高中数学第二章函数的单调性教案北师大版必修11.doc
- 格式:doc
- 大小:77.50 KB
- 文档页数:6
《函数的单调性》教学设计一、教材分析《函数单调性》北师大版高中数学必修一第二章第三节的内容。
在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。
本节内容是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。
掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。
二、学情分析学生刚接触单调性,面对函数的单调性的定义描述会感到困惑:什么是增、减函数?因此正确理解函数的单调性是学习中一个难点.但是本节课非常贴近生活,因此丰富的问题情境会使学生产生浓厚的兴趣,以此来突破本堂课的难点.三、教学目标1.知识与技能目标:(1)理解函数的单调性和单调函数的意义;(2)会判断和证明函数的单调性.2.过程与方法目标:(1)通过本节课的教学,渗透数形结合的数学思想,对学生进行辨证唯物主义的教育;(2)培养从概念出发,进一步研究其性质的意识和能力.3.情感态度与价值观目标:通过本节课的教学,使学生能理性的描述生活中的增长、递减的现象通过生活实例.感受函数单调性的意义,培养学生的识图能力和数形语言转化的能力.四、教学重点、难点重点:函数单调性的定义.难点:函数单调性概念(数学符号语言)的认知以及应用定义证明函数的单调性.五、教学方法:启发式教学法及情感教学六、教学资源与教具多媒体七、教学过程1、感知数学引入新课当前最火爆收视率最高的一个音乐娱乐节目是什么(视频欣赏)?中国好声音是由浙江卫视强力打造的大型专业音乐评论节目,于2012年7月13日正式在浙江卫视播出。
中国好声音不仅仅是一个优秀的选秀节目,更是中国电视历史上真正意义的首次制播分离。
刘欢、那英、庾澄庆、杨坤(那英、庾澄庆、汪峰和张惠妹)四位著名歌手将作为明星导师言传身教,为中国乐坛的发展提供一批怀揣梦想、具有天赋才华的音乐人,树立中国电视音乐节目的新标杆。
中国好声音第一季各期收视率表:中国好声音第一季各期收视率统计图:2、实践探究获得新知探究1 画出y=x的图象,观察图象是上升的还是下降的?并思考y 随x的增大如何变化?结论:(1)从左往右看,图像是上升的(2)在定义域内y随x的增大而增大.y 的图象,观察图象是上升的还是下降的?并思考y 探究2 画出2x随x的增大如何变化?。
函数的单调性教学设计与反思一.教材分析函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标【教学目标】1.知识与技能理解函数单调性概念;掌握用定义判断和证明一些简单函数单调性的方法;了解函数单调区间。
2.过程与方法培养从概念出发,进一步研究其性质的意识及能力;体会感悟数形结合、分类讨论的思想.3.情感态度价值观由合适的例子引发学生探求数学知识的欲望,突出学生的主观能动性,激发学生学习数学的兴趣.【教学重难点】重点:函数单调性的概念,判断和证明一些简单函数单调性的方法.难点:关于函数单调性概念的符号语言的认知,应用定义证明单调性的代数推理论证【教学过程】一.导课要研究函数的单调性,我们先从熟知的函数入手,下面请同学们作出函数y=x+1 和y=x+1 的图像.1.思考: 从左到右看,图像的变化趋势如何?随着自变量的变化,函数值如何变化?2.观察动画回答:(1)由函数y=x2图像,观察图像的变化趋势。
(2)函数y=x2中y随x如何变化?那么,我们怎样用符号语言表达函数值的增减变化呢?〖设计意图〗从图像直观感知函数单调性在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解.二.新知探究1.请同学们阅读课本37页(3分钟)2.老师强调相关概念:函数递增时,图像是_________函数递减时, 图像是________在函数y=f(x)的定义域内的一个区间内A上,如果对于任意两个数x1,x2∈A,当x1<x2时,都有f(x1)<f(x2),那么就称函数在区间A上是增加的,有时也称函数在区间A上是递增的。
函数的单调性教学设计一教学内容分析函数单调性是函数重要性质之一,研究了随自变量的增大函数值是增大还是减少的性质,1函数的单调性是研究基本初等函数的理论基础,在研究函数的值域,最大值,最小值,比较大小,解不等式中起着重要作用。
2函数单调性是培养学生数形结合能力的重要题材,从概念教学来看,本节课通过具体函数的图像,得到增减性的直观特征,然后进一步量化,得到数字特征,用数学符号刻画出定义,指出函数单调性是针对区间而言的;从解题方法来看,既有从图像观察函数的单调性,又有利用定义严格判断证明的过程二教学目标设置1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.【教学重点】函数单调性的概念、判断及证明.【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性.三学生学情分析我班学生本身基础薄弱,而函数单调性又是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,对于函数单调性,学生的认知困难主要在两个方面:(1)要求用准确的数学符号语言去刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对我班的学生是比较困难的;(2)单调性的证明是学生在函数内容中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.四教学策略分析结合我班学生实际和教材内容分析,在教学中我采取了以下办法。
1制作学案,在预习中感性认识单调性2在教学过程中,注重概念的生成,通过创设情境,从学生熟悉的一次函数,二次函数的图像出发,层层设问,调动学生积极性,培养学生数形结合思想3在函数概念理解中,结合图像引导学生理解“任意”这个词,通过图像理解单调性是区间概念,有多个单调区间时连接词的使用。
高一数学函数的单调性说课稿一、教材分析1、教材内容本节课是北师大版第二章《函数概念和基本初等函数Ⅰ》§2.1.3函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题.2、教材所处地位、作用函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质.通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题.通过上述活动,加深对函数本质的认识.函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础.此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一.从方法论的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法.3、教学目标(1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性的方法;(2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的定义解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.(3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质.4、重点与难点教学重点(1)函数单调性的概念;(2)运用函数单调性的定义判断一些函数的单调性.教学难点(1)函数单调性的知识形成;(2)利用函数图象、单调性的定义判断和证明函数的单调性.二、教法分析与学法指导本节课是一节较为抽象的数学概念课,因此,教法上要注意:1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性.2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决.3、在鼓励学生主体参与的同时,不可忽视教师的主导作用.具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达.4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性.在学法上:1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力.2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃.问题1 怎样描述气温随时间增大的变化情况?问题 2 怎样用数学语言来刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?教学设计说明本节课是一节概念课.函数单调性的本质是利用解析的方法来研究函数图象的性质,如何将图形特征用严谨的数学语言来刻画是本节课的难点之一.另一难点是学生在高中阶段第一次接触代数证明,如何进行严格的推理论证并完成规范的书面表达.围绕以上两个难点,在本节课的处理上,我着重注意了以下几个问题:1、重视学生的亲身体验.具体体现在两个方面:①将新知识与学生的已有知识建立了联系.如:学生对一次函数、二次函数和反比例函数的认识,学生对“y 随x 的增大而增大”的理解;②运用新知识尝试解决新问题.如:对函数1)(+=x xx f 在定义域上的单调性的讨论.2、重视学生发现的过程.如:充分暴露学生将函数图象(形)的特征转化为函数值(数)的特征的思维过程;充分暴露在正、反两个方面探讨活动中,学生认知结构升华、发现的过程.3、重视学生的动手实践过程.通过对定义的解读、巩固,让学生动手去实践运用定义.4、重视课堂问题的设计.通过对问题的设计,引导学生解决问题.。
专家点评(高新一中党效文)
在对教材和学生已有知识充分了解下, 黄老师的教案设计教学目标设计层次分明, 重点难点突出, 合理。
从学生所熟悉的一次函数, 二次函数的图像入手, 让学生回顾初中已有的对函数单调性的感性认识, 以一次函数为例引导学生用数学语言来描述函数的增减性, 使学生不知不觉中对函数的单调性有了初步的理性认识, 进而再引导学生把这种理性认识抽象到一般情况形成概念, 使学生理解了数学概念和结论的形成过程, 体会其中蕴含的从特殊到一般的思维过程和思想方法。
在利用定义证明函数的单调性的设计中, 让学生进一步体会了数学语言的优越性, 体会数与形的完美统一, 使学生学习的过程成为“再创造, 再发现”的过程, 不断的增强学生的思维能力和创新意识。
同时在教学过程中设计了让学生分组讨论, 归纳小结的过程, 培养了学生相互学习, 团结协作的思想意识。
第二章函数第2.3节函数的单调性教学设计本小节是函数性质之一单调性,揭示了函数图像的趋势,表示了自变量和因变量之间的关系,是数形结合数学思想的基础,与函数的奇偶性呈并列的关系,他俩从不同侧面研究函数性质。
在函数性质中具有举足轻重的地位。
本节利用图像观察推导单调性判断方法,该方法再次体现了数形结合的主要思想。
一.教学目标1、理解函数单调性的概念,会根据函数的图像判断函数的单调性;2、能够根据函数单调性的定义证明函数在某一区间上的单调性。
二. 核心素养1.数学抽象:函数在区间上单调性概念的概述2.逻辑推理:本节课的教学,使学生能理性的描述生活中的增长、递减的现象;通过生活实例感受函数单调性的意义,培养学生的识图能力和数形语言转化的能力。
3.数学运算:判断函数的单调性及证明4.直观想象:通过对函数单调性定义的探究,渗透数形结合的数学思想方法,培养学生的观察、归纳、抽象思维能力。
5.数学建模:本节课的教学,启发学生养成细心观察,认真分析,严谨论证的良好习惯;通过问题链的引入,激发学生学习数学的兴趣,学生通过积极参与教学活动,获得成功的体验,锻炼克服困难的意志,建立学习数学的自信心。
教学重点函数单调性的概念、判断及证明教学难点归纳抽象函数单调性的定义以及根据定义证明函数的单调性PPT1.知识引入函数是刻画变量关系的.研究函数y=f (x )时最关心的问题是:当自变量x 变化时,函数值f (x )随之怎样变化.我们知道,一次函数y = kx+b,当k<0时,在R 上y 值随x 值的增大而减小;当k>0时,在R 上y 值随x 值的增大而增大.一元二次函数和反比例函数也有类似的性质.可见,用增大或减小来刻画函数在一个区间的变化是非常重要的.如下图分析:图2—9是函数f (x )([6,9])x ∈-的图象,直观上可以看出,对于区间[—6, —5],[—2,1],[3,4.5],[7,8],每个区间上函数值f (x )都随x 值的增大而增大;对于区间 [—5 , —2] , [1,3] , [ 4.5,7] , [ 8,9],每个区间上函数值f (x )都随x 值的增大而减小.一般地,在函数y=f (x )定义域内的一个区间A 上,如果对于任意的12,x x A ∈,当x 1<x 2时, 都有f (x 1)<f (x 2),那么就称函数y=f (x )在区间A 上是增函数或递增的;如果对于任意的12,x x A ∈,当x 1思考: 图2-9中,怎样用数学的符号语言表达函数值f(x)在区间[-6, -5]上隨x 值的增大而增大呢?<x 2时,都有f (x 1)>f (x 2),那么就称函数y=f (x )在区间A 上是减函数或递减的.如果函数y=f (x )在区间A 上是增函数或减函数,那么就称函数y=f (x )在区间A 上是单调函数,或称函数y=f (x )在区间A 上具有单调性.此时,区间A 为函数y=f (x )的单调区间.备注:1.概念中应该注意问题:任意的12,x x A ∈(不能写成“存在12,x x A ∈”)2.在单调区间上,增函数的图象是上升的,减函数的图象是下降的.知识扩充:例1设1()(0)f x x x=<,画出f (x+3)(x<—3)的图像,并通过图像直观判断 它的单调性。
《函数单调性教案》教案章节:一、函数单调性的概念教学目标:1. 了解函数单调性的概念;2. 学会判断函数的单调性;3. 能够应用函数单调性解决实际问题。
教学内容:1. 引入函数单调性的概念;2. 讲解函数单调性的判断方法;3. 举例说明函数单调性在实际问题中的应用。
教学步骤:1. 引入实例,引导学生思考函数的单调性;2. 给出函数单调性的定义,解释单调递增和单调递减的概念;3. 讲解函数单调性的判断方法,引导学生进行判断;4. 举例说明函数单调性在实际问题中的应用,如最优化问题、经济问题等;5. 总结本节课的重点内容,布置作业。
教案章节:二、函数单调性的判断方法教学目标:1. 学会判断函数的单调性;2. 掌握函数单调性的判断方法;3. 能够应用函数单调性解决实际问题。
教学内容:1. 回顾函数单调性的概念;2. 讲解函数单调性的判断方法;3. 举例说明函数单调性在实际问题中的应用。
教学步骤:1. 复习函数单调性的概念,引导学生回顾上一节课的内容;2. 讲解函数单调性的判断方法,如导数法、图像法等;3. 举例说明函数单调性在实际问题中的应用,如最优化问题、经济问题等;4. 练习判断函数的单调性,让学生巩固所学知识;5. 总结本节课的重点内容,布置作业。
教案章节:三、函数单调性与最优化问题教学目标:1. 了解函数单调性与最优化问题的关系;2. 学会应用函数单调性解决最优化问题;3. 能够应用函数单调性解决实际问题。
教学内容:1. 引入函数单调性与最优化问题的关系;2. 讲解函数单调性在解决最优化问题中的应用;3. 举例说明函数单调性在实际问题中的应用。
教学步骤:1. 引入实例,引导学生思考函数单调性与最优化问题的关系;2. 讲解函数单调性在解决最优化问题中的应用,如求函数的最大值、最小值等;3. 举例说明函数单调性在实际问题中的应用,如成本最小化问题、收益最大化问题等;4. 练习解决最优化问题,让学生巩固所学知识;5. 总结本节课的重点内容,布置作业。
北师大版选修2-2第二章第一节《导数与函数的单调性》(1)教学目标:
1、知识与技能(1)探索函数的单调性与导数的关系(2)会利用导数判断函数的单调性并求函数的单调区间。
2、过程与方法(1)通过本节的学习,掌握用导数研究单调性的方法
(2)在探索过程中培养学生的观察,分析,概括的能力,渗透数形结合、转化思想。
3、情感态度价值观通过在教学中让学生多动手、多观察、勤思考、善总结,培
养学生的探索精神,引导学生养成自主学习的习惯。
学情分析
本节课的的对象为高二年级两个班的的学生,学生基础(1)班相对(3)较好一些,但是学习单调性的定义都是在高一第一学期,大部分学生早已忘记,因此对于单调性定义的理解不够准确,应用起来不是很顺手。
同时导数是高中学生新接触的概念,为什么及如何将导数与函数的单调性联系起来是一个难点。
在本节课之前学生已经学习了导数的概念、导数的几何意义和导数的四则
运算,初步接触了导数的简单应用,但对导数的应用还仅停留在表面上。
本节课
授。
函数的单调性(二)使用说明:1.认真阅读学习目标,仔细阅读课本,提前预习,完成自主学习部分。
2.课堂积极讨论,大胆展示,发挥高效学习小组作用,完成合作探究部分。
3.带“*”号题为难题,可选做,其它题为必做、必会题。
4.每天晚点前小组长将学案阅、评,并交科代表处,科代表晚点下速交老师。
学习目标:1. 理解函数的最大(小)值及其几何意义;2. 学会运用函数图象理解和研究函数的性质.学习重点:求函数的最值。
学习难点:求最值的方法。
学习过程:一、自主学习1、函数2()(0)f x ax bx c a =++>的最小值为 ,2()(0)f x ax bx c a =++<的最大值为 .2、求2y x =-在区间[3,6]上的最大值和最小值.小结:先按定义证明单调性,再应用单调性得到最大(小)值.3、作出函数223y x x =-+的简图,研究当自变量x 在下列范围内取值时的最大值与最小值. (1)10x -≤≤; (2)03x ≤≤ ;(3)(,)x ∈-∞+∞.4、求y x =+.二、合作探究5、求函数2y x =.6、一段竹篱笆长20米,围成一面靠墙的矩形菜地,如何设计使菜地面积最大?7、求3,[3,6]2x y x x +=∈-的最大值和最小值.三、课堂检测1. 函数2()2f x x x =-的最大值是( ).A. -1B. 0C. 1D. 22. 函数|1|2y x =++的最小值是( ).A. 0B. -1C. 2D. 33. 函数y x = ).4. 已知函数()f x 的图象关于y 轴对称,且在区间(,0)-∞上,当1x =-时,()f x 有最小值3,则在区间(0,)+∞上,当x = 时,()f x 有最 值为 .5. 函数21,[1,2]y x x =-+∈-的最大值为 ,最小值为 .※ 学习小结1. 函数最大(小)值定义;.2. 求函数最大(小)值的常用方法:配方法、图象法、单调法.※ 知识拓展求二次函数在闭区间上的值域,需根据对称轴与闭区间的位置关系,结合函数图象进行研究. 例如求2()f x x ax =-+在区间[,]m n 上的值域,则先求得对称轴2a x =,再分2a m <、22a m n m +≤<、22m n a n +≤<、2a n ≥等四种情况,由图象观察得解.。
函数的单调性本节教材分析本节内容,正是初中有关内容的深化和提高.给出函数在某个区间上是增函数或减函数的定义,明确指出函数的增减性是相对于某个区间来说的,还说明判断函数的增减性既有从图像上进行观察的较为粗略的方法,又有根据定义进行证明的较为严格的方法,最好根据图像观察得出猜想,用推理证明猜想的正确性,这样就将以上两种方法统一起来了.三维目标1、知识与技能:(1)建立增(减)函数的概念通过观察一些函数图象的特征,形成增(减)函数的直观认识. 再通过具体函数值的大小比较,认识函数值随自变量的增大(减小)的规律,由此得出增(减)函数单调性的定义 . 掌握用定义证明函数单调性的步骤。
(2)函数单调性的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程的真谛。
2、过程与方法(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)能够熟练应用定义判断与证明函数在某区间上的单调性。
3、情态与价值,使学生感到学习函数单调性的必要性与重要性,增强学习函数的紧迫感。
教学重点:函数的单调性及其几何意义.教学难点:利用函数的单调性定义判断、证明函数的单调性.教学建议:本节教学时可以充分使用信息技术创设教学情景,以利于学生作函数图像,有更多的时间用于思考、探究函数的单调性.还要特别重视让学生经历这些概念的形成过程,以便加深对单调性的理解.新课导入设计导入一:德国有一位著名的心理学家名叫艾宾浩斯,他以自己的实验对象,共做了163次实验,每次实验连续要做两次无误的背诵.经过一定时间后再重学一次,达到与第一次学会的标准.经过对自己的测试,得到了一些数据.观察数据引导学生制作出数据图,这就是遗忘曲线,进而教师引出课题..导入二:以奥运会中国在每届比赛中所获得的奖牌数,估测向学生提问.教师可以提示、点拨,并引出本节课题.1。
2。
3 函数的单调性[核心必知]1.函数在区间上增加(减少)的定义在函数y=f(x)的定义域内的一个区间A上,如果对于任意两数x1x2∈A,当x1<x2时:(1)都有f(x1)<f(x2),就称函数y=f(x)在区间A上是增加的.(2)都有f(x1)>f(x2),就称函数y=f(x)在区间A上是减少的.2.函数的单调区间如果y=f(x)在区间A上是增加的或是减少的,那么称A为单调区间.在单调区间上,如果函数是增加的,那么它的图像是上升的;如果函数是减少的,那么它的图像是下降的.3.函数的单调性如果函数y=f(x)在定义域的某个子集上是增加的或是减少的,那么就称函数y=f(x)在这个子集上具有单调性.4.单调函数如果函数y=f(x)在整个定义域内是增加的或是减少的,我们分别称这个函数为增函数或减函数,统称为单调函数.[问题思考]1.在增加的和减少的函数定义中,能否把“任意x1,x2∈A”改为“存在x1,x2∈A”?提示:不能,如图,虽然存在-1<2使f(-1)<f(2),但f(x)在[-1,2]上并不是增加的.2.函数f(x)=错误!的单调减区间能否写成(-∞,0)∪(0,+∞)?提示:不能,如x1=-1,x2=1满足x1<x2,但有f(x1)=-1<f(x2)=1,不符合减少的要求.3.函数区间端点对函数单调区间有作用吗?是否应考虑?提示:函数在某一点处的单调性并无意义.所以不存在单调性问题.在书写函数的单调区间时,区间端点开或闭一般可不予考虑.若端点处函数有意义,包括不包括端点均可;但若函数在区间端点处无定义,则必须写成开区间.讲一讲试判断函数f (x )=错误!在其定义域上的单调性,并加以证明. [尝试解答] 函数定义域为{x |x ≠1},又f (x )=错误!=错误!=错误!+1, 可由反比例函数y =1x图像得其图像如图所示:由图像知,函数在(-∞,1)和(1,+∞)上为减函数,证明如下: 设x 1,x 2∈(1,+∞),且x 1<x 2, 则f (x 1)=错误!,f (x 2)=错误!.f (x 2)-f (x 1)=错误!-错误!=错误!。
2014高中数学第二章《函数的单调性》教学设计北师大版必修1【教学目标】【知识目标】:使学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.【能力目标】通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.【德育目标】通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.【教学重点】函数单调性的概念、判断及证明.函数的单调性是学生第一次接触用严格的逻辑语言证明函数的性质,并在今后解决初等函数的性质、求函数的值域、不等式及比较两个数的大小等方面有广泛的实际应用,【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性.由于判断或证明函数的单调性,常常要综合运用一些知识(如不等式、因式分解、配方及数形结合的思想方法等)所以判断或证明函数的单调性是本节课的难点.【教材分析】函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起,所以本节课在教材中的作用如下(1)函数的单调性起着承前启后的作用。
一方面,初中数学的许多内容在解决函数的某些问题中得到了充分运用,函数的单调性与前一节内容函数的概念和图像知识的延续有密切的联系;函数的单调性一节中的知识是它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础。
(2)函数的单调性是培养学生数学能力的良好题材,这节课通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确定义,明确指出函数的增减性是相对于某个区间来说的。
教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格证明方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系。
2.3 函数的单调性(一)教学目标1.知识与技能(1)理解函数单调性的定义、明确增函数、减函数的图象特征.(2)能利用函数图象划分函数的单调区间,并能利用定义进行证明.2.过程与方法由一元一次函数、一元二次函数的图象,让学生从图象获得“上升”“下降”的整体认识. 利用函数对应的表格,用自然语言描述图象特征“上升”“下降”最后运用数学符号将自然语言的描述提升到形式化的定义,从而构造函数单调性的概念.3.情感、态度与价格观在形与数的结合中感知数学的内在美,在图形语言、自然语言、数学语言的转化中感知数学的严谨美.(二)教学重点和难点重点:理解增函数、减函数的概念;难点:单调性概念的形成与应用.(三)教学方法讨论式教学法. 在老师的引导下,学生在回顾旧知,细心观察、认真分析、严谨论证的学习过程中生疑与析疑,合作与交流,归纳与总结的过程中获得新知,从而形成概念,掌握方法.教学环节教学内容师生互动设计意图提出问题观察一次函数f (x) = x的图象:函数f (x) = x的图象特征由左到右是上升的. 师:引导学生观察图象的升降.生:看图. 并说出自己对图象的直观认识.师:函数值是由自变量的增大而增大,或由自变量的增大而减小,这种变化规律即函数的单调性.在函数图象的观察中获取函数单调性的直观认识.引入深题观察二次函数f (x) = x2的图象:函数f (x) = x2在y轴左侧是下降的,在y轴右侧是上升的.列表:x …–4–3 –2 –1 0f (x)=x216 9 4 1 0师:不同函数,其图象上升、下降规律不同. 且同一函数在不同区间上的变化规律也不同. 这是“形”的方面,从“数”的方面如何反映.生:函数作图时列表描点过程中,从列表的数据变化可知自变量由– 4到0变化,函数值随着变小;而自变量由0到4变化,函数值随着自变量的变大而变大.师:表格数值变化的一般规随是:自变量x增大,函数值y也增大,函数图象上升,称函数为增函数;自变量x增大,函数值y反而减少,函数图象下降. 称函数为减函数.体会同一函数在不同区间上的变化差异.引导学生从“形变”过渡到“数变”.从定性分析到定量分析.O xyyx11O1 2 3 4 …1 4 9 16 …x∈(–∞,0]时,x增大,f (x)减少,图象下降.x∈(0,+∞)时,x增大,f (x)也增大,图象上升.形成概念函数单调性的概念一般地,设函数f(x)的定义域为I:如果对于定义域I内的某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f (x1)<f (x2),那么就说函数f(x)在区间D上是增函数(increasing function);如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)>f (x2),那么就说函数f(x)在区间D上是减函数(decreasingfunction).师:增函数、减函数的函数值随自变量的变化而变化怎么用数学符号表示呢?师生合作:对于函数f (x) = x2在区间(0,+∞)上. 任取x1、x2. 若x1<x2,则f(x1)<f (x2),即x12<x22.师:称f (x) = x2在(0,+∞)上为增函数.由实例探究规律从而获得定义的数学符号表示.应用举例例1 如图是定义在区间[–5,5]上的函数y = f (x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?训练题1:(1)请根据下图描述某装配线的生师:投影例1.生:合作交流完成例1.师:引导学生完成教材P36练习的第1题、第2题.师:投影训练题1生:学生通过合作交流自主完成.例1【解】:y= f(x)的单调区间有[–5,–2),[–2,1),[1,3),[3,5]. 其中y = f (x) 在区间[–5,–2),[1,3)上是减函数,在区间[–2,1),[3,5]上是增函数.掌握利用图象划分函数单调区间的方法.掌握单调性证明步骤及原理.内化定义,强化划分单调区间的xx1 x2Oyf (x1) f (x2)y=f (x)xx1 x2Oyf (x1)f (x2)y=f (x)产率与生产线上工人数量间的关系.(2)整个上午(8∶00~12∶00)天气越来越暖,中午时分(12∶00~13∶00)一场暴风雨使天气骤然凉爽了许多. 暴风雨过后,天气转暖,直到太阳落山(18∶00)才又开始转凉. 画出这一天8∶00~20∶00期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间. (3)根据下图说出函数单调区间,以及在每一单调区间上,函数是增函数还是减函数. 例 2 物理学中的玻意耳定律kp V =(k 为正常数) 告诉我们,对于一定量的气体,当其体积V 减小时,压强p 将增大. 试用函数的单调性证明之. 训练题2:证明函数f (x ) = –2x +1在R 上是减函数.训练题1 答案:(1)在一定范围内,生产效率随着工人数的增加而提高,当工人数达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率又随着工人的增加而降低. 由此可见,并非是工人越多,生产效率就越高.(2) 增区间为[8,12],[13,18];减区间为:[12,13],[18,20]. (3)函数在[–1,0]上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]是增函数. 师:打出例2,请学生阐明应用定义证明(判定)并总结证明单调性的基本步骤.生:学生代表板书证明过程,教师点评. 例2 分析:按题意,只要证明函数kp V =在区间(0,+∞)上是减函数即可.证明:根据单调性的定义,设V 1,V 2是定义域(0,+∞)上的任意两个实数,且V 1<V 2,即 21121212()()V V k k p V p V k V V VV --=-=.由V 1,V 2∈(0,+∞),得V 1V 2>0. 由V 1<V 2,得V 2 – V 1>0. 又k >0,于是 p (V 1) – p (V 2)>0, 即 p (V 1) >p (V 2). 所以,函数kp V=,V (0,+∞)是减函数,也就是说,当体积V 减小时,压强p 将增大.师:投影训练题2 生:自主完成 训练题2 证明:任取x 1,x 2∈R ,方法.强化记题步骤与格式.且x 1<x 2,因为f (x 1) – f (x 2) =2 (x 2 –x 1)>0,即f (x 1)>f (x 2),所以f (x ) = –2x +1在R 上是减函数.归纳 小结1°体会函数单调性概念的形成过程.2°单调性定义.3°利用图象划分单调区间. 4°利用定义证明单调性步骤.师生合作:回顾单调性概念的形式与发展.师:阐述单调性的意义与作用.反思回顾整理知识,提升能力.课后 练习1.3第一课时 习案学生独立完成巩固知识 培养能力备选例题:例1 证明函数f (x ) =3x +2在R 上是增函数. 【证明】设任意x 1、x 2R ,且x 1<x 2,则f (x 1) – f (x 2) = (3x 1 +2) – (3x 2 +2) = 3(x 1–x 2).由x 1<x 2得x 1 –x 2<0. ∴f (x 1) – f (x 2)<0,即f (x 1)<f (x 2). ∴f (x ) =3x +2在R 上是增函数.例2 证明函数f (x ) =1x在(0,+∞)上是减函数. 【证明】设任意x 1、x 2(0,+ ∞)且x 1<x 2, 则f (x 1) – f (x 2) =21121211x xx x x x --=,由x 1,x 2(0,+∞)得,x 1x 2>0,又x 1<x 2,得x 2 – x 1>0,∴f (x 1) – f (x 2) >0,即f (x 1)<f (x 2). ∴f (x ) =1x在(0,+∞)上是减函数.。
2019-2020年高中数学第二章函数的单调性教案北师大版必修11
2019-2020年高中数学第二章函数的单调性教案北师大版必修1
教学目的:
(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;
(3)能够熟练应用定义判断数在某区间上的的单调性.教学重点:函数的单调性及其几何意义.
教学难点:利用函数的单调性定义判断、证明函数的单调性.教学过程:阅读与思考
♦1、阅读教材
♦P36的实例分析及思考交流止。
204*********120*********042
1
42
3
5 42 7 42 9 50 1 50 3 50 5 50 7 50 9 51
51
3
51
5
51
7519
♦2、思考问题
(1)从P36图2-15 (北京从xx0421-xx0519每日新增非典病例的变化统计图)看出,形势从何日开始好转?
(2)从P36图2-16你能否说出y 随x 如何变化?德国著名心理学家艾宾浩斯研究数据
艾宾浩斯遗忘曲线
问:什么是增函数、减函数、函数的单调性?
问题1、作出下列函数的图象,并指出图象的变化趋势:
问题2、你能明确地说出“图象呈逐渐上升或下降趋势”的意思吗?在某一区间内,
图象在该区间呈上升趋势当x 的值增大时,函数值y 也增大图象在该区间呈下降趋势当x 的值增大时,函数值y
反而减小如何用x 与f(x)来描述上升的图象?
保持量(百分数)
x
x
那么就说y= f(x)在区间I 上是单调增函数.
一般地,设函数y=f(x)的定义域为A ,
区间I A. 如果对于区间I 内的任意两个值
⊇
x 1,x 2,当x 1<x 2 时,都有 f (x 1)<f (x 2)
单调区间
如果函数y=f(x)在区间I 是单调增函数或单调减函数,那么就说函数y=f(x)在区间I 上具有单调性.
单调增区间和单调减区间统称为单调区间.
那么就说y= f(x)在区间I 上是单调增函数.
一般地,设函数y=f(x)的定义域为A ,
区间I A. 如果对于区间I 内的任意两个值
⊇
x 1,x 2,当x 1<x 2 时,都有 f (x 1)<f (x 2))
上是增函数。
,(在区间证明函数∞+∞-+= x x f 12)( [例1]内任意
是区间设),(,x 21+∞-∞x )
x 2(x )1x 2()1x 2()x (f )x (f 212121-=+-+=-0x x ,x x 2121x (f )x (f 21,(1x 2)x (f +∞-∞+=在区间则函数证明:。
两个实数,且x 21x (条件)
(论证结果)
(结论)
单调性,并加以证明。
的判断函数例x 2x )x (f ]2[2-=单调递增区间:
单调递减区间:
(, 1-∞)
)
, 1[+∞
x
2。