2018年高考数学二轮复习 规范答题示例5 数列的通项与求和问题 理
- 格式:doc
- 大小:22.50 KB
- 文档页数:2
专题二 数列的通项与求和一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知等差数列{n a }中,2a =1,84a a +=16,则10a = ( ) A .15 B .30 C .31 D .642. 已知数列}{n a 为等差数列,9,21963741=++=++a a a a a a ,则9S 的值为 ( ) A .15 B .40 C .45 D .503. (理)在数列{n a }中,1a =15,2331-=+n n a a (n ∈N *),则该数列相邻两项的乘积是负数的是 ( ) A .2322a a ⋅ B .2423a a ⋅ C .2524a a ⋅ D .2625a a ⋅ (文)已知等差数列{n a }的公差不为0,则 ( )A .6482a a a a =B .6482a a a a >C .6482a a a a <D .以上均不对 4. 在数列}{n a 中,a 1=2,当n 为奇数时,21+=+n n a a ;当n 为偶数时,112-+=n n a a ,则a 12等于( ) A .32 B .34 C .66 D .645.(理) 已知数列{}n a 对于任意*p q ∈N ,,有p q p q a a a ++=,若119a =,则36a = ( ) A .937 B .-934 C .4 D .9 (文)数列}{n a 满足1a =1,,322=a 且)2()(21111≥+=+-+-n a a a a a n n n n n ,则n a =( )A .12+nB .1)32(-nC .1)32(+n D .12-n6. 数列{n a }满足11--=n na a (n ∈N ,n >1),且2a =2,n S 是{n a }的前n 项和,则2007S =A .1002B .1003C .1004D .1005 换题:若数列{n a a }的前n 项和5log (4)n S n =+a ,则数列{n a a }从第二项起是( ) A .递增数列 B .递减数列 C .常数数列 D .以上都错B 解析:当1n =时, 111S a ==,当2n ≥时,155log (4)log (3)n n n a S S n n -=-=+-+a a a 5541log log (1)33n n n +==+++, 显然n a a 关于n 单调递减, 故应选B .7. (理)已知公比大于0的等比数列}{n a 的前n 项和为n S ,则32a S 与32S a 的大小关系是 ( )A.32a S =32S aB.32a S >32S aC.32a S <32S aD.不能确定(文)已知等差数列}{n a 的前n 项的和为n S ,且p a p a -=-=2,2102,其中p 为常数,则有 A .65S S < B.65S S = C.65S S > D.5S 与6S 的大小与p 有关,不能确定 8. 设函数)(x f 的部分函数值如右表,数列{n a }满足21=a ,)(1n n a f a =+,则2009a = ( )A .1B .2C .3D .49. 已知等差数列{n a }、{n b }的公差均为2,且1a =2,1b =1,数列{n c }满足n c =n b a ,则数列 {n c }的前10项和10S 为 ( ) A .75 B .100 C .200 D 、40010. 已知等差数列}{n a 共有2008项,所有项的和为2010,所有偶数项的和为2,则=1004a ( ) A .1 B .2 C .5021 D .256111. 若a 、b 、c 是互不相等的实数,且a 、b 、c 成等差数列,c 、a 、b 成等比数列,则a ∶b ∶c 等于( )A .(-2)∶1∶4B .1∶2∶3C .2∶3∶4D .(-1)∶1∶3 12. 已知等差数列{n a }的公差为d ,前n 项和为n S ,且546S S S >>,则 ( ) A.d <0 B.09<S C.010<S D.011<S二、填空题:本大题共4小题,将答案填在题中的横线上.13. 已知数列}{n a 的前n 项和和为35-=n n S ,则这个数列的通项公式为 .14. (理)已知数列{n a }满足n n n a a a -=++12(n ∈*N ),且1a =2007,2a =2008,其前n 项和为n S ,则2007S = .(文)已知等差数列{n a }、{n b }的公差均为2,且1a =2,1b =1,数列{n c }满足n c =n b a ,则数列{n c }的前10项和10S = .15.数列{n a }中,2a =2,6a =10,且数列{1-n a }是等差数列,则10a = .16. (理)若数列}{n a 的前n 项的和为n S ,且通项公式为)(],)1(1[2*N n a n n n ∈-+=-,则=20S . (文)如果数列{}a n 满足a a a a a a a n n 121321,,,…,,…----是首项为1,公差为2的等差数列,则a n =_________________.三、解答题:本大题共6小题,解答应写出文字说明、证明过程或演算步骤.17.已知等比数列{n a }的首项a 和公比q 均为正整数,前n 项和为n S ,且a≥3,102S 是4S 和6S 的等比中项,等差数列{n b }的首项q 和公差a .(Ⅰ)求q 的值;(Ⅱ)将数列{n a }与{1+n b }的公共项按原顺序构成一个新数列{n c },求{n c }的前n 项和n T .18.(理)已知数列{n a }的各项均为正数,首项1a <2,前n 项和为n S ,且满足8321812++=n n n a a S . (Ⅰ)求数列{n a }的通项公式; (Ⅱ)通过cn S b nn +=构造一个新的数列{n b },使{n b }也是等差数列,求非零常数c. (文)等比数列{n a }的各项均为正数,且2a 与4a 的等比中项为81,2a 与3a 的等差中项为165,数列{n b }满足11a b =,n n n n a b b a =-++)(11. (Ⅰ)求数列{n a }和{n b }的通项公式; (Ⅱ)设n n na cb =,求证:数列{}nc 的前n 项的和59n T >(n N *∈).19.(理)已知数列{n a }中531=a ,112--=n n a a (n ≥2,n *∈N ),数列}{nb 满足11-=n n a b (n *∈N ); (Ⅰ)求证数列{n b }是等差数列;(Ⅱ)求数列{n a }中的最大项与最小项,并说明理由; (Ⅲ)记++=21b b S n …n b +,求1)1(lim +-∞→n nS b n n .(文)已知在等差数列{}n a 中,11a =,公差0d >,且2514,,a a a 分别是等比数列{}n b 中的第二、第三、第四项.(Ⅰ)求{}n a 与{}n b 的通项公式; (Ⅱ)数列{}n c 对任意的*n N ∈,都有12112...n n nc c c a b b b ++++=,求{}n c 的通项公式; (Ⅲ)求数列{}n n a c ⋅的前n 项和n s .20. 已知数列{n a }满足1a =p ,2a =p -41,20212-=+-++n a a a n n n ,其中p 是给定的实数,n 是正整数,n b =n n a a -+1(Ⅰ)求数列{n b }的通项公式; (Ⅱ)试求n 的值,使得n a 的值最小.21.(理)已知首项不为零的数列{}n a 的前n 项和为n S ,若对任意的r 、t N ∙∈,都有2()r t S rS t=. (Ⅰ)判断{}n a 是否为等差数列,并证明你的结论;(Ⅱ)若111,3a b ==,数列{}n b 的第n 项n b 是数列{}n a 的第1n b -项(2)n ≥,求n b . (Ⅲ)求和1122n n n T a b a b a b =+++ .(文)已知{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和,37S =,且123334a a a ++,, 构成等差数列.(Ⅰ)求数列{}n a 的通项.(Ⅱ)令31ln 12n n b a n +== ,,,,求数列{}n b 的前n 项和T .22.(理科)已知数列{a n }满足10),(21*21<<∈+-=+a N n a a a n n n 且(I )求证:10<<n a ; (II )若,109),1lg(1=-=a a b n n 且求无穷数列}1{nb 所有项的和; (III )对于n ∈N *,且n ≥2,求证:n a a a a a a a a a a a a n n n n <++++-++++-)...()...(212213222213333231.(文)等差数列}{n a 的前n 项和为n S ,4S =24,2a =5,对每一个∈k *N ,在k a 与1+k a 之间插入12k - 个1,得到新数列{n b },其前n 项和为n T . (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)11a 是数列{n b }的第几项;(Ⅲ)是否存在正整数n ,使n T =2008?若不存在,请说明理由;若存在,求出n 的值.备选题1.已知等差数列{n a }的公差为d ,前n 项和为n S ,且546S S S >>,则 ( ) A.d <0 B.09<S C.010<S D.011<S2.已知等比数列{n a }中,2+k a 是2a 与22+k a 的等差中项,则公比q = ( ) A .1 B .2 C .21 D .413.公比不为零的等比数列}{n a 中,有0232325=-+a a a ,数列{n b }是等差数列,且7733,a b a b ==,则5b = .4.数列{a n }足⎪⎪⎩⎪⎪⎨⎧<<-<<=+)121(12)210(21n n n n n a a a a a ,514=a ,则2007a = ( )5.已知数列{n a }满足122)52(4)52(5---=n n n a ,p a 、q a 分别为{n a }中的最大项和最小项,则p a +q a =6.已知数列{n a }满足1a =1,且 ⎝⎛=+为奇数为偶数n a n a a nn n 211,则22a = .7.已知函数()x f 与函数()()01>-=a x a y 的图像关于直线x y =对称.(Ⅰ)试用含a 的代数式表示函数()x f 的解析式,并指出它的定义域;(Ⅱ)数列{}n a 中,11=a ,当2≥n 时,1a a n >.数列{}n b 中,21=b ,n n b b b S ++=21.点() ,3,2,1,=⎪⎭⎫ ⎝⎛n n S a P n n n 在函数()x f 的图像上,求a 的值;(Ⅲ)在(Ⅱ)的条件下,过点n P 作倾斜角为4π的直线n l ,则n l 在y轴上的截距为7.()131+n b () ,3,2,1=n ,求证:2332+-=n n n a a b专题二参考答案1.A 由84a a +=16得26a =16,∴ 6a =8,26a =2a +10a ,∴ 10a =26a -2a =15,选A .2.C ∵ 2134741==++a a a a ,936963==++a a a a ,∴ 74=a ,36=a , 452)(92)(964919=+=+=a a a a S ,选C. 3.(理)B ∵ 321-=-+n n a a , ∴ {n a }是等差数列,34732)32)(1(15+-=--+=n n a n , 由n a >0得n <247,故23a >0,24a <0,2423a a ⋅<0,选B . (文)C 08)5)(3()7)((211116482<-=++-++=-d d a d a d a d a a a a a ,故6482a a a a <,选C. 4.C 依题意,1197531,,,,,a a a a a a 成等比数列,故51112⨯=a a =64,21112+=a a =66.故选C .5. (理)C 由p q p q a a a ++=得11+=+n n a a a ,即9111==-+a a a n n , 故数列{}n a 是公差为91的等差数列,491359136=⨯+=a ,选C . (文)A 由)(21111+-+-+=n n n n n a a a a a 得n n n a a a 21111=++-,故}1{na 是等差数列,公差d =211112=-a a ,2121)1(111+=-+=n n a a n ,故n a =12+n ,选A. 6. A 由11--=n n a a 得11=+-n n a a ,故211a a -==-1,)()()(20072006543212007a a a a a a a S +++++++= =-1+1003=1002,故选A 。
专题对点练13 等差、等比数列与数列的通项及求和1.S n为数列{a n}的前n项和.已知a n>0,+2a n=4S n+3.(1)求{a n}的通项公式;(2)设b n=,数列{b n}的前n项和为T n,求T n.解 (1)由+2a n=4S n+3,可知+2a n+1=4S n+1+3.两式相减可得+2(a n+1-a n)=4a n+1,即2(a n+1+a n)==(a n+1+a n)(a n+1-a n).由于a n>0,因此a n+1-a n=2.又+2a1=4a1+3,解得a1=3(a1=-1舍去).所以{a n}是首项为3,公差为2的等差数列,故a n=2n+1.(2)由a n=2n+1可知b n=.T n=b1+b2+…+b n=+…+.2.已知数列{a n}是等差数列,前n项和为S n,若a1=9,S3=21.(1)求数列{a n}的通项公式;(2)若a5,a8,S k成等比数列,求k的值.解 (1)设等差数列{a n}的公差为d,∵a1=9,S3=21,∴S3=3×9+d=21,解得d=-2,∴a n=9+(n-1)×(-2)=-2n+11.(2)∵a5,a8,S k成等比数列,∴=a5·S k,即(-2×8+11)2=(-2×5+11)·,解得k=5.3.(2017河北衡水中学三调,理17)已知数列{a n}的前n项和为S n,a1≠0,常数λ>0,且λa1a n=S1+S n对一切正整数n都成立.(1)求数列{a n}的通项公式;(2)设a1>0,λ=100,当n为何值时,数列的前n项和最大?解 (1)令n=1,得λ=2S1=2a1,即a1(λa1-2)=0.因为a1≠0,所以a1=.当n≥2时,2a n=+S n,2a n-1=+S n-1,两式相减,得2a n-2a n-1=a n(n≥2),所以a n=2a n-1(n≥2),从而数列{a n}为等比数列,所以a n=a1·2n-1=.(2)当a1>0,λ=100时,由(1)知,a n=,设b n=lg=lg=lg 100-lg 2n=2-n lg 2,所以数列{b n}是单调递减的等差数列,公差为-lg 2,所以b1>b2>…>b6=lg=lg>lg 1=0,当n≥7时,b n≤b7=lg<lg 1=0,所以数列的前6项和最大.4.(2017河北邯郸二模,理17)已知等差数列{a n}的前n项和为S n,a1≠0,a3=3,且λS n=a n a n+1.在等比数列{b n}中,b1=2λ,b3=a15+1.(1)求数列{a n}及{b n}的通项公式;(2)设数列{c n}的前n项和为T n,且c n=1,求T n.解 (1)∵λS n=a n a n+1,a3=3,∴λa1=a1a2,且λ(a1+a2)=a2a3,∴a2=λ,a1+a2=a3=3.①∵数列{a n}是等差数列,∴a1+a3=2a2,即2a2-a1=3.②由①②得a1=1,a2=2,∴a n=n,λ=2,∴b1=4,b3=16,∴{b n}的公比q=±=±2,∴b n=2n+1或b n=(-2)n+1.(2)由(1)知S n=,∴c n=,∴T n=1-+…+=1+.5.(2017宁夏中卫二模,理17)已知等比数列{a n}的公比q>1,且a1+a3=20,a2=8.(1)求数列{a n}的通项公式;(2)设b n=,S n是数列{b n}的前n项和,求S n.解 (1)∵等比数列{a n}的公比q>1,且a1+a3=20,a2=8,∴a1+a1q2=20,a1q=8,∴2q2-5q+2=0,解得q=2,a1=4.∴a n=2n+1.(2)b n=,S n=+…+,S n=+…+.∴S n=+…+.∴S n=1-.6.(2017安徽安庆二模,理17)在数列{a n}中,a1=2,a2=4,设S n为数列{a n}的前n项和,对于任意的n>1,n∈N*,S n+1+S n-1=2(S n+1).(1)求数列{a n}的通项公式;(2)设b n=,求{b n}的前n项和T n.解 (1)对于任意的n>1,n∈N*,S n+1+S n-1=2(S n+1),S n+2+S n=2(S n+1+1),两式相减可得a n+2+a n=2a n+1.(*)当n=2时,S3+S1=2(S2+1),即2a1+a2+a3=2(a1+a2+1),解得a3=6.∴当n=1时(*)也满足.∴数列{a n}是等差数列,公差为2,∴a n=2+2(n-1)=2n.(2)∵b n=,∴T n=+…+T n=+…+,∴T n=+…+,∴T n=.〚导学号16804189〛7.(2017山东,理19)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3-x2=2.(1)求数列{x n}的通项公式;(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2)…P n+1(x n+1,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成的区域的面积T n.解 (1)设数列{x n}的公比为q,由已知q>0.由题意得所以3q2-5q-2=0.因为q>0,所以q=2,x1=1,因此数列{x n}的通项公式为x n=2n-1.(2)过P1,P2,…,P n+1向x轴作垂线,垂足分别为Q1,Q2,…,Q n+1.由(1)得x n+1-x n=2n-2n-1=2n-1,记梯形P n P n+1Q n+1Q n的面积为b n,由题意b n=×2n-1=(2n+1)×2n-2,所以T n=b1+b2+…+b n=3×2-1+5×20+7×21+…+(2n-1)×2n-3+(2n+1)×2n-2. ①又2T n=3×20+5×21+7×22+…+(2n-1)×2n-2+(2n+1)×2n-1,②①-②得-T n=3×2-1+(2+22+…+2n-1)-(2n+1)×2n-1=-(2n+1)×2n-1.所以T n=.〚导学号16804190〛8.(2017山东潍坊一模,理19)已知数列{a n}是等差数列,其前n项和为S n,数列{b n}是公比大于0的等比数列,且b1=-2a1=2,a3+b2=-1,S3+2b3=7.(1)求数列{a n}和{b n}的通项公式;(2)令c n=求数列{c n}的前n项和T n.解 (1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,q>0,∵b1=-2a1=2,a3+b2=-1,S3+2b3=7,∴a1=-1,b1=2,-1+2d+2q=-1,3×(-1)+3d+2×2×q2=7,解得d=-2,q=2.∴a n=-1-2(n-1)=1-2n,b n=2n.(2)c n=①当n=2k(k∈N*)时,数列{c n}的前n项和T n=T2k=(c1+c3+…+c2k-1)+(c2+c4+…+c2k)=2k+,令A k=+…+,∴A k=+…+,∴A k=+4+4×,∴A k=.∴T n=T2k=2k+.②当n=2k-1(k∈N*)时,数列{c n}的前n项和T n=T2k-2+a2k-1=2(k-1)++2=2k+.∴T n=k∈N*.。
第3讲 数列的证明、通项与求和[明考情]数列的通项与求和是高考的热点,考查频率较高.中档难度,一般在解答题的前半部. [知考向]1.等差、等比数列的判定与证明.2.数列的通项与求和.考点一 等差、等比数列的判定与证明 方法技巧 判断等差(比)数列的常用方法 (1)定义法:若a n +1-a n =d ,d 为常数⎝⎛⎭⎫a n +1a n =q ,q 为常数,则{a n }为等差(比)数列. (2)中项公式法. (3)通项公式法.1.(2016·全国Ⅲ)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0. (1)求a 2,a 3; (2)求{a n }的通项公式.解 (1)由题意得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0,得2a n +1(a n +1)=a n (a n +1). 因为{a n }的各项都为正数,所以a n +1a n =12.故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.2.已知数列{a n }满足a 1=1,a 2=4,a n +2=3a n +1-2a n (n ∈N *). (1)设b n =a n +1-2a n ,证明:数列{b n }既是等差数列又是等比数列; (2)求数列{a n }的通项公式. (1)证明 因为a n +2=3a n +1-2a n , 所以a n +2-2a n +1=a n +1-2a n ,又b n =a n +1-2a n ,所以b n +1=a n +2-2a n +1, 因此对任意的n ∈N *,b n +1-b n =0(常数), 又b n =a n +1-2a n =a n -2a n -1=…=a 2-2a 1=2≠0, 所以b n +1b n=1(常数),根据等差数列和等比数列的定义知,数列{b n }既是等差数列又是等比数列.(2)解 方法一 由(1)知,a n =2a n -1+2,①由a n +2=3a n +1-2a n ,得a n +2-a n +1=2(a n +1-a n ), 又a 2-a 1=3,所以数列{a n +1-a n }是首项为3,公比为2的等比数列,a n -a n -1=3·2n -2(n ≥2), ②联立①②得,a n =3·2n -1-2(n ≥2),经检验当n =1时也符合该式.故数列{a n }的通项公式为a n =3·2n -1-2(n ∈N *).方法二 由(1)可得a n +1=2a n +2,即a n +1+2=2(a n +2),所以数列{a n +2}是公比为2的等比数列,则a n +2=(a 1+2)·2n -1=3·2n -1,即a n =3·2n -1-2(n ∈N *).3.已知数列{a n }的前n 项和S n 满足S n =2a n +(-1)n (n ∈N *). (1)求数列{a n }的前三项a 1,a 2,a 3;(2)求证:数列⎩⎨⎧⎭⎬⎫a n +23(-1)n 为等比数列,并求出{a n }的通项公式.(1)解 在S n =2a n +(-1)n (n ∈N *)中分别令n =1,2,3, 得⎩⎪⎨⎪⎧a 1=2a 1-1,a 1+a 2=2a 2+1,a 1+a 2+a 3=2a 3-1, 解得⎩⎪⎨⎪⎧a 1=1,a 2=0,a 3=2.(2)证明 由S n =2a n +(-1)n (n ∈N *),得 S n -1=2a n -1+(-1)n -1(n ≥2),两式相减,得a n =2a n -1-2(-1)n (n ≥2),a n =2a n -1-43(-1)n -23(-1)n =2a n -1+43(-1)n -1-23(-1)n (n ≥2),∴a n +23(-1)n =2[a n -1+23(-1)n -1](n ≥2).故数列⎩⎨⎧⎭⎬⎫a n +23(-1)n 是以a 1-23=13为首项,2为公比的等比数列.∴a n +23(-1)n =13×2n -1,a n =13×2n -1-23×(-1)n =2n -13-23(-1)n . 4.(2016·全国Ⅱ)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1. (1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.解 (1)设{a n }的公差为d ,据已知有7+21d =28,解得d =1.所以{a n }的通项公式为a n =n . b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2. (2)因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.5.(2017·日照一模)已知数列{a n },{b n }满足a 1=1,a n +1=1-14a n ,b n =22a n -1,其中n ∈N *.(1)求证:数列{b n }是等差数列,并求出数列{a n }的通项公式; (2)设c n =4a nn +1,求数列{c n c n +2}的前n 项和T n .(1)证明 ∵b n +1-b n =22a n +1-1-22a n -1=22⎝⎛⎭⎫1-14a n -1-22a n -1=4a n 2a n -1-22a n -1=2,∴数列{b n }是公差为2的等差数列. 又b 1=22a 1-1=2,∴b n =2+(n -1)×2=2n , ∴2n =22a n -1,解得a n =n +12n .(2)解 由(1)可得c n =4×n +12n n +1=2n ,∴c n c n +2=2n ×2n +2=2⎝⎛⎭⎫1n -1n +2,∴数列{c n c n +2}的前n 项和为T n =2⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫1n -1-1n +1+⎝⎛⎭⎫1n -1n +2 =2⎣⎡⎦⎤1+12-1n +1-1n +2=3-4n +6(n +1)(n +2). 6.已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. (1)证明 由题设知,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1, 两式相减得a n +1(a n +2-a n )=λa n +1, 由于a n +1≠0,所以a n +2-a n =λ.(2)解 由题设知,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3; {a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2,因此存在λ=4,使得数列{a n }为等差数列. 考点二 数列的通项与求和方法技巧 (1)根据数列的递推关系求通项的常用方法①累加(乘)法 形如a n +1=a n +f (n )的数列,可用累加法; 形如a n +1a n =f (n )的数列,可用累乘法.②构造数列法形如a n +1=na n ma n +n ,可转化为1a n +1-1a n =m n ,构造等差数列⎩⎨⎧⎭⎬⎫1a n ;形如a n +1=pa n +q (p ×q ≠0),可转化为a n +1+qp -1=p ⎝⎛⎭⎫a n +q p -1构造等比数列⎩⎨⎧⎭⎬⎫a n +q p -1.(2)数列求和的常用方法①倒序相加法;②分组求和法;③错位相减法;④裂项相消法.7.已知数列{a n }的首项a 1=1,前n 项和为S n ,且数列⎩⎨⎧⎭⎬⎫S n n 是公差为2的等差数列.(1)求数列{a n }的通项公式;(2)若b n =(-1)n a n ,求数列{b n }的前n 项和T n .解 (1)由已知得S nn =1+(n -1)×2=2n -1,所以S n =2n 2-n .当n ≥2时,a n =S n -S n -1=2n 2-n -[2(n -1)2-(n -1)]=4n -3. 而a 1=1=4×1-3满足上式,所以a n =4n -3,n ∈N *. (2)(分组求和法)由(1)可得b n =(-1)n a n =(-1)n (4n -3).当n 为偶数时,T n =(-1+5)+(-9+13)+…+[-(4n -7)+(4n -3)]=4×n2=2n ;当n 为奇数时,n +1为偶数,T n =T n +1-b n +1=2(n +1)-(4n +1)=-2n +1.综上,T n =⎩⎪⎨⎪⎧2n ,n 为偶数,-2n +1,n 为奇数.8.设n ∈N *,数列{a n }的前n 项和为S n ,且S n +1=S n +a n +2,已知a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n a n=(2)1n a+,求数列{b n }的前n 项和T n .解 (1)由S n +1=S n +a n +2,得a n +1-a n =2(n ∈N *), 所以数列{a n }是以a 1为首项,2为公差的等差数列.由a 1,a 2,a 5成等比数列,即(a 1+2)2=a 1(a 1+8),解得a 1=1. 所以a n =2n -1(n ∈N *).(2)(错位相减法)由(1)可得b n =(2n -1)·(2)2n =(2n -1)2n , 所以T n =1·21+3·22+5·23+…+(2n -1)·2n , ① 2T n =1·22+3·23+…+(2n -3)·2n +(2n -1)·2n +1.②由①-②可得-T n =2+2(22+23+…+2n )-(2n -1)·2n +1=-(2n -3)2n +1-6, 所以T n =(2n -3)2n +1+6.9.(2017·广东汕头一模)已知数列{a n }的前n 项和为S n ,a 1=2,a n +1=S n +2. (1)求数列{a n }的通项公式;(2)已知b n =log 2a n ,求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .解 (1)∵a n +1=S n +2,∴a n =S n -1+2(n ≥2). 两式作差得a n +1-a n =S n -S n -1=a n , 所以a n +1=2a n ,即a n +1a n =2(n ≥2).又当n =1时,a 2=S 1+2=4, ∴a 2a 1=2成立. ∴数列{a n }是公比为2,首项为2的等比数列, ∴a n =a 1q n -1=2n (n ∈N *).(2)由(1)可得b n =log 2a n =n , 1b n b n +1=1n (n +1)=1n -1n +1, ∴T n =⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1=1-1n +1=n n +1. 10.(2016·浙江)设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N *. (1)求数列{a n }的通项公式; (2)求数列{|a n -n -2|}的前n 项和.解 (1)由题意得⎩⎪⎨⎪⎧ a 1+a 2=4,a 2=2a 1+1,则⎩⎪⎨⎪⎧a 1=1,a 2=3,即a 2=3a 1.又当n ≥2时,由a n +1-a n =(2S n +1)-(2S n -1+1)=2a n , 得a n +1=3a n .所以,数列{a n }的通项公式为a n =3n -1,n ∈N *.(2)设b n =|3n -1-n -2|,n ∈N *,b 1=2,b 2=1,当n ≥3时,由于3n -1>n +2,故b n =3n -1-n -2,n ≥3.设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3,当n ≥3时,T n =3+9(1-3n -2)1-3-(n +7)(n -2)2=3n -n 2-5n +112,当x =2时,满足上式,所以T n =⎩⎪⎨⎪⎧2,n =1,3n -n 2-5n +112,n ≥2,n ∈N *. 11.已知数列{a n },{b n }满足a 1=14,a n +b n =1,b n +1=b n1-a 2n . (1)求数列{b n }的通项公式;(2)设S n =a 1a 2+a 2a 3+a 3a 4+…+a n a n +1,求S n . 解 (1)b n +1=b n (1-a n )(1+a n )=b n b n (2-b n )=12-b n .a 1=14,b 1=34,因为b n +1-1=12-b n-1, 所以1b n +1-1=2-b n b n -1=-1+1b n -1,所以数列⎩⎨⎧⎭⎬⎫1b n -1是以-4为首项,-1为公差的等差数列,所以1b n -1=-4-(n -1)=-n -3,所以b n =1-1n +3=n +2n +3. (2)因为a n =1-b n =1n +3,所以S n =a 1a 2+a 2a 3+…+a n a n +1=14×5+15×6+…+1(n +3)(n +4)=14-1n +4=n4(n +4).12.已知数列{a n }中,a 1=1,a n +1=a na n +3(n ∈N *).(1)求证:⎩⎨⎧⎭⎬⎫1a n+12为等比数列,并求{a n }的通项公式;(2)数列{b n }满足b n =(3n -1)·n2n ·a n ,求数列{b n }的前n 项和T n .(1)证明 ∵a 1=1,a n +1=a na n +3,∴1a n +1=a n +3a n =1+3a n ,即1a n +1+12=3a n +32=3⎝⎛⎭⎫1a n +12, 则⎩⎨⎧⎭⎬⎫1a n+12为等比数列,公比q =3,首项为1a 1+12=1+12=32,则1a n +12=32·3n -1, 即1a n =-12+32·3n -1=12(3n -1),即a n =23n -1. (2)解 b n =(3n -1)·n 2n ·a n =n 2n -1,则数列{}b n 的前n 项和T n =11+22+322+…+n2n -1,① 12T n =12+222+323+…+n2n ,②两式相减得12T n =1+12+122+…+12n -1-n 2n =1-⎝⎛⎭⎫12n1-12-n 2n =2-12n -1-n2n =2-n +22n ,则T n =4-n +22n -1.例 (12分)下表是一个由n 2个正数组成的数表,用a ij 表示第i 行第j 个数(i ,j ∈N *),已知数表中第一列各数从上到下依次构成等差数列,每一行各数从左到右依次构成等比数列,且公比都相等.已知a 11=1,a 31+a 61=9,a 35=48.a 11 a 12 a 13 … a 1n a 21 a 22 a 23 … a 2n a 31 a 32 a 33 … a 3n … … … … … a n 1 a n 2 a n 3 … a nn(1)求a n 1和a 4n ;(2)设b n =a 4n(a 4n -2)(a 4n -1)+(-1)n ·a n 1(n ∈N *),求数列{b n }的前n 项和S n .审题路线图数表中项的规律―→确定a n 1和a 4n ―――→化简b n 分析b n 的特征――――――→选定求和方法分组法及裂项法、公式法求和 规范解答·评分标准解 (1)设第1列依次组成的等差数列的公差为d ,设每一行依次组成的等比数列的公比为q .依题意a 31+a 61=(1+2d )+(1+5d )=9,∴d =1,∴a n 1=a 11+(n -1)d =1+(n -1)×1=n .…………………………………………………2分 又∵a 31=a 11+2d =3,∴a 35=a 31·q 4=3q 4=48, 又∵q >0,∴q =2.又∵a 41=4,∴a 4n =a 41q n -1=4×2n -1=2n +1.……………………………………………4分(2)∵b n =a 4n (a 4n -2)(a 4n -1)+(-1)n ·a n 1=2n +1(2n +1-2)(2n +1-1)+(-1)n ·n =2n (2n -1)(2n +1-1)+(-1)n ·n =12n -1-12n +1-1+(-1)n ·n .………………………………6分 ∴S n =⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-17+⎝⎛⎭⎫17-115+…+⎝⎛⎭⎫12n -1-12n +1-1+[-1+2-3+4-5+…+(-1)n ·n ]. 当n 为偶数时,S n =1-12n +1-1+n2,……………………………………………………8分当n 为奇数时,S n =S n -1+b n =1+n -12-12n -1-n +⎝⎛⎭⎫12n -1-12n +1-1=1-12n +1-1-n +12=1-n 2-12n +1-1(n ≥3且n 为奇数).经验证,当n =1时,也满足S n =1-n 2-12n +1-1.………………………………………………………………………………………………11分综上,数列{b n}的前n 项和S n=⎩⎪⎨⎪⎧1-12n +1-1+n2,n 为偶数,1-n2-12n +1-1,n 为奇数.…………………………12分构建答题模板[第一步] 找关系:根据已知条件确定数列的项之间的关系.[第二步] 求通项:根据等差或等比数列的通项公式或利用累加、累乘法求数列的通项公式. [第三步] 定方法:根据数列表达式的结构特征确定求和方法(常用的有公式法、裂项相消法、错位相减法、分组法等). [第四步] 写步骤.[第五步] 再反思:检查求和过程中各项的符号有无错误,用特殊项估算结果.1.(2017·包头一模)已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值;(2)是否存在常数λ,使得数列{a n +λ}为等比数列?若存在,求出λ的值和通项公式a n ;若不存在,请说明理由.解 (1)当n =1时,由S 1=2a 1-3×1,可得a 1=3; 当n =2时,由S 2=2a 2-3×2,可得a 2=9; 当n =3时,由S 3=2a 3-3×3,可得a 3=21. (2)令(a 2+λ)2=(a 1+λ)(a 3+λ), 即(9+λ)2=(3+λ)(21+λ),解得λ=3. 由S n =2a n -3n 及S n +1=2a n +1-3(n +1), 两式相减,得a n +1=2a n +3.由以上结论得a n +1+3=(2a n +3)+3=2(a n +3), 所以数列{a n +3}是首项为6,公比为2的等比数列, 因此存在λ=3,使得数列{a n +3}为等比数列, 所以a n +3=(a 1+3)×2n -1,所以a n =3(2n -1).2.设数列{a n }满足a 1=2,a n +1-a n =3·22n -1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n . 解 (1)由已知,当n ≥1时,a n +1=[(a n +1-a n )+(a n -a n -1)+…+(a 2-a 1)]+a 1=3(22n -1+22n -3+…+2)+2=22(n +1)-1.而a 1=2,所以数列{a n }的通项公式为a n =22n -1.(2)(错位相减法)由b n =na n =n ·22n-1知,S n =1·2+2·23+3·25+…+n ·22n -1, ① 22·S n =1·23+2·25+3·27+…+n ·22n +1,②①-②,得(1-22)S n =2+23+25+…+22n -1-n ·22n +1,即S n =19[(3n -1)22n +1+2].3.已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1-1a 2=2a 3,S 6=63.(1)求{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和.解 (1)设数列{a n }的公比为q . 由已知,1a 1-1a 1q =2a 1q 2,解得q =2或q =-1.又由S 6=a 1·1-q 61-q =63知,q ≠-1,所以a 1·1-261-2=63,得a 1=1.所以a n =2n -1.(2)由题意,得b n =12(log 2a n +log 2a n +1)=12(log 22n -1+log 22n )=n -12, 即{b n }是首项为12,公差为1的等差数列.设数列{(-1)n b 2n }的前n 项和为T n ,则T 2n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n )=b 1+b 2+b 3+b 4+…+b 2n -1+b 2n =2n (b 1+b 2n )2=2n 2.4.已知数列{a n },a 1=1,a n =2a n -1+1(n ≥2,n ∈N *). (1)求证:数列{a n +1}是等比数列;(2)若b n =a n +1(a n +2)(a n +3),求数列{b n }的前n 项和S n ;(3)求证:a 1a 2+a 2a 3+…+a n a n +1<n2(n ∈N *).(1)证明 ∵a n +1=2(a n -1+1)(n ≥2), ∴a n +1a n -1+1=2.又∵a 1+1=2,∴数列{a n +1}是以2为首项,2为公比的等比数列. (2)解 ∵a n +1=2n ,∴a n =2n -1.∴b n =2n (2n +1)(2n +2)=2n -1(2n +1)(2n -1+1)=12n -1+1-12n +1. S n =⎝⎛⎭⎫120+1-121+1+⎝⎛⎭⎫121+1-122+1+…+⎝⎛⎭⎫12n -1+1-12n +1=12-12n +1.(3)证明 ∵a k a k +1=2k -12k +1-1=2k -12⎝⎛⎭⎫2k -12<12,∴a 1a 2+a 2a 3+…+a n a n +1<n 2(n ∈N *).5.已知数列{a n }中,a 1=1,a 3=9,且a n =a n -1+λn -1(n ≥2).(1)求λ的值及数列{a n }的通项公式;(2)设b n =(-1)n ·(a n +n ),且数列{b n }的前n 项和为S n ,求S 2n . 解 (1)∵a 1=1,a n =a n -1+λn -1,∴a 2=2λ,a 3=5λ-1,由a 3=5λ-1=9,得λ=2.于是a n =a n -1+2n -1,即a n -a n -1=2n -1,a n -1-a n -2=2n -3,a n -2-a n -3=2n -5,…,a 2-a 1=3.以上各式累加,得a n =1+(n -1)(2n +2)2=n 2. (2)由(1)得b n =(-1)n ·(a n +n )=(-1)n ·n (n +1).故S 2n =-1×2+2×3-3×4+4×5-5×6+6×7-…-(2n -1)·2n +2n ·(2n +1) =2(-1+3)+4(-3+5)+6(-5+7)+…+2n (-2n +1+2n +1) =2(2+4+6+…+2n )=2·n (2n +2)2=2n 2+2n .。
题型练4大题专项(二)数列的通项、求和问题1.已知数列{a n}是公比为q的正项等比数列,{b n}是公差d为负数的等差数列,满足1a2−1 a3=da1,b1+b2+b3=21,b1b2b3=315.(1)求数列{a n}的公比q与数列{b n}的通项公式;(2)求数列{|b n|}的前10项和S10.2.(2021广西桂林中学高三月考)已知公差不为零的等差数列{a n}满足a3=-4,且a2,a1,a3成等比数列.(1)求数列{a n}的通项公式;(2)若数列{a n-3n-1}的前n项和为S n,求使S n≤-20成立的最小正整数n.3.已知数列{a n}的前n项和S n=3n2+8n,数列{b n}是等差数列,且a n=b n+b n+1.(1)求数列{b n}的通项公式;(2)令c n=(a n+1)n+1(b n+2)n,求数列{c n}的前n项和T n.4.已知等差数列{a n}的前n项和为S n,公比为q的等比数列{b n}的首项是12,且a1+2q=3,a2+4b2=6,S5=40.(1)求数列{a n},{b n}的通项公式a n,b n;(2)求数列{1a n a n+1+1b n b n+1}的前n项和T n.5.已知数列{a n}满足a1=12,且a n+1=a n-a n2(n∈N*).(1)证明1≤a na n+1≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明12(n+2)≤S nn≤12(n+1)(n∈N*).6.已知等比数列{a n}的前n项和为S n,且a n+1=1+S n,且a2=2a1.(1)求数列{a n}的通项公式;(2)若b n=a n log2a n+(-1)n·n,求数列{b n}的前n项和H n.答案:1.解:(1)由已知得b1+b2+b3=3b2=21,即b2=7.所以b1b2b3=(b2-d)·b2·(b2+d)=(7-d)·7·(7+d)=343-7d2=315, 解得d=-2或d=2(舍去).所以b1=7+2=9,b n=-2n+11.因为{a n}是公比为q的正项等比数列,1a2−1a3=da1,所以1a1q−1a1q2=-2a1,所以2q2+q-1=0,解得q=-1(舍去)或q=12.(2)由(1)易知当n≤5时,b n>0,当n≥6时,b n<0.设{b n}的前n项和为T n,则S10=b1+b2+…+b5-b6-b7-…-b10 =2(b1+b2+…+b5)-(b1+b2+…+b10)=2T5-T10=2×[5×9+5×42×(−2)]-(10×9+10×92×(−2))=50.2.解:(1)设等差数列{a n}的公差为d(d≠0).因为a2,a1,a3成等比数列,所以a12=a2a3,即(a3-2d)2=(a3-d)a3,所以(-4-2d)2=-4(-4-d).又d≠0,所以d=-3.所以a1=a3-2d=2.所以a n=2-3(n-1)=-3n+5.(2)由(1)得a n-3n-1=(-3n+5)-3n-1,所以S n=(2-30)+(-1-31)+(-4-32)+…+[(-3n+5)-3n-1]=[2+(-1)+(-4)+…+(-3n+5)]-(30+31+32+…+3n-1)=n[2+(-3n+5)]2−30(1-3n)1-3=7n-3n22−3n-12=7n-3n2-3n+12.所以S1=1,S2=-3,S1>S2.由f(x)=7x-3x 22在区间[2,+∞)上单调递减,g(x)=-3x-12在区间[2,+∞)上单调递减,可知当n≥2时,S n+1<S n.又S2<S1,所以{S n}是递减数列.又S3=-16,S4=-50,所以使S n≤-20成立的最小正整数n为4.3.解:(1)由题意知,当n≥2时,a n=S n-S n-1=6n+5, 又当n=1时,a1=S1=11适合上式,所以a n=6n+5.设数列{b n }的公差为d ,由{a 1=b 1+b 2,a 2=b 2+b 3,得{11=2b 1+d ,17=2b 1+3d ,解得{b 1=4,d =3,所以b n =3n+1.(2)由(1)知c n =(6n+6)n+1(3n+3)n=3(n+1)·2n+1,又T n =c 1+c 2+c 3+…+c n ,则T n =3×[2×22+3×23+4×24+…+(n+1)·2n+1], 2T n =3×[2×23+3×24+4×25+…+(n+1)·2n+2],两式相减,得-T n =3×[2×22+23+24+…+2n+1-(n+1)·2n+2] =3×[4+4(2n −1)2−1−(n +1)·2n+2]=-3n·2n+2,所以T n =3n·2n+2.4.解:(1)设{a n }公差为d ,由题意得{a 1+2d =8,a 1+2q =3,a 1+d +2q =6,解得{a 1=2,d =3,q =12,故a n =3n-1,b n =(12)n .(2)∵1an a n+1+1bn b n+1=13(1a n-1an+1)+1bn b n+1=13(1a n-1an+1)+22n+1,∴T n =13[(12-15)+(15-18)+…+(13n -1-13n+2)]+8(1-4n )1-4=13(12-13n+2)+13(22n+3-8)=13(22n+3-13n+2)−52.5.证明:(1)由题意得a n+1-a n =-a n 2≤0,即a n+1≤a n ,故a n ≤12.由a n =(1-a n-1)a n-1,得a n =(1-a n-1)(1-a n-2)…(1-a 1)a 1>0. 由0<a n ≤12,得a na n+1=a nan -a n2=11-a n∈[1,2],即1≤a nan+1≤2.(2)由题意得a n 2=a n -a n+1,所以S n =a 1-a n+1.①由1an+1−1a n=a nan+1和1≤a nan+1≤2,得1≤1an+1−1a n≤2,所以n ≤1an+1−1a 1≤2n ,因此12(n+1)≤a n+1≤1n+2(n ∈N *).② 由①②得12(n+2)≤S n n≤12(n+1)(n ∈N *).6.解:(1)∵a n+1=1+S n ,∴当n ≥2时,a n =1+S n-1, ∴a n+1=2a n (n ≥2).又a 2=1+S 1=1+a 1,a 2=2a 1, 解得a 1=1. ∴a n =2n-1.(2)由题意可知b n =a n log 2a n +(-1)n ·n=(n-1)·2n-1+(-1)n ·n. 设数列{(n-1)·2n-1}的前n 项和为T n ,则有 T n =0×20+1×21+2×22+…+(n-1)·2n-1,① ∴2T n =0×21+1×22+2×23+…+(n-1)·2n ,② 由②-①,得T n =(n-2)·2n +2.当n 为偶数时,H n =(n-2)·2n +2-1+2-3+…-(n-1)+n=(n-2)·2n +2+n2=(n-2)·2n +n+42. 当n 为奇数时,H n =(n-2)·2n +2-1+2-3+…-(n-1)-n=(n-2)·2n +2+n -12-n=(n-2)·2n -n -32.故H n ={(n -2)·2n +n+42(n 为偶数),(n -2)·2n -n -32(n 为奇数).。
专题15 数列的通项公式的求解方法一.高考命题类型: 1.累和法求通项 2.累积法求通项 3.归纳法求通项 4.项和互化求通项 5.构造辅助数列求通项 (1)1n n a pa q +=+的形式 (2)1()n n a pa f n +=+的形式 6.转化为等差等比求通项 7.倒序相加求通项 8.分奇偶数求解 9.利用周期性求通项 10.裂项求通项 二.类型举例 1.累和法求通项例1.数列{}n a 的首项为3, {}n b 为等差数列,且1n n n b a a +=-(*n N ∈),若32b =-, 1012b =,则8a =( )A. 0B. 3C. 8D. 11 【答案】B练习1. 已知数列{}n a 满足11a =, ()()11112n n n a a n n ++-=-+,则数列(){}1nn a -的前40项的和为()A. 19 20B.325462C.4184D.2041【答案】D【方法总结】:这个题目考查的是数列的求和问题。
首先数列求和选用的方法有,裂项求和,主要用于分式能够通过写成两项相减的形式从而消掉中间的项;分组求和,用于相邻两项之和是定值,或者有规律的;错位相减求和,用于一个等差一个等比乘在一起求和的数列。
练习2.数列{}n a满足11a=,且对于任意的*n N∈都有11n na a a n+=++,则122017111···a a a+++等于()A.20162017B.40322017C.20172018D.40342018【答案】D【解析】由题意可得:11n na a n+-=+,则:1213211,2,23,,n na a a a a a n-=-=-=-=L,以上各式相加可得:()12nn na+=,则:11121na n n⎛⎫=-⎪+⎝⎭,12201711111111403421223201720182018a a a⎡⎤⎛⎫⎛⎫⎛⎫+++=⨯-+-++-=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦L L.本题选择D选项.【方法总结】:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的. 练习3. 已知数列{}n a 满足11a =, 213a =,若()()*1111232,n n n n n a a a a a n n N -+-++=⋅≥∈,则数列{}n a 的通项n a =( ) A.112n - B. 121n - C. 113n - D. 1121n -+ 【答案】B2.累积法求通项例2. 数列{}n a 满足: 11221,2,n n n a a a a a --===(3n ≥且*n N ∈),则8a =( ) A.12B. 1C. 2D. 20132- 【答案】C【解析】由题意可得352434561234112,1,,22a a a a a a a a a a a a ========, 6751a a a ==,7862a a a ==。
(新课标)高考数学二轮复习专题二数列第2讲数列通项与求和学案理新人教A 版第2讲 数列通项与求和[做真题]题型一 a n 与S n 关系的应用1.(2018·高考全国卷Ⅰ)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________. 解析:法一:因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1; 当n =2时,a 1+a 2=2a 2+1,解得a 2=-2; 当n =3时,a 1+a 2+a 3=2a 3+1,解得a 3=-4; 当n =4时,a 1+a 2+a 3+a 4=2a 4+1,解得a 4=-8; 当n =5时,a 1+a 2+a 3+a 4+a 5=2a 5+1,解得a 5=-16; 当n =6时,a 1+a 2+a 3+a 4+a 5+a 6=2a 6+1,解得a 6=-32; 所以S 6=-1-2-4-8-16-32=-63.法二:因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1,当n ≥2时,a n =S n-S n -1=2a n +1-(2a n -1+1),所以a n =2a n -1,所以数列{a n }是以-1为首项,2为公比的等比数列,所以a n =-2n -1,所以S 6=-1×(1-26)1-2=-63.答案:-632.(2015·高考全国卷Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n=________.解析:因为 a n +1=S n +1-S n ,a n +1=S n S n +1, 所以S n +1-S n =S n S n +1.因为 S n ≠0,所以1S n -1S n +1=1,即1S n +1-1S n=-1.又1S 1=-1,所以{1S n}是首项为-1,公差为-1的等差数列.所以1S n =-1+(n -1)×(-1)=-n ,所以S n =-1n.答案:-1n题型二 数列求和1.(2017·高考全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k =1n1S k=__________.解析:设等差数列{a n }的首项为a 1,公差为d ,依题意,⎩⎪⎨⎪⎧a 1+2d =3,4a 1+6d =10,即⎩⎪⎨⎪⎧a 1+2d =3,2a 1+3d =5,解得⎩⎪⎨⎪⎧a 1=1,d =1, 所以S n =n (n +1)2,因此∑k =1n1S k =2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=2n n +1. 答案:2nn +12.(2018·高考全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.解:(1)设{a n }的公差为d ,由题意得3a 1+3d =-15. 由a 1=-7得d =2.所以{a n }的通项公式为a n =2n -9. (2)由(1)得S n =n 2-8n =(n -4)2-16.所以当n =4时,S n 取得最小值,最小值为-16.3.(2016·高考全国卷Ⅱ)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.解:(1)设{a n }的公差为d ,据已知有7+21d =28,解得d =1. 所以{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.(2)因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.[明考情]1.已知数列递推关系求通项公式,主要考查利用a n 与S n 的关系求通项公式、累加法、累乘法及构造法求通项公式,主要以选择题、填空题的形式考查,有时作为解答题的第(1)问考查,难度中等.2.数列求和常与数列综合应用一起考查,常以解答题的形式考查,有时与函数不等式综合在一起考查,难度中等偏上.S n,a n关系的应用[典型例题](1)已知数列{a n}的前n项和为S n,若3S n=2a n-3n,则a2 019=( )A.-22 019-1 B.32 019-6C.⎝⎛⎭⎪⎫122 019-72D.⎝⎛⎭⎪⎫132 019-103(2)(2019·东北四市联合体模拟(一))已知数列{a n}中,a1=2,a n+1=(n+1)a nn+2a n(n∈N*),则∑k=1n ka k=________.(3)(一题多解)(2019·武汉市调研测试)已知数列{a n}的前n项和S n满足S n=3S n-1+2n-3(n≥2),a1=-1,则a4=________.【解析】(1)因为a1=S1,所以3a1=3S1=2a1-3⇒a1=-3.当n≥2时,3S n=2a n-3n,3S n-1=2a n-1-3(n-1),所以a n=-2a n-1-3,即a n+1=-2(a n -1+1),所以数列{a n+1}是以-2为首项,-2为公比的等比数列.所以a n+1=(-2)×(-2)n-1=(-2)n,则a2 019=-22 019-1.(2)由题意可知na n+1+2a n a n+1=(n+1)a n,两边同除以a n a n+1,得n+1a n+1-na n=2,又1a1=12,所以⎩⎨⎧⎭⎬⎫na n是以12为首项,2为公差的等差数列,所以∑k=1n ka k=12n+12n(n-1)×2=n2-12n.(3)法一:由S n=3S n-1+2n-3(n≥2)可得S2=3S1+1=3a1+1,即a2=2a1+1=-1.根据S n=3S n-1+2n-3(n≥2)①,知S n+1=3S n+2n+1-3②,②-①可得,a n+1=3a n+2n(n≥2).两边同时除以2n+1可得a n+12n+1=32·a n2n+12(n≥2),令b n=a n2n,可得b n+1=32·b n+12(n≥2).所以b n+1+1=32(b n+1)(n≥2),数列{b n+1}是以b2+1=34为首项,32为公比的等比数列.所以b n +1=⎝ ⎛⎭⎪⎫32n -2·34(n ≥2), 所以b n =12·⎝ ⎛⎭⎪⎫32n -1-1(n ≥2).*又b 1=-12也满足*式,所以b n =⎝ ⎛⎭⎪⎫32n -1·12-1(n ∈N *),又b n =a n2n ,所以a n =2n b n ,即a n =3n -1-2n.所以a 4=33-24=11.法二:由S n =3S n -1+2n-3(n ≥2),a 1=-1,知S 2=3S 1+4-3,所以a 2=-1.S 3=3S 2+8-3,所以a 3=1.S 4=3S 3+16-3,所以a 4=11.【答案】 (1)A (2)n 2-12n (3)11(1)给出S n 与a n 的递推关系求a n 的常用思路:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .(2)形如a n +1=pa n +q (p ≠1,q ≠0),可构造一个新的等比数列.[对点训练]1.(2019·武昌区调研考试)已知数列{a n }的前n 项和S n =n 2-1,则a 1+a 3+a 5+a 7+a 9=( )A .40B .44C .45D .49解析:选B .法一:因为S n =n 2-1,所以当n ≥2时,a n =S n -S n -1=n 2-1-(n -1)2+1=2n -1,又a 1=S 1=0,所以a n =⎩⎪⎨⎪⎧0,n =12n -1,n ≥2,所以a 1+a 3+a 5+a 7+a 9=0+5+9+13+17=44.故选B .法二:因为S n =n 2-1,所以当n ≥2时,a n =S n -S n -1=n 2-1-(n -1)2+1=2n -1,又a 1=S 1=0,所以a n =⎩⎪⎨⎪⎧0,n =12n -1,n ≥2,所以{a n }从第二项起是等差数列,a 2=3,公差d =2,所以a 1+a 3+a 5+a 7+a 9=0+4a 6=4×(2×6-1)=44,故选B .2.(2019·福州市质量检测)已知数列{a n }的前n 项和为S n ,a 1=1,且S n =λa n -1(λ为常数),若数列{b n }满足a n b n =-n 2+9n -20,且b n +1<b n ,则满足条件的n 的取值集合为________.解析:因为a 1=1,且S n =λa n -1(λ为常数), 所以a 1=λ-1=1,解得λ=2,所以S n =2a n -1,所以S n -1=2a n -1-1(n ≥2),所以a n =2a n -1,所以a n =2n -1.因为a n b n =-n 2+9n -20, 所以b n =-n 2+9n -202n -1, 所以b n +1-b n =n 2-11n +282n=(n -4)(n -7)2n<0,解得4<n <7,又因为n ∈N *,所以n =5或n =6. 即满足条件的n 的取值集合为{5,6}. 答案:{5,6}数列求和问题 [典型例题]命题角度一 公式法求和已知数列{a n }满足a 1=1,a n +1=3a n 2a n +3,n ∈N *.(1)求证:数列⎩⎨⎧⎭⎬⎫1a n 为等差数列;(2)设T 2n =1a 1a 2-1a 2a 3+1a 3a 4-1a 4a 5+…+1a 2n -1a 2n -1a 2n a 2n +1,求T 2n .【解】 (1)证明:由a n +1=3a n 2a n +3,得1a n +1=2a n +33a n =1a n +23, 所以1a n +1-1a n =23. 又a 1=1,则1a 1=1,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为1,公差为23的等差数列.(2)设b n =1a 2n -1a 2n -1a 2n a 2n +1=⎝⎛⎭⎪⎫1a 2n -1-1a 2n +11a 2n,由(1)得,数列⎩⎨⎧⎭⎬⎫1a n 是公差为23的等差数列,所以1a 2n -1-1a 2n +1=-43,即b n =⎝ ⎛⎭⎪⎫1a 2n -1-1a 2n +11a 2n =-43×1a 2n ,所以b n +1-b n =-43⎝ ⎛⎭⎪⎫1a 2n +2-1a 2n =-43×43=-169. 又b 1=-43×1a 2=-43×⎝ ⎛⎭⎪⎫1a 1+23=-209,所以数列{b n }是首项为-209,公差为-169的等差数列,所以T 2n =b 1+b 2+…+b n =-209n +n (n -1)2×⎝ ⎛⎭⎪⎫-169=-49(2n 2+3n ).求解此类题需过“三关”:第一关,定义关,即会利用等差数列或等比数列的定义,判断所给的数列是等差数列还是等比数列;第二关,应用关,即会应用等差(比)数列的前n 项和公式来求解,需掌握等差数列{a n }的前n 项和公式:S n =n (a 1+a n )2或S n =na 1+n (n -1)2d ;等比数列{a n }的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q,q ≠1;第三关,运算关,认真运算,此类题将迎刃而解.命题角度二 裂项相消法求和(2019·广东省七校联考)已知数列{a n }为公差不为0的等差数列,a 1=5,且a 2,a 9,a 30成等比数列.(1)求{a n }的通项公式;(2)若数列{b n }满足b n +1-b n =a n (n ∈N *),且b 1=3,求数列{1b n}的前n 项和T n .【解】 (1)设等差数列{a n }的公差为d (d ≠0),依题意得(a 1+d )(a 1+29d )=(a 1+8d )2. 又a 1=5,所以d =2,所以a n =2n +3.(2)依题意得b n +1-b n =2n +3(n ∈N *),所以b n -b n -1=2n +1(n ≥2且n ∈N *),所以b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=(2n +1)+(2n -1)+…+5+3=n (2n +1+3)2=n 2+2n (n ≥2且n ∈N *),b 1=3,上式也成立,所以b n =n (n +2)(n ∈N *),所以1b n=1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2.所以T n =12⎣⎢⎡⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫1n -1n +2=12⎝ ⎛⎭⎪⎫32-1n +1-1n +2.(1)裂项相消法求和就是将数列中的每一项裂成两项或多项,使这些裂开的项出现有规律的相互抵消,要注意消去了哪些项,保留了哪些项.(2)消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项. [提醒] 常见的裂项式有:1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,1n (n +1)(n +2)=12[1n (n +1)-1(n +1)(n +2)],1n +1+n =n +1-n 等.命题角度三 错位相减法求和(2019·唐山模拟)已知数列{a n }的前n 项和为S n ,S n =3a n -12. (1)求a n ;(2)若b n =(n -1)a n ,且数列{b n }的前n 项和为T n ,求T n . 【解】 (1)由已知可得,2S n =3a n -1,① 所以2S n -1=3a n -1-1(n ≥2),② ①-②得,2(S n -S n -1)=3a n -3a n -1, 化简得a n =3a n -1(n ≥2), 在①中,令n =1可得,a 1=1,所以数列{a n }是以1为首项,3为公比的等比数列, 从而有a n =3n -1.(2)b n =(n -1)3n -1,T n =0×30+1×31+2×32+…+(n -1)×3n -1,③则3T n =0×31+1×32+2×33+…+(n -1)×3n.④ ③-④得,-2T n =31+32+33+…+3n -1-(n -1)×3n=3-3n1-3-(n -1)×3n =(3-2n )×3n-32. 所以T n =(2n -3)×3n+34.(1)求解此类题需掌握三个技巧:一是巧分拆,即把数列的通项转化为等差数列、等比数列的通项的和,并求出等比数列的公比;二是构差式,求出前n 项和的表达式,然后乘以等比数列的公比,两式作差;三是得结论,即根据差式的特征进行准确求和.(2)运用错位相减法求和时应注意三点:一是判断模型,即判断数列{a n },{b n }一个为等差数列,一个为等比数列;二是错开位置;三是相减时一定要注意最后一项的符号,学生常在此步出错,一定要小心.命题角度四 分组转化求和(2019·河北省九校第二次联考)已知数列{a n }为等比数列,首项a 1=4,数列{b n }满足b n =log 2a n ,且b 1+b 2+b 3=12.(1)求数列{a n }的通项公式; (2)令c n =4b n ·b n +1+a n ,求数列{c n }的前n 项和S n .【解】 (1)由b n =log 2a n 和b 1+b 2+b 3=12得log 2(a 1a 2a 3)=12, 所以a 1a 2a 3=212.设等比数列{a n }的公比为q .因为a 1=4,所以a 1a 2a 3=4·4q ·4q 2=26·q 3=212, 计算得q =4. 所以a n =4·4n -1=4n.(2)由(1)得b n =log 24n=2n ,c n =42n ·2(n +1)+4n =1n (n +1)+4n =1n -1n +1+4n.设数列⎩⎨⎧⎭⎬⎫1n (n +1)的前n 项和为A n ,则A n =1-12+12-13+…+1n -1n +1=nn +1,设数列{4n}的前n 项和为B n ,则B n =4-4n·41-4=43(4n-1),所以S n =nn +1+43(4n-1).(1)在处理一般数列求和时,一定要注意运用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和.在利用分组求和法求和时,常常根据需要对项数n 进行讨论.最后再验证是否可以合并为一个表达式.(2)分组求和的策略:①根据等差、等比数列分组.②根据正号、负号分组. 命题角度五 并项求和数列{a n }满足a n +1=⎝ ⎛⎭⎪⎫2⎪⎪⎪⎪⎪⎪sinn π2-1a n +2n ,n ∈N *,则数列{a n }的前100项和为( )A .5 050B .5 100C .9 800D .9 850【解析】 设k ∈N *,当n =2k 时,a 2k +1=-a 2k +4k ,即a 2k +1+a 2k =4k ,① 当n =2k -1时,a 2k =a 2k -1+4k -2,② 联立①②可得,a 2k +1+a 2k -1=2, 所以数列{a n }的前100项和S n =a 1+a 2+a 3+a 4+…+a 99+a 100=(a 1+a 3+…+a 99)+(a 2+a 4+…+a 100)=(a 1+a 3+…+a 99)+[(-a 3+4)+(-a 5+4×2)+(-a 7+4×3)+…+(-a 101+4×50)] =25×2+[-(a 3+a 5+…+a 101)+4×(1+2+3+…+50)] =25×2-25×2+4×50(1+50)2=5 100. 故选B .【答案】 B(1)将一个数列分成若干段,然后各段分别利用等差(比)数列的前n 项和的公式及错位相减法进行求和.利用并项求和法求解问题的常见类型:一是数列的通项公式中含有绝对值符号;二是数列的通项公式中含有符号因子“(-1)n”.(2)运用分类讨论法求数列的前n 项和的突破口:一是对分类讨论的“度”的把控,如本题,因为⎪⎪⎪⎪⎪⎪sinn π2可以等于1,也可以等于0,因此分类的“度”可定位到“n 分为奇数与偶数”,有些含绝对值的数列,其分类的“度”需在零点处下功夫;二是对各类分法做到不重不漏,解题的思路就能顺畅.[对点训练]1.(2019·唐山市摸底考试)已知数列{a n }是公差不为0的等差数列,a 4=3,a 2,a 3,a 5成等比数列.(1)求a n ;(2)设b n =n ·2an ,数列{b n }的前n 项和为T n ,求T n . 解:(1)设数列{a n }的公差为d (d ≠0),则a n =a 1+(n -1)d . 因为a 2,a 3,a 5成等比数列, 所以(a 1+2d )2=(a 1+d )(a 1+4d ), 化简得,a 1d =0, 又d ≠0, 所以a 1=0. 又a 4=a 1+3d =3, 所以d =1. 所以a n =n -1. (2)b n =n ×2n -1,T n =1×20+2×21+3×22+…+n ×2n -1,①则2T n =1×21+2×22+3×23+…+n ×2n.② ①-②得,-T n =1+21+22+…+2n -1-n ×2n=1-2n1-2-n ×2n=(1-n )×2n-1. 所以T n =(n -1)×2n+1.2.(2019·安徽省考试试题)已知等差数列{a n }中,a 5-a 3=4,前n 项和为S n ,且S 2,S 3-1,S 4成等比数列.(1)求数列{a n }的通项公式; (2)令b n =(-1)n4na n a n +1,求数列{b n }的前n 项和T n .解:(1)设等差数列{a n }的公差为d ,由a 5-a 3=4,得2d =4,d =2. 所以S 2=2a 1+2,S 3-1=3a 1+5,S 4=4a 1+12,又S 2,S 3-1,S 4成等比数列,所以(3a 1+5)2=(2a 1+2)(4a 1+12), 解得a 1=1, 所以a n =2n -1. (2)b n =(-1)n4na n a n +1=(-1)n⎝⎛⎭⎪⎫12n -1+12n +1,当n 为偶数时,T n =-⎝ ⎛⎭⎪⎫1+13+⎝ ⎛⎭⎪⎫13+15-⎝ ⎛⎭⎪⎫15+17+…-⎝ ⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1=-1+12n +1=-2n2n +1.当n 为奇数时,T n =-⎝ ⎛⎭⎪⎫1+13+⎝ ⎛⎭⎪⎫13+15-⎝ ⎛⎭⎪⎫15+17+…+⎝ ⎛⎭⎪⎫12n -3+12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1=-1-12n +1=-2n +22n +1.所以T n=⎩⎪⎨⎪⎧-2n 2n +1,n 为偶数-2n +22n +1,n 为奇数.数列与不等式的综合问题[典型例题](2019·江西七校第一次联考)设数列{a n }满足:a 1=1,3a 2-a 1=1,且2a n =a n -1+a n +1a n -1a n +1(n ≥2).(1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,且b 1=12,4b n =a n -1a n (n ≥2),证明:T n <1.【解】 (1)因为2a n =a n -1+a n +1a n -1a n +1(n ≥2),所以2a n =1a n -1+1a n +1(n ≥2).又a 1=1,3a 2-a 1=1, 所以1a 1=1,1a 2=32,所以1a 2-1a 1=12,所以⎩⎨⎧⎭⎬⎫1a n 是首项为1,公差为12的等差数列.所以1a n =1+12(n -1)=12(n +1),即a n =2n +1. (2)证明:因为4b n =a n -1a n (n ≥2), 所以b n =1n (n +1)=1n -1n +1(n ≥2),所以T n =b 1+b 2+…+b n =12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1<1.解决与数列求和有关的不等式问题的常用方法——“放缩法” (1)如果和式能够求出,则求出结果后进行放缩,本例就是这种类型.(2)如果和式不能求出,则需要把数列的通项放缩成能够求和的形式,求和后再进行放缩,但要注意放缩的“尺度”和“位置”.[对点训练](2019·四省八校双教研联考)已知数列{a n }的前n 项和为S n ,a n +1=4S n -12n -1,a 1=1且n ∈N *.(1)求{a n }的通项公式; (2)设a n b n =1S n,数列{b n }的前n 项和为T n ,求证:T n <32(n ∈N *).解:(1)由a n +1=4S n -12n -1,得(2n -1)a n +1=4S n -1,可得(2n -3)a n =4S n -1-1(n ≥2),两式相减得(2n +1)a n =(2n -1)a n +1,即a n 2n -1=a n +12n +1(n ≥2),又由a n +1=4S n -12n -1,a 1=1,得a 2=3,所以a 12×1-1=a 22×1+1,所以⎩⎨⎧⎭⎬⎫a n 2n -1为常数列,所以a n2n -1=1,即a n =2n -1.(2)证明:由a n =2n -1,得S n =n 2,所以b n =1n (2n -1).当n =1时,T 1=1<32成立;当n ≥2时,b n =1n (2n -1)=12n ⎝ ⎛⎭⎪⎫n -12<12n (n -1)=12⎝⎛⎭⎪⎫1n-1-1n,所以T n<1+12⎣⎢⎡⎝ ⎛⎭⎪⎫1-12+⎝⎛⎭⎪⎫12-13+…+⎦⎥⎤⎝⎛⎭⎪⎫1n-1-1n=1+12⎝⎛⎭⎪⎫1-1n<32.综上,T n<32(n∈N*).[A组夯基保分专练]一、选择题1.(2019·广东省六校第一次联考)数列{a n}的前n项和为S n=n2+n+1,b n=(-1)n a n(n∈N*),则数列{b n}的前50项和为( )A.49 B.50C.99 D.100解析:选A.由题意得,当n≥2时,a n=S n-S n-1=2n,当n=1时,a1=S1=3,所以数列{b n}的前50项和为-3+4-6+8-10+…+96-98+100=1+48=49,故选A.2.(一题多解)(2019·洛阳尖子生第二次联考)已知数列{a n}的前n项和为S n,a1=1,S n =2a n+1,则S n=( )A.2n-1B.⎝⎛⎭⎪⎫32n-1C.⎝⎛⎭⎪⎫23n-1D.⎝⎛⎭⎪⎫12n-1解析:选B.法一:当n=1时,S1=a1=2a2,则a2=12.当n≥2时,S n-1=2a n,则S n-S n -1=a n=2a n+1-2a n,所以a n+1a n=32,所以当n≥2时,数列{a n}是公比为32的等比数列,所以a n=⎩⎨⎧1,n=112×⎝⎛⎭⎪⎫32n-2,n≥2,所以S n=1+12+12×32+…+12×⎝⎛⎭⎪⎫32n-2=1+12×⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎪⎫32n-11-32=⎝⎛⎭⎪⎫32n-1,当n=1时,此式也成立.故选B.法二:当n=1时,S1=a1=2a2,则a2=12,所以S2=1+12=32,结合选项可得只有B满足,故选B.3.数列{a n }中,a 1=2,a 2=3,a n +1=a n -a n -1(n ≥2,n ∈N *),那么a 2 019=( ) A .1 B .-2 C .3D .-3解析:选A .因为a n +1=a n -a n -1(n ≥2),所以a n =a n -1-a n -2(n ≥3),所以a n +1=a n -a n -1=(a n -1-a n -2)-a n -1=-a n -2(n ≥3).所以a n +3=-a n (n ∈N *),所以a n +6=-a n +3=a n , 故{a n }是以6为周期的周期数列. 因为2 019=336×6+3,所以a 2 019=a 3=a 2-a 1=3-2=1.故选A .4.若数列{a n }满足a 1=1,且对于任意的n ∈N *都有a n +1=a n +n +1,则1a 1+1a 2+…+1a 2 017+1a 2 018等于( ) A .4 0352 017 B .2 0162 017 C .4 0362 019D .4 0352 018解析:选C .由a n +1=a n +n +1,得a n +1-a n =n +1, 则a 2-a 1=1+1,a 3-a 2=2+1, a 4-a 3=3+1,…,a n -a n -1=(n -1)+1,以上等式相加,得a n -a 1=1+2+3+…+(n -1)+n -1, 把a 1=1代入上式得,a n =1+2+3+…+(n -1)+n =n (n +1)2,1a n=2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,则1a 1+1a 2+…+1a 2 017+1a 2 018=2⎣⎢⎡⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫12 017-12 018⎦⎥⎤+⎝ ⎛⎭⎪⎫12 018-12 019=2⎝ ⎛⎭⎪⎫1-12 019=4 0362 019.5.(2019·郑州市第一次质量预测)已知数列{a n }满足2a n +1+a n =3(n ≥1),且a 3=134,其前n 项和为S n ,则满足不等式|S n -n -6|<1123的最小整数n 是( )A .8B .9C .10D .11解析:选C .由2a n +1+a n =3,得2(a n +1-1)+(a n -1)=0,即a n +1-1a n -1=-12(*), 又a 3=134,所以a 3-1=94,代入(*)式,有a 2-1=-92,a 1-1=9,所以数列{a n -1}是首项为9,公比为-12的等比数列.所以|S n -n -6|=|(a 1-1)+(a 2-1)+…+(a n -1)-6|=⎪⎪⎪⎪⎪⎪⎪⎪9×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1-⎝ ⎛⎭⎪⎫-12-6=⎪⎪⎪⎪⎪⎪-6×⎝ ⎛⎭⎪⎫-12n <1123,又n ∈N *,所以n 的最小值为10.故选C . 6.(2019·江西省五校协作体试题)设S n 是数列{a n }的前n 项和,若a n +S n =2n,2bn =2a n+2-a n +1,则1b 1+12b 2+…+1100b 100=( )A .9798 B .9899 C .99100D .100101解析:选D .因为a n +S n =2n①,所以a n +1+S n +1=2n +1②,②-①得2a n +1-a n =2n,所以2a n +2-a n +1=2n +1,又2bn =2a n +2-a n +1=2n +1,所以b n =n +1,1nb n=1n (n +1)=1n -1n +1,则1b 1+12b 2+…+1100b 100=1-12+12-13+…+1100-1101=1-1101=100101,故选D . 二、填空题7.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上述的已知条件,可求得该女子前3天所织布的总尺数为________.解析:设该女子第一天织布x 尺, 则x (25-1)2-1=5,解得x =531, 所以该女子前3天所织布的总尺数为531(23-1)2-1=3531.答案:35318.(一题多解)已知S n 是数列{a n }的前n 项和,且S n +1=S n +a n +3,a 4+a 5=23,则S 8=________.解析:法一:由S n +1=S n +a n +3得a n +1-a n =3,则数列{a n }是公差为3的等差数列,又a 4+a 5=23=2a 1+7d =2a 1+21,所以a 1=1,S 8=8a 1+8×72d =92.法二:由S n +1=S n +a n +3得a n +1-a n =3,则数列{a n }是公差为3的等差数列,S 8=8(a 1+a 8)2=8(a 4+a 5)2=92. 答案:929.(2019·蓉城名校第一次联考)已知S n 是数列{a n }的前n 项和,若a n +⎪⎪⎪⎪⎪⎪cos n π2S n =2,则a 12=________.解析:当n =1,2,3,4,…时,⎪⎪⎪⎪⎪⎪cosn π2=0,1,0,1,…,所以a 1=a 3=a 5=a 7=…=2,a 2+S 2=a 4+S 4=a 6+S 6=a 8+S 8=…=a 12+S 12=…=2,S 2-S 1+S 2=S 4-S 3+S 4=S 6-S 5+S 6=S 8-S 7+S 8=…=2,所以2S 2=2+S 1⇒S 2=2;2S 4=2+S 3=4+S 2⇒S 4=2+12S 2=3,同理可得S 6=2+12S 4=2+32=72,S 8=2+12S 6=2+74=154,S 10=2+158=318,S 12=6316,又a 12+S 12=2,所以a 12=2-S 12=2-6316=-3116.答案:-3116三、解答题10.(2019·广州市综合检测(一))已知{a n }是等差数列,且lg a 1=0,lg a 4=1. (1)求数列{a n }的通项公式;(2)若a 1,a k ,a 6是等比数列{b n }的前3项,求k 的值及数列{a n +b n }的前n 项和. 解:(1)因为lg a 1=0,lg a 4=1, 所以a 1=1,a 4=10. 设等差数列{a n }的公差为d , 则d =a 4-a 14-1=3.所以a n =a 1+3(n -1)=3n -2. (2)由(1)知a 1=1,a 6=16,因为a 1,a k ,a 6是等比数列{b n }的前3项,所以a 2k =a 1a 6=16. 又a n =3n -2>0, 所以a k =4.因为a k =3k -2, 所以3k -2=4,得k =2.所以等比数列{b n }的公比q =b 2b 1=a 2a 1=4. 所以b n =4n -1.所以a n +b n =3n -2+4n -1.所以数列{a n +b n }的前n 项和为S n =n (3n -1)2+1-4n 1-4=32n 2-12n +13(4n -1). 11.(2019·江西八所重点中学联考)设数列{a n }满足a 1=1,a n +1=44-a n(n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫1a n -2是等差数列; (2)设b n =a 2na 2n -1-1,求数列{b n }的前n 项和T n . 解:(1)证明:因为a n +1=44-a n ,所以1a n +1-2-1a n -2=144-a n-2-1a n -2=4-a n 2a n -4-1a n -2=2-a n 2a n -4=-12. 又a 1=1,所以1a 1-2=-1, 所以数列⎩⎨⎧⎭⎬⎫1a n -2是以-1为首项,-12为公差的等差数列.(2)由(1)知1a n -2=-1+(n -1)⎝ ⎛⎭⎪⎫-12=-n +12,所以a n =2-2n +1=2n n +1,所以b n =a 2n a 2n -1-1=4n2n +12(2n -1)2n -1=4n2(2n -1)(2n +1)-1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以T n =b 1+b 2+b 3+…+b n =12⎝ ⎛⎭⎪⎫1-13+13-15+15-17+…+12n -1-12n +1=12⎝⎛⎭⎪⎫1-12n +1=n2n +1, 所以数列{b n }的前n 项和T n =n2n +1. 12.(2019·福建省质量检查)数列{a n }的前n 项和S n 满足S n =2a n -n . (1)求证数列{a n +1}是等比数列,并求a n ;(2)若数列{b n }为等差数列,且b 3=a 2,b 7=a 3,求数列{a n b n }的前n 项和. 解:(1)当n =1时,S 1=2a 1-1,所以a 1=1.因为S n =2a n -n ①,所以当n ≥2时,S n -1=2a n -1-(n -1)②, ①-②得a n =2a n -2a n -1-1,所以a n =2a n -1+1, 所以a n +1a n -1+1=2a n -1+1+1a n -1+1=2a n -1+2a n -1+1=2.所以{a n +1}是首项为2,公比为2的等比数列. 所以a n +1=2·2n -1,所以a n =2n-1.(2)由(1)知,a 2=3,a 3=7,所以b 3=a 2=3,b 7=a 3=7. 设{b n }的公差为d ,则b 7=b 3+(7-3)·d ,所以d =1. 所以b n =b 3+(n -3)·d =n . 所以a n b n =n (2n -1)=n ·2n-n .设数列{n ·2n}的前n 项和为K n ,数列{n }的前n 项和为T n , 则K n =2+2×22+3×23+…+n ·2n③, 2K n =22+2×23+3×24+…+n ·2n +1④,③-④得,-K n =2+22+23+…+2n -n ·2n +1=2(1-2n)1-2-n ·2n +1=(1-n )·2n +1-2,所以K n =(n -1)·2n +1+2.又T n =1+2+3+…+n =n (n +1)2, 所以K n -T n =(n -1)·2n +1-n (n +1)2+2,所以数列{a n b n }的前n 项和为(n -1)·2n +1-n (n +1)2+2.[B 组 大题增分专练]1.(2019·江西七校第一次联考)数列{a n }满足a 1=1,a 2n +2=a n +1(n ∈N *). (1)求证:数列{a 2n }是等差数列,并求出{a n }的通项公式; (2)若b n =2a n +a n +1,求数列{b n }的前n 项和.解:(1)由a 2n +2=a n +1得a 2n +1-a 2n =2,且a 21=1, 所以数列{a 2n }是以1为首项,2为公差的等差数列, 所以a 2n =1+(n -1)×2=2n -1,又由已知易得a n >0,所以a n =2n -1(n ∈N *). (2)b n =2a n +a n +1=22n -1+2n +1=2n +1-2n -1,故数列{b n }的前n 项和T n =b 1+b 2+…+b n =(3-1)+(5-3)+…+(2n +1-2n -1)=2n +1-1.2.(2019·湖南省湘东六校联考)已知数列{a n }的前n 项和S n 满足S n =S n -1+1(n ≥2,n ∈N ),且a 1=1.(1)求数列{a n }的通项公式a n ; (2)记b n =1a n ·a n +1,T n 为{b n }的前n 项和,求使T n ≥2n成立的n 的最小值.解:(1)由已知有S n -S n -1=1(n ≥2,n ∈N ),所以数列{}S n 为等差数列,又S 1=a 1=1,所以S n =n ,即S n =n 2.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1. 又a 1=1也满足上式,所以a n =2n -1.(2)由(1)知,b n =1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以T n =12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1. 由T n ≥2n得n 2≥4n +2,即(n -2)2≥6,所以n ≥5,所以n 的最小值为5.3.(2019·河北省九校第二次联考)已知{a n }是各项都为正数的数列,其前n 项和为S n ,且S n 为a n 与1a n的等差中项.(1)求数列{a n }的通项公式;(2)设b n =(-1)na n,求{b n }的前n 项和T n .解:(1)由题意知,2S n =a n +1a n,即2S n a n -a 2n =1,①当n =1时,由①式可得S 1=1;当n ≥2时,a n =S n -S n -1,代入①式,得2S n (S n -S n -1)-(S n -S n -1)2=1, 整理得S 2n -S 2n -1=1.所以{S 2n }是首项为1,公差为1的等差数列,S 2n =1+n -1=n . 因为{a n }的各项都为正数,所以S n =n , 所以a n =S n -S n -1=n -n -1(n ≥2), 又a 1=S 1=1,所以a n =n -n -1. (2)b n =(-1)na n=(-1)nn -n -1=(-1)n(n +n -1),当n 为奇数时,T n =-1+(2+1)-(3+2)+…+(n -1+n -2)-(n +n -1)=-n ;当n 为偶数时,T n =-1+(2+1)-(3+2)+…-(n -1+n -2)+(n +n -1)=n .所以{b n }的前n 项和T n =(-1)nn .4.(2019·高考天津卷)设{a n }是等差数列,{b n }是等比数列.已知a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4.(1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c 1=1,c n =⎩⎪⎨⎪⎧1,2k<n <2k +1,b k ,n =2k,其中k ∈N *. ①求数列{a 2n (c 2n -1)}的通项公式;②求∑i =12na i c i (n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .依题意得⎩⎪⎨⎪⎧6q =6+2d ,6q 2=12+4d , 解得⎩⎪⎨⎪⎧d =3,q =2,故a n =4+(n -1)×3=3n +1,b n =6×2n -1=3×2n. 所以,{a n }的通项公式为a n =3n +1,{b n }的通项公式为b n =3×2n. (2)①a 2n (c 2n -1)=a 2n (b n -1)=(3×2n +1)(3×2n -1)=9×4n-1. 所以,数列{a 2n (c 2n -1)}的通项公式为a 2n (c 2n -1)=9×4n-1.②∑i =12na i c i =∑i =12n[a i +a i (c i -1)]=∑i =12na i +∑i =1na 2i (c 2i -1)=[2n×4+2n(2n-1)2×3]+∑i =1n(9×4i-1)=(3×22n -1+5×2n -1)+9×4(1-4n)1-4-n=27×22n -1+5×2n -1-n -12(n ∈N *).。
2019年高考数学二轮复习 规范答题示例5 数列的通项与求和问题理典例5 (12分)下表是一个由n 2个正数组成的数表,用a ij 表示第i 行第j 个数(i ,j ∈N *).已知数表中第一列各数从上到下依次构成等差数列,每一行各数从左到右依次构成等比数列,且公比都相等.且a 11=1,a 31+a 61=9,a 35=48.a 11 a 12 a 13 … a 1n a 21 a 22 a 23 … a 2n a 31 a 32 a 33 … a 3n… … … … …a n 1 a n 2 a n 3 … a nn(1)求a n 1和a 4n ; (2)设b n =a 4na 4n -2a 4n -1+(-1)n ·a n 1(n ∈N *),求数列{b n }的前n 项和S n .审题路线图数表中项的规律―→确定a n 1和a 4n ――→化简b n 分析b n 的特征――→选定求和方法分组法及裂项法、公式法求和解 (1)设第1列依次组成的等差数列的公差为d ,设每一行依次组成的等比数列的公比为q .依题意a 31+a 61=(1+2d )+(1+5d )=9,∴d =1,∴a n 1=a 11+(n -1)d =1+(n -1)×1=n ,3分 ∵a 31=a 11+2d =3,∴a 35=a 31·q 4=3q 4=48, ∵q >0,∴q =2,又∵a 41=4, ∴a 4n =a 41q n -1=4×2n -1=2n +1.6分 (2)∵b n =a 4na 4n -2a 4n -1+(-1)na n 1=2n +12n +1-22n +1-1+(-1)n·n 7分=2n2n -12n +1-1+(-1)n·n =12n -1-12n +1-1+(-1)n·n ,∴S n =⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-17+⎝ ⎛⎭⎪⎫17-115+…+⎝ ⎛⎭⎪⎫12n -1-12n +1-1+评分细则 (1)求出d 给1分,求a n 1时写出公式结果错误给1分;求q 时没写q >0扣1分; (2)b n 写出正确结果给1分,正确进行裂项再给1分; (3)缺少对b n 的变形直接计算S n ,只要结论正确不扣分; (4)当n 为奇数时,求S n 中间过程缺一步不扣分.跟踪演练5 (2017·山东)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .解 (1)设{a n }的公比为q , 由题意知a 1(1+q )=6,a 21q =a 1q 2,又a n >0,由以上两式联立方程组解得a 1=2,q =2, 所以a n =2n. (2)由题意知S 2n +1=2n +1b 1+b 2n +12=(2n +1)b n +1,又S 2n +1=b n b n +1,b n +1≠0, 所以b n =2n +1.令c n =b n a n ,则c n =2n +12n ,因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n +12n ,又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减得12T n =32+⎝ ⎛⎭⎪⎫12+122+…+12n -1-2n +12n +1=32+12⎝ ⎛⎭⎪⎫1-12n -11-12-2n +12n +1=52-2n +52n +1,所以T n =5-2n +52n .。
数列的通项公式与求和问题等综合问题数列在高考中占重要地位,每年都考,应当牢记等差、等比的通项公式,前n项和公式,等差、等比数列的性质,以及常见求数列通项的方法,如累加、累乘、构造等差、等比数列法、取倒数等.数列求和问题是数列中的重要知识,在各地的高考试题中频频出现,对于等差数列、等比数列的求和主要是运用公式;而非等差数列、非等比数列的求和问题,一般用倒序相加法、通项化归法、错位相减法、裂项相消法、分组求和法等.数列的求和问题多从数列的通项入手,通过分组、错位相减等转化为等差或等比数列的求和问题,考查等差、等比数列求和公式及转化与化归思想的应用,属中档题.一、数列的通项公式数列的通项公式在数列中占有重要地位,是数列这部分内容的基础之一,在高考中,等差数列和等比数列的通项公式,前n项和公式以及它们的性质是必考内容,一般以填空题、选择题的形式出现,属于低中档题,若数列与函数、不等式、解析几何、向量、三角函数等知识点交融,难度就较大,也是近几年命题的热点.1.由数列的前几项归纳数列的通项公式根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验,对于正负符号变化,可用(-1)n或(-1)n+1来调整.例1. 根据数列的前几项,写出下列各数列的一个通项公式(1)-1,7,-13,19,…;(2)0.8,0.88,0.888,…;(3)-1,215132961,,,,,...48163264--;思路分析:归纳通项公式应从以下四个方面着手:(1)观察项与项之间的关系;(2)符号与绝对值分别考虑;(3)规律不明显,适当变形.-2-32,原数列化为-21-321,22-322,-23-323,24-324,…,∴ a n =(-1)n ·2n-32n .点评:求数列的通项时,要抓住以下几个特征:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项符号特征等,并对此进行归纳、化归、联想. 2.由数列的递推关系求通项若一个数列首项确定,其余各项用a n 与a n -1的关系式表示(如a n =2a n -1+1,(n >1),则这个关系式称为数列的递推公式.由递推关系求数列的通项的基本思想是转化,常用的方法: (1)a n +1-a n =f (n )型,采用叠加法. (2)a n +1a n=f (n )型,采用叠乘法.(3)a n +1=pa n +q (p ≠0,p ≠1)型,转化为等比数列解决.例2.对于数列{}{},n n a b ()11111,1,32,n n n n a b a n a n b b n N *++==-+=+=+∈.(1)求数列{}n a 、{}n b 的通项公式; (2)令()()21n n n a n c n b +=+,求数列{}n c 的前n 项和n T .思路分析:(1)由()11n n n S n S a n +-+=++化简得121n n a a n +=++,利用累加法求得2n a n =,对132n n b b +=+利用配凑法求得通项公式为1231n n b -=-;(2)化简()21121233n n n n n n c n --++==,这是等差数列除以等比数列,故用错位相减求和法求得前n 项和为11525443n n n T -+=-. (2)()21101221212341,...23333333n nn n n n n n n n n c T n ----+++==∴=+++++, ①则00132233413 (33333)n n n n n T --+=+++++,② ②-①得12211111111111152515253261 (613333322344313)n n n n n n n n n n n n T T -------++++⎛⎫=+++++-=+-=-∴=- ⎪⎝⎭-. 点评:本题主要考查递推数列求通项的方法,考查了累加法和配凑法,考查了错位相减求和法.对于n a 来说,化简题目给定的含有n S 的表达式后,得到121n n a a n +=++,这个是累加法的标准形式,故用累加法求其通项公式,对于n b 来说,由于132n n b b +=+,则采用配凑法求其通项公式,对于n c 来说,由于它是等差数列除以等比数列,故用错位相减求和法求和. 3.由n S 与n a 的关系求通项n a数列是一种特殊的函数,因此,在研究数列问题时,即要注意函数方法的普遍性,又要考虑数列方法的特殊性.S n 与a n 的关系为:a n =⎩⎪⎨⎪⎧S n (n =1),S n -S n -1 (n≥2).例3. 【安徽省淮南市2018届第四次联考】已已知数列{}{},,n n n a b S 为数列{}n a 的前n 项和,且满足214,22,n n a b S a ==- ()()32*11n n nb n b n n n N +-+=+∈.(1)求数列{}n a 的通项公式; (2)求{}n b 的通项公式思路分析:(1)由22n n S a =-的关系得11222n n n S a --≥=-当时,相减得12,2.2n n n n a a a n -==≥检验1n =时, 12a =适合上式即得数列{}n a 的通项公式(2)()2311n n nb n b n n +-+=+,两边同时除以()1n n +得11n nb b n n n+-=+累加法即得解.点评:已知数列前n 项和与第n 项关系,求数列通项公式,常用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩将所给条件化为关于前n 项和的递推关系或是关于第n 项的递推关系,若满足等比数列或等差数列定义,用等比数列或等差数列通项公式求出数列的通项公式,否则适当变形构造等比或等数列求通项公式.注意:利用a n =S n -S n -1求通项时,注意n ≥2这一前提条件,易忽略验证n =1致误,当n =1时,a 1若适合通项,则n =1的情况应并入n ≥2时的通项;否则a n 应利用分段函数的形式表示. 4.等差数列前n 项和的最值 等差数列的单调性与nS的最大或最小的关系.(1)若0d >,则等差数列{}n a 中有10n n a a d --=>,即1n n a a ->,所以数列为单调递增; 当10a ≥时,有1(2)n n S S n ->≥,所以nS 的最小值为S .当10a <时,有则一定存在某一自然数k ,使12310k k n a a a a a a +<<<<<≤<<或12310k k na a a a a a +<<<<≤<<<,则nS 的最小值为kS.(2)若0d <,则等差数列{}n a 中有10n n a a d --=<,即1n n a a ->,所以数列为单调递减; 当10a >时,有则一定存在某一自然数k ,使12310k k n a a a a a a +>>>>>≥>>或 12310k k na a a a a a +>>>>≥>>>,则n S 的最大值为k S . 当10a ≤时,有1(2)n n S S n ->≥,所以nS 的最大值为S .例4.数列{}n a 的前n 项和为n S ,1a t =,121n n a S +=+(*n N ∈). (1)t 为何值时,数列{}n a 是等比数列?(2)在(1)的条件下,若等差数列{}n b 的前n 项和n T 有最大值,且315T =,又11a b +,22a b +,33a b +等比数列,求n T .思路分析:(1)先由121n n a S +=+求出13n n a a +=.再利用数列{}n a 为等比数列,可得213a a =,就可以求出t 的值;(2)先利用315T =求出25b =,再利用公差把1b 和3b 表示出来,代人112233,,a b a b a b +++成等比数列,求出公差即可求n T.点评:求等差数列前n 项和的最值常用的方法;(1)先求a n ,再利用⎩⎪⎨⎪⎧a n ≥0a n +1≤0或⎩⎪⎨⎪⎧a n ≤0a n +1≥0求出其正负转折项,最后利用单调性确定最值.(2)①利用性质求出其正负转折项,便可求得前n 项和的最值.②利用等差数列的前n 项和S n =An 2+Bn (A ,B 为常数)为二次函数,根据二次函数的性质求最值. 二 数列的求和数列求和是高考的热点,主要涉及等差、等比数列求和、错位相减法求和、裂项相消法求和与并项法求和,题目呈现方式多样,在选择题、填空题中以考查基础知识为主,在解答题中以考查错位相减法和裂项相消法求和为主,求解的关键是抓住通项公式的特征,正确变形,分清项数求和.数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列求和. 常见类型及方法(1)a n =kn +b ,利用等差数列前n 项和公式直接求解; (2)a n =a ·qn -1,利用等比数列前n 项和公式直接求解;(3)a n =b n ±c n ,数列{b n },{c n }是等比数列或等差数列,采用分组求和法求{a n }的前n 项和. (4) a n =b n ·c n ,数列{b n },{c n }分别是等比数列和等差数列,采用错位相减法求和 1.公式求法直接利用等差数列、等比数列的前n 项和公式求和.(1)等差数列的前n 项和公式:S n =n (a 1+a n )2=1(1)2n n na d -+; (2)等比数列的前n 项和公式:111,(1)(1), 1.11n n n na q S a a q a q q q q =⎧⎪=--⎨=≠⎪--⎩例5. 【四川省内江市2018届高三第一次模拟】设n S 是数列{}n a 的前n 项和.已知11a =, 122n n S a +=-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设()1nn n b a =-,求数列{}n b 的前n 项和.思路分析:(Ⅰ)由122n n S a +=-可得2n ≥时, 122n n S a -=-,两式相减,即可得出{}n a 是等比数列,从而求出数列{}n a 的通项公式;(Ⅱ)写出数列{}n b 的通项公式,得出数列{}n b 是等比数列,进而用等比数列求和公式求出数列{}n b 的前n 项和.点评:本题考查等比数列的概念、通项公式及前n 项的求和公式,利用方程组思想求解.本题属于基础题,注意运算的准确性.应用基本量法是解决此类问题的基本方法,应熟练掌握.根据等差,等比数列的性质探寻其他解法,可以开阔思路,有时可以简化计算. 2.分组求和法有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,可先分别求和,然后再合并.例6.【四川省内江市2018届高三第一次模拟】设数列{}n a 满足1123242n n a a a a n -+++⋅⋅⋅+=. (1)求数列{}n a 的通项公式; (2)求数列{}2log n n a a +的前n 项和.思路分析: ()1根据题意求出当2n ≥时, 212312421n n a a a a n --+++⋅⋅⋅+=-,求出n a 的表达式,然后验证当1n =时是否成立(2)先给出通项211log 12n n n a a n -+=+-,运用分组求和法求前n 项和点评:分组求和的解题策略:数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列或可求数列的前n 项和的数列求和,即将一般数列求和问题转化为特殊数列的求和问题,运用这种方法的关键是通项变形. 3.裂项相消求和法利用通项变形,把数列的通项分裂成两项或几项的差,在求和过程中,中间的一些项可以相互抵消,最后只剩下有限项的和,从而求得数列的和.这种求数列和的方法叫做裂项相消求和法. 常见拆项:111(1)1n n n n =---;1111()(21)(21)22121n n n n =--+-+=1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++;n ·n !=(n +1)!-n !;11(1)!!(1)!n n n n =-++;l og a (1+1n)=l og a (n +1)-l og a n ;等等例7.已知等差数列{}n a 的前n 项和为n S ,55S =-,且346,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设()*21231n n n b n N a a ++=∈,求数列{}n b 的前n 项和n T . 思路分析:(1)由等差数列性质,5355S a =-=,所以31a =-,设公差为d ,则()()()21113d d -+=-⋅-+,解得0d =或1d =-,由此即可求出通项公式; (2)①当1n a =-时,n T n =;②当2n a n =-时,()()212311111212122121n n a a n n n n ++⎛⎫==- ⎪-+-+⎝⎭,然后再根据裂项相消即可求出结果.点评:裂项相消法求和就是将数列中的每一项裂成两项或多项,使这些裂开的项出现有规律的相互抵消,要注意消去了哪些项,保留了哪些项.从而达到求和的目的.要注意的是裂项相消法的前提:数列中的每一项均可分裂成一正一负两项,且在求和过程中能够前后相互抵消. 4. 错位相减求和法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法.例8.已知等差数列{}n a 满足:*11(),1n n a a n N a +>∈=,该数列的前三项分别加上1,1,3后成等比数列,且22log 1n n a b +=-.(1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n n a b •的前n 项和n T .思路分析:(1) 用基本量法,即用为等差数列{}n a 的公差d 与1a 表示已知条件,列出方程,解出d ,即可求数列{}n a 的通项公式;由22log 1n n a b =--可得2log n b n =-,即可求出数列{}n b 的通项公式;(2)因为212n n nn a b -⋅=,所以用错位相减法求n T 即可.点评:本题考查等差数列的定义与性质、对数的性质、错位相减法求和,属中档题;错位相减法适合于一个由等差数列}{n a 及一个等比数列}{n b 对应项之积组成的数列.考生在解决这类问题时,都知道利用错位相减法求解,也都能写出此题的解题过程,但由于步骤繁琐、计算量大导致了漏项或添项以及符号出错等.两边乘公比后,对应项的幂指数会发生变化,应将相同幂指数的项对齐,这样有一个式子前面空出一项,另外一个式子后面就会多了一项,两项相减,除第一项和最后一项外,剩下的1-n 项是一个等比数列. 三. 数列的探索性问题处理探索性问题的一般方法是:假设题中的数学对象存在或结论成立或其中的一部分结论成立,然后在这个前提下进行逻辑推理.若由此导出矛盾,则否定假设,否则,给出肯定结论,其中反证法在解题中起着重要的作用.还可以根据已知条件建立恒等式,利用等式恒成立的条件求解. 例9. 【江西省南昌市2018届复习训练题】在数列{}n a 中,()*1123111232n n n a a a a na a n N +++++⋅⋅⋅+∈=,=. (Ⅰ)求数列{}n a 的通项n a ;(Ⅱ)若存在()*13nn n N a n λ∈≥,使得+成立,求实数λ的最大值.思路分析:(Ⅰ)由12311232n n n a a a na a ++++⋅⋅⋅+=+可得()()123123122n n na a a n a a n -+++⋅⋅⋅+-=≥,两式相减整理得到()113n nn a na ++= ()2n ≥,故数列{}n na()2n ≥为等比数列,求得通项后再验证11a =是否满足即可得到所求.(Ⅱ)由条件可得存在()*13n n a n N n λ∈≤+,使得成立,设()()13nna f n n =+,则()max f n λ≤.然后根据()f n 的单调性求出最值即可.点评:数列中的恒成立或能成立的问题是函数问题在数列中的具体体现,解决此类问题时仍要转化为最值问题处理.解题中通过分离参数在不等式的一端得到关于正整数n 的函数,然后通过判断函数的单调性得到函数的最值,从而可求得参数的值或其范围.解决等差数列与等比数列的综合问题,关键是理清两个数列的关系.如果同一数列中部分项成等差数列,部分项成等比数列,要把成等差数列或等比数列的项抽出来单独研究;如果两个数列通过运算综合在一起,要从分析运算入手,把两个数列分割开,弄清两个数列各自的特征,再进行求解.从上面三方面可以看出,解答数列综合问题要善于综合运用函数方程思想、化归转化思想等数学思想以及特例分析法,一般递推法,数列求和及求通项等方法来分析、解决问题.数列与解析几何的综合问题解决的策略往往是把综合问题分解成几部分,先利用解析几何的知识以及数形结合得到数列的通项公式,然后再利用数列知识和方法求解.数列是一种特殊的函数,故数列有着许多函数的性质.等差数列和等比数列是两种最基本、最常见的数列,它们是研究数列性质的基础,它们与函数、方程、不等式、三角等内容有着广泛的联系,等差数列和等比数列在实际生活中也有着广泛的应用,随着高考对能力要求的进一步增加,这一部分内容也将受到越来越多的关注.11。
专题三 数列第二讲 数列的通项与求和高考导航以等差、等比数列为载体,考查数列的通项、求和. 2.利用递推关系求数列的通项、前n 项和.1.(2017·石家庄一模)已知正项数列{a n }中,a 1=1,且(n +2)a 2n +1-(n +1)a 2n +a n a n +1=0,则它的通项公式为( )A .a n =1n +1B .a n =2n +1C .a n =n +22D .a n =n[解析] 因为(n +2)a 2n +1-(n +1)a 2n +a n a n +1=0,所以[(n +2)a n +1-(n +1)a n ]·(a n +1+a n )=0.又{a n }为正项数列,所以(n +2)a n +1-(n +1)a n =0,即a n +1a n =n +1n +2,则当n ≥2时,a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=n n +1·n -1n ·…·23·1=2n +1.又∵a 1=1也适合,∴a n =2n +1,故选B.[答案] B2.(2016·浙江卷)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n +2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n+2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列C .{d n }是等差数列D .{d 2n }是等差数列[解析] S n 表示A n 点到对面直线的距离(设为h n )乘以|B n B n +1|长度的一半,即S n =12h n |B n B n +1|,因为|B n B n +1|=|B n +1B n +2|,所以|B n B n+1|的长度为定值,设锐角为θ,则h n =h 1+|A 1A n |sin θ,∴S n =12(h 1+|A 1A n |sin θ)|B n B n +1|,S n +1=12(h 1+|A 1A n +1|sin θ)|B n +1B n +2|,∴S n +1-S n =12(|A n A n +1|sin θ)·|B n B n +1|,∵|A n A n +1|,|B n B n +1|为定值,所以S n +1-S n 为定值,即S n 是等差数列,故选A.[答案] A3.(2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k =1n1S k=________.[解析]由题意知,⎩⎪⎨⎪⎧S 4=4a 1+4×32d =10,a 3=a 1+2d =3,解得a 1=1,d =1, ∴S n =n (n +1)2,∴1S n =2⎝ ⎛⎭⎪⎪⎫1n -1n +1. ∴∑k =1n 1S k =2⎝ ⎛⎭⎪⎪⎫1-12+12-13+…+1n -1n +1=2n n +1. [答案]2nn +14.(2017·天津卷)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).[解] (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .由已知b 2+b 3=12,得b 1(q +q 2)=12,而b 1=2,所以q 2+q -6=0.又因为q >0,解得q =2.所以b n =2n .由b 3=a 4-2a 1,可得3d -a 1=8.①由S 11=11b 4,可得a 1+5d =16,②联立①②,解得a 1=1,d =3,由此可得a n =3n -2. 所以数列{a n }的通项公式为a n =3n -2, 数列{b n }的通项公式为b n =2n . (2)设数列{a 2n b 2n -1}的前n 项和为T n , 由a 2n =6n -2,b 2n -1=2×4n -1, 有a 2n b 2n -1=(3n -1)×4n ,故T n =2×4+5×42+8×43+…+(3n -1)×4n ,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1, 上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1 =12×(1-4n )1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8. 得T n =3n -23×4n +1+83.所以数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83.考点一 求数列的通项公式数列通项公式的求法(1)公式法:由a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2求通项公式.(2)累加法:由形如a n +1-a n =f (n )(f (n )是可以求和的)的递推关系求通项公式时,常用累加法.(3)累乘法:由形如a n +1a n=f (n )(f (n )是可以求积的)的递推关系求通项公式时,常用累乘法.(4)构造法:由形如“a n +1=Aa n +B (A ≠0且A ≠1)”的递推关系求通项公式时,可用迭代法或构造等比数列法.角度1:累加法、累乘法求数列通项[解析] 因为a n +1-1=a n +2n , 所以当n ≥2时,a n -a n -1=2n -1, a n -1-a n -2=2(n -1)-1, a n -2-a n -3=2(n -2)-1, …a 2-a 1=2×2-1, 将以上各式相加,得a n -a 1=(2n -1)+[2(n -1)-1]+[2(n -2)-1]+…+(2×2-1)=[2n +2(n -1)+2(n -2)+…+2×2]-(n -1)=(n -1)(2n +4)2-n +1=(n -1)(n +2)-n +1=n 2-1.。
数列的通项求和【一般数列的通项公式】一般数列的定义:果数列{a n}的第n项a n与序号n之间的关系可以用一个式子表示成a n=f (n),那么这个公式叫做这个数列的通项公式。
【通项公式的求法】(1)构造等比数列:凡是出现关于后项和前项的一次递推式都可以构造等比数列求通项公式;(2)构造等差数列:递推式不能构造等比数列时,构造等差数列;(3)递推:即按照后项和前项的对应规律,再往前项推写对应式。
已知递推公式求通项常见方法:①已知a1=a,a n+1=qa n+b,求a n时,利用待定系数法求解,其关键是确定待定系数λ,使a n+1+λ=q(a n+λ)进而得到λ。
②已知a1=a,a n=a n-1+f(n)(n≥2),求a n时,利用累加法求解,即a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)的方法。
③已知a1=a,a n=f(n)a n-1(n≥2),求a n时,利用累乘法求解。
【等差数列的通项公式】a n=a1+(n-1)d,n∈N*。
a n=dn+a1-d,d≠0时,是关于n的一次函数,斜率为公差d;a n=kn+b(k≠){a n}为等差数列,反之不能。
【等差数列的前n项和的公式】【数列求和的常用方法】1.裂项相加;2、错位相减;3、倒序相加法。
4、分组转化法。
5、公式法求和等差数列的前n项和的公式:【等比数列的通项公式】a n=a1q n-1,q≠0,n∈N*。
【等比数列的前n项和公式】等比数列前n项和公式的变形【2017年高考全国Ⅱ卷,理15】等差数列的前项和为,,,则____________.【答案】【考点】等差数列前n项和公式、裂项求和.【点拨】等差数列的通项公式及前n项和公式,共涉及五个量a1,a n,d,n,S n,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用得方法.使用裂项法求和时,要注意正、负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点.答题思路【命题意图】数列的通项与求和高考必考内容,重点考查方程思想求通项,及等价转换在求和中的应用,同时考查运算求解能力.【命题规律】高考试题对数列内容考查的主要角度有两种:一种是仅在客观题中考查数列,一般有2道小题,特点是小巧活;一种是仅在解答题中考查数列,一般在第17题的位置上,属于基础题,多以等差数列或等比数列为载体,考查数列的通项与求和,求和常考公式求和、裂项求和.【答题模板】解答本类题目,以2017年试题为例,一般考虑如下三步: 第一步:利用方程思想求基本量 列出关于基本量的方程组,解方程组求 ;第二步:根据公式求借助等差数列前n 项和公式,求出;第三步:裂项求和 通过求和.【方法总结】1.等差数列的通项公式与前n 项和公式(1)如果等差数列{a n }的首项为a 1,公差为d,那么它的通项公式是a n =a 1+(n -1)d. (2)设等差数列{a n }的公差为d,其前n 项和S n =或S n =na 1+d.(3)等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n.数列{a n }是等差数列⇔S n =An2+Bn(A 、B 为常数). 2.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m)d(n,m∈N *).(2)若{a n }为等差数列,且k +l =m +n(k,l,m,n∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d,则{a 2n }也是等差数列,公差为2d. (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d,则a k ,a k +m ,a k +2m ,…(k,m∈N *)是公差为md 的等差数列. 3.等差数列运算问题的一般求法是设出首项a 1和公差d,然后由通项公式或前n 项和公式转化为方程(组)求解.等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d,n,S n ,知其中三个就能求另外两个,体现了方程的思想. 4.等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.5.等比数列的通项公式与前n 项和公式(1)设等比数列{a n }的首项为a 1,公比为q,则它的通项a n =a 1·q n -1.(2) 等比数列{a n }的公比为q(q≠0),其前n 项和为S n , 当q =1时,S n =na 1; 当q≠1时,S n ==a 1-a n q 1-q. 6.等比数列的常用性质 (1)通项公式的推广:a n =a m ·qn -m(n,m∈N *).(2)若{a n }为等比数列,且k +l =m +n (k,l,m,n∈N *),则a k ·a l =a m ·a n .(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍是等比数列.7.证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.(2)利用递推关系时要注意对n =1时的情况进行验证.8.在等比数列的基本运算问题中,一般利用通项公式与前n 项和公式,建立方程组求解,但如果能灵活运用等比数列的性质“若m +n =p +q,则有a m a n =a p a q ”,可以减少运算量.(2)等比数列的项经过适当的组合后构成的新数列也具有某种性质,例如等比数列S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,公比为q k(q≠-1). 7.由递推关系求数列的通项公式(1)利用“累加法”和“累乘法”求通项公式此解法来源与等差数列和等比数列求通项的方法,递推关系为用累加法;递推关系为用累乘法.解题时需要分析给定的递推式,使之变形为结构,然后求解.要特别注意累加或累乘时,应该为个式子,不要误认为个.(2)利用待定系数法,构造等差、等比数列求通项公式求数列通项公式方法灵活多样,特别是对于给定的递推关系求通项公式,观察、分析、推理能力要求较高.通常可对递推式变换,转化成特殊数列(等差或等比数列)来求解,这种方法体现了数学中化未知为已知的化归思想,而运用待定系数法变换递推式中的常数就是一种重要的转化方法.递推公式为(其中p,q 均为常数,).把原递推公式转化为:,其中,再利用换元法转化8.求数列的前n项和的方法(1)公式法(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.用裂项相消法求和时,要对通项进行变换,如:1n+n+k=1k(n+k-n),=1k(1n-1n+k)裂项后可以产生连续可以相互抵消的项.抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.(4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n-qS n”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.(6)并项求和法一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如a n=(-1)n f(n)类型,可采用两项合并求解.例如,S n=1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.9.易错警示(1)公差不为0的等差数列的前n项和公式是n的二次函数,且常数项为0.若某数列的前n 项和公式是常数项不为0的二次函数,则该数列不是等差数列,它从第二项起成等差数列.(2)分类讨论思想在等比数列中应用较多,常见的分类讨论有①已知S n与a n的关系,要分n=1,n≥2两种情况.②等比数列中遇到求和问题要分公比q=1,q≠1讨论.③项数的奇、偶数讨论.④等比数列的单调性的判断注意与a1,q的取值的讨论.(3)注意等比数列的任意一项及公比都不为零①由a n +1=qa n ,q≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0. ②是成等差数列的充要条件,而是成等比数列的既不充分也不必要条件.③等比数列性质中S n ,S 2n -S n ,S 3n -S 2n 不一定成等比数列,因为S 2n -S n ,S 3n -S 2n 可能为零. (4)在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n,a n +1的式子应进行合并.(5)在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.1.【2017年高考全国Ⅲ卷,理9】等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则{}n a 前6项的和为()A .24-B .3-C .3D .8【答案】A【解析】∵{}n a 为等差数列,且236,,a a a 成等比数列,设公差为d . 则2326a a a =⋅,即()()()211125a d a d a d +=++ 又∵11a =,代入上式可得220d d += 又∵0d ≠,则2d =-∴()61656561622422S a d ⨯⨯=+=⨯+⨯-=-,故选A. 2.【2017年高考江苏卷,理9】等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知3676344S S ==,,则8a =▲.【答案】32【解析】当1q =时,显然不符合题意;当1q ≠时,3161(1)714(1)6314a q q a q q ⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,则7812324a =⨯=. 【考点】等比数列通项【点拨】在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法. 3.【2017年高考山东卷,理19】已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2 (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y=0,11n x x x x +==,所围成的区域的面积.【答案】(I)(II )因为0q >,所以,因此数列的通项公式为(II )过……向轴作垂线,垂足分别为……,由(I)得记梯形的面积为.由题意,所以……+$来&源:=……+①又……+②【考点】1.等比数列的通项公式;2.等比数列的求和;3.“错位相减法”.【点拨】本题主要考查等比数列的通项公式及求和公式、数列求和的“错位相减法”.此类题目是数列问题中的常见题型.本题覆盖面广,对考生计算能力要求较高.解答本题,布列方程组,确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数.本题将数列与解析几何结合起来,适当增大了难度,能较好的考查考生的数形结合思想、逻辑思维能力及基本计算能力等.4.【2017重庆一中5月模拟】已知等差数列中,其前项和为,若,则A. 98B. 49C. 14D. 147【答案】A【解析】,解得:, ,故选A. 5.【2017宁夏六盘山三模】已知数列是等差数列,且, ,则A. 12B. 24C. 16D. 32【答案】A6.【2017陕西渭南市二模】成等差数列的三个正数的和等于,并且这三个数分别加上后成为等比数列中的,则数列的通项公式为A. B. C. D.【答案】A【解析】设成等差数列的三个正数为,即有,计算得出,根据题意可得成等比数列,即为成等比数列,即有,计算得出舍去),即有4,8,16成等比数列,可得公比为2,则数列的通项公式为.所以A选项是正确的.7.【2017甘肃省兰州冲刺模拟】已知数列、满足,其中是等差数列,且,则________.【答案】20178.【2017重庆巴蜀中学三诊】设数列中, , , , ,则数列的通项公式为__________.【答案】【解析】因为 ,所以数列为以为首项,2为公比的等比数列,即9.【2017辽宁庄河市四模】已知数列满足 ,且 . (1)求数列的通项公式;(2)若 ,求数列的前项和 .【解析】(1)由于.10.【2017辽宁葫芦岛市二模】已知数列满足:.(1)求数列的通项公式;(2)若,求数列的前项和.【解析】(1)当n=1时,a1=4-=1.当n≥2时,a1+2a2+…+na n=4-..........................①a1+2a2+…+(n-1)a n=4-..........................②①-②得: na n=-= (2n+2-n-2)=a n=当n=1时,a1也适合上式, ∴a n= (n N*).(2) b n=(3n-2)S n=+++…+(3n-5) +(3n-2)......................①S n=+++…+(3n-5) +(3n-2)......................②①-②得: S n=+3(+++…+)-(3n-2) =1+-(3n-2)解得:S n=8-.11.【2017青海西宁市二模】已知正项数列的前项和,且满足.(Ⅰ)求数列的通项公式;(Ⅱ)设,数列的前项和,证明:.又,所以则,所以数列是首项为1,公差2的等差数列,则.(Ⅱ) ,所以数列的前项和.而,所以.12.【2017吉林吉林市第三次调研】已知等差数列的前和为,公差.且成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)设数列,求数列的前项和.(Ⅱ)因为,所以则【2017甘肃第二次高考诊断】已知等差数列中, , ,数列中, 13.,其前项和满足:.(1)求数列、的通项公式;(2)设,求数列的前项和.【解析】(I)①②①-②得,为等比数列,14.【2016年高考全国II卷,理17】为等差数列的前n项和,且记,其中表示不超过x的最大整数,如.(Ⅰ)求;(Ⅱ)求数列的前1 000项和【答案】(Ⅰ),, ;(Ⅱ)1 893.【考点】等差数列的通项公式、前项和公式,对数的运算【点拨】解答新颖的数学题时,一是通过转化,化“新”为“旧”;二是通过深入分析,多方联想,以“旧”攻“新”;三是创造性地运用数学思想方法,以“新”制“新”,应特别关注创新题型的切入点和生长点.。
突破点5 数列的通项与求和[核心知识提炼]提炼1 a n 与S n 的关系若a n 为数列{a n }的通项,S n 为其前n 项和,则有a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.在使用这个关系式时,一定要注意区分n =1,n ≥2两种情况,求出结果后,判断这两种情况能否整合在一起. 提炼2 求数列通项常用的方法(1)定义法:①形如a n +1=a n +c (c 为常数),直接利用定义判断其为等差数列.②形如a n +1=ka n (k 为非零常数)且首项不为零,直接利用定义判断其为等比数列.(2)叠加法:形如a n +1=a n +f (n ),利用a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),求其通项公式. (3)叠乘法:形如a n +1a n =f (n )≠0,利用a n =a 1·a 2a 1·a 3a 2·…·a na n -1,求其通项公式. (4)待定系数法:形如a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0),先用待定系数法把原递推公式转化为a n +1-t =p (a n -t ),其中t =q1-p ,再转化为等比数列求解.(5)构造法:形如a n +1=pa n +q n(其中p ,q 均为常数,pq (p -1)≠0),先在原递推公式两边同除以qn +1,得a n +1q n +1=p q ·a n q n +1q ,构造新数列{b n }⎝⎛⎭⎪⎫其中b n =a n q n ,得b n +1=p q ·b n +1q ,接下来用待定系数法求解. 提炼3 数列求和数列求和的关键是分析其通项,数列的基本求和方法有公式法、裂(拆)项相消法、错位相减法、分组法、倒序相加法和并项法等,而裂项相消法、错位相减法是常用的两种方法.[高考真题回访]回访1 a n 与a n +1的关系1.(2014·全国卷Ⅱ)数列{a n }满足a n +1=11-a n,a 8=2,则a 1=________.12 [∵a n +1=11-a n , ∴a n +1=11-a n=11-11-a n -1=1-a n -11-a n -1-1=1-a n -1-a n -1=1-1a n -1=1-111-a n -2=1-(1-a n -2)=a n -2, ∴周期T =(n +1)-(n -2)=3. ∴a 8=a 3×2+2=a 2=2. 而a 2=11-a 1,∴a 1=12.] 回访2 数列求和2.(2012·全国卷)数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为( )A .3 690B .3 660C .1 845D .1 830D [∵a n +1+(-1)na n =2n -1, ∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…, a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=119-a 1,∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60)=10+26+42+…+234 =+2=1 830.]3.(2013·全国卷Ⅰ改编)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.则(1){a n }的通项公式为__________;(2)数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和为__________. (1)a n =2-n (2)n 1-2n[(1)设{a n }的公差为d ,则S n =na 1+n n -2d .由已知可得⎩⎪⎨⎪⎧3a 1+3d =0,5a 1+10d =-5,解得⎩⎪⎨⎪⎧a 1=1 ,d =-1.故{a n }的通项公式为a n =2-n . (2)由(1)知1a 2n -1a 2n +1=1-2n-2n=12⎝ ⎛⎭⎪⎫12n -3-12n -1,从而数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和为12⎝ ⎛⎭⎪⎫1-1-11+11-13+…+12n -3-12n -1=n1-2n .] 4.(2014·全国卷Ⅰ改编)已知{a }是递增的等差数列,a ,a 是方程x 2-5x +6=0的根,则(1){a n }的通项公式为__________; (2)数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和为__________.(1)a n =12n +1 (2)2-n +42n +1 [(1)方程x 2-5x +6=0的两根为2,3,由题意得a 2=2,a 4=3.设数列{a n }的公差为d ,则a 4-a 2=2d ,故d =12,从而a 1=32.所以{a n }的通项公式为a n =12n +1.(2)设⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和为S n ,由(1)知a n 2n =n +22n +1,则S n =322+423+…+n +12n +n +22n +1,12S n =323+424+…+n +12n +1+n +22n +2. 两式相减得12S n =34+⎝ ⎛⎭⎪⎫123+…+12n +1-n +22n +2=34+14⎝ ⎛⎭⎪⎫1-12n -1-n +22n +2. 所以S n =2-n +42n +1.]热点题型1 数列中a n 与S n 的关系数列中的a n 与S n 的关系题型分析:以数列中a n 与S n 间的递推关系为载体,考查数列通项公式的求法,以及推理论证的能力.【例1】(1)(2017·郑州模拟)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.1 121 [由⎩⎪⎨⎪⎧a 2=2a 1+1,a 2+a 1=4,解得a 1=1,a 2=3,当n ≥2时,由已知可得:a n +1=2S n +1,① a n =2S n -1+1,②①-②得a n +1-a n =2a n ,∴a n +1=3a n .又a 2=3a 1, ∴{a n }是首项为1,公比为3的等比数列. ∴S n =12(3n-1),∴S 5=121.](2)数列{a n }中,a 1=1,S n 为数列{a n }的前n 项和,且满足2a na n S n -S 2n=1(n ≥2).求数列{a n }的通项公式.【导学号:04024060】[解] 由已知,当n ≥2时,2a na n S n -S 2n=1,所以S n -S n -1S n -S n -1S n -S 2n =1,2分即S n -S n -1-S n -1S n=1,所以1S n -1S n -1=12.4分又S 1=a 1=1,所以数列⎩⎨⎧⎭⎬⎫1S n 是首项为1,公差为12的等差数列,6分所以1S n =1+12(n -1)=n +12,即S n =2n +1. 8分 所以当n ≥2时,a n =S n -S n -1=2n +1-2n =-2nn +.10分因此a n =⎩⎪⎨⎪⎧1,n =1,-2n n +,n ≥2. 12分[方法指津]给出S n 与a n 的递推关系,求a n ,常用思路:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n . 提醒:在利用a n =S n -S n -1(n ≥2)求通项公式时,务必验证n =1时的情形.[变式训练1] (1)已知数列{a n }前n 项和为S n ,若S n =2a n -2n,则S n =__________.(2)已知数列{a n }的各项均为正数,其前n 项和为S n ,且2S n +2=3a n (n ∈N *),则a n =__________.(1)n ·2n(n ∈N *) (2)2×3n -1(n ∈N *) [(1)由S n =2a n -2n得当n =1时,S 1=a 1=2;当n ≥2时,S n =2(S n -S n -1)-2n,即S n 2n -S n -12n -1=1,所以数列⎩⎨⎧⎭⎬⎫S n 2n 是首项为1,公差为1的等差数列,则S n2n =n ,S n =n ·2n (n ≥2),当n =1时,也符合上式,所以S n =n ·2n (n ∈N *).(2)因为2S n +2=3a n ,① 所以2S n +1+2=3a n +1,②由②-①,得2S n +1-2S n =3a n +1-3a n ,所以2a n +1=3a n +1-3a n ,即a n +1a n=3. 当n =1时,2+2S 1=3a 1,所以a 1=2,所以数列{a n }是首项为2,公比为3的等比数列, 所以a n =2×3n -1(n ∈N *).]热点题型2 裂项相消法求和题型分析:裂项相消法是指把数列中的各项分别裂开后,某些项可以相互抵消从而求和的方法,主要适用于⎩⎨⎧⎭⎬⎫1a n a n +1或⎩⎨⎧⎭⎬⎫1a n a n +2(其中{a n }为等差数列)等形式的数列求和. 【例2】 已知等差数列{a n }的公差d ≠0,它的前n 项和为S n ,若S 5=70,且a 2,a 7,a 22成等比数列,(1)求数列{a n }的通项公式;(2)若数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和为T n ,求证:16≤T n <38.[解] (1)由已知及等差数列的性质得S 5=5a 3,∴a 3=14, 1分 又a 2,a 7,a 22成等比数列,所以a 27=a 2·a 22. 2分所以(a 1+6d )2=(a 1+d )(a 1+21d )且d ≠0, 解得a 1=32d ,∴a 1=6,d =4.4分 故数列{a n }的通项公式为a n =4n +2,n ∈N *. 6分(2)证明:由(1)得S n =n a 1+a n2=2n 2+4n ,1S n=12n 2+4n =14⎝ ⎛⎭⎪⎫1n -1n +2,8分∴T n =14⎝ ⎛⎭⎪⎫1-13+12-14+…+1n -1n +2=38-14⎝ ⎛⎭⎪⎫1n +1+1n +2.10分又T n ≥T 1=38-14 ⎝ ⎛⎭⎪⎫12+13=16,所以16≤T n <38.12分[方法指津]裂项相消法的基本思想就是把通项a n 分拆成a n =b n +k -b n (k ≥1,k ∈N *)的形式,常见的裂项方式有: (1)1nn +k =1k ⎝ ⎛⎭⎪⎫1n -1n +k ; (2)1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1;(3)1n +n +k =1k(n +k -n ).提醒:在裂项变形时,务必注意裂项前的系数.[变式训练2] (名师押题)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8.(1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n . 【导学号:04024061】[解] (1)由题设知a 1·a 4=a 2·a 3=8,2分又a 1+a 4=9,可得⎩⎪⎨⎪⎧a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1.(舍去) 4分 由a 4=a 1q 3得公比q =2,故a n =a 1q n -1=2n -1.6分 (2)S n =a 1-qn1-q=2n-1.8分又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1, 10分 所以T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎫1S n -1S n +1=1S 1-1S n +1=1-12n +1-1.热点题型3 错位相减法求和题型分析:限于数列解答题的位置较为靠前,加上错位相减法的运算量相对较大,故在近5年中仅有1年对该命题点作了考查,但其仍是命题的热点之一,务必加强训练. 【例3】 设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.(1)求数列{a },{b }的通项公式;(2)当d >1时,记c n =a nb n,求数列{c n }的前n 项和T n .[解] (1)由题意有⎩⎪⎨⎪⎧10a 1+45d =100,a 1d =2,即⎩⎪⎨⎪⎧2a 1+9d =20,a 1d =2, 2分解得⎩⎪⎨⎪⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=9,d =29. 4分故⎩⎪⎨⎪⎧a n =2n -1,b n =2n -1或⎩⎪⎨⎪⎧a n =19n +,b n=9·⎝ ⎛⎭⎪⎫29n -1. 6分(2)由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1,于是T n =1+32+522+723+924+…+2n -12n -1,①12T n =12+322+523+724+925+…+2n -12n . ② 8分①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n , 10分 故T n =6-2n +32n -1.12分[方法指津]运用错位相减法求和应注意:一是判断模型,即判断数列{a n },{b n }中一个为等差数列,一个为等比数列;二是错开位置,一般先乘公比,再把前n 项和退后一个位置来书写,这样避免两式相减时看错列;三是相减,相减时一定要注意式中最后一项的符号,考生常在此步出错,一定要细心.提醒:为保证结果正确,可对得到的和取n =1,2进行验证.[变式训练3] 已知在公比大于1的等比数列{a n }中,a 2,a 4是函数f (x )=(x -2)(x -8)的两个零点.(1)求数列{a n }的通项公式; (2)求数列{2na n }的前n 项和S n .【导学号:04024062】[解] (1)因为a 2,a 4是函数f (x )=(x -2)(x -8)的两个零点,且等比数列{a n }的公比q 大于1,所以a =2,a =8,2分所以q =2,所以数列{a n }的通项公式为a n =2n -1(n ∈N *).6分(2)由(1)知2na n =n ×2n,所以S n =1×2+2×22+…+n ×2n,① 7分 2S n =1×22+2×23+…+(n -1)×2n +n ×2n +1,②8分由①-②,得-S n =2+22+23+…+2n -n ×2n +1=2-2n×21-2-n ×2n +1,11分所以S n =2+(n -1)×2n +1(n ∈N *). 12分。
寒假作业(十一) 数列的通项与数列求和(注意命题点的区分度)一、选择题1.(2017·安溪质检)数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=( )A .9B .8C .17D .16解析:选A S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.2.若数列{a n }的通项公式为a n =2n +1,令b n =1a 1+a 2+…+a n,则数列{b n }的前n 项和为( )A.n +1n +B.34-2n +3n +n +C.n -1n +2D.34-2n +3n +n +解析:选B 易得a 1+a 2+…+a n =n 3+2n +2=n (n +2),所以b n =1n n +=12⎝ ⎛⎭⎪⎫1n -1n +2,故T n =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=34-2n +3n +n +.3.(2018届高三·湖南十校联考)已知S n 是数列{a n }的前n 项和,且S n +1=S n +a n +3,a 4+a 5=23,则S 8=( )A .72B .88C .92D .98解析:选C 法一:由S n +1=S n +a n +3,得a n +1-a n =3, ∴数列{a n }是公差d =3的等差数列, 又a 4+a 5=23=2a 1+7d =2a 1+21, ∴a 1=1,S 8=8a 1+8×72d =92.法二:由S n +1=S n +a n +3,得a n +1-a n =3,数列{a n }是公差为3的等差数列,S 8=a 1+a 82=a 4+a 52=92.4.已知数列{a n }的通项公式a n =log 2n +1n +2(n ∈N *),设{a n }的前n 项和为S n ,则使S n <-5成立的自然数n ( )A .有最大值63B .有最小值63C .有最大值31D .有最小值31解析:选B S n =a 1+a 2+…+a n =log 223+log 234+…+log 2n +1n +2=log 2⎝ ⎛⎭⎪⎫23×34×…×n +1n +2=log 22n +2<-5,∴2n +2<2-5,∴n +2>26,∴n >62.又n ∈N *,∴n 有最小值63. 5.设{a n }是正项数列,其前n 项和S n 满足4S n =(a n -1)·(a n +3)(n ∈N *),则数列{a n }的通项公式a n =( )A .2n+1 B .2n-1 C .2n -1D .2n +1解析:选D 由4S n =(a n -1)(a n +3), 得4S n -1=(a n -1-1)·(a n -1+3),n ≥2, 两式相减得(a n +a n -1)(a n -a n -1-2)=0. 又{a n }是正项数列, ∴a n -a n -1-2=0(n ≥2),则数列{a n }是公差为2的等差数列,a 1=3, ∴a n =2n +1.6.已知数列2 015,2 016,1,-2 015,-2 016,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 017项和S 2 017等于( )A .2 018B .2 015C .1D .0解析:选B 由已知得a n =a n -1+a n +1(n ≥2),∴a n +1=a n -a n -1,故数列的前8项依次为2 015,2 016,1,-2 015,-2 016,-1,2 015,2 016.由此可知数列为周期数列,且周期为6,S 6=0.∵2 017=6×336+1,∴S 2 017=2 015.7.已知数列{a n }的通项公式a n =⎩⎪⎨⎪⎧n -n 为奇数,n n 为偶数,则a 1+a 2+a 3+a 4+…+a 99+a 100=( )A .4 800B .4 900C .5 000D .5 100解析:选 C 由题意得a 1+a 2+a 3+a 4+…+a 99+a 100=0+2+2+4+4+…+98+98+100=2(2+4+6+…+98)+100=2×+2+100=5 000.8.已知数列{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1(n ∈N *)的取值范围是( )A .[12,16]B.⎣⎢⎡⎦⎥⎤8,323C.⎣⎢⎡⎭⎪⎫8,323D.⎣⎢⎡⎦⎥⎤163,323解析:选C 因为{a n }是等比数列,a 2=2,a 5=14,所以q 3=a 5a 2=18,即q =12,a 1=4,故a 1a 2+a 2a 3+…+a n a n +1=a 1a 21-q 2n 1-q 2=323(1-q 2n)∈⎣⎢⎡⎭⎪⎫8,323,故选C. 9.(2017·宁波二模)已知在数列{a n }中,a 1=56,a n +1=13a n +⎝ ⎛⎭⎪⎫12n +1,则a n =( )A.32n -23n B.23n -32n C.12n -23n D.23n -12n 解析:选A 法一:a n +1=13a n +⎝ ⎛⎭⎪⎫12n +1两边同时乘以2n +1,得2n +1·a n +1=23(2n ·a n )+1,令b n =2n·a n ,则b n +1=23b n +1,即b n +1-3=23(b n -3),所以数列{b n -3}是以b 1-3=-43为首项,23为公比的等比数列,所以b n -3=-43×⎝ ⎛⎭⎪⎫23n -1,b n =3-2⎝ ⎛⎭⎪⎫23n,所以a n =b n 2n =32n -23n .法二:a n +1=13a n +⎝ ⎛⎭⎪⎫12n +1两边同时乘以3n +1,得3n +1·a n +1=3n·a n +⎝ ⎛⎭⎪⎫32n +1,令b n =3n·a n ,则b n +1=b n +⎝ ⎛⎭⎪⎫32n +1,可得b n -b n -1=⎝ ⎛⎭⎪⎫32n ,b n -1-b n -2=⎝ ⎛⎭⎪⎫32n -1,…,b 2-b 1=⎝ ⎛⎭⎪⎫322,以上各式累加可得b n -b 1=⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫32n,又b 1=3a 1=3×56=52=1+32,所以b n =1+32+⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫32n =2×⎝ ⎛⎭⎪⎫32n +1-2,a n =b n 3n =32n -23n .10.(2017·福州二模)已知公比不为1的等比数列{a n }的前n 项和为S n ,满足S 6=6332,且a 2,a 4,a 3成等差数列,若数列{b n }满足b n =na n ,则数列{b n }的前10项和T 10为( )A.6348B.5348C.5338D.7348解析:选 A 设数列{a n }的首项为a 1,公比为q ,由题意得⎩⎪⎨⎪⎧S 6=6332,a 2+a 3=2a 4⇒⎩⎪⎨⎪⎧a 11-q 61-q=6332,a 1q +a 1q 2=2a 1q 3⇒⎩⎪⎨⎪⎧a 1=3,q =-12⇒a n =3⎝ ⎛⎭⎪⎫-12n -1.于是b n =3n ⎝ ⎛⎭⎪⎫-12n -1.T 10=3×⎝ ⎛⎭⎪⎫-120+3×2×⎝ ⎛⎭⎪⎫-121+3×3×⎝ ⎛⎭⎪⎫-122+…+3×10×⎝ ⎛⎭⎪⎫-129,① -12T 10=3×⎝ ⎛⎭⎪⎫-121+3×2×⎝ ⎛⎭⎪⎫-122+3×3×⎝ ⎛⎭⎪⎫-123+…+3×10×⎝ ⎛⎭⎪⎫-1210,② ①-②得32T 10=3×⎝ ⎛⎭⎪⎫-120+3×⎝ ⎛⎭⎪⎫-121+3×⎝ ⎛⎭⎪⎫-122+…+3×⎝ ⎛⎭⎪⎫-129-30×⎝ ⎛⎭⎪⎫-1210,整理得T 10=43-⎝⎛⎭⎪⎫20+43×11 024=6348.11.设S n 是公差不为0的等差数列{a n }的前n 项和,S 1,S 2,S 4成等比数列,且a 3=-52,则数列⎩⎨⎧⎭⎬⎫12n +a n 的前n 项和T n =( ) A .-n2n +1B.n 2n +1C .-2n2n +1D.2n2n +1解析:选C 设{a n }的公差为d ,因为S 1=a 1,S 2=2a 1+d =2a 1+a 3-a 12=32a 1-54,S 4=3a 3+a 1=a 1-152.因为S 1,S 2,S 4成等比数列, 所以⎝ ⎛⎭⎪⎫32a 1-542=⎝ ⎛⎭⎪⎫a 1-152a 1,整理得4a 21+12a 1+5=0,解得a 1=-52或a 1=-12.当a 1=-52时,公差d =0,不符合题意,舍去;当a 1=-12时,公差d =a 3-a 12=-1,所以a n =-12+(n -1)×(-1)=-n +12=-12(2n -1),所以12n +a n=-22n -n +=-⎝⎛⎭⎪⎫12n -1-12n +1,所以其前n 项和T n =-⎝⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1 =-⎝ ⎛⎭⎪⎫1-12n +1=-2n 2n +1,故选C. 12.(2017·郑州第一次质量预测)已知数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),且对任意n ∈N *都有1a 1+1a 2+…+1a n<t ,则实数t 的取值范围为( ) A.⎝ ⎛⎭⎪⎫13,+∞ B.⎣⎢⎡⎭⎪⎫13,+∞C.⎝ ⎛⎭⎪⎫23,+∞ D.⎣⎢⎡⎭⎪⎫23,+∞ 解析:选D 依题意得,当n ≥2时,a n =a 1a 2a 3…a na 1a 2a 3…a n -1=2n2n -2=2n 2-(n -1)2=22n -1,又a 1=21=22×1-1,因此a n =22n -1,1a n =122n -1,所以数列⎩⎨⎧⎭⎬⎫1a n 是以12为首项,14为公比的等比数列,故等比数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和等于12⎝ ⎛⎭⎪⎫1-14n 1-14=23⎝ ⎛⎭⎪⎫1-14n <23,因此实数t 的取值范围是⎣⎢⎡⎭⎪⎫23,+∞,选D. 二、填空题13.(2017·衡水调研)若数列{a n }是正项数列,且a 1+a 2+…+a n =n 2+3n (n ∈N *),则a 12+a 23+…+a nn +1=________. 解析:令n =1,得a 1=4,∴a 1=16.当n ≥2时,a 1+a 2+…+a n -1=(n -1)2+3(n -1).与已知式相减,得a n =(n 2+3n )-(n -1)2-3(n -1)=2n +2,∴a n =4(n +1)2,当n =1时,也满足该式. ∴a n =4(n +1)2, ∴a nn +1=4n +4,∴数列⎩⎨⎧⎭⎬⎫a n n +1是以8为首项,4为公差的等差数列, ∴a 12+a 23+…+a n n +1=n 8+4n +42=2n 2+6n .答案:2n 2+6n14.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 018=________. 解析:∵数列{a n }满足a 1=1,a n +1·a n =2n,① ∴n =1时,a 2=2,n ≥2时,a n ·a n -1=2n -1,②∵①÷②得a n +1a n -1=2, ∴数列{a n }的奇数项、偶数项分别成等比数列, ∴S 2 018=1-21 0091-2+-21 0091-2=3×21 009-3.答案:3×21 009-315.已知数列{a n }的前n 项和为S n ,且满足S n =2a n -4(n ∈N *),数列{log 2a n }的前n 项和为T n ,则不等式2T n >a n 的解集为________.解析:当n ≥2时,a n =S n -S n -1=2a n -4-2a n -1+4,∴a n =2a n -1;当n =1时,a 1=2a 1-4,∴a 1=4,∴数列{a n }是首项为4,公比为2的等比数列, 则a n =4·2n -1=2n +1.设b n =log 2a n ,则b n =n +1, ∴T n =2+3+…+n +1=n 2+3n2.若2T n >a n ,则n 2+3n >2n +1,解得n =2或n =3,∴不等式的解集为{2,3}. 答案:{2,3}16.设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n ∈N *,则S 1+S 2+…+S 100=________.解析:∵a n =S n -S n -1=(-1)n a n -12n -(-1)n -1a n -1+12n -1(n ≥2),∴a n =(-1)n a n -(-1)n-1a n -1+12n (n ≥2).当n 为偶数时,a n -1=-12n ,当n 为奇数时,2a n +a n -1=12n ,a n -1=12n -1,从而可得a 1=-122,a 3=-124,a 5=-126,a 7=-128,a 2=122,a 4=124,a 6=126,a 8=128. ∴a 2-a 1=12,a 4-a 3=123,a 6-a 5=125,…,∴S 1+S 2+…+S 100=(a 2-a 1)+(a 4-a 3)+…+(a 100-a 99)-⎝ ⎛⎭⎪⎫12+122+123+…+12100=⎝ ⎛⎭⎪⎫12+123+…+1299-⎝ ⎛⎭⎪⎫12+122+…+12100=13⎝ ⎛⎭⎪⎫12100-1.答案:13⎝ ⎛⎭⎪⎫12100-1三、解答题17.(2017·惠州调研)已知数列{a n }中,点(a n ,a n +1)在直线y =x +2上,且首项a 1=1.(1)求数列{a n }的通项公式;(2)数列{a n }的前n 项和为S n ,等比数列{b n }中,b 1=a 1,b 2=a 2,数列{b n }的前n 项和为T n ,请写出适合条件T n ≤S n 的所有n 的值.解:(1)由已知得a 1=1,a n +1=a n +2, 即a n +1-a n =2,所以数列{a n }是首项为1,公差d =2的等差数列, 所以a n =a 1+(n -1)d =2n -1. (2)由(1)知数列{a n }的前n 项和S n =+2n -n2=n 2.等比数列{b n }中,b 1=a 1=1,b 2=a 2=3, 所以公比q =3,b n =3n -1.所以数列{b n }的前n 项和T n =1-3n1-3=3n-12.若T n ≤S n ,即3n-12≤n 2,又n ∈N *,所以n =1或2.18.已知等差数列{a n }的各项均为正数,a 1=1,前n 项和为S n .数列{b n }为等比数列,b 1=1,且b 2S 2=6,b 2+S 3=8.(1)求数列{a n }与{b n }的通项公式; (2)求1S 1+1S 2+…+1S n.解:(1)设等差数列{a n }的公差为d ,d >0,等比数列{b n }的公比为q , 则a n =1+(n -1)d ,b n =qn -1. 依题意有⎩⎪⎨⎪⎧q 2+d =6,q +3+3d =8,解得⎩⎪⎨⎪⎧d =1,q =2或⎩⎪⎨⎪⎧d =-43,q =9(舍去).故a n =n ,b n =2n -1.(2)由(1)知S n =1+2+…+n =12n (n +1),即1S n =2nn +=2⎝ ⎛⎭⎪⎫1n -1n +1, 故1S 1+1S 2+…+1S n =2⎣⎢⎡⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎦⎥⎤⎝ ⎛⎭⎪⎫1n -1n +1=2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1. 19.已知数列{a n }的首项a 1=1,前n 项和为S n ,且数列⎩⎨⎧⎭⎬⎫S n n 是公差为2的等差数列. (1)求数列{a n }的通项公式;(2)若b n =(-1)na n ,求数列{b n }的前n 项和T n . 解:(1)由已知条件可得S nn=1+(n -1)×2=2n -1, ∴S n =2n 2-n .当n ≥2时,a n =S n -S n -1=2n 2-n -[2(n -1)2-(n -1)]=4n -3, 当n =1时,a 1=S 1=1,而4×1-3=1,∴a n =4n -3. (2)由(1)可得b n =(-1)na n =(-1)n(4n -3), 当n 为偶数时,T n =-1+5-9+13-17+…+(4n -3)=4×n2=2n ,当n 为奇数时,n +1为偶数,T n =T n +1-b n +1=2(n +1)-(4n +1)=-2n +1.综上,T n =⎩⎪⎨⎪⎧2n ,n =2k ,k ∈N *,-2n +1,n =2k -1,k ∈N *.20.(2017·天津高考)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2. 所以b n =2n.由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16.②由①②,解得a 1=1,d =3,由此可得a n =3n -2.所以数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n. (2)设数列{a 2n b 2n -1}的前n 项和为T n , 由a 2n =6n -2,b 2n -1=2×4n -1,得a 2n b 2n -1=(3n -1)×4n,故T n =2×4+5×42+8×43+…+(3n -1)×4n,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1=-4n1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8.故T n =3n -23×4n +1+83.所以数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83.。
规范答题示例数列的通项与求和问题
典例(分)下表是一个由个正数组成的数表,用表示第行第个数(,∈*).已知数表中第一列各数从上到下依次构成等差数列,每一行各数从左到右依次构成等比数列,且公比都相等.且=,+=,=.
…
…
…
……………
…
()求和;
()设=+(-)·(∈*),求数列{}的前项和.
审题路线图―→
评分细则()求出给分,求时写出公式结果错误给分;求时没写>扣分;()写出正确结果给分,正确进行裂项再给分;
()缺少对的变形直接计算,只要结论正确不扣分;
()当为奇数时,求中间过程缺一步不扣分.
跟踪演练(·山东)已知{}是各项均为正数的等比数列,且+=,=. ()求数列{}的通项公式;
(){}为各项非零的等差数列,其前项和为,已知+=+,求数列的前项和. 解()设{}的公比为,
由题意知(+)=,=,
又>,由以上两式联立方程组解得=,=,
所以=.
()由题意知+==(+)+,
又+=+,+≠,
所以=+.
令=,则=,
因此=++…+=+++…++,
又=+++…++,
两式相减得
=+-=+-=-,
所以=-.。