第五届全国高中数学青年教师观摩与评比活动等可能性事件的概率教案与说课稿广西桂林中学关剑锋
- 格式:doc
- 大小:173.00 KB
- 文档页数:8
基本不等式(第一课时)一、内容和内容解析本节课是人教版高中数学必修5中第三章第4节的内容。
主要是二元均值不等式。
它是在系统地学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。
要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。
基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的优良素材,所以基本不等式应重点研究。
教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探究、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。
就知识的应用价值上来看,基本不等式是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的数学思想方法如数形结合、抽象归纳、演绎推理、分析法证明等在各种不等式的研究中均有着广泛的应用;另外,在解决函数最值问题中,基本不等式也起着重要的作用。
就内容的人文价值上来看,基本不等式的探究与推导需要学生观察、分析、归纳,有助于培养学生创新思维和探索精神,是培养学生数形结合意识和提高数学能力的良好载体。
二、教学目标和目标解析教学目标:了解基本不等式的几何背景,能在教师的引导下探究基本不等式的证明过程,理解基本不等式的几何解释,并能解决简单的最值问题;借助于信息技术强化数形结合的思想方法。
在教师的逐步引导下,能从较为熟悉的几何图形中抽象出基本不等式,实现对基本不等式几何背景的初步了解。
学生已经学习了不等式的基本性质,可以运用作差法给出基本不等式的证明,同时,介绍并渗透分析法证明的思想方法,从而完成基本不等式的代数证明。
进一步通过探究几何图形,给出基本不等式的几何解释,加强学生数形结合的意识。
通过应用问题的解决,明确解决应用题的一般过程。
这是一个过程性目标。
循环结构(二)教案说明一、教学内容的分析1.教材的地位和作用本节课出自人民教育出版社高中数学A版教材必修3第一章《算法初步》,是新课标教材的新增内容.算法是数学及其应用的重要组成部分,是计算机科学的重要基础.算法的程序化思想已成为现代人应具备的一种数学素养.培养算法思想对高中学生养成思考、分析问题的条理性和逻辑思维的严谨性有着积极、深远的意义.本节课所学习的是算法三种基本逻辑结构中的循环结构,是算法中最重要最核心的一种结构,充分体现了算法的优势.循环结构的学习,对于学生体会算法的基本思想以及算法的重要性和有效性,有重要的意义.2.教学背景说明教材的安排是讲完三种逻辑结构的程序框图后,再学习对应的算法语句.考虑到我校学生的特点,同时我校学生具备人手一台CASIO图形计算器的便利条件,我将教材进行了整合,即在学习完一种算法的逻辑结构与框图表示后,立即学习该结构所对应的算法语句,并在CASIO图形计算器上编程实践.这样做的目的是让学生完整地体会算法思想,系统地掌握算法的相关知识,同时提高教学效率.3.教学的重点和难点本节课的重点是:直到型循环结构的框图及其应用;难点是:如何判断用直到型循环结构编写的算法程序是否正确.二、教学目标的确定根据教材的特点、新课标的教学要求以及学生的认知水平,我确定了如下教学目标:(1)掌握直到型循环结构的框图,了解两种循环结构形式的联系和区别;(2)通过设计直到型循环结构的算法,发展学生有条理地思考与表达的能力,提高逻辑思维能力;(3)初步运用算法语句编写直到型循环结构的程序,培养学生的动手操作能力,提高学生数学应用的意识.三、教学问题诊断本节课所学的直到型循环结构,是在学生学习了当型循环结构后学习的一种新的循环结构.由于其“先执行一次循环体,再判断条件是否成立”的特点与当型循环结构“先判断条件是否成立,再决定是否运行循环体”的特点恰好相反,故学生初学时不易体会两种循环结构的联系和区别,易混淆两种循环结构的框图;由于有了学习当型循环的经验,学生在用直到型循环结构设计算法解决实际问题时,容易凭经验,忽略对算理的仔细分析和检验,导致算法错误.因此,在得到直到型循环的框图后,教师先引导学生探究出两种循环结构的联系和区别;而在用直到型循环解决实际问题时,教师要求学生先设计程序框图,再用“追踪变量”的方法检验算法的正确性,最后才在CASIO图形计算器上编程实现.四、教学方法的选择1.教学方法根据以上分析和学生的特点,我主要采取教师启发引导,学生自主探究的教学方法.在教学过程中,教师由实际问题引出对循环结构的第一种形式——当型循环的回顾,并提出新的问题,为学生探究新知识创设情景. 在得到直到型循环结构的框图后,引导学生探究出直到型循环的特点并理解其与当型循环的联系和区别.在CASIO图形计算器的帮助下,教师设计实际问题让学生用直到型循环结构设计算法并编程解决.在这一过程中,教师引导学生以独立思考、小组合作等多种形式进行深入探究,使学生加深对直到型循环的认识,体会算理的重要性以及“追踪变量”在检验算法时的重要作用,获得能力的提高;在探究过程中,学生完整经历从“自然语言->数学语言->程序语言”解决实际问题的过程,提高学生的数学应用意识.2.教学手段教学中使用CASIO图形计算器、多媒体投影、计算机、图形计算器模拟器等来辅助教学,并利用图形计算器的编程功能,为学生提供实现算法的平台,帮助学生完整经历用算法解决实际问题的过程,充分体会算法的实际应用.学生还将使用教师准备的空白框图学案,并在学案上直接设计算法框图,提高学生的学习效率.3.教学过程的设计与实施为达到本节课的教学目标,突出重点,突破难点,我将教学过程设计为四个阶段:1.问题引入,探索新结构;2.探究对比,理解新结构;3.编程实践,应用新结构;4.归纳小结,巩固新结构.具体实施过程见教案.五、本节课的教法特点以及预期效果分析1.教法特点:(1)有效整合教材内容,提高课堂教学效率在本节课中,教师将教材内容进行了有效整合,使学生完整地经历用算法解决实际问题的过程,提高教学效率和学生的学习效率.(2)合理使用信息技术,改变学生学习方式在本节课的教学过程中,图形计算器的编程功能、计算功能,以不同的方式帮助学生更方便地用算法解决实际问题以及发现算法中的错误.既解决教学中的难点,又改变学生的学习方式,提高学生的数学应用意识.(3)突出数学学科特点,强化算法的程序化思想在本节课的教学中,教师始终将对算理的探究放在教学的首位,重点强调算法中的程序化思想,从而锻炼学生的逻辑思维能力,培养学生有序严谨地思考与表达问题的能力.2. 预期效果分析:在教师的引导下,学生能归纳得出直到型循环结构的框图,并能较深刻地认识直到型循环结构;在课堂上,教师能充分调动学生的思维,学生有较高的学习热情;学完本节课后,学生能用直到型循环结构解决简单问题,有序严谨地思考和表达问题的能力、逻辑思维能力、数学应用的意识等方面都得到一定的提高.。
教学设计说明一、本节课数学内容的本质、地位和作用的分析推理是根据一个或几个已知的事实(或假设)来确定一个新的判断的思维方式. 数学、哲学和心理学等学科对其都有研究,它更是人类思维的基本形式. 人们在日常活动和科学研究中经常使用的推理有合情推理和演绎推理. 合情推理是人类发现新知的一个重要途径. 它既有猜测和发现结论的作用,又有探索和启发思路的作用. 本节课所学习的归纳推理是合情推理的一种. 归纳推理是由部分到整体、由特殊到一般的思维过程,通过归纳推理可以发现新知识,获得新结论.推理与证明的内容属于数学思维方法的范畴,贯穿数学教学的始终,遍布数学知识的每个领域. 旧教材将其渗透在具体的数学内容中分散处理,如:综合法和分析法放在“不等式”一章,“反证法”作为“简易逻辑”的一部分,“合情推理”更是很少涉及. 新课程将其统一纳入教材,集中讲授,我认为这对学生系统掌握其方法是很有必要的. 尤其是“合情推理”这一新加入内容,有助于学生从单纯的解答现成的问题,扩展到能够独立的提出一些问题. 很多大数学家(比如拉格朗日,波利亚)都强调合情推理是他们发现新问题的重要手段,波利亚更是在其名著《数学与猜想》中拿出很多章节对合情推理的模式进行一一总结. 如果学生掌握了这些方法,并能够在今后有意识的使用它们,不仅能培养其言之有据,论证有理的思维习惯,而且对开发学生创新性思维,为社会培养创新型人才都有很强的现实意义.二、教学目标分析新课程中,合情推理分为归纳推理和类比推理两讲,本节课是第一部分,对它是初步了解. 所以我把教学重点放在对归纳推理的概念理解和应用上.而提高学生从特殊到一般的归纳能力则是本节课的教学难点,教学的关键是引导学生自己探索、观察、发现、归纳.归纳推理作为发现新知的一种途径,有时探索的过程是漫长而曲折的,课堂上设置了有一定难度的“汉诺塔问题”,正是希望学生通过一番“辛苦”的努力才能得到结论. 这样的安排有利于提高学生的数学素养和锻炼学生的意志品质.根据以上想法,结合我校学生的实际情况,我制定了如下教学目标:(1)了解合情推理的含义;理解归纳推理的概念,能利用归纳的方法进行一些简单的推理.(2)培养学生的归纳探索能力,提高学生的创新意识.(3)培养学生勇于创新而又不失严谨的思维习惯和在探索真理时锲而不舍的钻研精神.三、教学问题诊断分析本节课的教学中,有几处需要注意:(1)结论的开放性归纳推理很大程度上是一种创造性思维,教学中每个学生作出的推理可能并不一致,在这里有些时候结论是开放的,不是唯一的,只要“合情”,就应该认为是对的,应当鼓励学生积极地创造性的思维. 当然面对推出的不同结论,可以比较哪些结论是更具有研究价值的,哪些思考是更有深度的.(2)过程的复杂性归纳推理有时不是一蹴而就的,并不是所有的问题只看三五个特殊情形,就能得出一般性结论,有些问题则需要多看几个,在归纳的同时也能培养学生在探究问题的过程中锲而不舍的精神.(3)结论的正确性归纳推理所得的结论不是一定都正确. 课堂练习2就是这样的例子:课堂练习2:设2f f f的值,并=++∈,计算(1),(2),,(10)f n n n n()41,N*归纳出一般性结论.学生容易做出“()f n为质数”的结论,但这是不对的,实际上(40),(41)f f都是合数. 甚至有的问题很难举出反例说明它是错误的,也不容易证明结论的正确性,比如哥德巴赫猜想. 课上有意安排这样的例子,目的是使学生能辩证地看待归纳推理这种方法.(4)处理好推理和证明的关系数学上为保证结论正确,总是强调要证明结论,但合情推理部分重在“推理”,重在得出新结论,“证明”不是本节课要解决的问题. 课上例题中的“汉诺塔问题”就是这样,学生在短时间内能够得出一般性的结论,已实属不易,若再要求证明,则难度过高,时间上也不允许,而且会让学生抓不住“推理”这个重点,所以处理上更宜放在课后让学有余力的学生思考.四、本节课的教法特点以及预期效果分析本节课在教学设计中我主要关注了以下两个方面:(1)紧扣教材又不拘泥于教材因为授课所用教材为人教B版,所选实例、例题和练习题大部分都来自该教材,仅“汉诺塔问题”来自人教A版,原因是B版此处所举例题为学生熟知的哥德巴赫猜想,这样学生可能不能充分体验从特殊到一般这样一种自己发现结论的思维过程,故换之.本节课在紧扣教材的基础上,又没有照搬教材,而是经过个人的思考,重新组合,适当调整. 比如课堂练习2,我把它作为开放题处理,让学生充分发散思维,得出多种结论.(2)“以学生为中心”在教学设计时,我对每个教学环节都进行了仔细地推敲,看逻辑是否自然,是否符合学生的认知水平,学生能否接受,如何接受,能接受到什么程度.首先,利用有趣的故事吸引学生的注意力,激发学习兴趣. 改编自华罗庚先生猜帽子颜色的问题是很经典的推理问题,它能使学生很快进入情境,积极迅速地投入到课堂内容中来. 当然华先生的原文为3个学生,5顶帽子. 思维难度较大,作为引入不太合适. 我将其改为2个学生,3顶帽子,使之更适应学生实际,更适合课堂教学.接着从学生熟悉的实例出发,引出概念;以问题的形式启发学生思考,引导学生观察、发现、归纳;鼓励学生发言,允许学生犯错,对学生发言及时点评. 这种教学方式顺应学生的思维习惯,概念形成过程更加自然,使学生觉得大部分内容都是自己想出来的,印象会更深刻.“汉诺塔问题”作为数学上的经典问题,内容有趣,学生听完题就跃跃欲试;题意简单明确,学生容易上手;而过程却并不轻松,能很好地锻炼学生的能力. 而且,我考虑到不同学生在动手实践能力和抽象思维能力上可能各有所长,鼓励学生采取不同的处理方式,这样最大程度地照顾到每个学生,让他们按照自己擅长的方式研究问题,感受数学发现的乐趣.以上就是我对“归纳推理”这节课的教学设计进行的说明. 不妥之处,恳请各位专家和老师批评、指正.。
“简单随机抽样“教学设计说明东北师大附中:丁则惠一、本课教学内容的本质、地位、作用分析(一)教材所处的地位和前后联系本节课是人教版《高中数学》第三册(选修Ⅱ)的第一章“概率与统计”中的“抽样方法”的第一课时:简单随机抽样.其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.(二)教学重点①简单随机抽样的概念,②常用实施方法:抽签法和随机数表法(三)教学难点对简单随机抽样概念中“每次抽取时各个个体被抽到的概率相等”的理解.二、教学目标分析1、知识目标(1)理解并掌握简单随机抽样的概念、特点和步骤.(2)掌握简单随机抽样的两种方法:抽签法和随机数表法.2、能力目标(1)会用抽签法和随机数表法从总体中抽取样本,并能运用这两种方法和思想解决有关实际问题. (2)灵活运用简单随机抽样的方法解释日常生活中的常见非数学问题的现象,加强观察问题、分析问题和解决问题的能力培养.3、情感、态度目标(1)培养学生收集信息和处理信息、加工信息的实际能力,分析问题、解决问题的能力.(2)培养学生热爱生活、学会生活的意识,强化他们学生活的知识、学生存的技能,提高学生的动手能力.三、教学问题诊断本节课是学生在义教阶段学习了数据的收集、抽样、总体、个体、样本等统计概念以后,进一步学习统计知识的.这是义教阶段统计知识的发展,因此教学过程不应是一种简单的重复,也不应停留在对普查与抽样优劣的比较和方法的选择,而应该发展到对抽样进一步思考上,主要应集中的以下四个问题上:(1)为什么要进行随机抽样;(2)什么是随机抽样(数理统计上的随机抽样概念);(3)简单随机抽样应满足什么样的条件;(4)如何进行简单随机抽样.教学的重点是使学生关注数据收集的方法应该由目的与要求所决定的,任何数据的收集都有一定的目的,数据的抽取是随机的.要更加理性地看待数据收集的方法,要从随机现象本身的规律性来看待数据收集的方法.特别是要突出简单随机样本的两个特征.要改变学生仅从形式上来理解简单随机抽样的问题.在教学中学生可能会产生随机抽样中简单随机抽样、系统抽样和分层抽样的雏形,教师不必进一步明确界定概念,可待后续的学习中进一步完善.如何发现随机抽样的公平性,也就是“如何去观察,才能发现规律”。
《三角函数诱导公式》教学设计(人教A版高中课标教材数学必修4第一章1.3节)“三角函数的诱导公式(第一课时)”教学设计一、教学内容与内容解析“三角函数的诱导公式”是普通高中课程标准实验教科书人教A版必修4第一章第三节,其主要内容是三角函数的诱导公式中的公式二至公式六,是三角函数的主要性质.学生在前面已经学习了诱导公式一和任意角的三角函数的定义,这节课在此基础上,继续学习公式二至公式四.三角函数的诱导公式是圆的对称性的“代数表示”,利用对称性,让学生自主发现终边分别关于原点或坐标轴对称的角的三角函数值之间的关系,使得“数”与“形”得到紧密结合,成为一个整体.通过简单问题的提出、诱导公式的发现、问题的解决,体会由未知到已知的转化,为以后的三角函数求值、化简、简单证明以及后续学习的三角函数图像和性质等知识打好基础.诱导公式的主要用途是把任意角的三角函数值问题转化为求0°~90°角的三角函数值.诱导公式的推导过程,体现了“数形结合”和复杂到简单的“转化”的数学思想方法,反映了从特殊到一般的归纳思维形式.对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有积极的作用. 诱导公式的学习和推证过程还体现了三角函数之间的内部联系,是定义的延伸与应用,在本章中起着承上启下的作用.本节课的重点是诱导公式的探究,运用诱导公式进行简单函数式的求值与化简,提高对数学知识之间(圆的对称性与三角函数性质)联系的认识,把过去渗透在具体数学内容中的重要的方法以集中的、显性的形式呈现出来,使学生更加明确这些方法,并能在今后的学习中有意识地使用它们.二、教学问题诊断分析在教师的组织和引导下学生以自主探索、动手实践、合作交流的方式进行学习.在学习中了解和体验公式的发生、发展过程,让学生领会到诱导公式是前面三角函数定义、单位圆对称性等知识的延续和拓展,应用迁移规律,引导学生联想、类比、归纳推导公式.在教学中可能会遇到如下几个问题:1.在利用多媒体引导学生从特殊到一般的学习过程中,部分学生认为只要记住公式,会做题就可以,对公式的推导重视不够.为了尽量避免这种情况的出现,我采用小组讨论制,考虑到学生的个体差异,把“强”、“中”、“弱”合理搭配,安排组长监管收集讨论的结果,记录收集每一阶段的过程材料.2.角α的任意性,怎样向学生交代清楚是这节课我一直思考的问题.为了解决这个问题我自己利用几何画板制作教学课件,通过用角终边的任意一点的拖动,显示三角函数值在各个象限的变化,让学生明白角α不局限为第一象限的角,它具有任意性,从而突破了难点.3.公式的记忆也是个难点.特别是十字口诀更是理解不深.对于幻灯片中的公式,教师对照几何画板课件逐字逐句的分析,让其明白公式中的角是任意的,而记忆时将其看成锐角.另外,反思学习过程时,体会角的终边的对称性与三角函数值之间的关系也有利于公式的记忆.三、目标和目标解析(一)教学目标1.能借助三角函数的定义及单位圆的对称性推导出诱导公式,会利用诱导公式进行简单的三角函数式的求值与化简.2.通过诱导公式的推导过程,体会数形结合及转化思想的运用.3.培养学生由特殊到一般的归纳意识,学会用联系的观点看待问题.(二)目标解析在初中学生已经学习过关于原点、x轴以及y轴对称的点的坐标的内在联系,并且前面学生能运用三角函数的定义和公式一进行三角函数求值,但对于任意角的三角函数之间存在的联系还不清楚,或者只有一点模糊的感性认识.数学课程标准强调:“学生要获得必要的数学基础知识和基本技能,理解数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴含的数学思想和方法,以及它们在后续学习中的作用.通过不同形式的自主学习、探究活动,体验数学发现和创造的历程.”所以,根据课程标准、教材的特点、对本节课的教学要求以及学生的认知水平,从三个不同的方面确定了教学目标.根据教学内容的结构特征及教学目标,本节课采用了“问题——发现——归纳——类比”的教学方法和“自主探究——小组合作”的学习方式.由问题驱动,通过诱导公式二至四的探究,概括得到诱导公式的特点,提高对数学内部关联的认识,理解求任意角三角函数值所体现出来的化归思想,培养学生的探究能力.教学目标实现过程:1.利用已有知识导出新的问题,创设问题情境,引起学生学习兴趣,激发学生的求知欲,达到以旧拓新的目的.2.由特例(18030)︒+︒与30°(36030)︒-︒与30°,(18030)︒-︒与30°的关系提出问题,启发学生的思维,引导他们分析角的终边对称关系,利用定义进行推导得到公式二,再利用多媒体动态演示,使学生对“α为任意角”的认识自然合理.之后如法炮制公式三、四,通过联想,类比、方法迁移,学生很轻松的发现公式,每小组积极发言并且通过实物展台展示交流,发现任意角α与(180)α︒+,α-,(180)α︒-三角函数值的关系,体会了从特殊到一般的归纳推理过程,使学生的思维得到科学训练,有助于培养学生的概括“卡西欧杯”第五届全国高中青年数学教师优秀课观摩与评比活动能力和创新能力.3.采用问题设疑,观察演示,步步深入,逐层引导,探究合作的教学方法,旨在让学生充分感受和理解知识的产生和发展过程.在教师适时的启发点拨下,学生在类比、归纳的过程中积极主动地去探索、发现数学规律(公式),培养学生的创新意识和创新精神.通过引导学生探索并发现公式,将发现与证明合为一体,体现了“数形结合”的思想方法.4.通过例1和变式,把诱导公式(一)、(二)、(三)、(四)的应用进一步拓广,发展学生的思维能力和计算能力.例2的扩展让学生认识到公式的实用性和学习的必要性.本节课的教学设计力求体现“问题性”、“科学性”与“思想性”,以多媒体为辅助手段,采用教师为主导学生为主体的启发式与探究式相结合的方法,使学生快乐地学习.三、教学支持条件分析在进行本节课的教学时,学生已经学习了三角函数的定义、各象限角的三角函数值的符号和公式一,这些内容是学生理解、归纳公式二至公式四的基础,因此教学时应充分注意利用这一有利条件,引导学生多进行归纳与概括.另外,信息技术的使用也为突破教学难点、启发学生思维、增加课堂容量提供了有力的支持.五、教学过程设计 (一)创设问题情境师生活动:教师提问,学生思考、回答,学生口述的同时,教师加以引导并用幻灯片展示. 问题1:(1)各象限内三角函数值的符号是什么?(只讨论正弦、余弦、正切) (2)任意角的三角函数的定义是什么? (3)公式一的内容与作用是什么? 问题2:已知1sin 30,2︒=如何求sin 210,sin330,sin150︒︒︒的值. 教师引导:能否再把0°~360°间的角的三角函数,化为我们熟悉的 0°~90°间的角的三角函数问题呢?这节课我们就来学习和研究这样的问题.【设计意图】通过复习旧知,为新知识的学习打下基础.特别是各象限三角函数的符号,对于诱导公式记忆起关键作用.提出的新问题,引导学生进一步思考,激起学生们的兴趣. (二)探索开发新结论教师引导:为了解决以上问题,我们采用各个击破的方法.首先看21030180︒=︒+︒,如果我们知道一个任意角α与(π+α)三角函数值的关系,问题就解决了.探究一:任意角α与(π+α)三角函数值的关系. 问题3:①α与 (π+α)角的终边关系如何?(互为反向延长线或关于原点对称)②设α与(π+α)角的终边分别交单位圆于点P 1,P 2,则点P 1与P 2位置关系如何?(关于原点对称) ③设点P 1(x ,y ),那么点P 2的坐标怎样表示?(P 2(-x ,-y ))④sin α与sin(π+α),cos α与cos(π+α),tan α与tan(π+α)的关系如何? 经过探索,归纳成公式()()()sin πsin cos πcos tan πtan αααααα+=-+=-+= ------公式 二1sin 210sin(30180)sin 302︒=︒+︒=-︒=-.【设计意图】公式二的三个式子中,ααsin )πsin(-=+是第一个解决的问题,由于方法及思路都是未知的,所以采取教师引导,师生合作共同完成办法.通过脚手架式的层层提问,引导学生自主推导诱导公式二,让学生体验证明猜想的乐趣,凸显学生学习的主体地位.同时,试图通过环环相扣的问题给学生传递“由宏观到微观考虑问题”的思维习惯,从而达到“授人以渔”的目的.后两个均由学生类比讨论完成.学生活动:小组讨论,代表发言交流. 问题4:公式中的角α仅是锐角吗?【设计意图】课前提问的问题是以30︒引入的,之后的讨论只是用代数方法换成了一般形式的角α,有些同学肯定会有这样的疑问,所以这个问题的解决好,就是突破难点的关键.引导学生互相讨论,交流可以使学生记忆更深刻.师生活动:演示几何画板课件,首先作出第一象限的任意角,之后得到相应的三角函数值,拖动其终边上任意点,再让学生观察每一象限内三角函数值的符号和它们之间存在的对称关系,从而验证了猜想,使学生更好的理解了这个公式.【设计意图】通过多媒体演示,发现变化规律,从而总结出三角函数的诱导公式.类比第一个问题的解决方法,我们再来解决后面的两个问题.观察33036030︒=︒-︒,由公式一知330︒的终边与30-︒的终边相同,所以我们必须知道一个任意角α与(-α)三角函数值的关系. 探究二:任意角α与(-α)三角函数值的关系. 问题5:①α与(-α)角的终边位置关系如何?(关于x 轴对称)②设α与(-α)角的终边分别交单位圆于点P 1,P 2点P 1与P 2位置关系如何(关于x 轴对称) ③设点P 1(x ,y ),则点P'的坐标怎样表示?[P 2(x ,-y )]④sin α与sin(-α),cos α与cos(-α) ,tan α与tan(-α)关系如何? 经过探索,归纳成公式()()()sin sin cos cos tan tan αααααα-=--=-=--------------公式 三1sin 330sin(36030)sin(30)sin 302︒=︒-︒=-︒=-︒=-.【设计意图】通过学生自主探究与合作交流,完成由角的终边点的对称性得到公式的过程,充分调动学生学习的积极性和激发学生的参与、探究和体验的欲望,让他们既动脑又动手,让学生参与教学活动.让学生体验数与形的关系,尝试自主探究的乐趣.教师引导:那15018030︒=︒-︒,我们须知α与(π-α)的三角函数值的关系,同学们继续发挥聪明才智解决它吧!探究三:α与(π-α)的三角函数值的关系. 问题6:①α与(π-α)角的终边位置关系如何?(关于y 轴对称)②设α与(π-α)角的终边分别交单位圆于点P 1,P 2点P 1与P 2位置关系如何?(关于y 轴对称) ③设点P 1(x ,y ),则点P'的坐标怎样表示?[P 2(-x ,y )]④sin α与sin(π-α),cos α与cos(π-α) ,tan α与tan(π-α)关系如何? 经过探索,归纳成公式()()()sin πsin cos πcos tan πtan αααααα-=-=--=- ------公式 四 1sin150sin(18030)sin 302︒=︒-︒=︒=【设计意图】与探究二的教法相同,学生分组讨论,尝试推导公式,教师巡视,及时反馈、矫正、讲评.采用合作学习有助于观察的多种方式的呈现,通过学生多角度的观察所得到结论的交流,让学生感受数学美和发现规律(公式)的喜悦,激发学生更积极地去寻找规律、认识规律.同时让学生感受到只要做个有心人,发现规律并非难事. (三)总结概括新结论师生活动:为了更好的使学生们把自己的研究成果记忆牢靠,师生共同大声朗读这四组公式. 三角函数的诱导公式公式一:sin(2π)sin ,cos(2π)cos tan(2π)tan (Z),k k k k αααααα+=+=+=∈, 公式二:sin()sin cos()cos tan()tan .αααααα-=--=-=-,, 公式三:sin(π)sin cos(π)cos tan(π)tan .αααααα-=-=--=-,, 公式四:sin(π)sin cos(π)cos tan(π)tan .αααααα+=-+=-+=,, 说明:公式中的α指使公式两边有意义的任意一个角. 问题7:你能用一句话概括公式一、二、三、四吗?为了让学生更好的记忆公式,通过幻灯片展示,猜想验证,如果把角α看成锐角,2π,π,π,k αααα+-+-分别位于第一、二、三、四象限,由课前提问各象限内三角函数值的符号,学生可以试着叙述.师生活动:总结概括公式一、二、三、四:ααα-±∈±,π,Z)(π2k k 的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.公式特点:“函数名不变,符号看象限”【设计意图】逐步理解十字口诀含义,并且训练学生的概括能力.(四)巩固应用结论例1 求下列三角函数值:师生活动:学生板书,教师巡视,纠正错误. (1)cos225︒;(2)11πsin3;(3)16πsin()3-;(4)cos(2040)-︒ 分析:先将不是0~2π范围内角的三角函数,转化为0~2π范围内的角的三角函数(利用诱导公式一)或先将负角转化为正角然后再用诱导公式化到0~π2范围内角的三角函数的值. 解:(1)2cos 225cos(18045)cos 452︒=︒+︒=-︒=-. (2)11πππ3sinsin(4)sin 3332π=-=-=-. (3)16π16πππ3sin()sin sin(5π)(sin )33332-=-=-+=--=. (4)cos(2040)cos 2040cos(6360120)-︒=︒=⨯︒-︒=1cos120cos(18060)cos602︒=︒-︒=-︒=-. 问题8:用诱导公式可将任意角的三角函数化为锐角的三角函数,其一般步骤是什么?(学生大胆说,互相讨论)①化负角的三角函数为正角的三角函数;②化大于2π的正角的三角函数为0~2π内的三角函数; ③化0~2π内的三角函数为锐角的三角函数. 变式:已知α是第三象限的角且1sin 3α=-,求sin(π)α+,sin(π)α-(学生口答) 【设计意图】在得到诱导公式后,在此让学生去实践解决问题,,一般情况下,1、2小题都能很快解决,只是到了第3、4小题时,条件变化稍复杂一些,同学们就会出现思维障碍,需及时引导他们去进行角的转化,在实践中体会诱导公式在解题过程中的应用,使任意一个角都转化为他们所熟知的锐角,体会从未知到已知的化归思想,从而为总结出解题的一般步骤埋下伏笔.变式是为了让学生进一步理解公式中角的任意性而设立.例2 化简()cos(180)sin 360sin(180)cos(180)αααα︒++︒--︒-︒-.(学生板书)解:[]sin(180)sin (180)sin(180)(sin )sin ααααα--︒=-︒+=-︒+=--=,[]cos(180)cos (180)cos(180)cos αααα-︒-=-︒+=︒+=-,所以原式=cos sin 1sin (cos )αααα-=-.变式:已知π1sin()63α-=,求5πsin()6α+的值. 【设计意图】在例题的选取与设计上,主要体现“由易到难,由简单到复杂,层层推进”的想法,例1体现在求值上,例2主要体现在化简上,使学生明白公示的应用所在.变式需要利用诱导公式进行一下变形再求值,对于初学者有点难度,需要教师从旁指导.练习是递进,体现化归思想、整体思想、使学生思维得到锻炼,体验学习的乐趣,从而达到初步掌握知识应用的目的.(五)课堂小结问题9 :通过这节课的学习,大家有什么收获吗?主要提示从以下三方面 (由学生完成) 1.四组诱导公式及公式的记忆方法 2.求任意角的三角函数的步骤:上述过程体现了由未知转化为已知的化归思想. 3.公式中的α的任意性.【设计意图】通过提问的形式,引导学生概括归纳已有知识,发现知识规律及其结构特征,形成知识系统;深化对诱导公式内涵和实质的理解,挖掘知识形成过程中所体现归纳和转化的思想方法,形成知识网络和方法网络,培养学生的抽象概括能力,.(六)作业布置: 1.思考题给定一个角α,终边与角α的终边关于直线y x =对称的角与角α有什么关系?它们的三角函数之间有什么关系?能否证明?2.27页练习2、3【设计意图】通过训练,巩固本课所学知识,检测运用所学知识解决问题的能力;思考题的设置为了下节课学习公式五、六做预习准备的.教会学生利用所学知识进行数学学习,这是本节内容的一个提高与拓展.任意负角的三角函数任意正角的 三角函数用公式 三或一用公式一0~2π的三角 函数用公式 二或四锐角的三角函数。
[转帖]第五届全国高中数学青年教...[转帖]第五届全国高中数学青年教师观摩与评比活动《几类不同增长函数模型》说课,浙江省杭州二中詹爽姿doc高中数学浙江省杭州第二中学詹爽姿一.内容和内容解析本节课是高中数学〔必修1人教A版〕第三章中?几类不同增长的函数模型?的第一课时.比较指数函数、对数函数以及幂函数间的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义,是本章的一个重要内容.对不同函数模型在增长差异上的研究,教科书围绕函数模型的应用这一核心,结合具体实例展开讨论,让学生在应用函数模型的过程中,体验到指数函数、对数函数、幂函数等函数模型在描述客观世界变化规律时各自的特点.教科书运用选自投资方案和制定奖励方案两个咨询题,引出函数模型增长情形比较的咨询题,接着运用信息技术从数值和图象两个角度比较了指数函数、对数函数、幂函数的增长情形的差异,讲明了不同函数类型增长的含义。
在前两章,教材安排了函数的性质以及差不多初等函数,本节内容是几类不同增长的函数模型,在此之后是研究函数模型的应用,因此本节内容的研究从内容上看,是对前面所学习的几种差不多初等函数以及函数的性质的综合应用,从思想方法上讲是对研究函数的方法的进一步巩固和深化,同时为后面连续学习各种不同的函数模型的应用举例奠定基础。
因此本节内容,既是第二章差不多初等函数知识的连续,又是函数模型应用学习的基础,起着承前启后的作用.本节内容所涉及的数学思想方法要紧包括:由实际咨询题抽象为函数模型这一过程中蕴涵的符号化、模型化的思想;在解决咨询题过程中函数与方程的思想。
二.目标和目标解析本节课的教学任务为:〔1〕创设一个投资方案的咨询题情形,让学生通过函数建模、列数据表、研究函数图象和性质,体会直线上升和指数爆炸;〔2〕创设一个选择奖励模型的咨询题情形,让学生在观看和探究的过程中,体会对数增长模型的特点;〔3〕通过建立和运用函数差不多模型,让学生初步体验数学建模的差不多思想,进展学生的创新意识和数学应用意识.结合以上任务分析,本节课的教学目标应确定为:〔1〕利用函数图象及数据表格,并借助信息技术,能比较一次函数、指数型函数以及对数函数模型等的增长,认识它们的增长差异;通过实例的解决体会直线上升、指数爆炸、对数增长等不同增长的函数模型的意义;〔2〕恰当运用函数的三种表示方法〔解析法、列表法、图象法〕,表达实际咨询题中的函数关系,认识函数咨询题的研究方法〔观看—归纳—猜想—证明〕;〔3〕经历建立和运用函数差不多模型的过程,初步体验数学建模的差不多思想,能够体会数学的作用与价值,初步形成分析咨询题、解决咨询题的能力.这部分内容教科书在处理上,以函数模型的应用这一内容为主线,以几个重要的函数模型为对象,将前面差不多学习过的内容以及处理咨询题的思想方法紧密结合起来,使之成为一个系统的整体.因此教学中应当注意贯彻教科书的那个意图,让学生经历函数模型应用处理的完整过程,同时在过程中认识不同增长的差异。
《简单的线性规划问题》教学设计一、内容与内容解析本节课是《普通高中课程标准实验教科书数学》人教A版必修5第三章《不等式》中3.3.2《简单的线性规划问题》的第一课时. 主要内容是线性规划的相关概念和简单的线性规划问题的解法.线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,广泛地应用于军事作战、经济分析、经营管理和工程技术等方面.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出。
简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成. 教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用.本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想.本节教学重点:线性规划问题的图解法;寻求有实际背景的线性规划问题的最优解.二、目标和目标解析(一)教学目标1.了解约束条件、目标函数、可行解、可行域、最优解等基本概念.2. 会用图解法求线性目标函数的最大值、最小值.3.培养学生观察、联想、作图和理解实际问题的能力,渗透化归、数形结合的数学思想.4.结合教学内容培养学生学习数学的兴趣和“用数学”的意识.(二)教学目标解析x y表示一个方案;约束条件是一次不等1. 了解线性规划模型的特征:一组决策变量(,)式组;目标函数是线性的,求目标函数的最大值或最小值.熟悉线性约束条件(不等式组)的几何表征是平面区域(可行域).体会可行域与可行解、可行域与最优解、可行解与最优解的关系.2.使学生学会从实际优化问题中抽象、识别出线性规划模型.能理解目标函数的几何表征(一组平行直线).能依据目标函数的几何意义,运用数形结合方法求出最优解和线性目标函数的最大(小)值,其基本步骤为画、移、求、答.3.教学中不但要教教材,还要教教材中的蕴含的方法.在探究如何求目标函数的最值时,通过以下几方面让学生领悟数形结合思想、化归思想在数学中的应用.(1)不定方程的解与平面内点的坐标的结合,进而产生了直线的方程.(2)线性目标函数解析式与直线的斜截式方程的结合.(3)线性目标函数的函数值与直线的纵截距的结合.(4)二元一次不等式(组)的解集与可行域的结合.(5)线性目标函数在线性约束条件下的最值与直线过可行域内的点时纵截距的最值的结合.这样就能使学生对数形结合思想的理解更透彻,为以后解析几何的学习和研究奠定基础, 使学生从更深层次理解“以形助数”的作用以及具体方法.4. 在线性规划问题的探究过程中,使学生经历观察、分析、操作、归纳、概括的认知过程,培养解决运用已有知识解决新问题的能力.三、教学问题诊断分析本节课学生在学习过程中可能遇到以下疑虑和困难:(1)将实际问题抽象成线性规划问题;(2)用图解法解线性规划问题中,为什么要将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题?如何想到要这样转化?(3)数形结合思想的深入理解.为此教学中教师要千方百计地为学生创设探究情境,并作合理适度的引导,通过学生的积极主动思考,运用由特殊到一般的研究方法,借助于讨论、动手画图等形式进行深入探究.教师的引导是至关重要的,要做到既能给学生启示又能发展学生思维,让学生通过自己的探究获取直接经验.教学难点:用图解法求最优解的探索过程;数形结合思想的理解.教学关键:指导学生紧紧抓住化归、数形结合的数学思想方法找到目标函数与直线方程的关系四、教法分析新课程倡导学生积极主动、勇于探索的学习方式,课堂中应注重创设师生互动、生生互动的和谐氛围,通过学生动手实践、动脑思考等方法探究数学知识获取直接经验,进而培养学生的思维能力和应用意识等.本节课以学生为中心,以问题为载体,采用启发、引导、探究相结合的教学方法.(1)设置“问题”情境,激发学生解决问题的欲望;(2)提供“观察、探索、交流”的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取直接经验.(3)在教学中体现“重过程、重情感、重生活”的理念;(4)让学生经历“学数学、做数学、用数学”的过程.五、教学支持条件分析根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,调动学生的学习兴趣,借助信息技术工具,以“几何画板”软件为平台,将目标函数与直线方程进行转化,通过直线的平行移动的演示,观察纵坐标的变化,求出目标函数的最值.让学生学会用“数形结合”思想方法建立起代数问题和几何问题间的密切联系.六、教学过程(一) 创设情境,激发探究欲望组织学生做选盒子的游戏活动.在下图的方格中,每列(x )与每行(y )的交汇处都放有一个盒子,每次你只能选其中的一个盒子,每个盒子对应一个分值,即为你的得分,而且该分值与盒子所在的行数和列数有关,且每次的关系式在变化,你会选哪个盒子?例如: 第一次:分值=x y + (即: 列数+行数)第二次:分值=2y x - (即: 行数-列数×2)师生活动:教师组织学生做选盒子得分的游戏,学生用“运算—比较”的方法容易解决老师提出的问题.之后,给出图3,让学生在图中找目标函数2b x y =+的最大值,学生沿用上面计算的方法显然很复杂,于是学生的思维产生“结点”.引出课题,提出何为线性(即为一次的)?x y 0 1 2 3 4 5 1 2 4 3 y 01 2 3 4 5 x 1 2 4 3 图1 图2怎么规划(即求函数的最值)?是本节课的研究重点.【设计意图】数学是现实世界的反映.创设学生感兴趣的问题情境,从兴趣解决→稍有困难→有较大困难,使学生产生急于解决问题的内驱力,同时培养学生从实际问题抽象出数学模型的能力.(二)独思共议,引导探究方法引导学生由特殊到一般分析目标函数的函数值.问题1:当6b =时,求x ,y 的值.师生活动:学生通过计算找到三个点的坐标,并观察出三点共线,求出直线方程26y x =-+,教师引导学生观察6b =所对应的直线的纵截距.【设计意图】通过特殊问题,帮助学生理解问题的实质:求x ,y 的值即求不定方程的解.数形结合,将求变量x ,y 转化成求点的坐标(,)x y .观察6b =时三个盒子所在点的位置关系及直线的方程,使学生体会b 值就是直线的纵截距.问题2.在图3中,求2b x y =+的最大值.师生活动:学生在教师的引导下分组讨论,求b 的最大值.通过之前教师的引导及学生对上一节“二元一次不等式表示的平面区域”的学习,对学生的讨论结果有两种预案:预案1:学生通过由特殊到一般的分析,将目标函数2b x y =+转化成2y x b =-+,x ,yx1 45 2 3 7 9 10 11 812O 图3在取得每个可行解时,b 的取值就是直线2y x b =-+过(,)x y 这个点时的纵截距,而所有这些直线都是平行的,因此只需平移直线看纵截距的最大值即可.预案2:根据上一节“二元一次不等式(组)所表示的平面区域”的知识,学生认为b 取最大值时x 、y 的取值一定在直线26y x =-+的右上方的位置,为此就依次在这些位置上画平行于26y x =-+的直线,只要上面有点就不停的画,直至最后一点.师生活动:学生展示讨论结果,教师借助几何画板作演示、分析,渗透转化和数形结合的数学思想.并对学生的结论作出总结,先作直线2y x =-,再作平移,观察直线的纵截距.【设计意图】由特殊到一般,利用数形结合,寻求解题思路.(三)变式思考,深化探究思路1.将目标函数变成34b x y =+, 求b 的最大值.师生活动:通过学生将34b x y =+化成344b y x =-+的形式,做直线34y x =-并进行平移,观察纵截距的最大值的回答过程,教师强调解题步骤:画、作、移、求.【设计意图】规范方法并检验学生对方法的理解程度,使学生感受由直线斜率的变化引起使b 取最大值的过程中点的变化.2.将目标函数变成34b x y =-,求b 的最大值.师生活动:教师引导学生比较此题和上题的区别,学生发现平移直线时若按上题的方法找纵截距的最大值便会出现问题,通过思考、讨论,找到本题需取截距最小的原因.【设计意图】通过目标函数的不同变式,让学生熟悉求最值的方法,尤其是直线中纵截距的符号为负的情况.借助“几何画板”集中呈现目标函数的图形变化,提高课堂效率,建立精准的数形联系.(四)规范格式,应用探究成果1.例1:(习题3.3A 组第3题)电视台应某企业之约播放两套连续剧,其中,连续剧甲每次播放时间为80min ,其中广告时间为1min ,收视观众为60万;连续剧乙每次播放时间为40min ,广告时间为1min ,收视观众为20万.已知此企业与电视台达成协议,要求电视台每周至少播放6min 广告,而电视台每周只能为该企业提供不多于320min 的节目时间.如果你是电视台的制片人,电视台每周应播映两套连续剧各多少次,才能获得最高的收视率?解:设甲播放x 次,乙播放y 次,收视观众z 万人次则6020z x y =+.8040320,6,0,0.x y x y x y +≥⎧⎪+≤⎪⎨≥⎪⎪≥⎩ 用如下步骤求z 的最大值:(1)画出可行域;(2)作出直线0l :3y x =-(3)平移0l 至点A 处纵截距最大,即z 最大;(4)解方程组:80403206x y x y +=⎧⎨+=⎩ 得24x y =⎧⎨=⎩,因此max 200z =.答:甲播放2次,乙播放4次,收视观众最多为200万人次.师生活动:教师引领学生理解题意,让学生继续领会用表格形式描述数据的直观性.让学生独立建立线性规划的数学模型,并正确设出变量,找好目标函数及约束条件后自行完成此题.通过学生板演,教师规范写法,然后借助解题的过程介绍线性目标函数、线性约束条件、可行解、可行域、最优解及线性规划的数学概念.【设计意图】利用学生感兴趣的例子激发学习动机,通过一道完整的简单线性规划问题,让学生掌握解决简单线性规划问题的基本步骤,培养学生的数学建模意识.同时进一步加深对图解法的认识.2.反思例1解题过程,深入体会数形结合思想师生活动:教师引导学生纵观解题过程,体会在解题中“数”与“形”是怎样结合的,并加以总结.代数几何 线性目标函数6020z x y =+直线320z y x =-+ 线性目标函数的函数值 直线的纵截距线性约束条件(二元一次不等式(组)的解集)可行域 转化线性目标函数的最值 直线的纵截距的最值【设计意图】通过反思总结,加强对“数形结合”数学思想的认识,形成学生良好的认知结构.3.例2:(课本例2)营养学家指出,成人良好的日常饮食应该至少提供0.075kg 的碳水化合物,0.06kg 的蛋白质,0.06kg 的脂肪.1kg 食物A 含有0.105kg 的碳水化合物,0.07kg 的蛋白质,0.14kg 的脂肪,花费28元; 1kg 食物B 含有0.105kg 的碳水化合物,0.14kg 的蛋白质,0.07kg 的脂肪,花费21元.为了满足饮食要求,同时使花费最低,需要同时食用食物A 和食物B 各多少kg?师生活动:学生独自完成此题,由一位同学生展示自己的解题过程和结果.规范解题步骤和格式.解:设每天食用x kg 食物A ,y kg 食物B0.1050.1050.075,0.070.140.06,0.140.070.06,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎪+≥⎨⎪≥⎪≥⎪⎩① 目标函数为2821z x y =+二元一次不等式组①等价于775,7146,1476,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎪+≥⎨⎪≥⎪≥⎪⎩ 二元一次不等式组所表示的平面区域(图5),即可行域. 考虑2821z x y =+,将它变形为4321z y x =-+. 这里4321z y x =-+是斜率为43-,随z 变化的一组平行直线,21z 是直线在y 轴上的截距,当21z 取最小值时,z 的值最小.当然直线要与可行域相交,即在满足约束条件时目标函数2821z x y =+取得最小值.由图5可见,当直线2821z x y =+经过可行域上的点M 时,截距21z 最小,即z 最小.解方程组775,147 6.x y x y +=⎧⎨+=⎩ 得M 的坐标为17x =,47y =. 所以282116z x y =+=.答:每天食用食物A 为17kg ,食物B 为47kg ,能够满足日常饮食要求,又使花费最低,最低成本为16元.【设计意图】通过此题检测学生对已学知识的掌握情况,进一步培养学生的运算能力和准确作图的能力.4.反思例2的求解过程.教师通过巡视发现错解的学生,帮助学生找到错误的原因.并提出问题:有时若由于不可避免的误差带来错解,你如何解决?师生活动:由教师帮助学生分析错解的原因,并提出问题.学生意识到可以把所有可能的解都求出来,进行比较即可.【设计意图】通过反思及寻求问题答案,让学生深入思考,培养学生科学严谨的学习态度和解决问题的能力.(五) 归纳梳理,体会探究价值由学生和教师共同总结本节课所学到的知识.师生活动:先由学生总结学习的内容,教师作补充说明,尤其是本节课是如何经历的知识探究过程,如何运用化归与数形结合思想得到方法,以及如何通过数学建模解决实际问题.再有教师介绍数学是有用的,通过本节课看到了时间如何合理分配收获最大的问题,如何使消费最少保证饮食健康的问题,还有很多实际应用由学生自己查资料作为拓展作业.【设计意图】通过总结,培养学生数学交流和表达的能力,养成及时总结的良好习惯,并将所学知识纳入已有的认知结构.(六) 目标检测题 1.在线性约束条件5315153x y y x x y +≤⎧⎪≤+⎨⎪-≤⎩下,求①目标函数35z x y =+的最大值和最小值;②目标函数310z x y =-的最大值和最小值;2.某工厂用A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h ,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8h 计算,该厂所有可能的日生产安排是多少?【设计意图】检测题主要考查学生对本节课重点知识的掌握情况,检查学生能否运用所学知识解决问题的能力;拓展作业的设置是为了教会学生怎样利用资料进行数学学习,同时让学生了解网络是自主学习和拓展知识面的一个重要平台,这是本节内容的一个提高与拓展.。
循环结构(二)教案教学目标:1.掌握直到型循环结构的框图,理解两种循环结构形式的联系和区别;2.通过设计直到型循环结构的算法,发展学生有条理地思考与表达的能力,提高逻辑思维能力;3.初步运用算法语句编写直到型循环结构的程序,培养学生的动手操作能力,提高学生数学应用的意识.教学重点及难点:重点:直到型循环结构的框图及其应用;难点:如何判断用直到型循环结构编写的算法程序是否正确.教学方式:教师启发讲授与学生探究相结合.教学手段:CASIO图形计算器和多媒体投影辅助教学.教学过程:一.问题引入,探索新结构++++的值”这个实例入手,回顾解决此问题的第一种循环1.以“如何计算123100结构——当型循环,同时强调循环结构中的三种要素:累加变量、计数变量和终止条件.2.提出思考问题:为了解决相同的问题,在上述循环结构中,终止条件的位置能否改变?3.通过探究得到一种新的循环结构的形式——直到型循环,并引导学生根据此例归纳出直到型循环的程序框图:二.探究对比,理解新结构1.引导学生通过框图归纳出直到型循环的特点:先运行一次循环体,再判断条件是否被满足.2.用下例帮助学生理解两种形式的循环结构的区别,并通过改变初始条件体会对输出结果的影响. Array输出结果:s=0,i=101 输出结果:s=101,i=1023.通过例1完成对直到型循环程序框图的深入认识.例1 判断下列求123100++++的程序框图是否正确.实际功能:求2+3+…+101的值 实际输出: s =1三.编程实践,应用新结构1.教师介绍用CASIO 图形计算器实现直到型循环的算法语句:Do 循环体 LoopWhile 条件2.指导学生使用图形计算器将上节课编写的当型循环While 语句用Do 语句替换,并运行得到结果.3.通过例2加深对循环结构的理解.例2 用直到型循环设计一个求20以内所有正奇数乘积的程序框图,并用CASIO 图形计算(1) (2)器编程实现.此例题可引导学生在修改初始变量的值,修改计数变量的步长,修改终止条件,修改语句顺序的过程中加深对循环结构的理解.4.通过例3强化算理作用及图形计算器的辅助功能.例3 设计一个求使得不等式3131211<++++n 成立的最大自然数n 的算法,画出程序框图,并用图形计算器编程实现.四.归纳小结,巩固新结构1.归纳小结:(1)直到型循环结构框图表示;(2)编写算法程序实现直到型循环;(3)算法基本逻辑结构.2.课后作业: 设计一个求100199131211-+-+-的算法,并编程实现.。
新课标教材人教A版《数学2-3》(选修) 第三章统计案例
一、教学目标
1.使学生理解分类变量(也称属性变量或定性变量)的含义,体会两个分类变量之间可能具有相关性;
2.通过对典型案例(吸烟和患肺癌有关吗?)的探究,使学生了解独立性检验(只要求2×2列联表)的基本思想、方法、步骤及应用;
3.鼓励学生体验用多种方法(等高条形图和独立性检验)解决同一问题,并对各种方法的优缺点进行比较;
4.让学生对统计方法有更深刻的认识,体会统计方法应用的广泛性,进一步体会科学的严谨性(如统计可能犯错误,原因可能是收集的数据样本容量小或样本采集不合理,也可能是理论上的漏洞,如在一次实验中,我们假设小概率事件不发生,这一点本身就值得质疑).
二、重点
本节的重点内容是通过实例让学生体会独立性检验的基本思想,掌握独立性检验的一般步骤.
三、难点
在授课过程中,学生学习过程中遇到的困难主要有以下几个方面:
K的结构的比较奇特,也来的有点突然,学生可能会提出疑问。
1.2
2.如何理解独立性检验的基本思想?
3.独立性检验的一般步骤及背后的理论依据是什么?
4.为什么在最后表达结论的时候要说明“在犯错误的概率不超过XX的前提下”。
四、教学模式
“问题串”模式为主,理清教学思路,鼓励学生思考;“讲授式”为辅,解释学生难以自主探究的知识内容.
五、教学过程设计。
三角函数的诱导公式(第1课时)教学设计说明教材: 苏教版《普通高中课程标准实验教科书数学4(必修)》我说课的内容是“三角函数诱导公式的教学设计”。
下面, 我将从4个方面进行汇报。
一、教学背景分析1.教材的地位和作用本节教学内容是4组三角函数诱导公式的推导过程及其简单应用。
承上, 有任意角三角函数正弦、余弦和正切的比值定义、三角函数线、同角三角函数关系等;启下, 学生将学习利用诱导公式进行任意角三角函数的求值化简, 以及三角函数的图象与性质(包括三角函数的周期性)等内容。
同时, 学生在初中就接触过对称等知识, 对几何图形的对称等知识相当熟悉。
这些构成了学生的知识基础。
诱导公式的作用主要在于把任意角的三角函数化归成锐角的三角函数, 体现了把一般化特殊、复杂化简单、未知化已知的数学思想。
2.目标定位诱导公式可以帮助我们把任意角的三角函数化为锐角三角函数, 但是随着计算器的普及, 上述意义不是很大。
我们认为, 诱导公式的教学价值主要体现在以下几个方面: 第一, 感受探索发现, 通过几何对称这个研究工具, 去探索发现任意角三角函数间的数量关系式, 即三角函数的基本性质乃是圆的几何性质(主要是其对称性质)的代数解析表示。
第二, 学会初步应用, 能够选用恰当的诱导公式将任意角的三角函数转化为锐角三角函数问题并求解。
第三, 领悟思想方法, 在诱导公式的学习过程中领悟化归、数形结合等思想方法。
第四, 积累数学经验, 为学生认识任意角三角函数既是一个起源于圆周运动的周期函数又是研究现实世界中周期变化现象的“最有表现力的函数”做好准备。
为此, 我们制定了本节的教学目标(详见教案), 以及本节课的教学重、难点。
二、教学设计分析1.在进行本课教学设计时, 有以下两条典型教学路线可供选择: (1)两个角的终边有哪些特殊的对称关系?(2)怎样把非第一象限的角转化为第一象限的角?我们最终选择了第一条路线, 主要基于以下两点考虑。
《独立性检验的基本思想及其初步应用》教学设计一、教学内容与内容解析1.内容:独立性检验的基本思想及实施步骤2.内容解析:本节课是人教A版(选修)2—3第三章第二单元第二课时的内容.在本课之前,学生已经学习过事件的相互独立性、正态分布及回归分析的基本思想及初步应用。
本节课利用独立性检验进一步分析两个分类变量之间是否有关系,是高中数学知识中体现统计思想的重要课节。
在本节课的教学中,要把重点放在独立性检验的统计学原理上,理解独立性检验的基本思想,明确独立性检验的基本步骤。
在独立性检验中,通过典型案例的研究,介绍了独立性检验的基本思想、方法和初步应用。
独立性检验的基本思想和反证法类似,它们都是假设结论不成立,反证法是在假设结论不成立基础上推出矛盾从而证得结论成立,而独立性检验是在假设结论不成立基础上推出有利于结论成立的小概率事件发生,于是认为结论在很大程度上是成立的。
因为小概率事件在一次试验中通常是不会发生的,所以有利于结论成立的小概率事件的发生为否定假设提供了有力的证据。
学习独立性检验的目的是“通过典型案例介绍独立性检验的基本思想、方法及其初步应用,使学生认识统计方法在决策中的作用”。
这是因为,随着现代信息技术飞速发展,信息传播速度快,人们每天都会接触到影响我们生活的统计方面信息,所以具备一些统计知识已经成为现代人应具备的一种数学素养。
教学重点:理解独立性检验的基本思想及实施步骤.二、教学目标与目标解析1.目标:①知识与技能目标通过生活中新闻案例的探究,理解独立性检验的基本思想,明确独立性检验的基本步骤,会对两个分类变量进行独立性检验,并能利用独立性检验的基本思想来解决实际问题。
②过程与方法目标通过探究“玩电脑游戏与注意力集中是否有关系”引出独立性检验的问题,借助样本数据的列联表分析独立性检验的实施步骤。
利用上节课所学已经由数据直观判断出玩电脑游戏与注意力集中可能有关系。
这一直觉来自于观测数据,即样本。
人民教育出版社的全日制普通高级中学教科书(必修)《数学》第二册(下A)第十一章概率第一节等可能性事件的概率(一)--- 教学设计授课教师:广西桂林中学关剑锋一、教学目标:(1)知识与技能目标:了解等可能性事件的概率的意义,运用枚举法计算一些等可能性事件的概率。
(2)过程和方法目标:通过生活中实际问题的引入来创设情境,将一些生活问题构建成一个等可能性事件模型,学生的构建思维能力得到提升;在归纳定义时用到特殊到一般的思想;在解题时利用类比的方法,举一反三。
通过枚举法、图表法、排列的基础知识来计算一些等可能性事件的概率,学生对古典概型有个更深刻的理解。
(3)情感与态度目标:感受到亲切、和谐的学习氛围,在活动中进一步发展学生合作交流的意识和能力。
了解部分数学史,知道随机事件的发生既有随机性,又有规律性,了解偶然性寓于必然性之中的辩证思想,培养学生的综合素质。
二、教学重点:等可能性事件的概率的意义及其求法。
三、教学难点:等可能性事件的判断以及如何求某个事件所包含的基本事件数。
四、教学方法:启发式探索法五、教学过程:1、复习引入、创设情境问题1、(师)前面我们学习了随机事件及其概率,请问:事件分为哪三类?(生)必然事件,随机事件,不可能事件。
(师)好!问题2、(师)我们知道,随机事件的概率一般可以通过大量重复实验来求值。
是不是所有的随机事件都需要大量的重复试验来求得呢?(生)不一定。
(师)好!请同学们观看视屏(播足球比赛前裁判抛硬币的视频)。
问题3、(师)刚才的视屏是足球比赛前裁判通过抛硬币让双方的队长猜正反来选场地,只抛了一次,而双方的队长却都没有异议,为什么?2、逐层探索,构建新知问题4、(师)这是一个均匀的骰子,抛掷一次,它落地时向上的数可能有几种不同的结果?每一种结果的概率分别为多少?通过前面抛硬币和掷骰子这两个随机事件的实例,大家观察到只做了一次试验就可以求出其概率,其结果与大量重复试验相吻合。
问题5、(师)这两个随机事件有什么共性呢?(尽量把抽象的问题具体化)(生)(1)、一次试验可能出现的结果是有限个的;(2)、每个结果出现的可能性相同。
我们把具有这两个特征的随机事件叫做等可能性事件;为了方便描述等可能性事件的概念,我们引进一个概念----基本事件的概念。
(1)基本事件:一次试验连同其中可能出现的每一个结果称为一个基本事件。
问题6、(师)哪位同学能根据基本事件和前面的两个特征概括出等可能性事件的定义?(锻炼学生的概括能力,可以用学生自己的语言归纳,然后老师给予启发和补充)(2)等可能性事件:如果一次试验由n个基本事件组成,而且所有的基本事件出现的可能性都相等,那么这个事件叫做等可能性事件。
问题7、(师)请同学们根据等可能性事件的特征举一些学习和生活中是等可能性事件的例子。
(通过举例可以提高学生对等可能性事件两个特征的进一步了解,为后面建构等可能性事件模型做好铺垫)问题8、(师)如何判断每个结果出现的可能性相同呢?(比如说:“硬币必须是均匀的,骰子必须是均匀的,球的大小要相等、质地均匀等)学生对等可能性事件有了充分的了解后顺利的引入课题。
)3、引入课题:今天我们一同来探究等可能性事件的概率,即古典概型。
问题9、(师)抛掷一个均匀的骰子一次,它落地时向上的数是偶数的概率是多少呢?(前面学生对事件A只包含一个基本事件的等可能性事件的概率已经有所了解,现讲两道求事件A包含多个基本事件的等可能性事件的概率)问题10、(师)不透明的袋子里有大小相同的1个白球和2个已经编了不同号码的黑球,从中摸出1个球。
一共有多少种不同的结果?摸出是黑球的结果有多少个?摸出是黑球的概率是多少?问题11、(师)我们知道有一种数学方法是从特殊到一般,请同学们根据刚才两个实例,概括出等可能性事件的概率的定义。
4、等可能性事件的概率:如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性相等,那么每一个基本事件的概率都是n1,如果某个事件包含的结果有m 个,那么事件A 的概率:)()()(I card A card n m A A P ===基本事件总数包含的基本事件数事件(进一步提高学生的概括能力) 5、概念巩固练习:1、先后抛掷2枚均匀的硬币(1)一共可能出现多少种不同的结果?(2)出现“1枚正面、1面反面”的概率是1/3,对吗?6、创设情境,构建数学模型设置情境(有两兄弟,一天妈妈单位每人发一张精彩的球票,他们都想去看,可票只有一张,怎么办呢?这时哥哥走到正在玩飞行棋的弟弟旁边说:“我们来玩一场游戏,拿一个骰子,每人各掷一次,若点数之和为6,票就归你,若点数之和是7票就归哥我,如果都不是则继续掷,怎样?如果你是弟弟,你觉得公平吗?为什么?)引导学生用数学知识解决生活中的问题,建立一个等可能性事件模型。
设问:如何建立等可能性事件的模型?即:将一个均匀的骰子先后抛掷2次,计算:(1)一共有多少种不同的结果?(2)其中向上的数之和分别是6和7的结果有多少种?(3)向上的数之和分别是6和7的概率是多少?(分小组讨论,用不同的方法解决这个问题,让方法比较简单的小组代表上黑板展示出来与大家分享。
看学生能否发现规律:中间数的概率最大,其他的点数和的概率关于这个数对称)解:(1)将骰子抛掷1次,它落地时向上的数有,1,2,3,4,5,6这6种结果,根据分步计数原理,一共有6636⨯=种结果。
答:先后抛掷骰子2次,一共有36种不同的结果。
(2)在上面的所有结果中,其和为6共有3种组合1和5,2和4,3和3组合结果为:(1,5)、(5,1)、(2,4)、(4,2)、(3,3)共5种;其和为7共有3种组合1和6,2和5,3和4共3种;组合结果为:(1,6)、(6,1)、(2,5)、(5,2)、(3,4)、(4,3)、共6种;答:在2次抛掷中,向上的数之和为6的结果有5种,向上的数之和为7的结果有6种;(3)由于骰子是均匀的,将它抛掷2次的所有36种结果是等可能出现的,其中向上的数之和是6的结果(记为事件A )有5种,因此,所求概率为41()369P A ==.其中向上的数之和是7的结果(记为事件B )有6种,因此,所求概率为41()369P A ==; 61366)(==B P 。
答:抛掷骰子2次,向上的数之和为6的概率是365,向上的数之和为7的概率是61。
因为36561 ,所以弟弟不应该同意。
那怎样更改游戏规则才公平? 7、再创情境,拓展思维在他们重新商定了游戏规则,准备继续的时候,爸爸回来了,问清原委后,爸爸也想参予;爸爸说,他在意大利著名诗人但丁的《神曲》的炼狱篇第6节中看到,在14世纪意大利佛罗伦萨的贵族们玩一种游戏:三个人每人掷一次骰子,猜点数和是多少?当时他们都认为出现9,10,11,12这4个数的可能性一样,都是最大的。
我们三人就从这4个数中各选一个吧。
同学们你们认为这4个数出现的可能性一样大吗?为什么?(分小组进行讨论)9=1+2+6=1+3+5=1+4+4=2+2+5=2+3+4=3+3+3;10=1+3+6=1+4+5=2+2+6=2+3+5=2+4+4=3+3+411=1+4+6=1+5+5=2+3+6=2+4+5=3+3+5=3+4+412=1+5+6=2+4+6=2+5+5=3+3+6=3+4+5=4+4+4强调:1+2+6是6种组合,而不是1种组合。
提醒学生注意有序和无序的区别。
经过探究发现只有10与11出现的概率最大且相等(在探究的过程中提醒学生按求等可能性事件的概率步骤来做,在判断是否等可能和求某个事件的基本数上多启发和引导,帮助学生顺利突破难点。
)及时表扬答对的学生,因为这个问题整整过了三个世纪,才被意大利著名的天文学家伽利略解决。
后来法国数学家拉普拉斯在他的著作《分析概率论》中,把伽利略的这个解答作为概率的一个基本原理来引用。
(适当的渗透一些数学史,学生对学习的兴趣更浓厚,可以激发学生课后去进一步的探究前辈们是如何从不考虑顺序到想到考虑顺序的)8、课堂小结:通过这节课的学习,同学们回想一下有什么收获?1、基本事件和等可能性事件的定义。
2、等可能性事件的特征:(1)、一次试验中有可能出现的结果是有限的。
(2)、每一结果出现的可能性相等。
3、求等可能性事件概率的步骤:(1)审清题意,判断本试验是否为等可能性事件。
(2)计算所有基本事件的总结果数n 。
(3)计算事件A 所包含的结果数m 。
(4)计算P (A )=m/n 。
(老师)其实,概率论与生活是紧密联系的,学好它可以更好的为生活服务,因为概率论在天气的预测,保险行业,信息学等方面都有很大的用途。
希望同学们学好概率。
9、课后作业:1、P 141 习题11.1 2,3,52、思考题:以小组为单位为桂林微笑堂设计一个十一国庆商场促销的摸奖活动方案。
“等可能性事件的概率”教学说明一、概念及其解析1、概念(1)基本事件:一次试验连同其中可能出现的每一个结果称为一个基本事件。
(2)等可能性事件:如果一次试验由n 个基本事件组成,而且所有的基本事件出现的可能性都相等,那么这个事件叫做等可能性事件。
(3)等可能事件性的概率:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性相等,那么每一个基本事件的概率都是n1,如果某个事件包含的结果有m 个,那么事件A 的概率:)()()(I card A card n m A A P ===基本事件总数包含的基本事件数事件。
2、概念解析(1)核心内容: 概括等可能性事件的概率的概念和构建等可能性事件模型。
(2)思想方法:特殊到一般的方法——通过举特例概括等可能性事件和等可能性事件概率的概念;类比的思想方法——类比抛掷一个均匀骰子两次到抛掷一个骰子三次;对称的数学思想——通过图表观察出对称的规律。
3、古典概型的地位和作用古典概型在概率论中占有重要的地位。
其意义在于:(1)有利于理解概率的概念,当研究这种概型时,频率的稳定性容易得到验证,从而概率的稳定值与理论上算出的概率值的一致性容易得到验证,从而概率值的存在性易于被学生理解。
(2)有利于计算事件的概率。
在古典概型范围内研究问题,避免了进行重复试验。
(3)这种概型的实际应用较广,因而学习这种概型有助于运用所学知识解决某些实际问题。
二、目标和目标解析1、知识与技能目标:了解等可能性事件的概率的意义,运用枚举法计算一些等可能性事件的概率。
2、过程和方法目标:通过生活中实际问题的引入来创设情境,激发学生学习的兴趣。
经过小组讨论后可以将一些生活问题构建成一个等可能性事件模型,学生的构建思维能力得到提升。
在归纳定义时运用由特殊到一般的思想;在解题时运用类比的方法,举一反三。
通过枚举法、数状图法、图表法、排列组合等方法来计算一些等可能性事件的概率,学生对古典概型有个更深刻的理解。