48=0的根有( B )A.1个B.2个C.3个D.4个3.若关于2+1-3x+2=0是一元二次方程,则此一元二次方程为__-2x2-3x+2=0__.◆活动5 课堂小结我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你会解一元二次方程吗?1.作业布置(1)教材P4习题21.1第1,2,3题;(2)对应课时练习.2.教学反思。
1、知识目标:在理解的基础上掌握一元二次方程根与系数的关系式;能运用根与系数的关系解决一些简单的问题;能由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的平方和与倒数和。
2、能力目标:通过一元二次方程根与系数的关系的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。
3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。
体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。
2学情分析评论1.本课的教学对象是九年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征。
2.学生已学习过用求根公式法解一元二次方程。
3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。
3重点难点评论1、重点:一元二次方程根与系数的关系。
2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及能灵活应用一元二次方程解决具体问题。
4教学过程4.1 第一学时4.1.1教学活动活动1【讲授】一元二次方程根与系数的关系评论教学环节教师活动预设学生行为设计意图复习1、本章学了哪些一元二次方程的解法?学生集体回答2、写出一元二次方程的一般式与求根公式一个学生上黑板写出问题导入解下列方程:x2-2x=0 x2+3x-4=0 x2+5x+6=0并根据问题2和以上的求解填写下表请观察上表,你能发现两根之和、两根之积与方程的系数之间有什么关系吗?问题4.请根据以上的观察发现进一步猜想:方程ax2+bx+c=0(a≠0)的根x1,x2与a、b、c 之间的关系:____________。
问题5.你能证明上面的猜想吗?请证明,并用文字语言叙述说明。
《解一元二次方程(公式法)》教学设计(新人教版第二十一章第二节)内容解析:公式法是解一元二次方程的基本方法,它利用了配方法解一元二次方程一般形式的结果,省略了配方过程,使计算更加直接,且具有普适性。
课标要求“能用公式法解数字系数的一元二次方程”,“会用一元二次方程根的判别式判别方程是否有实数根和两2 取值的讨个实数根是否相等”。
在用配方法进行公式推导时,学生往往忽视对acb4论,而此讨论又是分类思想的重要渗透,判别式的应用也在此得以体现,应加以强化。
学情分析:①学生认识基础:学生通过前几节课的学习,了解了一元二次方程的概念和一般形式,并且已经能够熟练地将一元二次方程化成它们的一般形式;在本章第二节学生又学习了利用配方法解一元二次方程,这为本节课理解求根公式的应用条件奠定了基础。
②学生活动经验基础:学生在前几册已经学习了一元一次方程、二元一次方程组、分式方程等的方法,同时积累了一些解方程的经验,并且在学习中学习中不断强化着转化的思想,这些都为本节课的学习奠定了基础,同时教材又提供了丰富的实际问题情境,有利于激发学生的参与热情与兴趣。
教学目标知识与技能1、理解一元二次方程求根公式的推导过程;2、会用根的判别式判断一元二次方程的根的情况;3、熟练地使用求根公式解一元二次方程。
过程与方法1、通过探究一元二次方程的求根公式,提高学生的观察能力、分析问题能力,同时培养学生的数学建模意识和合情推理能力;2、通过正确、熟练地使用求根公式解一元二次方程,提高学生的综合运算能力;3、通过探究求根公式的推导及应用过程,获得成功的数学体验,增强信心。
情感态度与价值观1、探究公式的过程中,通过沟通交流进一步发展学生的合作意识和能力,让学生体验数学活动充满着创造和乐趣;2、发展学生独立思考、用于探究的创新精神,向学生渗透转化思想,让学生感受数学中的内在美。
教学重难点【重点】理解一元二次方程的求根公式的推导过程;认知根的判别式和求根公式;应用公式法解一元二次方程。
本资源的初衷,是希望通过网络分享,能够为广大读者提供更好的服务,为您水平的提高提供坚强的动力和保证。
内容由一线名师原创,立意新,图片精,是非常强的一手资料。
第21章一元二次方程
教学目标知识与
技能通过引导学生对全章知识进行梳理,使学生了解一元二次方程的相关概念,掌握其解法;理解一元二次方程根的判别式,并能利用其解决相关问题;会运用一元二次方程解决简单的实际问题
过程与方法经历运用知识、技能解决问题的过程,在解题过程中发展学生的独立思考能力和创新精神.渗透数学解题中的方程思想、转化思想、建模思想
情感态度与价值观培养学生将已有的知识建立联系的思维习惯,并鼓励学生积极参与数学活动,在活动中学会思考、讨论、交流、合作
重点一元二次方程的解法及应用
难点从实际问题中找到等量关系,列出一元二次方程
教法、学法引导、启发自主学习、合作交流课型新授课
教学准备小黑板
教学流程教师活动学生活动二次备课一、自主学习1、知识回顾回忆
2、出示学习目标
对全章知识进行梳理,使学生了解一元二次方程
的相关概念,掌握其解法;理解一元二次方程根
的判别式,并能利用其解决相关问题;会运用一
元二次方程解决简单的实际问题
明确目标
出示自学提纲
⑴一元二次方程的相关概念
⑵一元二次方程的解法
⑶一元二次方程根的判别式
⑷一元二次方程根与系数的关系
⑸用一元二次方程解决简单的实际问题阅读提纲,(1)~(5)
4、组织学生自学
指导学生阅读课本P2---26课文,并回答问题. 学生自学得出结论组内交流,互助互教.
二、自学反馈汇报或检测回答老师提出的问
题
三、质疑精讲1、学生质疑,师生共同解疑提出质疑,师生共同
解决
2、教师横向拓展和纵向挖掘
聆听、思考、回答 四、总结提高 1、出示精选习题
1.方程043)2(=-+-mx x m m
是关于x 的一元二次方程,则 ( ) .2Am =± .2B m =
.2C m =-
.2D m ≠±
2. 用直接开平方法: 9)2(2
=+x
4)2(2=-x 24)23(2=+x
3. 用配方
法:
039922=-+x x
2410x x -+=
4.
用
公
式
法
解
:
x x 4132=-
2310x x -+=
5. 用分解因式法:
022=-x x 2(3)2(3)0x x x -+-=
)12(3)12(2
+=+x x
6. 请用合适方法:(2)(3)20x x ++=;
2(1)3(1)100x x ----=.
7. 、关于x 的方程2
310x x -+= 实根.(注:填写“有”或“没有”)
8. 关于x 的方程0232
=+-m x x 的一个根为-1,则方程的另一个根为______,=m ______. 9. 、已知一元二次方程有一个根是2,那么这个方程可以是 _____________________________(填上一个符合条件的方程即可).
10. 等腰ABC △两边的长分别是一元二次方程2
560x x -+=的两个解,则这个等腰三角形的周长是 .
11. 一个多边形有9条对角线,则这个多边形有 条边.
根据所学内容解答习题
12. 本届政府为了解决农民看病难的问题,决定
下调药品的价格.某种药品经过连续两次降价
后,由每盒200元下调至128元,求这种药品平
均每次降价的百分率是多少?
13. 百货商店服装柜在销售中发现:某品牌童装
平均每天可售出20件,每件盈利40元.为了迎
接“六一”国际儿童节,商场决定采取适当的降
价措施,扩大销售量,增加盈利,减少库存.经
市场调查发现:如果每件童装降价1元,那么平
均每天就可多售出2件.要想平均每天销售这种
童装盈利1200元,那么每件童装应降价多少
元?
14. 学校九年级要进行篮球比赛,采用的是单循
环方式,一共进行了10场比赛,请问有多少队
参赛?
2、总结归纳谈谈本节课的收
获?
3、作业:课堂教材25、26页复习
题
家庭卷子
板书设计章末复习
知识点总结典型习题
教后记。