1.1 二阶与三阶行列式
- 格式:ppt
- 大小:2.11 MB
- 文档页数:33
第一章行列式习题1.1二阶和三阶行列式1.计算下列二阶行列式.()12112-=4(1)5--=()222111x x x x -++22(1)(1)x x x x =-++-321x x =--【分析】考查二阶行列式的计算公式2.计算下列三阶行列式.()1251312204--1301113113123024204===()2a bcb c a c a b 11()1()011b c b ca b c c a a b c c b a ca b a b b c=++=++----333()3c b a c a b c abc a b c a b b c --=++=-----【分析】考查三阶行列式的计算公式或者行列式性质计算三阶行列式3.当x 取何值时,3140010x x x¹.【解析】31210214040(24)0241010x x x x x x xxxx x且===-【分析】考查三阶行列式的计算公式或者行列式性质计算三阶行列式习题1.2排列1.求下列排列的逆序数,并确定它们的奇偶性.()14132;()41324t =,为偶排列()2542316;()5423169t =,为奇排列()3()()246213521n n -L L .()()()(1)2462135212n n n n t +-=L L ,4142443n k k n k k =++⎧⎨=+⎩或时,为奇排列或时,为偶排列【分析】考查逆序数的计算及奇偶排列的概念*2.设排列12n i i i L 的逆序数为k ,求排列121n n i i i i -L 的逆序数.【解析】考虑第m 个数(m=1,2,...,n-1),它与后面n-m 个数的每一个数都有一个“序”,这个序要么是“顺序”,要么是“逆序”。
这样全部的“序”共有:(n-1)+(n-2)+...+2+1=n(n-1)/2个。
12n i i i L 逆序数是k ,那么排列121n n i i i i -L 的逆序是n(n-1)/2-k 【分析】考查逆序概念习题1.3n 阶行列式1.写出四阶行列式中含有因子1123a a 的项.【解析】1123344211233244;a a a a a a a a +-【分析】行列式的定义2.在5阶行列式中,下列各项应取什么符号?()11523314254a a a a a ;()152********,+a a a a a 取“”t =()22132441355a a a a a ;()21324413552,+a a a a a 取“”t =()34153122435a a a a a .()41531224355,a a a a a 取“-”t =【分析】行列式的定义3.设一个n 阶行列式中等于零的元素的个数大于2n n -,试证明该行列式为零.【解析】N 阶行列式共有2n 个元素,等于零的元素的个数大于2n n -,则非零元素个数小于n 个,即一定出现一个0行,则行列式值为0.【分析】行列式的定义4.用行列式的定义计算下列行列式.()1010000200001000n n -L LM M M LML L (23(1)1)112231,11(1)(1)!n n n n n a a a a n τ----=-=- ()2()()1111121211000n n n n a a a a a a --L L MLM M L(1)((1)21)212(1)112(1)1(1)(1)n n n n n n n n n n a a a a a a τ----=-=- 【分析】行列式的定义和主次对角线行列式的结论5.设()11121314212223243132333441424344x a a a a a x a a a f x a a x a a a a a x a --=--,求()f x 中3x 的系数.【解析】根据行列式的定义,3x 系数只能来自于一项11223344()()()()x a x a x a x a ----,即11223344()a a a a -+++【分析】行列式的定义习题1.4n 阶行列式的性质1.用行列式的性质计算下列行列式.()1a x x x x b x xx x c x+++000000a x x x x x x b x xb x x x b x x a x b xc xx c x x x c x x c +=+++=++++2()()()a b x c x x bcx abc ab ac bc x=++-+=+++【分析】各行或各列元素之和相等的行列式+展开定理+三角化方法()22464273271014543443342721621-1321122331299001003279001003270100327190010044310000116100001169001006210029400294c c r r c c c c r r +----===121000011601003272940000000294r r «=-=-【分析】行列式性质+行列式性质+三角化方法()3ab ac aebd cd debf cf ef---1111111111110020204111020002abcdef abcdef abcdef abcdef---=-==-=-【分析】各行或各列元素之和相等的行列式+行列式性质+三角化方法2.将下列行列式化为上三角形行列式,并计算其值.()1111111111111022281111002211110002-==-----【分析】三角化方法的计算()222401120112011204135413505550111221031233123048304832051205102110211----------=-=-=---------112011201120111011101111010102500047001800180031003100025---------=-=-=-=----------【分析】三角化方法的计算3.计算下列行列式.()111100[(1)][(1)]100x a a aa a a a x a x a x a x n a x n a a a x ax x a-=+-=+--L LL L L L M M L M M M L M M M L M L LL 1[(1)]()n x n a x a -=+--10111011120201600022002200220004----=-=-=-----()33312()02()2()0x y x y y x yx yy x y x x y x y x y x y x y xx yxy x yx++-+=+-=+=-+--+--【分析】各行或各列元素之和相等的行列式的计算4.计算下列行列式()112311110010010na a a a L L LM M M LM L ,其中0,2,3,,.i a i n ¹=L 122123211111000110000nn n n a a a a a a a a a a a ---ç==---ççL L L L L LM M M LML 【分析】箭型行列式计算()212111111111111na a a +++L LM M M LML ,其中0,1,2,,.i a i n ¹=L 111121211212211111111100000100000n n n nna aa a a a a a a a a a a a a a a a a +++++-ç===++++çç-L LL L L L L M M M LMM M M L M L L 【分析】利用性质变换为箭型行列式计算5.证明()33by az bz ax bx ayx y z bx ayby az bz ax a b zx y bz ax bx ay by azyzx++++++=++++.【证明】左边by az bz ax bx ayby bz ax bx ay azbz ax bx aybx ayby az bz ax bx by az bz ax ay by az bz axbz ax bx ay by az bz bx ay by az ax bx ay by az+++++++=+++=++++++++++++y bz ax bx ay zbz ax bx ayb x by az bz ax a y by az bz axzbx ay by azx bx ay by az ++++=+++++++++22y bz ax bx zax bx ay y bz ax x z x bx ay b x by az bz a yazbz ax b x by azz a yz bz ax zbx ay by x ay by az z bx ay y xy by az++++=+++=+++++++()223333y bz x z x ay y z x z x y x y z b x byz a y z ax b xy z a yz x a b zx y z bx y x y az z xyxyzy zx=+=+=+【分析】拆项性质+行列式性质6.证明121211221100001000000001n n n n nn n x x x a x a x a x a xa a a a a -------=++++-L L L L M M M L M M LL .【证明】11c n n nD xD a 展开-=+()22121n n n n n n x xD a a x D a x a ----=++=++()3232123232312312121n n n n n n n n n n n n n nx D a x a x a x D a x a x a x a a x a a x a x a x a ----------=+++==+++=++++=++++L L L L 【分析】展开定理+递推发习题1.5行列式的展开1.求行列式30453221--中元素2和2-的代数余子式.【解析】2的代数余子式:313104(1)003A +=-=;2-的代数余子式:323234(1)2953A +-=-=【分析】余子式、代数余子式的概念2.用降阶法计算下列行列式【分析】拉普拉斯展开定理()211122200000000000000=0000000111111231n n na a a a a a a a a nn ------+L L LL MM M L M M MM M L M M L L LL12(1)(1)n nn a a a =+- 【分析】行列式性质+展开定理3.计算下面行列式222244441111a b c d a b c d a b c d .【解析】4D 中各列元素均缺少3次方幂的元素,在4D 中添加3次方幂的一行元素,则产生5阶范德蒙行列式,再适当添加一列得:22222333334444411111()ab c d x f x a b c d x a b c d x a b c d x =按最后一列展开,得2341525354555()f x A xA x A x A x A =++++,因为()()()()0f a f b f c f d ====,所以,,,a b c d 为()f x 的四个根,则()()()()()f x k x a x b x c x d =----由根与系数关系有4555Aa b c d A +++=-,而4545(1)A D D +=-=-,55()()()()()()A b a c a d a c b d b d c =------,则()()()()()()()D a b c d b a c a d a c b d b d c =+++------.【分析】克莱姆法则+展开定理4.已知四阶行列式D 中第1行的元素分别为1,2,0,4-,第3行的元素的余子式依次为6,,19,2x ,试求x 的值.【解析】313233346,,19,2A A x A A ==-==-,由展开定理得:162()019(4)(2)0x ⨯+⨯-+⨯+-⨯-=,解得7x =【分析】代数余子式、余子式+展开定理求11121314及11213141.【解析】1112131411111111016110500164241313042463524130635A A A A -----+++===----------1201048428(1)(1)46136313+--=-=--=---11213141112131411521110513131413M M M M A A A A ---+++=-+-=----152142412000424812812081291210912-----==-=-=------【分析】代数余子式、余子式+展开定理的逆运用习题1.6克莱姆法则1.用克莱姆法则求解下列方程组的解12341234123412342326223832242328x x x x x x x x x x x x x x x x ì++-=ïïïï---=ïíï+-+=ïïï-++=-ïî.【解析】1234324,324,648,324,648D D D D D ====-=-,则12341,2,1,2x x x x ===-=-【分析】克莱姆法则2.设1a ,2a ,3a 互不相同,证明方程组123112233222112233000x x x a x a x a x a x a x a x ì++=ïïï++=íïï++=ïïî只有零解.【解析】系数行列式时范德蒙行列式,因为1a ,2a ,3a 互不相同,则系数行列式非零;再由克莱姆法则可知,该齐次方程组只有零解.【分析】克莱姆法则3.当l 为何值时,齐次线性方程组123122334000x x x x x x x l l ì++=ïïï-+=íïï+=ïïî()1只有零解;()2有非零解.当11λλ≠≠-且时,只有零解;当=1=1λλ-或时,有非零解【分析】克莱姆法则自测题1.填空题(每小题10分,共20分)()1行列式103100204199200395301300600=___2000____.()2已知11111111111111D x---=---,则D 中x 的系数是___4-____.2.计算下列行列式:(每小题15分,共30分)()11(1)(1)(2)220000(1)(1)000000n n n n c nn n D αβαββααββα---==-+-展开()212312323411341(1)3452145221211121n n n n n D n n n +==--(1)(1)1231111101111111101111(1)(1)2211110111111111111n n n n n n nnn n n n n n n n-⨯------++==----(1)(2)1122(1)(1)100100(1)(1)(1)(1)(1)221001000n n n n n n n nn n n n n n n ------⨯-++=⋅-=⋅-⋅-⋅(1)12(1)(1)2n n n n n n --+=-⋅⋅(本题15分)已知2231122D yx=,且1112133M M M +-=,1112131A A A ++=,其中ij M 是D 中元素ij a 的余子式,(1)i j ij ij A M +=-,试求D 的值.【解析】1112133235M M M x y +-=⇒-=111213114A A A y x ++=⇒=⇒=则行列式的值为14.(本题15分)解线性方程组231234231234231234231234x ax a x a x e x bx b x b x ex cx c x c x e x dx d x d x e⎧+++=⎪+++=⎪⎨+++=⎪⎪+++=⎩,其中,,,a b c d 互异.【解析】系数行列式非零,由克莱姆法则可知1234,0,0,0x e x x x ====5.(本题20分)证明:11000100,010001n n a b ab a b ab a b a b a b a ba b++++-=¹+-+L L L M M M L M M L .【解析】上课做为例题已讲过。
矩阵论基础1.1⼆阶和三阶⾏列式第⼀节⼆阶和三阶⾏列式在介绍⾏列式概念之前,我们先构造⼀个数学玩具:把4个数放在⼀个正⽅形的四个⾓上,在加上两条竖线,即,规定这个玩具对应于⼀个结果:两个对⾓线上的数的乘积之差。
即例如所在⽅向的对⾓线称为主对⾓线,所在⽅向的对⾓线称为副对⾓线。
定义1 4个数称为⼀个⼆阶⾏列式;所在的⾏称为第⼀⾏,记为(r来源于英⽂row),所在的列称为第⼆列,记为(c来源于英⽂column),因其共有两⾏两列,所以称为⼆阶⾏列式,是第⼆⾏第⼀列的元素。
⼀般地⽤表⽰第i⾏第j列的元素,i是⾏标,j是列标。
可叙述为:⼆阶⾏列式的对应值等于主对⾓线上两元素之积减去的副对⾓线上⼆元素之积所得的差, 这⼀计算法则称为对⾓线法则.此玩具的⽤途在于:求解⽅程组⽤消元法,先消去所在的项,⽅程(2)´a11,⽅程(1)´a21得(3)-(4),得再消去所在的项,⽅程(2)´a12,⽅程(1)´a22得(5)-(6),得我们发现其规律为:若记是⽅程组的系数⾏列式,则是⽤常数项替代D中的第⼀列所得的⾏列式;是⽤常数项替代D中的第⼆列所得的⾏列式。
若D≠0,⽅程组的恰好是:,此规律被称为Cramer定理。
例1 求解⼆元线性⽅程组解:,,,因此 , .同理类推,⽤对⾓线法则可以定义3阶⾏列式如下:其中来⾃三条主对⾓线上三个元素的乘积,前⾯加正号;来⾃三条副对⾓线上三个元素的乘积,前⾯加负号。
例2 计算3阶⾏列式解:D=1×2×2+3×1×1+3×1×(-1)-1×2×3-(-1)×1×1-2×1×3=-7D1=6×2×2+4×1×1+11×1×(-1)-1×2×11-(-1)×1×6-2×1×4=-7D2=1×4×2+3×11×1+3×6×(-1)-1×4×3-(-1)×11×1-2×6×3=-14D3=1×2×11+3×1×6+3×1×4-6×2×3-4×1×1-11×1×3=--21实际上,D,D1,D2,D3来⾃线性⽅程组。
线性代数§1.1⼆阶、三阶⾏列式本章说明与要求⾏列式的理论是⼈们从解线性⽅程组的需要中建⽴和发展起来的,它在线性代数以及其他数学分⽀上都有着⼴泛的应⽤。
在本章⾥我们主要讨论下⾯⼏个问题:(1) ⾏列式的定义;(2) ⾏列式的基本性质及计算⽅法;(3) 利⽤⾏列式求解线性⽅程组(克莱姆法则)。
本章的重点:是⾏列式的计算,要求在理解n阶⾏列式的概念,掌握⾏列式性质的基础上,熟练正确地计算三阶、四阶及简单的n阶⾏列式。
计算⾏列式的基本思路是:按⾏(列)展开公式,通过降阶来计算.但在展开之前往往先利⽤⾏列式性质通过对⾏列式的恒等变形,使⾏列式中出现较多的零和公因式,从⽽简化计算。
常⽤的⾏列式计算⽅法和技巧:直接利⽤定义法,化三⾓形法,降阶法,递推法,数学归纳法,利⽤已知⾏列式法。
⾏列式在本章的应⽤:求解线性⽅程组(克莱姆法则).要掌握克莱姆法则并注意克莱姆法则应⽤的条件。
本章的重点:⾏列式性质;⾏列式的计算。
本章的难点:⾏列式性质;⾼阶⾏列式的计算;克莱姆法则。
==============================================§1.1 ⼆阶、三阶⾏列式⾏列式的概念起源于解线性⽅程组,它是从⼆元与三元线性⽅程组的解的公式引出来的。
因此我们⾸先讨论解⽅程组的问题。
设有⼆元线性⽅程组()()------1 ------2ax by c dx ey f +=+=?? ⽤消元法求解:()()12:e b - ()ae bd x ce bf -=-?,ce bf x ae bd-=-, ()()21:a d - ()ae bd y af dc -=-?,af dc y ae bd-=-。
即得⽅程组的解:ce bf x ae bd af dc y ae bd -?=??-?-?=?-?。
这就是⼀般⼆元线性⽅程组的解公式。
但这个公式很不好记忆,应⽤时⼗分不⽅便。
由此可想⽽知,多元线性⽅程组的解公式肯定更为复杂。
1利用行列式的定义直接计算1.1.1二阶行列式的定义1.1.2三阶行列式的定义1.1.3阶行列式的定义也就是说阶行列式等于所有取自不同行不同列的几个元素的乘积的代数和。
这里是1,2…的一个排列,当是偶排列时,式取正号,当是奇排列时式取负号。
定义法是计算行列式的根本方法,对任何行列式都适用,即阶行列式等于所有取自不同行不同列的个元素乘积的代数和。
对于一个级行列式,按定义展开后共有!项,计算它就需要做!(-1)个乘法,当较大时,!是一个相当大的数字,直接从定义来计算行列式几乎是不可能的,因此,定义法一般适用于阶数较低的行列式。
1.2利用行列式的性质计算性质1.行列互换,行列式的值不变,即=D性质2.交换行列式中两行对应元素的位置,行列式变号。
推论:若一个行列式中有两行的对应元素相同,则这个行列式的值为零。
性质3.把行列式中某一行的所有元素同乘以数k,等于用数k乘以这个行列式。
推论1.行列式某一行有公因子时,可以把这个公因子提到行列式的符号外面。
推论2.如果行列式某两行的对应元素成比例,则这个行列式为零。
性质4.如果行列式第i行的各元素都是两元素的和,则这个行列式等于两个行列式之和,这两个行列式分别以这两个元素作为第i行对应位置的元素,其他位置的元素与原行列式相同(i=1,2,……n)。
性质5.行列式某一行的各元素加上另一行对应元素的k倍,行列式的值不变。
性质6.n阶行列式D=等于它的任一行的各元素与它们对应的代数余子式的乘积之和,即:D=++…+,i=1,2,…n.推论:若行列式某一行元素都等于1,则行列式等于其所有代数余子式之和。
1.3化三角形法化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法。
因为利用行列式的定义容易求得上(下)三角形行列式或对角形行列式的性质将行列式化为三角形行列式计算。
这是计算行列式的基本方法重要方法之一。
原则上,每个行列式都可利用行列式的性质化为三角形行列式。
线性代数与几何(A)主讲教师殷洪友E-mail: hyyin@第一章n 阶行列式1.1二阶和三阶行列式1.2排列1.3n阶行列式的概念1.4行列式的性质1.5行列式的展开定理1.6Cramer法则求解如下二元线性方程组)1.1(,,22221211212111⎩⎨⎧=+=+b x a x a b x a x a 1.1 二阶和三阶行列式其中a 11, a 12, a 21, a 22 称为方程组(1.1)的系数,b 1, b 2 称为常数项.方程组(1.1)的系数按所在的位置排成了一个两行两列的数表,称为(1.1)的系数矩阵.⎟⎟⎠⎞⎜⎜⎝⎛22211211a a a a;212221*********b a a b x a a a a −=−)(根据消元法,可得.211211*********a b b a x a a a a −=−)(时,当021122211≠−a a a a 方程组(1.1)有唯一解:,211222112122211a a a a b a a b x −−=.211222112112112a a a a a b b a x −−=由系数矩阵确定.⎟⎟⎠⎞⎜⎜⎝⎛22211211a aa a设是一个两行两列的数表,则表达式称为该数表所确定的二阶行列式,记作⎟⎟⎠⎞⎜⎜⎝⎛22211211a a a a 21122211a a a a −.2112221122211211a a a a a a a a −=其中称为行列式的元素,下标i j 表示该元素位于第i 行,第j 列.ij a11a 12a 22a 21a 主对角线副对角线2211a a =.2112a a −注意二阶行列式的计算满足对角线法则根据二阶行列式的定义,有.,211211221111212221222121a b b a b a b a b a a b a b a b −=−=若记,22211211a a a a D =对于二元线性方程组(1.1),,2221211a b a b D =.2211112b a b a D =则当系数行列式D ≠0时,方程组有唯一解:,2221121122212111a a a a a b a b D D x ==.2221121122111122a a a a b a b a D D x ==,333213232212312111⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛a a a a a a a a a 记,312213332112322311322113312312332211a a a a a a a a a a a a a a a a a a −−−++=333231232221131211a a a a a a a a a 则称其为该数表所确定的三阶行列式.类似地,设有9 个数排成的三行三列的数表333231232221131211a a a a a a a a a 332211a a a =.322311a a a −计算三阶行列式的对角线法则注意 1. 红线上三元素的乘积冠以正号,蓝线上三元素的乘积冠以负号;2. 对角线法则只适用于二阶与三阶行列式.322113a a a +312312a a a +312213a a a −332112a a a −如果三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111,,bx a x a x a b x a x a x a b x a x a x a 的系数行列式333231232221131211a a a a a a a a a D =,0≠利用三阶行列式求解三元线性方程组若记,3332323222131211a a b a a b a a b D =,3333123221131112a b a a b a a b a D =,3323122221112113b a a b a a b a a D =2-43-122-4-21D =计算三阶行列式例1.1则三元线性方程组有唯一解:,11DD x =,22DD x =.33DD x =.094321112=xx 求解方程例1.2例1.3 解线性方程组⎪⎩⎪⎨⎧=−+−=−+−=+−.0,132,22321321321x x x x x x x x x 解方程组的系数行列式111312121−−−−=D 5−=,0≠所以方程组有唯一解.因为113111221−−−−=D ,5−=113121212−−−−=D ,10−=0111122213−−−=D ,5−=故方程组的唯一解为:,111==DD x ,222==DD x .133==DD x思考题使得求一个二次多项式),(x f ()()().283,32,01=−==f f f定义1.1由自然数组成的一个有序数组称为一个n 阶排列.通常用表示n 阶排列.n ,,2,1"n j j j "21 定义1.2在一个排列中,如果一个较大数排在一个较小数之前,就称这两个数构成一个逆序.一个排列的逆序总个数称为这个排列的逆序数.排列具有自然顺序,即逆序数为0,称之为自然排列.n "3 2 1 1.2排列排列的逆序数记为).(21n j j j t " n j j j "21如果一个排列的逆序数为偶数,则称这个排列为偶排列,否则称为奇排列.计算排列的逆序数有两种方法:向前记数法和向后记数法.()2179863541()()()321212"−−n n n ()()()()()()kk k k k k 11322212123+−−−"例1.4计算下列排列的逆序数,并讨论它们的奇偶性.定理1.1对换改变排列的奇偶性.在一个排列中,把其中两个数的位置互换,而保持其余数的位置不动,这种变换称为一个对换.定理1.2在全部n 阶排列中,奇偶排列各占一半.()2≥n 定理1.3任意一个n 阶排列可经过一系列对换变成自然排列,并且所作对换次数的奇偶数与这个排列的奇偶性相同.1.3n 阶行列式的概念考察三阶行列式333231232221131211a a a a a a a a a D =332112322311312213aa a a a a a a a −−−(1)三阶行列式的展开式共有3!=6项;(2)每项都是位于不同行不同列的三个元素的乘积,并且每个这样的乘积都出现在展开式中;322113312312332211a a a a a a a a a ++=不难发现以下特征:.)1(321321321321)(333231232221131211∑−=j j j j j j j j j t a a a a a a a a a a a a (4)如果以表示对所有3阶排列求和,则有∑321j j j (3)每项的行指标按自然顺序排列,其正负号取决于列指标构成的排列的奇偶性;其中表示对所有n 阶排列求和.∑nj j j "21定义1.3由数表所确定的n 阶行列式定义为:⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛nn n n n n a a a a a a a a a """""""212222111211()(),121212121212222111211n n nnj j j j j j t j j j nnn n n n a a a a a a a a a a a a """"""""""∑−=n 阶行列式的展开式主对角线副对角线几点说明:(1)行列式是一种特定的算式,它是为求解线性方程组而定义的;(2)n 阶行列式是项的代数和;!n (3)n 阶行列式的每项都是位于不同行不同列的n 个元素的乘积;(5)一阶行列式不要与绝对值记号相混淆;a a =(4)一般项前面所带符号为n nj j j a a a "2121();1)(21nj j j t "−(6)定义中的n 阶行列式可以简记为.n ij a D =例1.5证明上三角行列式nnnna a a a a a D """""""0022211211=.2211nn a a a "=同理可证下三角行列式和对角行列式nnn n a a a a a a """""""21222111000.2211nn a a a "=nna a a """""""0000002211=例1.6试证0000000052514241323125242322211514131211==a a a a a a a a a a a a a a a a D思考题已知()1211123111211xx x xx f −=.3的系数求x注意n 阶行列式的展开式也可表为:()()ni i i i i i t i i i nnn n n nn n n a a a a a a a a a a a a """"""""212122221112112121211∑−==′D ,nna a a %2211"#n n a a a 2112#""2121n n a a a 1.4行列式的性质行列式D'称为行列式D 的转置行列式.记#""n na a a 2112"#2121n n a a a =D nna a a %2211性质1.1行列式与它的转置行列式相等.注意性质1.1表明:行列式中行与列具有同等的地位,因此行列式的性质凡是对行成立的对列也同样成立.性质1.2互换行列式的两行(列)的位置,行列式反号,即推论1.1如果行列式有两行(列)完全相同,则此行列式等于0..111111111111nnn pn p qn q n nn n qn q pn p n a a a a a a a a a a a a a a a a "##"##"##""##"##"##"−=性质1.3用数k 乘行列式的某一行(列),等于用数k 乘此行列式,即nnn n pn p p na a a ka ka ka a a a """""""""""""""""212111211推论1.2如果行列式的某一行(列)元素全为0,则此行列式等于0..212111211nnn n pn p p na a a a a a a a a k """""""""""""""""=推论1.3如果行列式中有两行(列)元素成比例,则此行列式等于0.性质1.4若行列式的某一行(列)的元素都是两数之和,则此行列式等于两个行列式之和,即nn n n pnpn p p p p na a a a a a a a a a a a """""""""""21221111211′+′+′+.212111211212111211nnn n pn p p nnnn n pn p p na a a a a a a a a a a a a a a a a a """"""""""""""""""""""′′′+=nn n qn q pn p n a a a a a a a a "##"##"##"111111.1111111nnn qnq qnpn q p n a a a a ka a ka a a a "##"##"##"++=×k 性质1.5 把行列式的某一行(列)的倍数加到另一行(列)上去,行列式的值不变,即例1.7计算四阶行列式2421164214112111−−−−−=D 例1.8试证3332221113333332222221111112c b a c b a c b a a c c b b a a c c b b a a c c b b a =+++++++++例1.9计算n 阶行列式abbbba b b bbabb b b a D """""""""=具有如下形式的行列式称为反对称行列式,0000321323132231211312"""""""""nnnn n n a a a a a a a a a a a a D −−−−−−=证明:奇数阶反对称行列式等于0.例1.101.5行列式的展开定理312213332112322311322113312312332211a a a a a a a a a a a a a a a a a a −−−++=333231232221131211a a a a a a a a a 注意到三阶行列式可以改写为:()3223332211a a a a a −=()3123332112a a a a a −−()3122322113a a a a a −+323122211333312321123332232211a a a a a a a a a a a a a a a +−=()ij ji ij M A +−=1叫做元素a ij 的代数余子式.例如44434241343332312423222114131211a a a a a a a a a a a a a a a a D =44424134323114121123a a a a a a a a a M =()2332231M A +−=.23M −=行第j 列,由余下的元素按原来的排法构成的n -1 阶行列式叫做元素的余子式,记作ij a .M ij 定义1.4在n 阶行列式中,划去元素所在的第i ij a,44434241343332312423222114131211a a a a a a a a a a a a a a a a D =,33323123222113121144a a a a a a a a a M =().144444444M M A =−=+注意 1.行列式的每个元素都对应一个余子式和一个代数余子式;2.每个元素的余子式和代数余子式只与这个元素的位置有关,而与这个元素的大小无关.n 阶行列式nnn n n n a a a a a a a a a D """""""212222111211=等于它的任意一行(列)的所有元素与其对应的代数余子式乘积之和,即ni A a A a A a D in in i i i i ,,2,1,2211""=+++=),,2,1,(2211n j A a A a A a D nj nj j j j j ""=+++=定理1.4中任一行(列)的所有元素与另一行(列)相应元素的代数余子式乘积之和等于0,即n 阶行列式nnn jn j in i n a a a a a a a a D "##"##"##"111111=.j i ,A a A a A a jn in j i j i ≠=+++02211").,0(2211j i A a A a A a nj ni j i j i ≠=+++"定理1.5关于代数余子式的重要性质⎩⎨⎧≠===∑=.,0,,1j i j i D D A a ij nk kj ki 当当δ⎩⎨⎧≠===∑=;,0,,1j i j i D D A a ij nk jk ik 当当δ则当当如果记⎩⎨⎧≠===,,0,,1,j i j i a D ij nij δ例1.11计算n 阶行列式xyy x y x y x D n 000000000000""#####""=例1.12证明范德蒙德(Vandermonde)行列式.2,)(1111112112222121≥−==∏≤<≤−−−n x xxxxxx xx x x D ni j j in nn n nn n "###"""例1.13计算三对角行列式βααβαββααββα+++=11%%%%%%%n D例1.14,000111111111111nnn n nkn k kk k k b b b b c c c c a a a a D "##""##""##""##"=设,11111kkk ka a a a D "##"=,11112nnn nb b b b D "##"=.21D D D =证明:例1.14中的行列式D 称为准下三角行列式..00011111111111111111111nnn nkk k k nnn nknk nkk k k b b b b a a a a b b b b c c c c a a a a "##""##""##""##""##""##"⋅=同理可以证明准上三角行列式思考题阶行列式设n )1(10001030012321"#%###"""n nD n −−−=求第一行各元素的代数余子式之和.11211n A A A +++"(2)设计一个n 阶行列式D n ,使得并计算这个行列式.,12+++=n n n D D D1.6Cramer法则⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++,,,22112222212111212111n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a """""""""""""""设线性方程组,,,,21不全为零若常数项n b b b "则称此方程组为非齐次线性方程组;此时称方程组为齐次线性方程组.,,,,21全为零若常数项n b b b "如果线性方程组)2.1(22112222212111212111⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a """""""""""""""的系数行列式,0212222111211≠=nnn n nna a a a a a a a a D """"""""""定理1.7则该线性方程组有唯一解:)3.1(.,,,2211D D x D D x DD x n n ===".,,2,1,1,1,121,221,22111,111,111n j a a b a a a a b a a a a b a a D nnj n nj n n nj j nj j j """"""""""""""==+−+−+−其中推论2推论1)4.1(000221122221211212111⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++n nn n n nn n n x a x a x a x a x a x a x a x a x a """""""""""""""的系数行列式,0≠D 如果齐次线性方程组则其只有零解;若(1.4)有非零解,.0=D 则必有如果线性方程组(1.2)无解或有两个不同的解,则它的系数行列式必为零.。
课 题第一章行列式 §1.1二阶与三阶行列式-§1.3 n 阶行列式的定义教学内容二阶与三阶行列式,全排列与逆序数,n 阶行列式的定义教学目标 理解n 阶行列式的定义;掌握几个特殊行列式的求法。
教学重点 n 阶行列式的定义教学难点 n 阶行列式的定义双语教学内容、安排 行列式:determinant ;对角线法则:diagonal rule ;全排列:total permutation教学手段、措施行列式是研究方程组解的问题的重要工具之一。
本次课主要介绍行列式的定义。
教学过程及教学设计备注 第一章 行列式(determinant )§1.1二阶与三阶行列式一、 二阶行列式(determinants of order two ) 引例 解二元线性方程组1112121222(1)(2)a x a yb a x a y b +=⎧⎨+=⎩解:利用消元法解得122122*********b a a b x a a a a -=-,112211211221221a b a b x a a a a -=-于是得定义:规定11222112a a a a -为二阶行列式,并记为22211211a a a a 。
注意:①元素ij a )2,1;2,1(==j i ,i 称行标,j 称列标。
(对教学内容及欲达目的、讲授方法加以说明)本节要求掌握二、三阶行列式定义,及对角线法则。
②对角线法则求2112221122211211a a a a a a a a -=。
③D a a a a a a a a =-=2112221122211211,1222121212221D a b a b b a a b ==-,2221111211211D b a b a a b b a ==- 。
例1 解二元线性方程组⎩⎨⎧=+=-1212232121x x x x 解:由于2412123,1411212,07122321-===-=≠=-=D D D 故3,22211-====DDx D D x 。
最完整的线代基础知识点第1章行列式1.1 n阶行列式1.1.1 二阶、三阶行列式起源:发现规律了,继续~从上述推倒可以看出,行列式说白了就是对方程求解的简化过程。
后续的所有变换也都是基于此的。
了解到根源了,就不难理解了。
知识点:(所有的知识其实都是不成体系的,体系都是人为归纳的,其实知识就是一个一个的点而已)1.对角线法则这个法则只能用在二阶和三阶,高阶有另外的算法,后面会介绍到,耐心往下看吧。
以后看到二三阶可以直接用这个算哦。
2.行列式应用(克莱姆法则)法则啥的就是别人先发现了,就是一个规律。
不用理解,直接记住。
(因为本来就是一个现象)小技巧:再算d1d2d3的时候默念一下d1换1(列)d2换2(列)d3换3(列)。
1.1.2 排列既逆序数起源:逆序数为奇数,为奇排列,偶数为偶排列。
知识点:1.任一排列经过对换后,必改变其奇偶性。
2.所有n阶排列中,奇排列与偶排列个数相同,各有n!/2个。
1.1.3 n阶行列式知识点:1.计算方法前面说了,n阶有其他方法,这个就是其中之一不过比较笨重难算一点。
只要看懂这个式子,这节就ok啦,看不懂的可以评论问我。
2.对角行列式对角行列式等于其对角元素的连乘,再加上一个逆序数。
因为除了去取对角之外但凡取到其他位置上的0,就会让这项变成0。
上三角行列式和下三角行列式与对角行列式类似,不能取0。
好题:1.对行列式中数字的选取规则理解如果不用分块矩阵的话,直接从定义出发,三行用两个书,必有一行选不到非零数。
1.2 行列式的性质知识点:1.行列式与它的转置行列式相同,即行与列为完全等价的。
2.互换行列式的两行或两列,行列式值变号3.若行列式有两行或两列元素相同则其行列式的值为04.行列式的某一行中所有元素都乘以k,等于用k数乘行列式5.如果行列式中某一行的元素都为0,则其值为06.若行列式有两列或两行元素成比例,则其为07.若两个行列式除了一行外相同,则可以相合。
相同的行不变,不同的行相加。
第一章 行列式要求:1) 理解行列式的定义与性质;掌握三阶行列式的对角线计算方法; 2) 利用性质和展开定理会计算四阶行列式以及简单n 阶行列式。
3)掌握克莱姆法则。
1.1 二阶、三阶行列式知识点:二阶、三阶行列式的引入及特征。
一、2阶、3阶行列式由422=个数,按下列形式排成2行2列的方形22211211a a a a , 记作 2D其被定义为一个数:2112221122211211a a a a a a a a -=,由933=个数组成的3行3列的3阶行列式,则按下列形式定义为一个数3D =332112322311312213322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++=一般2阶, 3阶行列式的计算可按对角线法得到。
例1 (1)计算243122421---- 的值。
(2)求094321112=x x的根。
解 (1)14243122421-=---- (2) 0)3)(2(94321112=--=x x x x三阶行列式定义的特征:(1) 共有3!=6项相加,其结果是一个数;(2) 每项有3个数相乘: 321321p p p a a a ,而每个数取自不同行不同列,即行足标固定为123,列足标则是1,2,3 的某个排列 321p p p ;(3) 每项的符号由列足标排列321p p p 的奇偶性决定,即符号是 )(321)1(p p p τ-。
故三阶行列式可写成321321321!3)(3332312322211312113)1(p p p p p p a a a a a a a a a a a a D ∑-==τ1.2 全排列与逆序数知识点: 排列; 逆序。
一、 排列定义1(排列) n 个(不同)自然数 n ,,2,1 组成的一个有序数组 n p p p ,,,21 称作为n 级排列,其中每个自然数 i p 称作(第 i 个)元素。
第一讲Ⅰ 授课题目(章节):§1.1 二阶、三阶行列式;§1.2 n 阶行列式 Ⅱ 教学目的与要求:理解排列的概念,以及逆序数的计算方法;了解行列式的定义和性质,会用行列式的定义及性质计算一些较简单的行列式; 掌握二、三阶行列式的计算法;Ⅲ 教学重点与难点:重点:n 阶行列式的定义 难点:n 阶行列式的定义 Ⅳ 讲授内容: §1.1 二阶、三阶行列式一、二元线性方程组与二阶行列式二元一次方程组的代入消元解法:⎩⎨⎧=+=+)2.....()1.....(2222111211b y a x a b y a x a 1211a a 、不可能同时为0,不妨设011≠a ,则: )()1(1121a a -⨯得:)3.........(1121111211221a ab y a a a x a -=-- )3()2(+得(消去x ):112111121121122211a ab a b y a a a a a -=-即:)4( (21)122211211211a a a a a b b a y --=将(4)代入(1)得:21122211212221a a a a b a a b x --=可见,方程组的解完全可由方程组中的未知数系数22211211,,,a a a a 以及常数项21,b b 表示出来⎪⎪⎩⎪⎪⎨⎧--=--=2112221121121121122211212221a a a a a b b a y a a a a b a a b x ,如果规定记号2112221122211211a a a a a a a a -=,则有:222121212221a b a b b a a b =-,221111211211b a b a a b b a =-因此二元一次方程组的解可以表示为:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==2221121122111122211211222121a a a a b a b a y a a a a a b a b x定义1. 1 记号22211211a a a a 表示代数和21122211a a a a -,称为二阶行列式。