八年级数学下册期末考试试卷4
- 格式:doc
- 大小:458.50 KB
- 文档页数:6
2024—2025学年最新人教新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、已知△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2=b2﹣c2B.a=6,b=8,c=10C.∠A=∠B+∠C D.∠A:∠B:∠C=3:4:52、下列命题正确的是()A.对角线相等的四边形是平行四边形B.对角线相等且互相平分的四边形是菱形C.对角线垂直且互相平分的四边形是矩形D.对角线垂直、相等且互相平分的四边形是正方形3、在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4B.1:2:2:1C.1:2:1:2D.1:1:2:2 4、直线y=3x+1向下平移2个单位,所得直线的解析式是()A.y=3x+3B.y=3x﹣2C.y=3x+2D.y=3x﹣15、一次函数y=﹣2x﹣4的图象上有两点A(﹣3,y1)、B(1,y2),则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.无法确定6、演讲比赛中,有11名学生参加比赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的()A.众数B.方差C.平均数D.中位数7、我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭生其中,出水一尺.引葭赴岸,适与岸齐.问水深几何.”(丈、尺是长度单位,1丈=10尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度是多少?则水深为()A.10尺B.11尺C.12尺D.13尺8、一次函数y=ax+b的自变量和函数值的部分对应值如下表所示:x05y35则关于x的不等式ax+b>x的解集是()A.x<5B.x>5C.x<0D.x>09、如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN若MN=2,则OM=()A.3B.4C.5D.610、如图,矩形ABCD被直线OE分成面积相等的两部分,BC=2CD,CD=11DE,若线段OB,BC的长是正整数,则矩形ABCD面积的最小值是()A.B.81C.D.121二、填空题(每小题3分,满分18分)11、要使式子有意义,则a的取值范围是.12、已知一次函数y=(2﹣m)x﹣3m+9的图象经过第一、二、四象限,则m的取值范围为.13、如图,将矩形纸片ABCD沿AE折叠,顶点B落在CD边上点F处,若AB =3,BC=2,则DF=.14、如图是“赵爽弦图”,其中△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,AH=6,那么EF等于.15、已知四边形ABCD是菱形,周长是40,如果AC=16,那么菱形ABCD的面积为.16、如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,P为AB上任意一点,PF⊥AC于F,PE⊥BC于E,则EF的最小值是.2024—2025学年最新人教新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:()﹣1+|2﹣|﹣(﹣1)2024.18、主题演讲比赛,比赛的成绩分为A、B、C、D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,校团委随机抽取部分学生的比赛成绩,并将结果绘制成如图所示的两幅不完整的统计图.根据统计图中的信息,解答下列问题:(1)被抽取的学生共有人,B等级的学生有人;(2)本次演讲成绩的中位数落在等级,扇形图中D组对应扇形的圆心角为度;(3)若该校共有100名同学参加了此次演讲比赛,请估计比赛成绩不低于90分的学生共有多少名?19、如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交AB和AC于点D,E,并且BE平分∠ABC.(1)求∠A的度数;(2)若CE=1,求AB的长.20、如图,在Rt△ABC中,∠ABC=90°,AB<BC,D是AC的中点,过点D作DE⊥AC交BC于点E,延长ED至F,使DF=DE,连接AE,AF,CF.(1)求证:四边形AECF是菱形;(2)若BE=1,EC=4,求EF的长.21、如图,在直角坐标系中,点A(2,m)在直线y=2x﹣上,过点A的直线交y轴于点B(0,3).(1)求m的值和直线AB的函数表达式;(2)若点P(t,y1)在线段AB上,点Q(t﹣1,y2)在直线y=2x﹣上,求y1﹣y2的最大值.22、如图,O为坐标原点,一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点,半径为2的⊙O经过A、B两点.(1)写出A、B两点的坐标;(2)求此一次函数的解析式;(3)求圆心O到直线AB的距离.23、当排球和足球纳入中招考试体育加试后,这两种球的销量逐步提升.某体育用品商店看准时机,第一次购入30个排球和70个足球共花费4550元.第二次购入60个排球和40个足球共花费4100元.商店将排球和足球以50元/个和70元/个的价格出售,前两次进货很快销售一空.(1)求每个排球和足球的进价.(2)该商店准备第三次购入排球和足球共200个,根据市场需求,排球的购买个数不少于40个且不超过100个.购买时生产厂家对排球进行了优惠,规定购买排球不超过50个时保持原价,超过50个时超过的部分打八折.设第三次进货销售完的总利润为W元(利润=销售额﹣成本),其中购进排球x个.①求W与x的函数关系式.②商店为了回馈顾客,开展促销活动.将其中的m(m为正整数)个排球按30元/个,3m个足球按50元/个进行销售.若第三次进货销售完后,获得的最大利润不能低于3000元,求m的最大值.24、如图,在平面直角坐标系xOy中,四边形OABC的顶点是O(0,0),A(2,2),B(4,2),C(4,0),点P是x轴上一动点,连接OB,AP.(1)求直线OB的解析式;(2)若∠P AO=∠AOB,求点P的坐标;(3)当点P在线段OC(点P不与点C重合)上运动时,设P A与线段OB 相交于点D,以DA,DC为边作平行四边形ADCE,连接BE,求BE的最小值.25、如图,点E是正方形ABCD边BC上一动点(不与B、C重合),CM是外角∠DCN的平分线,点F在射线CM上.(1)当∠CEF=∠BAE时,判断AE与EF是否垂直,并证明结论;(2)若在点E运动过程中,线段CF与BE始终满足关系式CF=BE.①连接AF,证明的值为常量;②设AF与CD的交点为G,△CEG的周长为a,求正方形ABCD的面积.八年级下学期数学期末考试(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟11、a≥﹣112、2<m<3 13、14、2 15、96 16、4.8三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、2+218、(1)20,5 (2)C,72 (3)4019、(1)30°;(2).20、(1)证明略(2)21、(1)m=AB的表达式为y=﹣x+3 (2)22、(1)A(2,0),B(0,2);(2)y=﹣x+2;(3)圆心O到直线AB的距离为.23、(1)排球的进价为每个35元,足球的进价为每个50元;(2)①W=;②m的最大值为10.24、(1)直线OB的解析式为.(2)点P的坐标为(1,0)或(﹣2,0).(3)BE的最小值为.25、(1)AE⊥EF;(2)①=;②.。
青岛版八年级数学下册期末检测题四一选择题1.下列根式中是最简二次根式的是 ( )A 12+x B 22y x C 18 D 5.02.已知21aa -=a a-1,则a 的取值范围是 ( ) A a ≤0 B a <0 C 0<a ≤1 D a >03.如图所示,已知△ABC 中,∠ABC =450,AC =4,H 是高AD 和BE 的交点,则线段BH 的长度为 ( ) A 6 B 4 C 23 D 54. 如图,AC 是矩形ABCD 的对角线,E 是边BC 延长线上的一点,AE 与CD 相交于点F , 则图中的相似三角形共有 ( ) A 2对 B 3对 C 4对 D 5对。
(3题图) (4题图) (6题图) (8题图) 5.在Rt △ABC 中,如果每个边都缩小为原来的41,则锐角A 的余弦值 ( )A 缩小41B 扩大4倍C 没有变化D 不能确定 6.正方形网格中,∠AOB 如图放置,则cos ∠AOB 的值为 ( ) A55 B 552 C 21 D 27.下列命题中是真命题的是 ( )A 若︱a ︱=︱b ︱,则a =bB 若a 2=b 2,则a =bC 相等的两个角一定是对顶角D 两组角对应相等的两个三角形相似8.将一直角三角形与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=900;(4)∠4+∠5=1800,其中正确的个数是 ( ) A 1 B 2 C 3 D 49. 若一组数据2,4,x ,6, 8的平均数是6,则这组数据的方差是 ( ) A 22 B 8 C 210 D 40 二填空题10.化简:(1)22()-= ;(2)︱1-2︱= ;(3) (32)2=D C A BH E ┑ E B D C FA A OB 1 2 34511.计算 8+31-221=12.体育老师对甲、乙两名同学分别进行了8次调高测试,经计算,这两名同学成绩的平均数相同,,甲同学 的方差是s 2甲=6.4,乙同学的方差是s 2乙=8.2,那么这两名同学跳高成绩比较稳定的是 同学。
2024年全新八年级数学下册期末试卷及答案(人教版)一、选择题1. 若a²4a+4=0,则a的值为()A. 2B. 2C. 0D. 2或22. 下列各式中,正确的是()A. (a+b)²=a²+b²B. (a+b)²=a²+2ab+b²C. (a+b)²=a²+b²+2abD. (a+b)²=a²+b²2ab3. 已知x²+y²=1,则x²y²的最大值为()A. 1B. 2C. 1D. 04. 若一个等腰三角形的底边长为6,腰长为5,则其周长为()A. 16B. 15C. 14D. 125. 若一个圆柱的底面半径为2,高为3,则其体积为()A. 12πB. 18πC. 24πD. 36π6. 下列各式中,不正确的是()A. (a+b)³=a³+b³B. (a+b)³=a³+3a²b+3ab²+b³C. (a+b)³=a³+b³+3a²b+3ab²D. (a+b)³=a³+b³+3a²b3ab²7. 若一个正方形的边长为a,则其面积为()A. a²B. a³C. a⁴D. a⁵8. 若一个球的半径为r,则其表面积为()A. 4πr²B. 4πr³C. 4πr⁴D. 4πr⁵9. 若一个圆锥的底面半径为r,高为h,则其体积为()A. πr²hB. πr³hC. πr⁴hD. πr⁵h10. 下列各式中,正确的是()A. (a+b)⁴=a⁴+b⁴B. (a+b)⁴=a⁴+4a³b+6a²b²+4ab³+b⁴C. (a+b)⁴=a⁴+b⁴+4a³b+6a²b²+4ab³D. (a+b)⁴=a⁴+b⁴+4a³b6a²b²+4ab³二、填空题11. 若a²+b²=1,则a+b的最大值为_________。
2023-2024学年八年级下学期期末考数学试卷一.选择题(共12小题,每小题3分,共36分。
每小题给出的四个选项中,只有一项符合题目要求。
请用2B铅笔将答题卡上对应题目的答案标号涂黑。
)1.(3分)10表示()A.10的算术平方根B.10的平方根C.10的平方D.10的立方2.(3分)下列各式,没有意义的是()A.5−3B.(−5)2C.−5D.−53.(3分)下列二次根式是最简二次根式的是()A.2B.4C.8D.124.(3分)下列运算中,正确的是()A.2+3=5B.2+3=23C.(3)2=3D.(−2)2=−2 5.(3分)实施“双减”政策后,为了解我县初中生每天完成家庭作业所花时间及质量情况,根据以下四个步骤完成调查:①收集数据;②分析数据;③制作并发放调查问卷;④得出结论,提出建议和整改意见.你认为这四个步骤合理的先后排序为()A.①②③④B.①③②④C.③①②④D.②③④①140°,则∠B的度数是()6.(3分)如图,在▱ABCD中,∠A=A.40°B.70°C.110°D.140°7.(3分)在数学活动课上,同学们在判断一个四边形门框是否为矩形,下面是几个学习小组拟定的方案,其中正确的是()A.测量对角线是否互相平分B.测量两组对边是否分别相等C.测量对角线是否相等D.测量其中三个内角是否都为直角8.(3分)若一次函数y=kx+b的图象经过点P(﹣2,3),则2k﹣b的值为()A.2B.﹣2C.3D.﹣39.(3分)如图,▱ABCD的顶点A(0,4),B(﹣3,0),以点B为圆心,AB长为半径画弧,交BC于点E,分别以点A,E为圆心,以大于12A的长为半径画弧,两弧在∠ABE 的内部相交于点F,画射线BF交AD于点G,则点G的坐标是()第1页(共19页)。
017-2018学年下学期期末考试八年级数学试题说明:1.考试用时100分钟,满分为120分;2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卷上填写自己的姓名、考试号、座位号等;3.考生必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效;4.考生务必保持答题卷的整洁.考试结束时,将答题卷交回.一、选择题(本大题10小题,每小题3分,共30分;在每小题列出的四个选项中,只有一个是正确的,请将正确答案填写在答题卷相应的位置上).1.有意义,则x 的取值范围是( ). A .3x ≥B .3x >C .3x ≤D .3x <2.下列各式中属于最简二次根式的是( ).A B .12D .5.0 3.一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90.则这五个数据的中位数是( ).A .90B .95C .100D .1054.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ). A .甲B .乙C .丙D .丁5.下列各组数中,不能构成直角三角形的是( ).A .3,4,5B .6,8,10C .4,5,6D .5,12,13 6.点A (1,-2)在正比例函数(0)y kx k =≠的图象上,则k 的值是( ). A .1B .-2C .12D .12-7.一次函数y =3x -2的图象不经过( ).A .第一象限B .第二象限C .第三象限D .第四象限8.如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点, 若BC =6,则DE 等于( ). A .3 B .4 C .5 D .69.如图,□ABCD 中,下列说法一定正确的是( ). A .AC =BD B .AC ⊥BD C .AB =CD D .AB =BC10.如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ). A .210cmB .220cmC .240cmD .280cm第9题图 第10题图二、填空题(本大题6小题,每小题4分,共24分;请将下列各题的正确答案填写在答题卷相应的位置上).11.在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,4,9,8,8,则这组数据的众数是.12.若x 、y 为实数,且满足,则x +y 的值是.13.在直角三角形中,两条直角边分别是3cm 和4cm ,则斜边上的中线长是cm . 14.一次函数y =(m -3)x +5的函数值y 随着x 的增大而减小,则m 的取值范围. 15.一次函数y =kx +3的图象如图所示,则方程kx +3=0的解为.16.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为__________.三、解答题(一)(本大题3小题,每小题6分,共18分). 17.01)-+.18.已知,如图在ΔABC 中,AB =BC =AC =2cm ,AD 是边BC 上的高.求AD 的长.第15题图第16题图(1)1B 1C 1D 1A BC D D 2A 2B 2C 2D 1C 1B 1A 1A BC D 第16题图(2)19.如图,□ABCD 中,E 、F 分别是AD 、BC 的中点,求证:BE =DF .四、解答题(二)(本大题3小题,每小题7分,共21分). 20.一次函数y =2x -4的图像与x 轴的交点为A ,与y 轴的交点为B . (1)A ,B 两点的坐标分别为A (,),B (,); (2)在平面直角坐标系中,画出此一次函数的图像.21.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?22.如图,在海上观察所A ,我边防海警发现正北5km 的B 处有一可疑船只正在向东方向12km 的C 处行驶.我边防海警即刻派船前往C 处拦截.若可疑船只的行驶速度为60km/h ,则我边防海警船的速度为多少时,才能恰好在C 处将可疑船只截住?12km CAB 5km五、解答题(三)(本大题3小题,每小题9分,共27分). 23.观察下列各式:312311=+; 413412=+; 514513=+;…… 请你猜想:(1=,=;(2) 计算(请写出推导过程). (3)请你将猜想到的规律用含有自然数n (n ≥1)的代数式表达出来. .24.如图1,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F .(1)求证:BF =DF ;(2)如图2,过点D 作DG ∥BE ,交BC 于点G ,连结FG 交BD 于点O .①求证:四边形BFDG 是菱形; ②若AB =3,AD =4,求FG 的长.25.已知一次函数y =kx +b 的图象过P (1,4),Q (4,1)两点,且与x 轴交于A 点.(1)求此一次函数的解析式; (2)求△POQ 的面积;(3)已知点M 在x 轴上,若使MP +MQ 的值最小, 求点M 的坐标及MP +MQ 的最小值.参考答案1-10、ABBBC BBACA11、912、013、14、m<315、x=316、62517、18、19、证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,DE∥BF,∴四边形DEBF是平行四边形,∴BE=DF.20、解:(1)A(2,0)、B(0,-4).(2)作直线AB,直线AB就是此一次函数的图象.21、(1)乙组第一名、甲组第二名(2)甲组成绩最高22、23、24、(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②∵AB=3,AD=4,∴BD=5.25、解:(1)把P(1,4),Q(4,1)代入一次函数解析式,则此一次函数的解析式为y=-x+5;(2)对于一次函数y=-x+5,令y=0,得到x=5,∴A(5,0),(3)如图,作Q点关于x轴的对称点Q′,连接PQ′交x轴于点M,则MP+MQ的值最小.∵Q(4,1),∴Q′(4,-1).设直线PQ′的解析式为y=mx+n.2017-2018八年级(下)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确,请将你认为正确答案的序号填在题后的括号内)1.(3分)要使二次根式有意义,字母的取值范围是()A.x≥B.x≤C.x>D.x<2.(3分)下列计算正确的是()A.+=B.2+=2C.=+D.﹣=03.(3分)下列四组线段中,可以构成直角三角形的是()A.1,, B.2,3,4 C.1,2,3 D.4,5,64.(3分)一次函数y=﹣x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)在中山市举行“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下:则在这次活动中,该班同学捐款金额的众数和中位数分别是()A.20元,30元B.20元,35元C.100元,35元D.100元,30元6.(3分)10名学生的平均成绩是x,如果另外5名学生每人得90分,那么整个组的平均成绩是()A.B.C. D.7.(3分)如图,在平行四边形ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF 等于()A.2 B.3 C.4 D.68.(3分)矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分9.(3分)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB 的长为()A.B.2 C.D.210.(3分)直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分,请将答案直接填写在题中的横线上)11.(3分)计算:=.12.(3分)某茶叶厂用甲,乙,丙三台包装机分装质量为200g的茶叶,从它们各自分装的茶叶中分别随机抽取了20盒,得到它们的实际质量的方差如下表所示:根据表中数据,可以认为三台包装机中,包装茶叶的质量最稳定是.13.(3分)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是.14.(3分)一次函数y=(2m﹣1)x+1,若y随x的增大而增大,则m的取值范围是15.(3分)如图,已知一次函数y=kx+b的图象如图所示,当y≤0时,x的取值范围是.16.(3分)某公司招聘一名人员,应聘者小王参加面试和笔试,成绩(100分制)如表所示:如果面试平均成绩与笔试成绩按6:4的比确定,请计算出小王的最终成绩.17.(3分)如图,E为正方形ABCD对角线BD上一点,且BE=BC,则∠DCE=.18.(3分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC,AD=3,DF=1,四边形DBEC面积是三、解答题(3小题,共32分)19.(20分)计算:(1)+﹣(2)2(3)(+3﹣)(4)(2﹣3)2﹣(4+3)(4﹣3)20.(6分)如图,四边形ABCD中,AB=AD=2,BC=3,CD=1,∠A=90°,请问△BCD是直角三角形吗?请说明你的理由.21.(6分)已知:实数a,b在数轴上的位置如图所示,化简:+2﹣|a﹣b|.四、解答题(2小题,共16分)22.(8分)如图,已知直线l1:y=2x+3,直线l2:y=﹣x+5,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.23.(8分)如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)试判断四边形AEBO的形状,并说明你的理由;(2)求证:EO=DC.五、解答题(2小题,共18分)24.(9分)某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如表所示该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润25.(9分)四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE 于点H.(1)如图1,当点E、F在线段AD上时,求证:∠DAG=∠DCG;(2)如图1,猜想AG与BE的位置关系,并加以证明;(3)如图2,在(2)条件下,连接HO,试说明HO平分∠BHG.2017-2018学年广东省潮州市湘桥区八年级(下)期末数学试卷参考答案一、选择题1.B ;2.D ;3.A ;4.C ;5.A ;6.D ;7.C ;8.C ;9.C ;10.B ; 二、填空题 11.﹣; 12.乙; 13.18; 14.m >; 15.x ≤2;16.89.6分; 17.22.5°; 18.4;三、解答题(3小题,共32分)19.(1)4(2)35 (3)23 (4)49-20.21.;四、解答题(2小题,共16分) 22.23、五、解答题(2小题,共18分)24、25、2017-2018学年下学期期末考试八年级数学试卷一、选择题(本大题共12小题,每小题3分,共36分在每小题给出的A、B、C、D四个选项中,只有一项符合题目要求.)1.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)【专题】常规题型.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.【解答】解:点M(1,2)关于y轴对称点的坐标为(-1,2).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2.如图所示是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项错误.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.关于函数y=﹣x+3,下列结论正确的是()A.它的图象必经过点(1,1)B.它的图象经过第一、二、三象限C.它的图象与y轴的交点坐标为(0,3)D.y随x的增大而增大【专题】函数及其图象.【分析】根据一次函数的性质对各选项进行逐一判断即可.【解答】解:A、∵当x=1时,y=2,∴图象不经过点(1,1),故本选项错误;B、∵k=-1<0,b=3>0,∴图象经过第一、二、四象限,故本选项错误C、∵当x=0时,y=3,∴图象与y轴的交点坐标为(0,3),故本选项正确;D、∵k=-1<0,∴y随x的增大而减小,故本选项错误;故选:C.【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0),当k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降是解答此题的关键.4.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.5【分析】由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,故选:C.【点评】此题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.5.如图所示的是一扇高为2m,宽为1.5m的长方形门框,光头强有一些薄木板要通过门框搬进屋内,在不能破坏门框,也不能锯短木板的情况下,能通过门框的木板最大的宽度为()A.1.5m B.2m C.2.5m D.3m【专题】计算题.【分析】利用勾股定理求出门框对角线的长度,由此即可得出结论.【解答】故选:C.【点评】本题考查了勾股定理的应用,利用勾股定理求出长方形门框对角线的长度是解题的关键.6.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,解得DE=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键.7.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5 B.4.2 C.5.8 D.7【分析】利用垂线段最短分析AP最小不能小于3;利用含30度角的直角三角形的性质得出AB=6,可知AP最大不能大于6.此题可解.【解答】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故选:D.【点评】本题主要考查了垂线段最短的性质和含30度角的直角三角形的理解和掌握,解答此题的关键是利用含30度角的直角三角形的性质得出AB=6.8.如图,四边形ABCD是长方形,AB=3,AD=4.已知A(﹣,﹣1),则点C的坐标是()A.(﹣3,)B.(,﹣3)C.(3,) D.(,3)【分析】由矩形的性质可知AB=CD=3,AD=BC=4,【解答】解:∵四边形ABCD是长方形,∴AB=CD=3,AD=BC=4,故选:D.【点评】本题主要考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.9.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.∠BAD=∠BCD,AB∥CDC.AD∥BC,AD=BC D.AB=CD,AO=CO【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,对每个选项进行筛选可得答案.【解答】解:A、根据对角线互相平分,可得四边形是平行四边形,故此选项可以证明四边形ABCD是平行四边形;B、根据AB∥CD可得:∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又由∠BAD=∠BCD可得:∠ABC=∠ADC,根据两组对角对应相等的四边形是平行四边形可以判定;C、根据一组对边平行且相等的四边形是平行四边形可以证明四边形ABCD是平行四边形;D、AB=CD,AO=CO不能证明四边形ABCD是平行四边形.故选:D.【点评】本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.10.如图,一艘巡逻船由A港沿北偏西60°方向航行5海里至B岛,然后再沿北偏东30°方向航行4海里至C岛,则A、C两港相距()A.4海里B.海里 C.3海里D.5海里【专题】计算题.【分析】连接AC,根据方向角的概念得到∠CBA=90°,根据勾股定理计算即可.【解答】解:连接AC,由题意得,∠CBA=90°,故选:B.【点评】本题考查的是勾股定理的应用和方向角,掌握勾股定理、正确标注方向角是解题的关键.11.如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买5千克这种苹果比分五次购买1千克这种苹果可节省()元.A.4 B.5 C.6 D.7【分析】观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式,再分别求出当x=1和x=5时,y值,用10×5-44即可求出一次购买5千克这种苹果比分五次购买1千克这种苹果节省的钱数.【解答】解:设y关于x的函数关系式为y=kx+b,当0≤x≤2时,将(0,0)、(2,20)代入y=kx+b中,∴y=8x+4(x≥2).当x=1时,y=10x=10;当x=5时,y=44.10×5-44=6(元).故选:C.【点评】本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式是解题的关键.12.已知:如图,在矩形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点F从点B 出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点F的运动时间为y秒,当y的值为()秒时,△ABF和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【分析】分点F在BC上和点F在AD上两种情况进行讨论,根据题意得出BF=2t=2和AF=16-2t=2即可求得.【解答】解:当点F在BC上时,∵在△ABF与△DCE中,∴△ABF≌△DCE,由题意得:BF=2t=2,所以t=1,点F在AD上时,∵在△ABF与△DCE中,∴△ABF≌△DCE,由题意得:AF=16-2t=2,解得t=7.所以,当t的值为1或7秒时.△ABF和△DCE全等.故选:C.【点评】本题考查了全等三角形的判定,关键是根据三角形全等的判定方法有:ASA,SAS,AAS,SSS,HL解答.二、填空题(本大题共6小题,每小题3分,共18分13.将直线y=2x+4向下平移3个单位,则得到的新直线的解析式为.【专题】一次函数及其应用.【分析】根据函数的平移规律,可得答案.【解答】解:将直线y=2x+4向下平移3个单位,得y=2x+4-3,化简,得y=2x+1,故答案为:y=2x+1.【点评】本题考查了一次函数图象与几何变换,利用函数图象的平移规律:上加下减,左加右减是解题关键.14.在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第象限.【专题】平面直角坐标系.【分析】根据各象限内点的坐标特征,可得答案.【解答】解:由点A(x,y)在第三象限,得x<0,y<0,∴x<0,-y>0,点B(x,-y)在第二象限,故答案为:二.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).15.若三角形三边分别为6,8,10,那么它最长边上的中线长是.【专题】计算题.【分析】根据勾股定理的逆定理可得三角形是直角三角形,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【解答】解:∵三角形三边分别为6,8,10,62+82=102∴该三角形为直角三角形.∵最长边即斜边为10,∴斜边上的中线长为:5.故答案为:5.【点评】此题主要考查学生对勾股定理的逆定理及直角三角形斜边上的中线的性质的理解及运用.16.如图,在▱ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.则▱ABCD的周长为,面积为.【分析】根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到BC=13.根据从而求得该平行四边形的周长;根据直角三角形的面积可以求得平行四边形BC边上的高.【解答】解:∵BE、CE分别平分∠ABC、∠BCD,∵AD∥BC,AB∥CD,∴∠2=∠3,∠BCE=∠CED,∠ABC+∠BCD=180°,∴∠1=∠2,∠DCE=∠CED,∠3+∠BCE=90°,∴AB=AE,CD=DE,∠BEC=90°,在直角三角形BCE中,根据勾股定理得:BC=13cm,根据平行四边形的对边相等,得到:AB=CD,AD=BC,∴平行四边形的周长等于:AB+BC+CD+AD=6.5+13+6.5+13=39cm.故答案为:39cm,60cm2.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.17.如图,直线AB的解析式为y=x+4,与y轴交于点A,与x轴交于点B,点P为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,则线段EF的最小值为.【专题】函数及其图象.【分析】由矩形的性质可知EF=OP,可知当OP最小时,则EF有最小值,由垂线段最短可知当OP ⊥AB时,满足条件,由条件可证明△AOB∽△OPB,利用相似三角形的性质可求得OP的长,即可求得EF的最小值.【解答】∴A(0,4),B(-3,0).∵PE⊥y轴于点E,PF⊥x轴于点F,∴四边形PEOF是矩形,且EF=OP,∵O为定点,P在线段上AB运动,∴当OP⊥AB时,OP取得最小值,此时EF最小,∵A(0,4),点B坐标为(-3,0),∴OA=4,O B=3,故答案为125【点评】本题考查的是一次函数图象上点的坐标特点,熟知坐标轴上点的坐标特点是解答此题的关键.18.如图,某小区有一块直角三角形绿地,量得直角边AC=4m,BC=3m,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一条直角边的直角三角形,则扩充的方案共有种.【专题】分类讨论.【分析】由于扩充所得的等腰三角形腰和底不确定,若设扩充所得的三角形是△ABD,则应分为①AB=AD,②AB=BD,③AD=BD,3种情况进行讨论.【解答】解:如图所示:故答案是:3.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用,关键是正确进行分类讨论.三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)19.(7分)如图,点E、F在线段BD上,AF⊥BD,CE⊥BD,AD=CB,DE=BF,求证:AF=CE.【专题】常规题型.【分析】首先证明BE=DF,然后依据HL可证明Rt△ADF≌Rt△CBE,从而可得到AF=CE.【解答】证明:∵DE=BF,∴DE+EF=BF+EF,即DF=BE.∴Rt△ADF≌Rt△CBE.∴AF=CE.【点评】本题主要考查的是全等三角形的性质和判定,熟练掌握全等三角形的性质和判定定理是解题的关键.20.(8分)直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的表达式.(2)若直线AB上有一动点C,且S△BOC=2,求点C的坐标.【专题】常规题型.【分析】(1)根据待定系数法得出解析式即可;(2)设C点坐标,根据三角形面积公式解答即可.【解答】解:(1)设直线解析式为y=kx+b,∵直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).【点评】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.21.(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,(1)请在所给的网格内画出以线段AB、BC为边的菱形,并写出点D的坐标.(2)线段BC的长为,菱形ABCD的面积等于【专题】作图题;网格型.【分析】(1)菱形要求四边相等,根据AB,BC的位置及长度可确定D点位置及坐标,如图所示;(2)在网格中,运用勾股定理求BC、对角线AC,BD的长度,再计算面积.【解答】(1)解:正确画出图(4分)D(-2,1)(5分)【点评】本题考查了菱形的性质,图形画法,菱形面积的求法及勾股定理的运用,需要形数结合,培养学生动手能力.22.(8分)为了庆祝即将到来的2018年国庆节,某校举行了书法比赛,赛后整理了参赛同学的成绩,并制作了如下两幅不完整的统计图表请根据以上图表提供的信息,解答下列问题:(1)这次共调查了名学生;表中的数m= ,n= .(2)请补全频数直方图;(3)若绘制扇形统计图,则分数段60≤x<70所对应的扇形的圆心角的度数是.【专题】统计的应用.【分析】(2)求出70~80的人数,画出直方图即可;(3)根据圆心角=360°×百分比即可解决问题;【解答】解:(1)30÷0.15=200,m=200×0.45=90,故答案为200,90,0.30.(2)频数直方图如图所示,故答案为54°【点评】本题考查了数据的分析,以及读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(8分)某产品每件的成本为10元,在试销阶段每件产品的日销售价x(元)与产品的日销售量y(件)之间的关系如下表:(1)观察与猜想y与x的函数关系,并说明理由.(2)求日销售价定为30元时每日的销售利润.【专题】常规题型.【分析】(1)设y与x的函数关系式为y=kx+b,任取两对,利用待定系数法求函数解析式;(2)将x=30代入求得y的值,然后依据销售利润=每件的利润×销售件数即可.【解答】解:(1)设经过点(15,25)(20,20)的函数关系式为y=kx+b.∴y=-x+40.∴y与x的函数关系式是y=-x+40;(2)当x=30时,y=-30+40=10,每日的销售利润=(30-10)×10=200元.【点评】本题主要考查待定系数法求一次函数解析式,熟练掌握待定系数法求一次函数解析式的步骤和方法是解题的关键.24.(8分)如图,点B、C分别在直线y=2x和y=kx上,点A、D是x轴上的两点,且四边形ABCD是正方形.(1)若正方形ABCD的边长为2,则点B、C的坐标分别为.(2)若正方形ABCD的边长为a,求k的值.【专题】一次函数及其应用.【分析】(1)根据正方形的边长,运用正方形的性质表示出点B、C的坐标;(2)根据正方形的边长,运用正方形的性质表示出C点的坐标,再将C的坐标代入函数中,从而可求得k的值.【解答】解:(1)∵正方形边长为2,∴AB=2,在直线y=2x中,当y=2时,x=1,∴B(1,2),∵OA=1,OD=1+2=3,∴C(3,2)故答案为:(1,2),(3,2);【点评】本题主要考查正方形的性质与正比例函数的综合运用,灵活运用正方形的性质是解题的关键.25.(9分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.【点评】本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形是等边三角形是解决问题的关键.26.(10分)如图1,在正方形ABCD中,点E是AB上一点,点F是AD延长线上一点,且DF=BE,连接CE、CF.(1)求证:CE=CF.(2)在图1中,若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题,如图2,在四边形ABCD。
人教版八年级下学期期末考试数学试卷及答案(共四套)人教版八年级下学期期末考试数学试卷(一)一、选择题1.下列各式中,化简后能与2合并的是A。
12B。
8C。
$\frac{2}{3}$D。
$\frac{2}{5}$2.以下以各组数为边长,不能构成直角三角形的是A。
5,12,13B。
1,2,5C。
1,3,2D。
4,5,63.用配方法解方程$x^2-4x-1=0$,方程应变形为A。
$(x+2)^2=3$B。
$(x+2)^2=5$C。
$(x-2)^2=3$D。
$(x-2)^2=5$4.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是A。
矩形B。
菱形C。
正方形D。
无法判断5.下列函数的图象不经过第一象限,且y随x的增大而减小的是A。
$y=-x$B。
$y=x+1$C。
$y=-2x+1$D。
$y=x-1$6.下表是两名运动员10次比赛的成绩,$s_1^2$,$s_2^2$ 分别表示甲、乙两名运动员测试成绩的方差,则有成绩。
|。
8分。
|。
9分。
|。
10分。
|甲(频数)|。
4.|。
2.|。
3.|乙(频数)|。
3.|。
2.|。
5.|A。
$s_1^2>s_2^2$B。
$s_1^2=s_2^2$C。
$s_1^2<s_2^2$D。
无法确定7.若$a,b,c$满足$\begin{cases}a+b+c=0,\\\ a-b+c=0,\end{cases}$则关于$x$的方程$ax^2+bx+c=0(a\neq 0)$的解是A。
1,0B。
-1,1C。
1,-1D。
无实数根8.如图,在△ABC中,$AB=AC$,$MN$是边$BC$上一条运动的线段(点$M$不与点$B$重合,点$N$不与点$C$重合),且$MN=\frac{1}{2}BC$,$MD\perp BC$交$AB$于点$D$,$NE\perp BC$交$AC$于点$E$,$BM=NC=x$,$\triangle BMD$和$\triangle CNE$的面积之和为$y$,则下列图象中,能表示$y$与$x$的函数关系的图象大致是A。
八年级下册数学期末综合测试题4一、选择题(每小题3分,共36分)1.函数中自变量的取值范围是( )A. B.C.D. 2.下列计算正确的是( )A.B.C.D.3.已知△ABC 的三边分别是a 、b 、c ,下列条件中不能判断△ABC 为直角三角形的是( )A .∠A:∠B :∠C =3:2:1B .∠A +∠B =∠C C.a =l ,b =3,c =D .a :b :c =1:2:34.若A(1, )与点B(3,)都在直线上,则与的关系是( )A.B.C.D.与有关,无法确定5.已知点A (x 1,y1)、B (x 2,y 2)在直线y=kx +b (k ≠0)上,当x 1<x 2时,y 1>y 2,且kb>0,则直线y =kx +b (k ≠0)的图象大致是( )A .B .C .D .6.如果一组数据x 1,x 2,…,x n 的平均数为,方差为s 2,则数据x 1﹣a ,x 2﹣a ,…,x n ﹣a 的平均数和方差分别是( )A .,s 2B .,s 2﹣aC .,s 2﹣a 2D .,s 27.如图,两根木条钉成一个角形框架∠AOB ,且∠AOB =120°,AO =BO =2cm ,将一根橡皮筋两端固定在点A ,B 处,拉展成线段AB ,在平面内,拉动橡皮筋上的一点C ,当四边形OACB 是菱形时,橡皮筋再次被拉长了( )A .2cmB .4cmC .(4﹣4)cm D .(4﹣2)cm8.如图,△ABC 中,∠B=45°,BC=,D 是边AB 上靠近点B 的三等分点,∠ADC=∠A ,则CD 的长为( )A.2B.9.如图,在菱形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,连接EF 、FG 、GH 、HE. 若EH=3EF ,则下列结论正确的是( )A. B. C. D. BB13y x =-x 2x ≤3x =2x <23x x ≥≠且326()a a -=326a a a ⋅=a ==m n yb =+m n m n >m n <m n =b 52AB =AB =3AB EF =AB =10. 如图,点O 是矩形ABCD 的对角线BD 的中点,点E 为AD 的中点,连接OE 、OC 、CE ,若BC =12,CD =5,则△COE 的周长为( )A .12B .9+C .21D .9+11.如图,正方形ABCD 的对角线相交于点O ,点O 又是正方形A 1B 1C 1O 的一个顶点而且这两个正方形的边长相等,给出如下四个结论:①∠OEF =45°;②正方形A 1B 1C 1O 绕点O 旋转时,四边形OEBF 面积随EF 的长度变化而变化;③△BEF 周长的最小值为OA ;④AE 2+CF 2=2OB 2.其中所有正确的个数有( )A .1个B.2个C.3个D.4个12.如图①,在正方形ABCD 中,点E 是AB 的中点,点P 是对角线AC 上一动点,设PC =x ,PE +PB =y ,图②是y 关于x 的函数图象,且图象上最低点Q 的坐标为(,2),则正方形ABCD 的边( )A .6B .3C .4D .4二、填空题(每小题3分,共18分)13. 要使n 和都是正整数,则n 最小为 .14.学校举行演讲比赛,共有15名同学进入决赛,比赛将评出金奖1名,银奖3名,铜奖4名.某参赛选手知道自己的分数后,要判断自己能否获奖,他应当关注的有关成绩的统计量是 (填“平均数”、“中位数”或“众数”).15.平行四边形ABCD 绕点A 逆时针旋转30°,得到平行四边形AB 'C 'D '(点B '与点B 是对应点,点C '与点C 是对应点,点D '与点D 是对应点),点B '恰好落在BC 边上,B 'C '与CD 交于点E ,则∠CEB '= .16.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a =5,b =8,则该矩形的面积为_______.17.如图,在矩形ABCD 中,M 为BC 边上一点,连接AM ,过点D 作DE ⊥AM ,垂足为E .若DE =DC =1,AE =2EM ,则BM 的长为 .18.如图,直线y =﹣x +2与x 轴交于A ,与y 轴交于B ,点P 在经过点B 的直线y =x +b 上,当△PAB 是等腰直角三角形时,点P 的坐标是 .三、填空题(共46分)19.计算题: 20. 在“书香绵州•美丽绵阳”全民阅读的团体朗诵比赛活动中,甲、乙两队参赛者(各10人)的身高(单位:cm )如下表所示:甲168167170165169166171168167170乙165166169170165169170171169166(1)补充完成下面的统计分析表:身高代表队平均数方差中位数极差甲168 1686乙1684.6(2)在初赛成绩一样的情况下,如果要在甲、乙两队中选取身高更整齐的代表以参加决赛、请选一个恰当的统计量作为选择标准,说明选派哪支代表队更合适,21. 如图,在边长为6的正方形ABCD 内作∠EAF =45°,AE 交BC 于点E ,AF 交CD 于点F,连接EF ,将△ADF 绕点A 顺时针旋转90°得到△ABG .(1)求证:GE =FE ;(2)若DF =3,求BE 的长.22. 为了抗击新冠疫情,我市甲、乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量是甲厂的2倍少100吨.这批防疫物资将运往A 地240吨,B 地260吨,运费如下表(单位:元/吨).目的地生产厂AB甲2025乙15241(1)(1)π--+21)+-(1)求甲、乙两厂各生产了这批防疫物资多少吨?(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元.求y与x之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨运费均降低m元(0<m≤15且m为整数)时,按(2)中设计的调运方案运输,总运费不超过5200元.求m的最小值.23.如图,已知菱形ABCD中,E是BC边上一动点,连接AE交BD于点F,连接FC.(1)如图1,求证:∠FAD=∠FCD;(2)如图2,若AB=10,BD=16,当△CEF为直角三角形时,求EC的长.24.如图,矩形OABC在直角坐标系中,顶点B的坐标为(4,n)对角线OB,AC交于D.直线y=nx﹣n分别与OA,AC,OB交于P,M,N.(1)求DP的长.(用含n的式子表示.)(2)M是否为线段PN的中点?请说明理由.(3)当CN=2MN时,求n的值.。
专业课原理概述部分一、选择题(每题1分,共5分)1. 若 a > 0,b < 0,则a² 与b² 的大小关系是:A. a² < b²B. a² > b²C. a² = b²D. 无法确定2. 下列函数中,奇函数是:A. y = x²B. y = |x|C. y = x³D. y = sin(x)3. 若一个三角形的两边长分别为3和4,那么第三边的长度可能是:A. 6B. 7C. 5D. 84. 方程x² 5x + 6 = 0 的解是:A. x = 2 或 x = 3B. x = 1 或 x = 6C. x = 2 或 x = 3D. x = 1 或 x = 65. 若一组数据的平均数为10,标准差为2,则这组数据中约有:A. 68% 的数据在8到12之间B. 95% 的数据在6到14之间C. 99.7% 的数据在4到16之间D. 100% 的数据在0到20之间二、判断题(每题1分,共5分)6. 任何两个奇数之和都是偶数。
()7. 对角线互相垂直的四边形一定是菱形。
()8. 二次函数的图像一定与x轴相交。
()9. 任何实数的平方都是非负数。
()10. 两条平行线上的对应角相等。
()三、填空题(每题1分,共5分)11. 若一个等差数列的首项为2,公差为3,则第10项为______。
12. 若一个等比数列的首项为3,公比为2,则第5项为______。
13. 若sin(θ) = 0.6,则cos(θ) = ______。
14. 若一个圆的半径为5,则其直径为______。
15. 若一个长方体的长、宽、高分别为2、3、4,则其体积为______。
四、简答题(每题2分,共10分)16. 简述等差数列和等比数列的定义。
17. 简述勾股定理的内容。
18. 简述二次函数图像的性质。
八年级下册数学期末考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()A. a/2B. a√2C. 2aD. a²2. 下列函数中,哪一个不是二次函数?()A. y = 2x² 3x + 1B. y = x² + 4C. y = 3x + 2D. y = 5x² 4x + 13. 在直角坐标系中,点(3, -4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的周长为()A. 32cmB. 36cmC. 42cmD. 46cm5. 若|a| = 5,则a的值为()A. 5 或 -5B. 5C. -5D. 0二、判断题(每题1分,共5分)6. 若a > b,则a² > b²。
()7. 两个等腰直角三角形的面积一定相等。
()8. 一次函数的图像是一条直线。
()9. 对角线互相垂直的四边形一定是菱形。
()10. 若x² = 9,则x的值只能是3。
()三、填空题(每题1分,共5分)11. 若一个圆的半径为r,则这个圆的面积是_________。
12. 二次函数y = ax² + bx + c的顶点坐标是_________。
13. 若一个等差数列的首项是2,公差是3,则这个数列的第三项是_________。
14. 在直角坐标系中,点(0, b)位于_________。
15. 若一个正方形的对角线长为10cm,则这个正方形的面积是_________。
四、简答题(每题2分,共10分)16. 简述等腰三角形的性质。
17. 解释一次函数图像的斜率代表什么。
18. 什么是二次函数的顶点?如何找到它?19. 描述平行四边形的性质。
20. 什么是等差数列?给出一个例子。
五、应用题(每题2分,共10分)21. 一个长方形的长是宽的两倍,如果长方形的周长是30cm,求长方形的长和宽。
可编辑修改精选全文完整版八年级数学下册期末试卷(附含答案)(满分:120分;考试时间:120分)一、选择题(共10小题,每小题3分,满分30分) 1、使1x -有意义的x 的取值范围是( )A x >1B x >-1C x ≥1D x ≥-1 2、在根式xy 、12、2ab 、x y -、2x y 中,最简二次根式有( )A 1个B 2个C 3个D 4个 3、下列计算正确的是( )A 20210=B 5630⨯=C 2236⨯=D 2(3)3-=- 4、一元二次方程x (x-2)=2-x 的根式( )A -1B 2C 1和2D -1和2 5、下列命题中,真命题的个数有( )①对角线互相平分的四边形是平行四边形; ②两组对角分别相等的四边形是平行四边形; ③一组对边平行,另一组对边相等的四边形是平行四边形;A 3个B 2个C 1个D 0个 6、在△ABC 中,三边长分别为a 、b 、c ,且a+c=2b ,c-a=12b ,则△ABC 是( )A 直角三角形B 等边三角形C 等腰三角形D 等腰直角三角形 7、某公司为了解职工参加体育锻炼情况,对职工某一周平均每天锻炼 (跑步或快走)的里程进行统计(保留整数),并将他们平均每天锻炼 的里程数据绘制成扇形统计图,关于他们平均每天锻炼里程数据 下列说法不正确的是( )A 平均每天锻炼里程数据的中位数是2B 平均每天锻炼里程数据的众数是2C 平均每天锻炼里程数据的平均数是2.34D 平均每天锻炼里程数不少于4km 的人数占调查职工的20% 8、疫情期间居民为了减少外出时间,更愿意使用APP 在线上购物,某购物APP 今年二月份用户比一月份增加了44%,三月份用户比二月份增加了21%,则二、三两个月用户的平均每月增长率是( )A 28%B 30%C 32%D 32.5% 9、有两个一元二次方程:M :ax 2+bx+c=0,N :cx 2+bx+a=0,以下四个结论中,错误的是( ) A 如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根 B 如果方程M 有两根符号相同,那么方程N 也有两根符号相同 C 如果5是方程M 的一个根,那么15是方程N 的一个根D 如果方程M和方程N有一个相同的实数根,那么这个跟必是x=110、△ABC中,∠C=30°,AC=6,BD是△ABC的中线,∠ADB=45°,则AB=()二、填空题(共6小题,每小题3分,满分18分)11的结果是12、已知关于x的一元二次方程x2-bx+8=0,一个根为2,则另一个根是13、有一棵9米高的大树,如果大树距离地面4米处这段(没有断开),则小孩至少离开大树米之处才是安全的。
2023年部编版八年级数学(下册)期末试卷及答案(A4打印版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是( )A .-2B .12-C .12D .22.已知35a =+,35b =-,则代数式22a ab b -+的值是( )A .24B .±26C .26D .253.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .24.若6-13的整数部分为x ,小数部分为y ,则(2x +13)y 的值是( )A .5-313B .3C .313-5D .-35.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 6.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( )A .3B .4C .5D .68.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .7010.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x <52(1)x -+|x-5|=________.2.函数132y x x =--+中自变量x 的取值范围是__________. 3.若2|1|0a b -++=,则2020()a b +=_________.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E=________度.6.如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)257320x y x y -=⎧⎨-=⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.先化简,再求值:(a ﹣2b )(a+2b )﹣(a ﹣2b )2+8b 2,其中a=﹣2,b=12.3.已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩. (1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求x 的取值范围.4.如图,已知AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC=CD .(1)求证:△BCE ≌△DCF ;(2)求证:AB+AD=2AE.5.如图1,在菱形ABCD 中,AC =2,BD =3AC ,BD 相交于点O .(1)求边AB 的长;(2)求∠BAC 的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD 的顶点A 处,绕点A 左右旋转,其中三角板60°角的两边分别与边BC ,CD 相交于点E ,F ,连接EF .判断△AEF 是哪一种特殊三角形,并说明理由.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、B5、D6、A7、D8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、42、23x -<≤3、14、(-4,2)或(-4,3)5、:略6、132三、解答题(本大题共6小题,共72分)1、(1)55x y =⎧⎨=⎩;(2)64x y =⎧⎨=⎩.2、4ab ,﹣4.3、(1)a ≥2;(2)-5<x <14、略5、(1)2;(2)60︒ ;(3)见详解6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。
徐州十中数学八年级期末复习(4)图形的相似班级: 姓名: 评价:一、选择题:(每题4分,共24分)1、下列图形中不一定是相似图形的是 ( )A 、两个等边三角形B 、两个等腰直角三角形C 、两个长方形D 、两个正方形2、.已知△ABC ∽△A 1B 1C 1,且∠A=50°,∠B=95°,则∠C 1等于 ( )A 、50°B 、95°C 、35°D 、25°3. 在△ABC 中,D 、E 是AB 、AC 上的点,且DE ∥BC ,DE =1,BC =3,AB =6,则AD 的长为 A .1 B .1.5 C .2 D .2.5 ( )4. 已知:如图,小明在打网球时,要使球恰好能打过网,而且落在离网5米的位置上,则球拍击球的高度h 应为 ( )A .0.9mB .1.8mC .2.7mD .6m5. 两相似三角形的周长之比为1:4,那么他们的对应边上的高的比为 ( )A .1∶2B .2∶2C .2∶1D .1∶46. 如图,ΔABC 中,∠C=90°,CD ⊥AB ,DE ⊥AC ,则图中与ΔABC 相似的三角形有 ( )A .1个B .2个C .3个D .4个二、填空题:(每空2分,共26分)1. 在比例尺为1∶500000的中国地图上,量得徐州市与南京市相距7.6厘米,那么徐州市与南京市两地的实际相距 千米。
2、.两个相似三角形的周长比是2:3,则它们对应边的比是_______对应角平分线的比是________对应中位线的比是________对应中线的比是_______面积的比是3、如图1,D 、E 分别在ABC ∆的边AC 、AB 上,请你添加一个 使得 ADE ∆ 与原 A B C ∆ 相似 。
4、如图2,B C ∥EF,且BE 交CF 与A 点,若EF :BC=1:2,则AB :AE=5、 如图3,如果B C ∠∠=则图中相似三角形有_______对,分别是:__________________________________________________________________________.NO3NO2NO1BC B C6、 已知:Rt ABC ∆中,0ACB=90,D BC 5AC 12CD AB ∠⊥交于,若=,=,则 CD =________ AD =_________, DB =_________ 三、解答题:(40分)例1在4×4的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上。
浙教版2021-2022学年八年级数学下册期末复习卷(4)一.选择题1.九年级某班30位同学的体育素质测试成绩统计如表所示,其中两个数据被遮盖,下列关于成绩的统计量中,与被遮盖的数据无关的是()成绩24252627282930人数▄▄23679 A.平均数,方差B.中位数,方差C.中位数,众数D.平均数,众数2.用反证法证明“四边形至少有一个角是钝角或直角”时,应先假设()A.四边形中每个角都是锐角B.四边形中每个角都是钝角或直角C.四边形中有三个角是锐角D.四边形中有三个角是钝角或直角3.已知x与y成反比例,z与x成正比例,则y与z的关系是()A.成正比例B.成反比例C.既成正比例也成反比例D.以上都不是4.如图,在正方形ABCD中,E、F分别是BC、CD上的点,若△AEF是边长为2的等边三角形,则正方形的边长是()A.B.+1C.+D.5.如图1,▱ABCD的对角线交于点O,▱ABCD的面积为120,AD=20.将△AOD、△COB 合并(A与C、D与B重合)形成如图2所示的轴对称图形,则MN+PQ=()A.29B.26C.24D.256.如图,点A,B分别是反比例函数y=﹣(x<0)和y=﹣(x<0)图象上的点,且AB∥x轴,点C在x轴上,则△ABC的面积是()A.4B.5C.6D.87.如图,点A(5a﹣1,2)、B(8,a)都在反比例函数y=(k≠0)的图象上,点P是直线y=x上的一个动点,当P A+PB最小时,点P坐标是()A.(,)B.(,)C.(3,3)D.(4,4)8.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2﹣4ac=(2ax0+b)2.其中正确的()A.①②④B.①②③C.①③④D.②③④9.如图,将矩形纸片ABCD的四个角向内折起,恰好拼成一个无缝隙,无重叠的四边形EFGH,设AB=a,BC=b,若AH=1,则()A.a2=4b﹣4B.a2=4b+4C.a=2b﹣1D.a=2b+110.如图,在▱ABCD中,AB=6,AD=8,将△ACD沿对角线AC折叠得到△ACE,AE与BC交于点F,则下列说法正确的是()A.当∠B=90°时,则EF=2B.当F恰好为BC的中点时,则▱ABCD的面积为12C.在折叠的过程中,△ABF的周长有可能是△CEF的2倍D.当AE⊥BC时,连接BE,四边形ABEC是菱形二.填空题11.若点(﹣2,y1),(﹣1,y2),(1,y3)都在反比例函数y=的图象上,则y1,y2,y3的大小关系是.12.如图,▱ABCD的面积为32,E,F分别为AB、AD的中点,则△CEF的面积为.13.已知矩形的周长为10,面积为6,则它的对角线长为.14.如图,在△ABC中,已知AB=8,BC=5,点D,E分别为BC,AC的中点,BF平分∠ABC交DE于点F,则EF的长为.15.如图,反比例函数y1=和一次函数y2=ax+b的图象交于点A(﹣1,2),B(2,﹣1)两点,则当﹣2<y1<y2<时,x的取值范围为.16.在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,且点A(0,﹣2),点B (m,m+1),点C(6,2).(1)线段AC的中点E的坐标为;(2)对角线BD长的最小值为.三.解答题17.用适当的方法求解下列方程:(1)x2﹣2x﹣1=0;(2)(x+4)2=5(x+4).18.解答下列各题.(1)计算:÷﹣+;(2)已知:y=﹣﹣2020,求x+y的平方根.19.开学后,某区针对各校在线教学进行评比,A校通过初评决定从甲、乙两个班中推荐一个作为在线教学先进班级,如表是这两个班的四项指标的考评得分表(单位:分):班级课程质量在线答疑作业情况课堂参与甲班105107乙班8897请根据统计表中的信息解答下列问题:(1)请确定如下的“四项指标的考评得分分析表”中的a=,b=;班级平均分众数中位数甲班810a乙班8b8(2)如果A校把“课程质量”、“在线答疑”、“作业情况”、“课堂参与”这四项指标得分按照2:3:2:3的比例确定最终成绩,请你通过计算判断应推荐哪个班为在线教学先进班级?(3)通过最终考评,A校总共36个班级里有3个班级获得在线教学先进班级,若该区所有学校总共有1200个班级数,估计该区总共有多少班级可获得在线教学先进班级?20.某商店经销一种成本为每千克20元的水产品,据市场分析,若按每千克30元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,解答以下问题.(1)当销售单价定为每千克35元时,销售量是千克、月销售利润是元;(2)商店想在月销售成本不超过6000元的情况下,使得月销售利润达到8000元,销售单价应为多少?21.某一农家计划利用已有的一堵长为8m的墙,用篱笆圈成一个面积为12m2的矩形ABCD 花园,现在可用的篱笆总长为11m.(1)若设AB=x,BC=y.请写出y关于x的函数表达式;(2)若要使11m的篱笆全部用完,能否围成面积为15m2的花园?若能,请求出长和宽;若不能,请说明理由;(3)若要使11m的篱笆全部用完,请写出y关于x的第二种函数解析式.请在坐标系中画出两个函数的图象,观察图象,满足条件的围法有几种?请说明理由.22.如图,在菱形ABCD中,∠ABC=60°,AB=8,点P在对角线BD上(不与点B,D 重合),PE∥BC,PF∥DC.(1)若P是线段BD中点.则四边形PECF的周长为,四边形PECF的面积为;(2)点P在线段BD上运动时,四边形PECF的周长是否为定值,请说明理由.(3)设PE=x,求四边形PECF的面积(用含x的代数式表示),并说明x为何值时,四边形PECF面积有最大值.23.如图,已知在矩形ABCD中,点E在AB边上,F在CE边上,且∠ACD=∠DAF.(1)当∠CAF=30°时,求矩形的长宽之比;(2)若∠CAF=∠ECB,请回答下列问题;①设∠ACE=x,∠CAF=y,求y关于x的表达式;②若EB=1,求CF的长.参考答案一.选择题1.解:这组数据中成绩为24、25的人数和为30﹣(2+3+6+7+9)=3,则这组数据中出现次数最多的数30,即众数30,第15、16个数据都是29,则中位数为29,故选:C.2.解:用反证法证明“四边形中至少有一个角是钝角或直角”时第一步应假设:四边形中每个角都是锐角.故选:A.3.解:∵x与y成反比例,z与x成正比例,∴设x=,z=ax,故x=,则=,故yz=ka(常数),则y与z的关系是:成反比例.故选:B.4.解:∵△AEF是边长为2的等边三角形,∴∠EAF=60°,AE=AF,∴∠BAE+∠DAF=30°,∵AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL),∴∠BAE=∠DAF=15°,如图,作∠AEH=∠BAE=15°,交AB于H,∴∠BHE=30°,AH=HE,∴HE=2BE=AH,BH=BE,∴AB=(2+)BE,∵AE2=BE2+AB2,∴4=BE2+(2+)2×BE2,∴BE=(﹣1)=,∴AB=(2+)BE=,故选:D.5.解:如图,连接PQ,则可得对角线PQ⊥MN,且PQ与平行四边形的高相等.∵平行四边形纸片ABCD的面积为120,AD=20,∴MN=AD=20,,∴PQ=6,又MN=20,∴MN+PQ=26,故选:B.6.解:连接AO,BO,延长AB交y轴于点D,∵AB∥x轴,∴S△ABO=S△ABC,S△ABO=S△ADO﹣S△BDO=﹣=4.∴S△ABC=4.故选:A.7.解:∵A(5a﹣1,2)、B(8,a)都在反比例函数y=(k≠0)的图象上,∴(5a﹣1)×2=8a,∴a=1,∴A(4,2),B(8,1),∴A关于直线y=x的对称点A'(2,4),设直线A'B的函数关系式为:y=kx+b,∴,∴k=,b=5,∴y=﹣,∵P为A'B与直线y=x的交点,∴,∴,∴,故选:B.8.解:①若a+b+c=0,则x=1是方程ax2+bx+c=0的解,由一元二次方程的实数根与判别式的关系可知:Δ=b2﹣4ac≥0,故①正确;②方程ax2+c=0有两个不相等的实根,∴Δ=0﹣4ac>0,∴﹣4ac>0则方程ax2+bx+c=0的判别式Δ=b2﹣4ac>0,∴方程ax2+bx+c=0必有两个不相等的实根,故②正确;③∵c是方程ax2+bx+c=0的一个根,则ac2+bc+c=0,∴c(ac+b+1)=0,若c=0,等式仍然成立,但ac+b+1=0不一定成立,故③不正确;④若x0是一元二次方程ax2+bx+c=0的根,则由求根公式可得:x0=,∴2ax0+b=,∴b2﹣4ac=(2ax0+b)2,故④正确.故正确的有①②④,故选:A.9.法一、解:∵∠HEJ=∠AEH,∠BEF=∠FEJ,∴∠HEF=∠HEJ+∠FEJ=×180°=90°,同理可得:∠EHG=∠HGF=∠EFG=90°,∴四边形EFGH为矩形,∴EH=FG,∵四边形ABCD是矩形,∴∠A=∠B=∠D=∠C=90°,∴∠AEH+∠AHE=∠AHE+∠DHG=∠DHG+∠DGH=∠DGH+∠CGF=90°,∴∠AEH=∠CGF,∴△AEH≌△CGF(AAS),∴CF=AH=1,由折叠的性质的,AE=EJ=BE=AB=a,∴=,∴a2=4b﹣4,故选:A.法二、解:根据题意可得:△AEH≌△JEH≌△CGF≌△KGF,△BEF≌△JEF≌△DGH ≌△KGH.∵AH=1,∴HJ=FK=CF=1,∵BF=b﹣1,∴AE=JE=EB,∴EB=AB=a,∵JF=BF,∴HF=HJ+JF=b,∵HE2=AH2+AE2,EF2=EB2+BF2,∴HE2=1+,EF2=+(b﹣1)2,∵HF2=HE2+EF2,∴b2=1+++(b﹣1)2,即a2=4b﹣4.故选:A.10.解:A、如图1中,∵∠B=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB,∵∠DAC=∠CAE,∴∠ACF=∠CAF,∴AF=CF,设AF=CF=x,在Rt△ABF中,则有x2=62+(8﹣x)2,解得x=,∴EF=8﹣=,故选项A不符合题意.B、如图2中,当BF=CF时,∵AF=CF=BF,∴∠BAC=90°,∴AC===2,∴S平行四边形ABCD=AB•AC=6×2=12,故选项B符合题意.C、在折叠过程中,△ABF与△EFC的周长相等,选项C不符合题意.D、如图3中,当AE⊥BC时,四边形ABEC是等腰梯形,选项D不符合题意.故选:B.二.填空题11.解:∵m2+1>0,∴在图象的每一支上y随x的增大而减小,∵(﹣2,y1),(﹣1,y2)都在反比例函数y=的图象上的第三象限,∴y2<y1<0,∵(1,y3)在反比例函数y=的图象上的第一象限,∴y3>0,∴y2<y1<y3,故答案为:y2<y1<y3.12.解:连接AC、DE、BD,如图:∵E为AB中点,∴S△BCE=S△ABC=S平行四边形ABCD=8,同理可得:S△CDF=8,∵F为AD中点,∴S AEF=S△AED=S△ABD=S平行四边形ABCD=4,∴S△CEF=S平行四边形ABCD﹣S△AEF﹣S△BCE﹣S△CDF=32﹣8﹣8﹣4=12;故答案为:12.13.解:设矩形的一边长为x,则另一边长(﹣x),依题意有x(﹣x)=6,解得:x1=2,x2=3,则﹣x=3或2,则它的对角线长为=.故答案为:.14.解:∵在△ABC中,D、E分别是BC、AC的中点,AB=8,∴DE∥AB,DE=AB=4.∴∠ABF=∠DFB.∵BF平分∠ABC,∴∠ABF=∠DBF.∴∠DBF=∠DFB∴FD=BD=BC=×5=.∴FE=DE﹣DF=4﹣=1.5.故答案为:1.5.15.解:∵反比例函数y1=和一次函数y2=ax+b的图象交于点A(﹣1,2),B(2,﹣1)两点,∴k=﹣1×2=﹣2,,∴,∴反比例函数为y1=﹣,一次函数y2=﹣x+1,把y=代入y2=﹣x+1求得x=;把y=﹣2代入y1=﹣,求得x=1;∴由图可得,当﹣2<y1<y2<1时,x的取值范围是1<x<2,故答案为1<x<2.16.解:(1)∵点A(0,﹣2),点C(6,2),∴线段AC中点E的坐标为(3,0),故答案为:(3,0);(2)∵点B(m,m+1),∴点B在直线y=x+1上运动,则直线y=x+1与x轴交于点F(﹣1,0),∠BFO=45°,如图,当BE⊥直线y=x+1时,BE有最小值,即BD有最小值,此时,EF=3﹣(﹣1)=4,∵∠BFE=45°,∠EBF=90°,∴∠BFE=∠BEF,∴BE=BF,EF=BE,∴BE=2,∴BD的最小值=4,故答案为4.三.解答题17.解:(1)∵x2﹣2x﹣1=0,∴x2﹣2x=1,则x2﹣2x+1=1+1,即(x﹣1)2=2,∴x﹣1=±,∴,;(2)∵(x+4)2=5(x+4),∴(x+4)2﹣5(x+4)=0,则(x+4)(x﹣1)=0,∴x+4=0或x﹣1=0,解得x1=﹣4,x2=1.18.解:(1)原式=﹣+=4﹣+=4﹣.(2)由二次根式有意义可得:,解得x=2021.∴y==﹣2020.∴x+y=2021﹣2020=1.故x+y的平方根为±1.19.解:(1)甲班四项指标得分从小到大排列后,处在中间位置的两个数的平均数为=8.5,即a=8.5;乙班四项指标得分出现次数最多的是8,因此众数是8,即b=8;故答案为:8.5,8;(2)甲==7.6,==7.9,乙∵7.6<7.9,∴推荐乙班为先进班级;(3)1200×=100(个),答:该区总共有100个班级可获得在线教学先进班级.20.解:(1)500﹣10×(35﹣30)=450(千克),(35﹣20)×450=6750(元).故答案为:450;6750.(2)设销售单价应为x元/千克,则每千克的利润为(x﹣20)元,月销售量为500﹣10(x﹣30)=(800﹣10x)千克,依题意得:(x﹣20)(800﹣10x)=8000,整理得:x2﹣100x+2400=0,解得:x1=40,x2=60.当x=40时,20(800﹣10x)=8000>6000,不合题意,舍去;当x=60时,20(800﹣10x)=4000<6000,符合题意.答:销售单价应为60元/千克.21.解:(1)由题意得:xy=12,即y=,故y关于x的函数表达式为y=(0<x<5.5);(2)能,理由:设AB=x,则BC=11﹣2x,由题意得:x(11﹣2x)=15,解得x=2.5或3;即长为6m宽为2.5m或长为5m宽为3m.(3)设AB=x,BC=y,则y=11﹣2x(1.5≤x<5.5),画出2个函数的图象如下:从图象看,两个函数的交点的横坐标为x=1.5和4,即同时满足题干条件,故满足条件的围法有2种.22.解:(1)∵如图,连接AC,交BD于点O,∵四边形ABCD是菱形,∴AB=BC=8=AD=CD,∠CBD=∠ABD,∠ADB=∠CDB,AC⊥BD,∴∠CBD=∠ABD=∠ADB=∠CDB=30°,∵∠ABC=60°,AB=BC,∴△ABC是等边三角形,∴AC=AB=8,∴BO=DO=4,∵PE∥BC,PF∥DC,∴四边形PECF是平行四边形,∠BPF=∠BDC,∠DPE=∠DBC,∴PE=FC,PF=CE,∠FBP=∠FPB,∠DPE=∠CDB,∴BF=PF,DE=PE,∴四边形PECF的周长=PE+FP+CF+CE=BF+CF+DE+CE=BC+CD=16,∵P是线段BD中点,∴点P与点O重合,∴∠FPC=∠FCP=60°,∴PF=FC=BF,∴S△PFC=S△BPC,∴四边形PECF的面积=S△BPC=×4×4=8,故答案为:16,8;(2)四边形PECF的周长是定值,理由如下,∵PE∥BC,PF∥DC,∴四边形PECF是平行四边形,∠BPF=∠BDC,∠DPE=∠DBC,∴PE=FC,PF=CE,∠FBP=∠FPB,∠DPE=∠CDB,∴BF=PF,DE=PE,∴四边形PECF的周长=PE+FP+CF+CE=BF+CF+DE+CE=BC+CD=16;(3)如图2,过点P作PH⊥BC于H,∵PE=x=FC,∴BF=8﹣x=PF,∵∠PFH=∠DBC+∠BPF=60°,PH⊥BC,∴FH=PF=,PH=×,∴四边形PECF面积=CF×PH=x•(8﹣x)=﹣(x﹣4)2+8,∴当x=4时,四边形PECF面积的最大值为8.23.解:(1)∵四边形ABCD是矩形,∴AB∥CD,∠BAD=90°,∴∠ACD=∠BAC,∵∠ACD=∠DAF,∴∠BAC=∠DAF,∴∠BAC﹣∠CAF=∠DAF﹣∠CAF,∴∠BAF=∠CAD,∵∠CAF=30°,∴∠BAF=∠CAD=,∴△ACD是含30°的直角三角形,∴AD:DC=,即矩形的长宽之比为;(2)①设∠ACE=x,∠CAF=y,∴∠BCE=∠CAF=y,∵四边形ABCD是矩形,∴AD∥BC,∠BCD=90°,∴∠CAD=∠ACB=∠BCF+∠ACE=x+y,∵∠ACD=∠DAF=∠CAF+∠CAD=y+x+y=x+2y,∴∠BCD=∠ACD+∠ACE+∠BCE=90°,∴x+2y+x+y=90°,∴y=30°﹣x,②延长EB至G,使BG=BE,连接CG,如图所示:∵四边形ABCD是矩形,∴AB∥CD,AD∥BC,∵∠DCA=∠DAF,∴∠BAC=∠DAF,∴∠EAF=∠DAC,∵∠AFE=∠F AC+∠ACE,∠ACB=∠ECB+∠ACE,∠F AC=∠ECB,∴∠AFE=∠ACB,∵AD∥BC,∴∠ACB=∠DAC,∴∠EAF=∠EF A,∴AE=EF,∵AB⊥BC,BG=BE,∴CG=CE,∴∠ECB=∠GCB,∵∠ACG=∠ACB+∠BCG,∠ACB=∠CAD,∴∠ACG=∠DAF=∠BAC,∴AG=CG,又∵CE=CG,∴CE=AG,∴CF+EF=AE+2EB,∴CF=2EB=2.。
D A B C ABCDEGF人教版八年级下册期末考试数学试卷4班级______________姓名______________(20120613)一、选择题(每题3分,共36分)1、下列各式中,分式的个数有( )31-x 、12+a b 、πy x +2、21--m 、a +21、22)()(y x y x +-、x 12-、115- A 、2个 B 、3个 C 、4个 D 、5个 2、如果把223yx y-中的x 和y 都扩大5倍,那么分式的值( )A 、扩大5倍B 、不变C 、缩小5倍D 、扩大4倍3、已知正比例函数y =k 1x (k 1≠0)与反比例函数y =2kx(k 2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是( ) A. (2,1) B. (-2,-1) C. (-2,1) D. (2,-1)4、一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为( )A .10米 B .15米 C .25米 D .30米5、一组对边平行,并且对角线互相垂直且相等的四边形是( )A 、菱形或矩形B 、正方形或等腰梯形C 、矩形或等腰梯形D 、菱形或直角梯形 6、把分式方程12121=----xx x 的两边同时乘以(x -2), 约去分母,得( )A .1-(1-x)=1B .1+(1-x)=1C .1-(1-x)=x -2D .1+(1-x)=x -2 7、如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是( ) A 、直角三角形 B 、锐角三角形 C 、钝角三角形 D 、 以上答案都不对(第7题) (第8题) (第9题)8、如图,等腰梯形ABCD 中,AB ∥DC ,AD=BC=8,AB=10,CD=6,则梯形ABCD 的面积是( )A 、1516B 、516C 、1532D 、17169、如图,一次函数与反比例函数的图像相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是( )A 、x <-1B 、x >2C 、-1<x <0,或x >2D 、x <-1,或0<x <210、在一次科技知识竞赛中,两组学生成绩统计如下表,通过计算可知两组的方差为2S 172甲=,2S 256乙=。
八年级数学下册期末考试试卷
(满分100分 考试时间100分钟)
一、选择题(本大题共10小题,每小题2分,共20分,每小题有且只有一个答案正确,请将正确答案的字母代号填入下面对应的空格内)
1.不等式34
x -
>-的解是( ) A 、4x > B 、4x < C 、1x > D 、1x <
2.化简22
x y y x y x
-
--的结果是( ) A 、x y -- B 、y x - C 、x y - D 、x y +
3.若线段5AB cm =,点C 是线段AB 的一个黄金分割点,则AC 的长为(单位:cm )( ) A 、6.18 B 、6.18或3.82 C 、3.09 D 、3.09或1.91
4.大纵湖旅游风景区中某两个景点之间的距离为75米,在一张比例尺为1:2000的导游图上,它们之间的距离大约相当于( ) A 、一根火柴的长度 B 、一支钢笔的长度 C 、一支铅笔的长度 D 、一根筷子的长度
5.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方形的表面展开图的一部分,则从其余的小正方形任取一个涂上阴影,能构成这个正方体的表面展开图的概率是( ) A 、
27 B 、37 C 、47 D 、5
7
6.如图,下列推理中,正确的个数有( )
①若14∠=∠,则//AD BC
②若0
123180∠+∠+∠=,则//AB CD ③若//AD BC ,BD 平分ABC ∠,则13∠=∠
④若//AB CD ,//AD BC ,则1234∠=∠=∠=∠ (A )1个 (B )2个 (C )3个 (D )4个
7.如图,DEF ∆是由ABC ∆经过位似变换得到的,点O 是 位似中心,D ,E ,F 分别是OA ,OB ,OC 的中点,则DEF ∆ 与ABC ∆的面积比是( )
A 、1:2
B 、1:4
C 、1:5
D 、1:6
8.在四川抗震救灾中,某抢险地段需实行爆破,操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域,已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒。
为了保证操作人员的安全,导火线的长度要超过( ) A 、66厘米 B 、76厘米 C 、86厘米 D 、96厘米
9.如图,在平面直角坐标系中,函数(0,0)k
y x k x
=
>>常数 的图象经过点A (1,2),B (m ,n ),(其中1m >),过点B 作y 轴的垂线, 垂足为C 。
若ABC ∆的面积为2,则点B 的坐标为( ) A 、(3,
23) B 、(2,1) C 、(2,1
3
) D 、(3,1) 10.如图为ABC ∆与DEC ∆重叠的情形,其中E 在BC 上,
AC 交DE 于F 点,且//AB DE 。
若ABC ∆与DEC ∆的面积相等, 且9EF =,12AB =,则DF =( ) A 、3 B 、7 C 、12 D 、15
二、填空题(本大题共10小题,每小题2分,共20分)
11.若分式3
3
x x --的值为零,则x 的值等于 。
12.若不等式组530
0x x m -≥⎧⎨-≥⎩
有实数解,则实数m 的取值范围是
13.如图,D 、E 分别是ABC ∆的边AB 、AC 上的点,则使AED ∆~ABC ∆的条件是 。
(写出一个即可)
14.如图,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果2
3
BE BC =,那么
BF
FD
= 。
15.如图,一次函数11y x =-与反比例函数22
y x
=
的图象交于点A (2,1),B (-1,-2),则使12y y >的x 的取值范围是 。
16.当m = 时,关于x 的分式方程
213
x m
x +=--无解。
17.命题“矩形的对角线相等”的逆命题是 ,这个逆命题是 命题(填“真”或“假”)
18.如图是小明设计用手电来测量某古城墙高度的示意图。
点P 处放一水平的平面镜,光线
从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB BD ⊥,
CD BD ⊥,且测得 1.2AB m =, 1.8BP m =,12PD m =,那么该古城墙的高度是 m 。
19.如图所示的扇形图给出的是地球上海洋、陆地的表面积约占地球总表面积的百分比,若宇宙中有一块陨石落在地球上,则它落在海洋中的概率是_______________。
20.两个反比例函数(1)k y k x =
>和1y x =在第一象限内的图象如图所示,点P 在k
y x
=的图象上,PC x ⊥轴于点C ,交1y x =的图象于点A ,PD y ⊥轴于点D ,交1
y x
=的图象
于点B ,当点P 在k
y x
=的图象上运动时,以上结论:
①ODB ∆与OCA ∆的面积相等;②四边形PAOB 的面积不会发生变化; ③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点。
其中一定正确的是(把你认为正确结论的序号都填上,少填或错填不给分)。
三、解答题(本大题共7小题,共60分)
21.(本题5分)解不等式组
271
631)5,
x x
x x
+≥-
⎧
⎨
-->
⎩
,①
(②
并求出所有整数的和。
22.(1)(本题5分)先化简
2
2
2
(1)
24
p p
p p
-
++
--
,再求值(其中P是满足33
P
-<<的整
数)。
(2)(本题5分)解方程:
32
1 11
x
x x
-= --
23.(本题7分)如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长成变短了多少米?
24.(本题8分)某公司拟援建一所希望学校,经过调查了解;甲、乙两个工程队有能力承包建校工程,甲工程队单独完成建校工程的时间是乙工程队的1.5倍,甲、乙两队合作完成建校工程需要72天。
(1)甲、乙两队单独完成建校工程各需要多少天?
(2)在施工过程中,该公司派一名技术人员在现场对施工质量进行全程监督,每天需要补助100元。
若由甲工程队单独施工时平均每天的费用为0.8万元。
现公司选择了乙工程队,要求其施工总费用不能超过甲工程队,则乙工程队单独施工时平均每天的费用最多为多少?(提示:总费用=平均每天的费用×天数+补助费)
25.(本题8分)甲、乙两人用如图所示的两个分格均匀的团做游戏:分别转动A 和B 两个转盘,若转盘停止后,指针指向一个数字(若指针恰好停在分格线上,则重转一次),用所指的两个数字作乖积,如果积大于10,那么甲获胜。
请你解决下列问题: (1)利用树状图(或列表)的方法表示游戏所有可能出现的结果; (2)求甲、乙两人获胜的概率。
26.(本题10分)如图所示,点O 是ABC ∆的ABC ∠、ACB ∠平分线的交点; (1)求证:01
902
BOC A ∠=
∠+ (2)当点I 是ABC ∆的ABC ∠、ACB ∠的外角平分线的交点时, 试问BIC ∠与A ∠有怎样的关系,画图并证明你的结论。
27.(本题12分)如图,ABC ∆是等边三角形,点D 、E 分别在BC 、AC 上,且BD CE =,AD 与BE 相交于点F 。
(1)证明ABD BCE ∆≅∆;
(2)AEF ∆与BEA ∆相似吗?说说你的理由;
(3)试判断BD 、AD 、DF 三条线段长之间的关系,并说明理由。