实验报告单二:基尔霍夫定律的验证
- 格式:docx
- 大小:106.44 KB
- 文档页数:4
基尔霍夫定律的验证实验报告实验目的:验证基尔霍夫定律,即电流差值定律和电流的闭合定律。
实验原理:1. 电流差值定律(基尔霍夫第一定律)指出,在一个电路的任意一个节点上,节点流入的电流差值等于节点流出的电流差值。
数学表达式为:ΣI_in = ΣI_out。
2.电流的闭合定律(基尔霍夫第二定律)指出,在一个电路中,电流在闭合回路中的总和等于供电电压的总和。
数学表达式为:ΣI=0。
实验材料:1.电源2.导线3.电阻4.电流表5.电压表实验步骤:1.连接实验电路,包括电源、导线、电阻、电流表和电压表。
2.使用导线将电源、电流表、电压表和电阻连接在一起,构成一个简单的电路。
3.分别测量并记录电阻两端的电压和电流。
4.将电阻更换为新的不同阻值的电阻,重复步骤35.统计并比较不同电阻下的电流和电压数据,验证基尔霍夫定律。
实验结果:以一个简单的电路为例,连接一个12V的电源、一个10Ω的电阻以及一个电流表和一个电压表。
测量得到电压表读数为12V,电流表读数为1.2A。
我们可以验证基尔霍夫定律:1.在节点上,电流只有一个,所以节点流入的电流和流出的电流应该相等。
在这个电路中,电流表读数为1.2A,即节点流入电流和流出电流都是1.2A,符合电流差值定律。
2.电路中只有一个回路,电压表读数为12V,也等于供电电源的电压。
因此,符合电流的闭合定律。
实验分析:通过实验结果,我们可以验证基尔霍夫定律。
在一个简单电路中,电流差值定律表明在一个节点上,流入的电流和流出的电流相等,而电流的闭合定律显示电流在闭合回路中总和为零。
而实验结果与这两个定律的预测值相符,说明基尔霍夫定律成立。
实验结论:基尔霍夫定律是电学中非常重要的定律,经过实验证明,电流差值定律和电流的闭合定律在电路中成立。
实验结果表明,实际电路中的电流和电压符合基尔霍夫定律的预测值,验证了基尔霍夫定律的正确性。
因此,在电路分析和设计中,基尔霍夫定律是非常有用和可靠的工具。
【实验名称】基尔霍夫定律的验证【实验目的】验证基尔霍夫定律的正确性。
学会测定电路的开路电压与短路电流;加深对参考方向的理解。
【实验仪器】直流稳压电源(两台),分别为12V和6V;万用表(一台);标准电阻(三个),分别为100Ω、100Ω和430Ω。
【实验原理】基尔霍夫电流定律:电路中任意时刻,流进和流出节点电流的代数和为零。
基尔霍夫电压定律:电路中任意时刻,沿闭合回路的电压的代数和为零。
【实验内容】按照图1所给的电路图搭建电路。
【实验步骤】1.验证电流定律用万用表测量R1支路电流I1。
用万用表测量R2支路电流I2。
用万用表测量RL支路电流IL。
将上述所得数据填写到表1中(单位:mA)。
2.验证电压定律用万用表分别测出各支路的电压Uab、Ubc、Ucd、Uda。
注意电压表正负接线。
记录数值,填入表2中(单位:v)。
图1 实验电路实验报告(一)填写数据表格(二)实验结论1、电路中任意时刻,流进和流出节点电流的代数和为零。
即:I1+I2+IL=02、电路中任意时刻,沿闭合回路的电压的代数和为零。
即:Uab+Ubc+Ucd+Uda=0误差分析:1、电路中电阻阻值与标示值有差异(430欧电阻值实测为435欧)阻值误差产生的差异;2、导线连接点因存在接触电阻产生误差;3、仪表存在的基本误差4、串接电流表电表本身阻值及导线存在的阻值产生误差(3)用表1和表2中实验测得数据验证基尔霍夫定律实验结论:数据中大部分相对误差较小,基尔霍夫定律是正确的。
求:I1 ; I2 ; IL ?I1=0.01875A ;I2=0.020625A ;IL=0.039375A。
【实验名称】基尔霍夫定律的验证【实验目的】验证基尔霍夫定律的正确性。
学会测定电路的开路电压与短路电流;加深对参考方向的理解。
【实验仪器】直流稳压电源(两台),分别为12V和6V;万用表(一台);标准电阻(三个),分别为100Ω、100Ω和430Ω。
【实验原理】基尔霍夫电流定律:电路中任意时刻,流进和流出节点电流的代数和为零。
基尔霍夫电压定律:电路中任意时刻,沿闭合回路的电压的代数和为零。
【实验内容】按照图1所给的电路图搭建电路。
【实验步骤】1.验证电流定律用万用表测量R1支路电流I1。
用万用表测量R2支路电流I2。
用万用表测量RL支路电流IL。
将上述所得数据填写到表1中(单位:mA)。
2.验证电压定律用万用表分别测出各支路的电压Uab、Ubc、Ucd、Uda。
注意电压表正负接线。
记录数值,填入表2中(单位:v)。
图1 实验电路实验报告(一)填写数据表格(二)实验结论1、电路中任意时刻,流进和流出节点电流的代数和为零。
即:I1+I2+IL=02、电路中任意时刻,沿闭合回路的电压的代数和为零。
即:Uab+Ubc+Ucd+Uda=0误差分析:1、电路中电阻阻值与标示值有差异(430欧电阻值实测为435欧)阻值误差产生的差异;2、导线连接点因存在接触电阻产生误差;3、仪表存在的基本误差4、串接电流表电表本身阻值及导线存在的阻值产生误差(3)用表1和表2中实验测得数据验证基尔霍夫定律实验结论:数据中大部分相对误差较小,基尔霍夫定律是正确的。
求:I1 ; I2 ; IL ?I1=0.01875A ;I2=0.020625A ;IL=0.039375A。
基尔霍夫定律的验证实验报告一、实验目的1、验证基尔霍夫定律的正确性,加深对基尔霍夫定律普遍性的理解。
2、进一步学会使用电压表、电流表。
二、实验原理基本霍夫定律是电路的基本定律。
1)基本霍夫电流定律对电路中任意节点,流入、流出该节点的代数和为零。
即∑I=02)基本霍夫电压定律在电路中任一闭合回路,电压降的代数和为零。
即∑U=0 三、实验设备序号名称型号与规格数量备注1 可调直流稳压电源0~30V 12 直流数字电压表 13 直流数字毫安表 1四、实验内容实验线路如图2-1所示图2-11、实验前先任意设定三条支路的电流参考方向,2、按原理的要求,分别将两路直流稳压电源接入电路。
3、将电流插头的两端接至直流数字毫安表的“+,-”两端。
4、将电流插头分别插入三条支路的三个电流插座中,记录电流值于下表。
5、用直流数字电压表分别测量两路电源及电元件上的电压值,记录于下表。
五、基尔霍夫定律的计算值:I1 + I2 = I3 (1)根据基尔霍夫定律列出方程(510+510)I1 +510 I3=6 (2)(1000+330)I3+510 I3=12 (3)解得:I1 =0.00193A I2 =0.0059A I3 =0.00792AU FA=0.98V U BA=5.99V U AD=4.04V U DE=0.98V U DC=1.98V六、相对误差的计算:E(I1)=(I1(测)- I1(计))/ I1(计)*100%=(2.08-1.93)/1.93=7.77%同理可得:E(I2)=6.51% E(I3)=6.43% E(E1)=0% E(E1)=-0.08%E(U FA)=-5.10% E(U AB)=4.17% E(U AD)=-0.50% E(U CD)=-5.58% E(U DE)=-1.02%七、实验数据分析根据上表可以看出I1、I2、I3、U AB、U CD的误差较大。
八、误差分析产生误差的原因主要有:(1)电阻值不恒等电路标出值,(以510Ω电阻为例,实测电阻为515Ω)电阻误差较大。
电路实验报告基尔霍夫定律的证明第一篇:电路实验报告基尔霍夫定律的证明基尔霍夫定律的证明(KCL与KVL方程)实验报告实验摘要1.实验内容简介1测量电压和电流,检查万用表是否显示正常;○2在面包板上搭建含两个以上网孔的电路,测量各条支路的电流○和沿回路巡行一周的各段电压;3在面包板上搭接一个电压0-5V可调和电流0-5mA可调的电路○(未做)。
2.名词解释面包板面包板是专为电子电路的无焊接实验设计制造的。
由于各种电子元器件可根据需要随意插入或拔出,免去了焊接,节省了电路的组装时间,而且元件可以重复使用,所以非常适合电子电路的组装、调试和训练。
【分类】单面包板,组合面包板,无焊面包板。
【构造】整板使用热固性酚醛树脂制造,板底有金属条,在板上对应位置打孔使得元件插入孔中时能够与金属条接触,从而达到导电目的。
一般将每5个孔板用一条金属条连接。
板子中央一般有一条凹槽,这是针对需要集成电路、芯片试验而设计的。
板子两侧有两排竖着的插孔,也是5个一组。
这两组插孔是用于给板子上的元件提供电源母板使用带铜箔导电层的玻璃纤维板,作用是把无焊面包板固定,并且引出电源接线柱。
【用途】:对集成电路进行试验。
【使用】:不用焊接和手动接线,将元件插入孔中就可测试电路及元件,使用方便。
使用前应确定哪些元件的引脚应连在一起,再将要连接在一起的引脚插入同一组的5个小孔中。
实验目的1.通过证明基尔霍夫定律,加强对概念的直观理解,同时提高同学们的电路搭建水平;2.熟悉对面包板的使用,方便之后的实验教学。
实验环境(仪器用品等)实验地点:实验时间:实验仪器与元器件:数字万用表、面包板、电阻若干、导线若干、实验箱、电位器等本次实验的电路图如下图所示:实验原理测量原理:在实验箱所给的稳恒电压下,运用数字万用表可以方便地测得支路的电流值、网格的电压值,以及所给电阻的电阻值,由此便可结合理论计算值验证基尔霍夫定律的正确性。
※实验步骤※1.准备工作:检查万用表是否显示正常;估测电阻值;调节实验箱1检查万用表的使用状况,确定万用表的读数无误,量程正确;○2根据色标法读出所给电阻的阻值;○3打开实验箱,选择直流电压档,调节旋钮,使两个输出端一个输○出5V电压,一个输出12V电压,并用万用表电压档测量是否准确。
基尔霍夫定律的验证实验报告基尔霍夫定律是电路分析中的重要定律,它描述了电路中电流和电压的关系。
本实验旨在通过实际测量和数据分析,验证基尔霍夫定律的准确性和可靠性。
实验一,串联电路中的基尔霍夫定律验证。
首先,我们搭建了一个简单的串联电路,包括一个电源、两个电阻和一个电流表。
通过测量电源电压、电阻值和电流表的读数,我们得到了实验数据。
根据基尔霍夫定律,串联电路中各个电阻两端的电压之和应该等于电源的电压。
经过计算和对比,实验数据与基尔霍夫定律的预期结果非常吻合,验证了基尔霍夫定律在串联电路中的准确性。
实验二,并联电路中的基尔霍夫定律验证。
接着,我们搭建了一个并联电路,同样包括一个电源、两个电阻和一个电流表。
通过测量电源电压、电阻值和电流表的读数,我们得到了实验数据。
根据基尔霍夫定律,并联电路中各个支路的电流之和应该等于电源的电流。
经过计算和对比,实验数据也与基尔霍夫定律的预期结果高度吻合,验证了基尔霍夫定律在并联电路中的准确性。
实验三,复杂电路中的基尔霍夫定律验证。
最后,我们搭建了一个复杂的电路,包括串联和并联的组合。
通过测量各个支路的电压和电流,我们得到了实验数据。
根据基尔霍夫定律,复杂电路中各个支路的电压和电流应该满足一系列的方程。
经过计算和对比,实验数据再次与基尔霍夫定律的预期结果完美吻合,验证了基尔霍夫定律在复杂电路中的准确性和适用性。
结论。
通过以上实验,我们验证了基尔霍夫定律在不同类型电路中的准确性和可靠性。
无论是串联电路、并联电路还是复杂电路,实验数据都与基尔霍夫定律的预期结果高度吻合,证明了基尔霍夫定律在电路分析中的重要作用。
因此,我们可以相信基尔霍夫定律是一条普适的规律,能够准确描述电路中电流和电压的关系,为电路分析和设计提供了重要的理论基础。
基尔霍夫定律的验证实验为我们深入理解电路行为和解决实际问题提供了重要的参考依据。
基尔霍夫定律的验证的实验报告实验报告:基尔霍夫定律的验证实验目的:验证基尔霍夫定律,即“电流在节点汇聚时,电流的代数和为零;电压在回路中闭合时,电压的代数和为零”。
实验器材:1.电源2.电阻器3.连线4.摇摆开关5.电流表6.电压表7.多用表实验原理:1. 基尔霍夫第一定律(又称为电流定律):在一个网络中,进入节点的电流等于离开该节点的电流之和。
这个定律的数学公式可以表示为:ΣIin = ΣIout。
2.基尔霍夫第二定律(又称为电压定律):在闭合网络中,电源供给的电压等于电阻器消耗的电压。
这个定律的数学公式可以表示为:ΣV=0。
实验步骤:1.将电源接入电路,并连接电阻器形成一个简单的电路。
2.使用多用表将电压表和电流表选为电压测量模式和电流测量模式。
3.使用摇摆开关控制电路的通断,确保电路处于开启状态。
4.使用电流表测量电路中的电流,并记录下测量值。
5.使用电压表测量电路中的电压值,并记录下测量值。
6.对电路进行分析,应用基尔霍夫定律来验证实验结果。
-验证基尔霍夫第一定律:选择一个节点,将所有进入该节点的电流与所有离开该节点的电流进行比较,如果两者相等,则基尔霍夫第一定律成立。
-验证基尔霍夫第二定律:选择一条回路,在该回路上记录下所有电压值,然后将这些电压值相加,如果结果为零,则基尔霍夫第二定律成立。
7.分别通过计算和实验结果比较,验证基尔霍夫定律的成立与准确性。
实验结果和讨论:在实验中,我们按照以上步骤进行了电流和电压的测量,并记录了测量结果。
然后,我们通过基尔霍夫定律进行验证。
首先,我们验证了基尔霍夫第一定律。
在电路中选取了一个节点,测量了进入和离开该节点的电流。
通过对测量值的比较,我们发现进入和离开节点的电流之和相等,验证了基尔霍夫第一定律的成立。
接着,我们验证了基尔霍夫第二定律。
选择了一个回路,并测量了回路上各个电压值。
通过将这些电压值相加,得出的结果非常接近于零,从而验证了基尔霍夫第二定律的成立。
基尔霍夫定律验证实验报告引言:基尔霍夫定律是电路分析中的重要定律之一,它是由德国物理学家基尔霍夫于19世纪提出的。
基尔霍夫定律是对电流和电压的守恒关系的描述,它为我们理解和分析复杂电路提供了重要的工具。
本实验通过验证基尔霍夫定律来加深对电路中电流和电压分布的理解。
实验目的:本实验的主要目的是通过实验证明基尔霍夫定律的正确性,具体实验内容如下:实验一:串联电路中电流的分布通过搭建简单的串联电路,测量不同位置的电流大小,并验证基尔霍夫定律中的电流守恒原理。
首先,我们需要准备好所需的实验器材,包括电源、电阻器、导线等。
然后,按照实验指导书上的要求,搭建好串联电路,并连接好电流表。
在电路搭建完成后,逐个测量不同位置的电流值,并记录下来。
最后,将测得的电流值进行比较,验证基尔霍夫定律中电流守恒的原理。
实验二:并联电路中电压的分布通过搭建简单的并联电路,测量不同位置的电压大小,并验证基尔霍夫定律中的电压守恒原理。
同样地,我们需要准备好实验所需的器材,并按照实验指导书上的要求搭建好并联电路。
在电路搭建完成后,逐个测量不同位置的电压值,并记录下来。
最后,将测得的电压值进行比较,验证基尔霍夫定律中电压守恒的原理。
实验结果与分析:根据实验测量所得的数据,我们可以得出以下结论:1. 在串联电路中,电路中的电流在各个电阻器中是相等的,符合基尔霍夫定律中的电流守恒原理;2. 在并联电路中,电路中的电压在各个支路中是相等的,符合基尔霍夫定律中的电压守恒原理。
结论:通过本实验的验证,我们成功地验证了基尔霍夫定律的正确性。
基尔霍夫定律对于我们理解和分析电路中的电流和电压分布起到了重要的作用。
在实际应用中,我们可以根据基尔霍夫定律来设计和优化电路,使电路的性能得到提升。
实验的局限性:本实验仅仅是通过搭建简单的电路来验证基尔霍夫定律,对于复杂电路的分析还需要进一步的学习和实践。
此外,实验中使用的电阻器和电流表等仪器也存在一定的误差,可能会对实验结果产生一定的影响。
基尔霍夫定律的验证实验报告完整版.doc实验⼆基尔霍夫定律的验证⼀、实验⽬的1.通过实验验证基尔霍夫电流定律和电压定律2.加深理解“节点电流代数和”及“回路电压代数和”的概念3.加深对参考⽅向概念的理解⼆、原理基尔霍夫节点电流定律∑I=基尔霍夫回路电压定律∑U=参考⽅向:当电路中的电流(或电压)的实际⽅向与参考⽅向相同时取正值,其实际⽅向与参考⽅向相反时取负值。
三、实验仪器和器材1.0-30V可调直流稳压电源2.+15直流稳压电源3.200mA可调恒流源4.电阻5.交直流电压电流表6.实验电路板7.短接桥8.导线四、实验内容及步骤1.验证基尔霍夫电流定律(KCL)可假定流⼊该节点的电流为正(反之也可),并将电流表负极接在节点接⼝上,电流表正极接到⽀路接⼝上进⾏测量。
测量结果如2-1所⽰。
图2-12.验证基尔霍夫回路电压定律(KVL)⽤短接桥将三个电流接⼝短接,测量时可选顺时针⽅向为绕⾏⽅向,并注意电压表的指针偏转⽅向及取值的正与负,测量结果如表2-2所⽰。
U AB U BE U EF U FA∑U BC U CD U DE U EB回路回路U∑U计算值 1.69 5.63 2.68 -10 0 -5.15 15 -4.22 -5.63 0测量值 1.74 5.6 2.8 -10.1 0.04 -5.0 14.7 -4.2 -5.7 -0.2 误差0.05 -0.03 0.12 -0.1 0.04 0.15 -0.3 0.02 -0.07 -0.2图2-2五、思考题1.利⽤表2-1和表2-2中的测量结果验证基尔霍夫两个定律。
结点B,流⼊电流与流出电路代数和为零,KCL成⽴。
⼀定误差范围内,在⼀个闭合回路中,电压的代数和为0,KVL成⽴。
2.利⽤电路中所给数据,通过电路定律计算各⽀路电压和电流,并计算测量值与计算值之间的误差,分析误差产⽣的原因。
电表精度不够,有电阻⾮理想电表;导线有电阻。
3.回答下列问题(1)已知某⽀路电流约为3mA,现有⼀电流表分别有20mA、200mA和2A三挡量程,你将使⽤电流表的哪档量程进⾏测量?为什么?20mA,在不超量程的情况下应选⼩量程,以使读数更加精确(2)改变电流或电压的参考⽅向,对验证基尔霍夫定律有影响吗?为什么?没有。
基尔霍夫定律验证实验报告引言基尔霍夫定律,又被称为电流定律,是电路学中的基本定律之一。
它描述了在一个封闭电路中,电流的总和等于从电源进入电路的电流的总和,即电流在一个封闭电路中守恒。
为了验证基尔霍夫定律的有效性,我们进行了一系列的实验。
实验目的本实验的主要目的是通过实验验证基尔霍夫定律的准确性,并观察电路中电流的分布情况。
通过实践操作,通过实验结果来验证基尔霍夫定律的适用性。
实验步骤1. 实验材料准备准备实验所需的材料和仪器,包括: - 电源 - 导线 - 电阻 - 配电盒 - 电流表2. 搭建电路根据实验设计,搭建实验所需的电路。
在实验中,我们选择了一个简单的串联电路来验证基尔霍夫定律。
将电阻连接在电源的正极和负极之间,确保电路连接正确无误。
3. 测量电流使用电流表测量电路中的电流。
将电流表依次连接到电路的各个部分,记录下每个电阻上的电流值,并计算出总电流。
4. 分析实验数据根据电流测量结果,分析实验数据。
比较每个电阻上的电流与总电流之间的关系,观察它们是否符合基尔霍夫定律的预期结果。
实验结果和讨论实验数据以下是我们进行实验时所记录下的电流测量数据:电阻编号电流 (A)R1 0.5R2 0.3R3 0.2数据分析根据测量数据,我们可以计算出总电流为0.5A+0.3A+0.2A=1A。
这与我们预期的结果相符合,证明了基尔霍夫定律在这个串联电路中的适用性。
结果讨论在这个实验中,我们验证了基尔霍夫定律的准确性。
根据实验结果,电路中各个电阻上的电流之和等于进入电路的总电流。
这验证了基尔霍夫定律在理论上的有效性。
同时,我们还观察到了电流在电路中的分布情况。
根据实验数据,电流在每个电阻上的数值并不相等,这表明电路中不同部分的电阻会对电流的分布产生影响。
这进一步说明了基尔霍夫定律的实际应用性,可以用于分析和设计各种复杂的电路。
结论通过本次实验,我们成功地验证了基尔霍夫定律的准确性。
实验结果表明,基尔霍夫定律可以用于描述和分析电路中的电流分布情况,并且在实际应用中具有一定的指导价值。
基尔霍夫定律的验证实验报告基尔霍夫定律是电路分析中一个非常重要的定律,它描述了电流在分支电路中的分配规律。
在本次实验中,我们将对基尔霍夫定律进行验证实验,以验证其在电路分析中的适用性。
实验目的:1. 验证基尔霍夫定律在电路分析中的适用性;2. 掌握基尔霍夫定律在实际电路中的应用方法;3. 提高实验操作和数据处理能力。
实验原理:基尔霍夫定律是由德国物理学家基尔霍夫提出的,它包括基尔霍夫第一定律和基尔霍夫第二定律。
基尔霍夫第一定律又称作电流守恒定律,它指出在电路中,流入任意交叉节点的电流等于流出该节点的电流之和。
基尔霍夫第二定律又称作电压环路定律,它指出在闭合电路中,电压源的代数和等于电阻元件两端电压的代数和。
实验步骤:1. 搭建简单的串联电路,并接入电流表和电压表;2. 测量电路中各个电阻元件的电压和电流值;3. 根据基尔霍夫定律,计算电路中各个分支的电流值;4. 比较实测值和计算值,验证基尔霍夫定律的适用性。
实验数据:我们搭建了一个简单的串联电路,其中包括一个电压源和三个电阻元件。
通过测量和计算,得到了以下数据:电压源电压值,U = 12V。
电阻元件1电阻值,R1 = 4Ω,电流值,I1 = 2A。
电阻元件2电阻值,R2 = 6Ω,电流值,I2 = 1.5A。
电阻元件3电阻值,R3 = 8Ω,电流值,I3 = 1A。
实验结果:根据基尔霍夫定律,我们可以得到以下计算值:根据基尔霍夫第一定律,电路中的总电流等于各分支电流之和,即 I = I1 + I2 + I3 = 2A + 1.5A + 1A = 4.5A。
根据基尔霍夫第二定律,在闭合电路中,电压源的代数和等于电阻元件两端电压的代数和,即 U = U1 + U2 + U3,由此计算得到 U = 12V = 8V + 9V + 6V。
通过比较实测值和计算值,我们发现它们基本吻合,验证了基尔霍夫定律在电路分析中的适用性。
实验结论:通过本次实验,我们成功验证了基尔霍夫定律在电路分析中的适用性。
实验二 基尔霍夫定律一、实验目的(1)加深对基尔霍夫定律的理解 (2)用实验数据验证基尔霍夫定律 (3)熟练仪器仪表的使用技术 二、实验原理基尔霍夫定律是电路理论中最基本的定律之一,它阐明了电路整体结构必须遵守的规律,应用极为广泛。
基尔霍夫定律有两条:一是电流定律,另一是电压定律。
(1)基尔霍夫电流定律(简称KCL )是:在任一时刻,流入到电路任一节点的电流总和等于从该节点流出的电流总和,换句话说就是在任一时刻,流入到电路任一节点的电流的代数和为零。
这一定律实质上是电流连续性的表现。
运用这条定律时必须注意电流的方向,如果不知道电流的真实方向时可以先假设每一电流的正方向(也称参考方向),根 据参考方向就可写出基尔霍夫的电流定律表 达式,例如图1所示为电路中某一节点N ,共 有五条支路与它相连,五个电流的参考正 方向如图,根据基尔霍夫定律就可写出: I 1+I 2+I 3+I 4+I 5=0如果把基尔霍夫定律写成一般形式就是 ∑I=0。
显然,这条定律与各支路上接的是什么样的元件无关,不论是线性电路还是非线性电路,它是普遍适用的。
电流定律原是运用某一节点的,我们也可以把它推广运用于电路中的任一假设的封闭面,例如图5-2所示封闭面S 所包围的电路有三条支路与电路其余部分相联接其电流为I 1,I 2,I 3,则I 1+I 2-I 3=0因为对任一封闭面来说,电流仍然必须是连续的。
(2)基尔霍夫电压定律(简称KVL ):在任一时刻,沿闭合回路电压降的代数和总等于零。
把这一定律写成一般形式即为∑U=0,例如在图5-3所示的闭合回路中,电阻两端的电压参考正方向如箭头所示,如果从节点a 出发,顺时针方向绕行一周又回到a 点,便可写出:U 1+U 2+U 3-U 4-U 5=0显然,基尔霍夫电压定律也是和沿闭合回路上元件的性质无关,因此,不论是线性电路还是非线性电路,它是普遍适用的。
I 3 I 1I 2I 4图5-1图5-2图5-3三、实验任务按照图5-4所示实验线路验证基尔霍夫两条定律。
《电路与模电》实验报告实验题目:基尔霍夫定律的验证姓名: 学号: 实验时间: 实验地点: 指导老师: 班级:一、实验目的:1. 验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。
2. 掌握使用直流电工仪表测量电流、电压的方法。
3. 学会应用电路的基本定律,分析、查找电路故障的一般方法。
二、实验原理:1.基尔霍夫定律是电路的基本定律。
测量某电路的各支路电流及多个元件两端的电压,应能分别满足基尔霍夫电流定律和电压定律。
即: 对电路中任何一个节点而言,应满足ΣI =0; 对电路中任何一个闭合回路而言,应满足ΣU =0。
运用上述定律时,必须注意电流、电压的实际方向和参考方向的关系。
2.依据基尔霍夫定律和欧姆定律可对电路的故障现象进行分析,准确定位故障点。
若在一个接有电源的闭合回路中,电路的电流为零,则可能存在开路故障;若某元件上有电压而无电流,则说明该元件开路;若某元件上有电流而无电压,说明该元件出现了短路故障。
三、实验内容及步骤:1. 先任意设定三条支路的电流参考方向,如图1-1所示。
三个回路的正方向可设为ADEFA 、BADCB 、FBCEF 。
图1-1 实验电路2. 分别将两路直流稳压源接入电路,令E 1=6V ,E 2=12V 。
装订线3. 将电流插头的两端接至数字毫安表的“+、-”两端, 将电流插头分别插入三条支路的三个电流插座中,读出并记录各电流值。
图1-2是电流插头插座的用法示意。
4. 用直流数字电压表分别测量、并记录两路电源及电阻元件上的电压值。
5. 分别按下故障开关A 、B 、C ,借助电压表、电流表,找出电路的故障性质和故障点。
图1-2 使用插头插座测量电流表1-1 测量数据及计算值电流单位: mA 电压单位:V表1-2 故障分析记录四、实验设备电流插座装订线五、注意事项1. 测量验证基尔霍夫定律的数据时,三个故障开关均不按下,即不设人为故障。
2. 实验电路中的开关S3应向右,拨向510Ω侧。
实验二基尔霍夫定律的验证(验证性)一、实验目的验证基尔霍夫定律。
二、实验器材1.可调直流稳压电源2.直流数字毫安表3.直流数字电压表4、电路基础试验箱三、实验内容1. 验证基尓霍夫电流定律(KCL), 即验证: 在电路中, 任一时刻, 任一节点, 流过该节点的电流代数和恒为零。
基尔霍夫电流定律与支路上接的元件种类无关, 对线性电路或是非线性电路都适用。
基尔霍夫电流定律不仅适用于电路节点, 还可以推广运用于电路中的任一假设封闭面。
如下图所示椭圆形封闭面所包围的电路, 有3条支路与电路的其它部分相连接, 其电流为I1、I2、I3, 则I1 + I2+ I3=0因为对一个封闭面来说, 电流仍然必须是连续的, 因此流经该封闭面电流的代数和也应该为零。
2. 验证基尓霍夫电压定律(KVL), 即验证:在电路中, 任一时刻, 沿任一回路循行一周, 各段电压的代数和恒为零。
基尔霍夫电压定律可以这样理解:在电路中环绕任意闭合路径一周, 所有电压降的代数和必须等于所有电压升的代数和。
如下图所示:四、实验电路图图2-1验证基尔霍夫定律和叠加定理的原理图如上图2-1, 电流I1+I2-I3=0时符合基尔霍夫电流定律, UAB+UBC+UCD+UDE+UEF+UFA=0时符合基尔霍夫电压定律。
五、实验过程1.验证基尓霍夫定律的操作过程实验准备: 将可调电源中的两路“0~30V可调输出”直流可调稳压电源的输出调至最小(调节旋钮轻轻逆时针旋到底), 并将恒流源的输出粗调旋钮拨到2mA档, 输出细调旋钮调至最小。
将电源转接箱和其下方的“AC220V输出”通过所带的插头连接线连接电源插孔, 并将电源转接箱电源插孔通过红、蓝粗线和可调电源及测量仪表一的电源插孔相连(L与L用红线连接, N与N用蓝线连接)。
实验步骤:(1) 将测量仪表一中的直流电压表并接在可调电源两端, 打开电源开关, 分别调节两路可调电源的输出旋钮, 用直流电压表监测使两路可调电源的输出分别为E1=6V、E2=12V, 然后断开电源开关。
基尔霍夫定律的验证及电位的研究实验报告实验名称:基尔霍夫定律的验证及电位的研究实验目的:验证基尔霍夫定律,并研究不同点的电位分布情况。
实验原理:1. 基尔霍夫定律:在电路中,节点处的电流代数和为零,即各节点处的入流和等于出流和。
用数学表达式可以表示为:ΣI_in = ΣI_out其中,ΣI_in表示进入节点的电流的代数和,ΣI_out表示离开节点的电流的代数和。
2. 电位分布:电位是指电荷粒子在电场中的位置上所具有的势能。
电位差是指单位正电荷从一点移到另一点时所赋予或损失的电势能。
在电路中,电位差可以用电压表示,即单位正电荷从一点移到另一点时所赋予或损失的能量。
电势差的大小与电势差两点之间的距离和电场强度有关。
实验器材:1. 电源2. 电阻器3. 电压表4. 连线5. 示波器(用于观察交流电路的波形)实验步骤:1. 搭建一个简单的电路,包含一个电源、两个电阻器和一个电压表。
确保所有元件的连接正确。
2. 测量各个电阻器的电阻值,并记录下来。
3. 施加电压,将电路闭合,并测量电压表的读数。
4. 切断电路闭合,对电路进行测量,测量电流大小和方向,并记录下来。
5. 更改电路布局,改变电阻器的连接方式,并重复步骤3和4,记录数据。
6. 分析数据,并验证基尔霍夫定律。
根据实验数据计算各个节点处的电流代数和,并比较与基尔霍夫定律的要求是否一致。
7. 利用实验数据绘制电位分布图,并观察不同点的电位分布情况。
8. 根据测得的数据,进行电位分布的分析。
比较不同点之间的电位差,观察电位差的大小和变化趋势。
实验结果:根据实验数据计算各个节点处的电流代数和,并比较与基尔霍夫定律的要求是否一致。
实验结果显示电流代数和在各个节点处非常接近零,即基尔霍夫定律成立。
利用实验数据绘制电位分布图,并观察不同点的电位分布情况。
根据电位分布图可以观察到不同点的电位差大小和变化趋势。
结论:通过实验验证了基尔霍夫定律,即在闭合电路中各节点处的电流代数和为零。
实验二基尔霍夫电压定律的验证实验一、实验目的1、通过实验验证基尔霍夫电压定律,巩固所学的理论知识。
2、加深对参考方向概念的理解。
二、实验原理1、基尔霍夫定律:基尔霍夫电压定律为ΣU = 0,应用于回路。
基尔霍夫定律是分析与计算电路的基本重要定律之一。
图2-1 两个电压源电路图图2-2 基尔霍夫电流定律2、基尔霍夫电压定律(Kirchhoff's V oltage law)可简写为KVL:基尔霍夫电压定律,从回路中任意一点出发,以顺时针方向或逆时针方向沿回路循行一周,则在这个方向上的电位升之和应该等于电位降之和。
就是在任一瞬时。
沿任一回路循行方向(顺时方向或逆时方向),回路中各段电压的代数和恒等于零。
(如果规定电位升为正号则电位降为负号)。
在电阻电路中的另一种表达式,就是在任一回路循行方向上,回路中电动势的代数和等于电阻上电压降的代数和。
在图2-1所示电路中,对回路adbca由图2-2可以写出U2 + U3 = U1 + U4U2 + U3-U1-U4 = 0即ΣU = 0上式可改为E1-E2-I1R1 + I2R2 = 0E1-E2 = I1R1-I2R2即ΣE = Σ(IR)4、参考方向:为研究问题方便,人们通常在电路中假定一个方向为参考,称为参考方向。
(1) 若流入节点的电流取正号,则流出节点的电流取负号。
(2) 任一回路中,凡电压的参考方向与回路绕行方向一致者,则此电压的前面取正号,电压的参考方向与回路绕行方向相反者,前面取负号。
(3) 任一回路中电流的参考方向与回路绕行方向一致者,前面取正号,相反者前面取负号。
在实际测量电路中的电流或电压时,当电路中所测的电流或电压的实际方向与参考方向相同时取正值,其实际方向与参考方向相反时取负值。
三、实验内容及步骤KVL定律实验电路如图2-3所示,有两个直流电压源作用于电路中,选定电路的参考方向为U6→U5→U4→U3→U2→U1→U6,电压表中除U3的正、负极性与参考方向相反以外,其余电压表均与该参考方向一致,则列写KVL方程为:ΣU = U6+U5+U4-U3+U2+U1=0(上式中的U1、U2、U3、U4、U5、U6分别对应图上器件R1、R2、E2、R3、R4、E1的电压)故:若用电压表测得的电压值符合上式,则KVL定律得证。
基尔霍夫定理的验证实验报告实验目的:1.通过实验验证基尔霍夫定理的准确性和可靠性;2.熟悉使用电流表和电压表进行电路实验测量;3.掌握实验数据处理方法。
实验原理:1.节点电流定律:在任何一个节点,进入该节点的电流等于离开该节点的电流之和;2.回路电压定律:回路中各电压源电压与电路中各电阻之压降之和等于零。
实验器材:1.电源;2.电流表;3.电压表;4.电阻器;5.导线。
实验步骤:1.搭建一个简单的电路,包含一个电流表和一个电压表。
2.使用电源连接电路,确保电路中电流表和电压表的连接正确。
3.在电路中放置若干个电阻,并记录各电阻的阻值。
4.使用电流表测量电路中的总电流,并记录数值。
5.使用电压表测量电路中各电阻的电压,并分别记录数值。
6.利用基尔霍夫定理,验证节点电流定律和回路电压定律。
7.处理实验数据,计算各电阻所消耗的功率。
8.分析实验结果,并撰写实验报告。
实验数据记录:电阻阻值(Ω),电压(V),电流(A),功率(W)-------------,---------,---------,---------R1,V1,I1,P1R2,V2,I2,P2R3,V3,I3,P3实验数据处理:根据基尔霍夫定理的节点电流定律,进入节点的电流等于离开节点的电流之和,可得:I1=I2+I3根据基尔霍夫定理的回路电压定律,回路中各电压源电压与电路中各电阻之压降之和等于零,可得:V1+V2+V3=0利用欧姆定律的关系,可得各电阻所消耗的功率:P1=V1*I1P2=V2*I2P3=V3*I3实验结果分析:通过实验数据处理,我们可以计算出各电阻所消耗的功率,并利用基尔霍夫定理验证了节点电流定律和回路电压定律。
若实验结果表明各电阻所消耗的功率近似相等,则说明基尔霍夫定理成立,电路中的能量守恒。
实验注意事项:1.操作仪器时应小心谨慎,避免短路或其他意外发生。
2.测量电流和电压时,应注意电路的极性和连接方式。
3.实验结束后,应及时关闭电源,并注意安全。
基尔霍夫定律的验证的实验报告基尔霍夫定律的验证的实验报告摘要:本实验旨在验证基尔霍夫定律,通过实验测量电流和电压,分析电路中的电流和电压分布情况,并对实验结果进行讨论和分析。
实验结果表明,基尔霍夫定律在本实验中得到了有效验证。
引言:基尔霍夫定律是电路分析中的基本定律之一,它描述了电流和电压在闭合电路中的分布规律。
根据基尔霍夫定律,电流在分支点的进出是守恒的,而电压在闭合回路中的代数和为零。
本实验通过实际测量和数据分析,验证了基尔霍夫定律的准确性和适用性。
实验装置和方法:本实验所使用的装置包括电源、电阻、导线、电流表和电压表。
实验方法为按照一定的电路连接方式,通过调节电源电压和电阻的阻值,测量电路中的电流和电压数值。
实验过程:首先,我们按照实验要求搭建了一个简单的串联电路,包括一个电源和两个电阻。
然后,我们用电流表测量了电路中的电流数值,并用电压表测量了电路中的电压数值。
接着,我们按照同样的方法搭建了一个并联电路,并进行了相同的测量。
实验结果和讨论:在串联电路中,我们测量到的电流数值为I1=0.5A,I2=0.5A。
根据基尔霍夫定律,电流在分支点的进出是守恒的,因此I1=I2。
实验结果与理论预期一致,验证了基尔霍夫定律在串联电路中的适用性。
在并联电路中,我们测量到的电流数值为I1=1A,I2=2A。
根据基尔霍夫定律,电流在分支点的进出是守恒的,因此I1+I2=I3。
实验结果与理论预期一致,验证了基尔霍夫定律在并联电路中的适用性。
通过对实验结果的分析,我们可以得出结论:基尔霍夫定律在闭合电路中的电流和电压分布规律得到了有效验证。
实验结果与理论预期一致,说明基尔霍夫定律是可靠和准确的。
结论:本实验通过实际测量和数据分析,验证了基尔霍夫定律在电路分析中的有效性和适用性。
实验结果表明,基尔霍夫定律可以准确描述电流和电压在闭合电路中的分布规律。
基尔霍夫定律的验证为电路设计和分析提供了重要的理论依据。
致谢:感谢实验中给予我们指导和帮助的老师和同学们。
基尔霍夫定律的验证实验报告基尔霍夫定律的验证实验报告摘要:本实验旨在验证基尔霍夫定律,即电流在一个节点上的总和等于零,以及电压在一个回路上的总和等于零。
通过搭建电路并测量电流和电压,我们得出了实验结果,证明了基尔霍夫定律的正确性。
引言:基尔霍夫定律是电路分析中最基本的定律之一,它为我们理解和解决电路问题提供了重要的工具。
根据基尔霍夫定律,电流在一个节点上的总和等于零,这意味着电流进入节点的总和等于电流离开节点的总和。
另外,根据基尔霍夫定律,电压在一个回路上的总和等于零,这意味着电压源提供的总电压等于电阻器消耗的总电压。
本实验将通过实际搭建电路并测量电流和电压的方法,验证基尔霍夫定律的正确性。
实验方法:1. 准备实验所需材料和仪器:电源、电阻器、导线、电流表、电压表。
2. 按照实验要求,搭建电路,确保电路连接正确。
3. 将电流表和电压表分别连接到电路中,准确测量电流和电压。
4. 重复实验多次,取平均值以提高实验结果的准确性。
实验结果与分析:我们首先搭建了一个简单的串联电路,包括一个电源和两个电阻器。
通过测量电流和电压,我们得到了以下实验结果:电流测量结果:电流表1:0.5A电流表2:0.3A电压测量结果:电压表1:4V电压表2:2V根据基尔霍夫定律,电流在一个节点上的总和等于零。
在这个实验中,我们可以看到电流表1的读数为0.5A,电流表2的读数为0.3A。
将两个电流值相加,得到总和为0.8A。
这个结果验证了基尔霍夫定律的正确性。
另外,根据基尔霍夫定律,电压在一个回路上的总和等于零。
在这个实验中,我们可以看到电压表1的读数为4V,电压表2的读数为2V。
将两个电压值相加,得到总和为6V。
这个结果也验证了基尔霍夫定律的正确性。
结论:通过本实验,我们成功验证了基尔霍夫定律的正确性。
电流在一个节点上的总和等于零,电压在一个回路上的总和等于零。
这些定律为电路分析提供了重要的基础,并在实际应用中发挥着重要的作用。