浙江海洋大学2012年《601高等数学》考研专业课真题试卷
- 格式:pdf
- 大小:301.53 KB
- 文档页数:3
绝密★考试结束前2012年普通高等学校招生全国同一考试(浙江卷)数 学(理科)本试题卷分选择题和非选择题两部分.全卷共5页,选择题部分1至3页,非选择题部分4至5页.满分150分,考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上.2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干 净后,再选涂其它答案标号。
不能答在试题卷上.参考公式:如果事件A ,B 互斥,那么 柱体的体积公式()()()P A B P A P B +=+ V Sh =如果事件A ,B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高 ()()()P A B P A P B ⋅=⋅ 锥体的体积公式如果事件A 在一次试验中发生的概率是p ,那么 13V Sh =n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高()()()1,0,1,2,,n kk kn n P k C p p k n -=-= 球的表面积公式台体的体积公式 24πS R =()1213V h S S = 球的体积公式其中12,S S 分别表示台体的上底、下底面积, 34π3V R =h 表示台体的高 其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |1<x <4},B ={x |x 2-2x -3≤0},则A ∩(C R B )=A .(1,4)B .(3,4)C .(1,3)D .(1,2)2.已知i 是虚数单位,则3+i1i-= A .1-2i B .2-i C .2+i D .1+2i3.设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.把函数y=cos2x+1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是5.设a,b是两个非零向量.A.若|a+b|=|a|-|b|,则a⊥bB.若a⊥b,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得a=λbD.若存在实数λ,使得a=λb,则|a+b|=|a|-|b|6.若从1,2,2,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有A.60种B.63种C.65种D.66种7.设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误..的是A.若d<0,则数列{S n}有最大项B.若数列{S n}有最大项,则d<0C.若数列{S n}是递增数列,则对任意的n∈N*,均有S n>0D.若对任意的n∈N*,均有S n>0,则数列{S n}是递增数列8.如图,F 1,F 2分别是双曲线C :22221x y a b-=(a ,b >0)的左右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .若|MF 2|=|F 1F 2|,则C 的离心率是 A 23 B 6C 2D 39.设a >0,b >0.A .若2223a b a b +=+,则a >bB .若2223a b a b +=+,则a <bC .若2223a b a b -=-,则a >bD .若2223a b a b -=-,则a <b10.已知矩形ABCD ,AB =1,BC 2∆ABD 沿矩形的对角线BD 所在的直线进行翻着,在翻着过程中,A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上.2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.二、填空题:本大题共7小题,每小题4分,共28分. 11.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于___________cm 3.12.若程序框图如图所示,则该程序运行后输出的值是______________.13.设公比为q (q >0)的等比数列{a n }的前n 项和为{S n }.若2232S a =+,4432S a =+,则q =______________.14.若将函数()5f x x =表示为()()()()250125111f x a a x a x a x =+++++++其中0a ,1a ,2a ,…,5a 为实数,则3a =______________.15.在∆ABC 中,M 是BC 的中点,AM =3,BC =10,则AB AC ⋅=______________.16.定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于C 2:x 2+(y +4) 2 =2到直线l :y =x 的距离, 则实数a =______________.17.设a ∈R ,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =______________. 三、解答题:本大题共5小题,共72分,解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分14分)在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B 5C . (Ⅰ)求tan C 的值;(Ⅱ)若a 2∆ABC 的面积.19.(本小题满分14分)已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出3球所得分数之和. (Ⅰ)求X 的分布列; (Ⅱ)求X 的数学期望E (X ).20.(本小题满分15分)如图,在四棱锥P —ABCD 中,底面是边长为23BAD=120°,且PA ⊥平面ABCD ,PA =26M ,N 分别为PB ,PD 的中点.(Ⅰ)证明:MN∥平面ABCD;(Ⅱ) 过点A作AQ⊥PC,垂足为点Q,求二面角A—MN—Q的平面角的余弦值.21.(本小题满分15分)如图,椭圆C:2222+1x ya b=(a>b>0)的离心率为12,其左焦点到点P(2,1)10不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.(Ⅰ)求椭圆C的方程;(Ⅱ) 求∆ABP的面积取最大时直线l的方程.22.(本小题满分14分)已知a>0,b∈R,函数()342f x ax bx a b=--+.(Ⅰ)证明:当0≤x≤1时,(ⅰ)函数()f x的最大值为|2a-b|﹢a;(ⅱ) ()f x+|2a-b|﹢a≥0;(Ⅱ) 若﹣1≤()f x≤1对x∈[0,1]恒成立,求a+b的取值范围.2012年普通高等学校招生全国同一考试(浙江卷)数学(理科)答案及解析选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|1<x<4},B={x|x 2-2x-3≤0},则A∩(C R B)=A.(1,4) B.(3,4) C.(1,3) D.(1,2)【解析】A=(1,4),B=(-3,1),则A∩(C R B)=(1,4).【答案】A2.已知i是虚数单位,则3+i1i-=A.1-2i B.2-i C.2+i D.1+2i【解析】3+i1i-=()()3+i1+i2=2+4i2=1+2i.【答案】D3.设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】当a=1时,直线l1:x+2y-1=0与直线l2:x+2y+4=0显然平行;若直线l1与直线l2平行,则有:211aa=+,解之得:a=1 or a=﹣2.所以为充分不必要条件.【答案】A4.把函数y=cos2x+1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是【解析】把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:y 1=cos x +1,向左平移1个单位长度得:y 2=cos(x —1)+1,再向下平移1个单位长度得:y 3=cos(x —1).令x =0,得:y 3>0;x =12π+,得:y 3=0;观察即得答案. 【答案】B5.设a ,b 是两个非零向量.A .若|a +b |=|a |-|b |,则a ⊥bB .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得a =λbD .若存在实数λ,使得a =λb ,则|a +b |=|a |-|b |【解析】利用排除法可得选项C 是正确的,∵|a +b |=|a |-|b |,则a ,b 共线,即存在实数λ,使得a =λb .如选项A :|a +b |=|a |-|b |时,a ,b 可为异向的共线向量;选项B :若a ⊥b ,由正方形得|a +b |=|a |-|b |不成立;选项D :若存在实数λ,使得a =λb ,a ,b 可为同向的共线向量,此时显然|a +b |=|a |-|b |不成立. 【答案】C6.若从1,2,2,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有A .60种B .63种C .65种D .66种 【解析】1,2,2,…,9这9个整数中有5个奇数,4个偶数.要想同时取4个不同的数其和为偶数,则取法有:4个都是偶数:1种;2个偶数,2个奇数:225460C C=种;4个都是奇数:455C=种.∴不同的取法共有66种.【答案】D7.设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误..的是A.若d<0,则数列{S n}有最大项B.若数列{S n}有最大项,则d<0C.若数列{S n}是递增数列,则对任意的n∈N*,均有S n>0D.若对任意的n∈N*,均有S n>0,则数列{S n}是递增数列【解析】选项C显然是错的,举出反例:—1,0,1,2,3,….满足数列{S n}是递增数列,但是S n>0不成立.【答案】C8.如图,F1,F2分别是双曲线C:22221x ya b-=(a,b>0)的左右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴交于点M.若|MF2|=|F1F2|,则C的离心率是A 23B6C2D3【解析】如图:|OB|=b,|O F1|=c.∴k PQ=bc,k MN=﹣bc.直线PQ为:y=bc(x+c),两条渐近线为:y=bax.由()by x ccby xa⎧⎪⎪⎨⎪⎪⎩=+=,得:Q(acc a-,bcc a-);由()by x ccby xa⎧⎪⎪⎨⎪⎪⎩=+=-,得:P(acc a-+,bcc a+).∴直线MN为:y-bcc a+=﹣bc(x-acc a-+),令y=0得:x M=322cc a-.又∵|MF2|=|F1F2|=2c,∴3c=x M=322cc a-,解之得:2232acea==,即e . 【答案】B9.设a >0,b >0.A .若2223a b a b +=+,则a >bB .若2223a b a b +=+,则a <bC .若2223a b a b -=-,则a >bD .若2223a b a b -=-,则a <b【解析】若2223a b a b +=+,必有2222a b a b +>+.构造函数:()22x f x x =+,则()2ln 220x f x '=⋅+>恒成立,故有函数()22x f x x =+在x >0上单调递增,即a >b 成立.其余选项用同样方法排除. 【答案】A10.已知矩形ABCD ,AB =1,BC ∆ABD 沿矩形的对角线BD 所在的直线进行翻着,在翻着过程中,A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直【解析】最简单的方法是取一长方形动手按照其要求进行翻着,观察在翻着过程,即可知选项C 是正确的. 【答案】C二、填空题:本大题共7小题,每小题4分,共28分.11.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于___________cm 3. 【解析】观察三视图知该三棱锥的底面为一直角三角形,右侧面也是一直角三角形.故体积等于11312123⨯⨯⨯⨯=.【答案】112.若程序框图如图所示,则该程序运行后输出的值是______________. 【解析】T ,i 关系如下图: T 1 12 16 124 1120i 23 4 5 6【答案】112013.设公比为q (q >0)的等比数列{a n }的前n 项和为{S n }.若2232S a =+,4432S a =+,则q =______________.【解析】将2232S a =+,4432S a =+两个式子全部转化成用1a ,q 表示的式子. 即111233111113232a a q a q a a q a q a q a q +=+⎧⎨+++=+⎩,两式作差得:2321113(1)a q a q a q q +=-,即:2230q q --=,解之得:312q or q ==-(舍去). 【答案】3214.若将函数()5f x x =表示为()()()()250125111f x a a x a x a x =+++++++其中0a ,1a ,2a ,…,5a 为实数,则3a =______________. 【解析】法一:由等式两边对应项系数相等.即:545543315544310100a C a a a C a C a a =⎧⎪+=⇒=⎨⎪++=⎩. 法二:对等式:()()()()2550125111f x x a a x a x a x ==+++++++两边连续对x 求导三次得:2234560624(1)60(1)x a a x a x =++++,再运用赋值法,令1x =-得:3606a =,即310a =.【答案】1015.在∆ABC 中,M 是BC 的中点,AM =3,BC =10,则AB AC ⋅=______________. 【解析】此题最适合的方法是特例法.假设∆ABC 是以AB =AC 的等腰三角形,如图, AM =3,BC =10,AB =AC 34 cos ∠BAC =3434102923434+-=⨯.AB AC ⋅=cos 29AB AC BAC ⋅∠=【答案】2916.定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于C 2:x 2+(y +4) 2 =2到直线l :y =x 的距离, 则实数a =______________.【解析】C 2:x 2+(y +4) 2 =2,圆心(0,—4),圆心到直线l :y =x 的距离为:0(4)222d --==C 2到直线l :y =x 的距离为22d d r d '=-=另一方面:曲线C 1:y =x 2+a ,令20y x '==,得:12x =,曲线C 1:y =x 2+a 到直线l :y =x 的距离的点为(12,14a +),111()72442422a ad a -++'===⇒=. 【答案】7417.设a ∈R ,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =______________. 【解析】本题按照一般思路,则可分为一下两种情况: (A )2(1)1010a x x ax ≤⎧⎨≤⎩----, 无解; (B )2(1)1010a x x ax ≥⎧⎨≥⎩----, 无解. 因为受到经验的影响,会认为本题可能是错题或者解不出本题.其实在x >0的整个区间上,我们可以将其分成两个区间(为什么是两个?),在各自的区间内恒正或恒负.(如下答图) 我们知道:函数y 1=(a -1)x -1,y 2=x 2-ax -1都过定点P (0,1). 考查函数y 1=(a -1)x -1:令y =0,得M (11a -,0),还可分析得:a >1; 考查函数y 2=x 2-ax -1:显然过点M (11a -,0),代入得:211011a a a ⎛⎫--= ⎪--⎝⎭,解之得:2a=-,得答案:2a=.a=±,舍去2【答案】2a=三、解答题:本大题共5小题,共72分,解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分14分)在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B 5C . (Ⅰ)求tan C 的值;(Ⅱ)若a 2∆ABC 的面积.【解析】本题主要考察三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点。
目 录2012年浙江大学601高等代数考研真题2011年浙江大学601高等代数考研真题及详解2010年浙江大学360高等代数考研真题2009年浙江大学360高等代数考研真题2008年浙江大学724高等代数考研真题及详解2007年浙江大学741高等代数考研真题及详解2006年浙江大学341高等代数考研真题及详解2005年浙江大学341高等代数考研真题2004年浙江大学341高等代数考研真题2003年浙江大学344高等代数考研真题2002年浙江大学365高等代数考研真题2001年浙江大学359高等代数考研真题2000年浙江大学226高等代数考研真题1999年浙江大学高等代数考研真题及详解2012年浙江大学601高等代数考研真题浙江大学2012年攻读硕士学位研究生入学试题考试科目:高等代数(601)考生注意:1.本试卷满分为150 分,共计10道题,每题满分15分,考试时间总计180 分钟;2.答案必须写在答题纸上,写在试题纸上或草稿纸上均无效。
一、设是阶单位矩阵,,矩阵满足,证明的行列式等于.二、设是阶幂零矩阵满足,.证明所有的都相似于一个对角矩阵,的特征值之和等于矩阵的秩.三、设是维欧氏空间的正交变换,证明最多可以表示为个镜面反射的复合.四、设是阶复矩阵,证明存在常数项等于零的多项式使得是可以对角化的矩阵,是幂零矩阵,且.五、设.当为何值时,存在使得为对角矩阵并求出这样的矩阵和对角矩阵;求时矩阵的标准型.六、令二次型.求次二次型的方阵;当均为实数,给出次二次型为正定的条件.七、令和是域上的线性空间,表示到所有线性映射组成的线性空间.证明:对,若,则和在中是线性无关的.八、令线性空间,其中是的线性变换的不变子空间.证明;证明若是有限维线性空间,则;举例说明,当时无限维的,可能有,且.九、令.求阶秩为的矩阵,使得(零矩阵);假如是满足的阶矩阵,证明:秩.十、令是有限维线性空间上的线性变换,设是的不变子空间.那么,的最小多项式整除的最小多项式.。
2012年普通高等学校招生全国统一考试数学(理科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至3页,非选择题部分4至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
参考公式如果事件A,B 互斥 ,那么P(A+B)=P(A)+P(B)如果事件A,B 相互独立,那么P(A·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率Pn(k)= (1)(0,1,2,...,)k k n k n C p p k n --=台体的体积公式V=121()3h S S其中S1,S2分别表示台体的上、下底面积,h表示台体的高柱体体积公式V=Sh其中S表示柱体的底面积,h表示柱体的高锥体的体积公式V=13Sh其中S表示锥体的底面积,h表示锥体的高球体的面积公式S=4πR2球的体积公式V=43πR3其中R表示球的半径一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A={x|1<x<4},集合B ={x|2x-2x-3≤0}, 则A∩(CRB)=A .(1,4)B .(3,4) C.(1,3) D .(1,2)∪(3,4)2. 已知i是虚数单位,则31ii+-=A .1-2i B.2-i C.2+i D .1+2i3. 设a∈R ,则“a=1”是“直线l1:ax+2y-1=0与直线l2 :x+(a+1)y+4=0平行”的A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件4.把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是5.设a,b是两个非零向量。
2012年浙江专升本(高等数学)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.函数f(x)=在x∈(一∞,+∞)上为( )A.有界函数B.奇函数C.偶函数D.周期函数正确答案:A解析:因为=0,故函数f(x)有界,答案A正确;可验证f(x)非奇非偶函数,所以答案B,C错误,也明显不是周期函数.2.已知f′(x0)=2,当△x→0时,dy为△x的( )A.同阶无穷小B.等价无穷小C.高阶无穷小D.低阶无穷小正确答案:A解析:=f′(x0)=2,所以当△x→0时,dy为△x 的同阶无穷小,即A答案正确.3.设函数f(x)满足f(0)=1,f(2)=3,f′(2)=5,f″(x)连续,则xf″(x)dx ( )A.10B.9C.8D.7正确答案:C解析:xf″(x)dx=xdf′(x)=xf′(x)f′(x)dx=2f′(2)一f(x)=2f′(2)一f(2)+f(0)=10—3+1=8,选项C正确.4.由y=,y=1,x=4围成的图形的面积为( )A.B.C.D.正确答案:B解析:画图并利用定积分的几何意义,可知所围图形的面积A=dx-3=,因此答案B正确.5.已知二阶微分方程y″+2y′+2=e-xsinx,则设其特解y*= ( ) A.e-x(acosx+bsinx)B.ae-xcosx+bxe-xsinxC.xe-x(acosx+bsinx)D.axe-xcosx+be-xsinx正确答案:C解析:二阶微分方程y″+2y′+2=e-xsinx的特征方程为r2+2r+2=0,解得r1=-1+i,r2=-1-i,又因λ+ωi=-1+i是特征方程的根,故取k=1,Rm(x)=1,因此y″+2y′+2=e-xsinx具有的特解形式可设为y*=xe-x(acosx+bsinx),答案C正确.填空题6.-(x+1)]=___________.正确答案:2解析:-(x+1)]===2 7.函数y=sin的连续区间为___________.正确答案:[,1]解析:该函数在定义域内处处连续,所以解不等式组,解得定义域为x∈[-,1].因此所求函数的连续区间为x∈[-,1]8.已知f′(3)=2,则=___________.正确答案:一4解析:由导数定义可得=-4.9.若函数y=y(x)由方程y=1+xey所确定.则y′=___________.正确答案:y′=解析:隐函数方程求导,y′=ey+xey.y′,解得y′=10.dx=___________.正确答案:ln|cscx-cotx|+cosx+C解析:dx=∫cscxdx-∫sinxdx=ln|cscx-cotx|+cosx+C11.极限表示的定积分为___________.正确答案:dx解析:利用定积分定义求极限,=,此极限为函数f(x)=在x∈[0,1]上的定积分,即12.级数的收敛区间为___________.正确答案:(-1,1)解析:因为ρ==1,所以幂级数的收敛半径R==1,故收敛区间为(一1,1).13.一阶线性微分方程y′+P(x)y=Q(x)的通解为___________.正确答案:y=e∫-P(x)dx[∫Q(x)e∫P(x)dxdx+C]解析:由一阶线性微分方程y′+P(x)y=Q(x)的通解公式y=e∫-P(x)dx[∫Q(x)e∫P(x)dxdx+C].14.在xOy平面上与向量a=(4,一3,7)垂直的单位向量是___________.正确答案:b=解析:设所求向量b=(x,y,0),则x2+y2=1 ①;且a.b=0,即4x-3y=0②由①和②解得,即b=,0)15.平面2x+y一z一1=0到平面2x+y一z+3=0的距离为___________.正确答案:解析:可以判断两平面平行,故平面2x+y—z一1=0到平面2x+y—z+3=0的距离可以转换为平面2x+y-z-1=0上任一点到平面2x+y-z+3=0的距离,即d=解答题解答时应写出推理、演算步骤。
2012考研真题及答案2012年的考研真题是许多考生备战考研的重要资料,了解这些真题并熟悉其中的答案对于备考考研的同学来说是至关重要的。
在本文中,将为您介绍2012年的考研真题及其答案。
第一部分:数学一2012年的考研数学一科目主要涵盖了数学分析、高等代数和概率论等内容。
以下是部分考题及其答案的概要。
题一:设函数f(x)在区间[a,b]上连续,且在(a,b)内可导,证明:在(a,b)内至少存在一点ξ,使得f(b)-f(a)=(b-a)f' ( ξ )。
解析:根据罗尔定理,由于f(x)在[a,b]上连续,且在(a,b)内可导,那么在[a,b]上有f(a)=f(b)。
根据拉格朗日中值定理,存在一点ξ∈(a,b),使得f' ( ξ )=(f(b)-f(a))/(b-a)。
所以,f(b)-f(a)=(b-a)f' ( ξ )。
题二:已知数列{a_n}的通项公式为a_n=2^n-3^n+4^n-5^n,求证数列{a_n}是等差数列。
解析:我们可以通过数学归纳法来证明这个结论。
当n=1时,a_1=2-3+4-5=-2。
当n=k时,假设a_k=2^k-3^k+4^k-5^k成立。
当n=k+1时,我们需要证明a_(k+1) =2^(k+1)-3^(k+1)+4^(k+1)-5^(k+1)也成立。
根据等差数列的性质,我们有a_(k+1)-a_k = (2^(k+1)-3^(k+1)+4^(k+1)-5^(k+1)) - (2^k-3^k+4^k-5^k)。
化简后可得a_(k+1)-a_k= -2 × 3^k + 3^(k+1) -2 × 5^k + 5^(k+1)。
通过整理和变换,我们得到a_(k+1)-a_k = -3^k (2-3) + 5^k (5-2) = 0。
因此,数列{a_n}是等差数列。
通过以上两道题目,我们可以看出2012年考研数学一科目的难度适中,考察了数学分析和代数的基本概念和推导方法。
广东海洋大学2012年攻读硕士学位研究生入学考试《高等数学》(601)试卷(请将答案写在答题纸上,写在试卷上不给分。
本科目满分150分)一、填空题(每小题4分,满分40分)1、31lim()x x x x→∞+= . 2、设0()2f x '=,则000(3)()lim h f x h f x h h →--+= . 3、抛物线2y x =在点 处的切线平行于直线2340y x ++=4、设2()21f x x '=+,且(0)2f =,则()f x = .5、2(sin 5)x x dx ππ-+=⎰ .6、2(arctan )lim x x t dt = .7、由曲线1y x=、直线y x =和2x =所围成的平面图形的面积 . 8、设arctan x z y =,则2z x y ∂=∂∂ . 9、设22ln(12)z x y =++,则全微分(2,2)dz = .10、改变积分次序110(,)dx f x y dy -⎰= .二、计算题(每小题8分,满分80分)1、求极限0111lim ()tan sin x x x x→-. 2、求不定积分.3、求不定积分cos x e xdx ⎰.4、计算定积分22ππ-⎰.5、求函数 543551y x x x =-++ 在区间[1,2]-上的最大值与最小值.6、证明方程 sin 10x x +-= 在区间(0,)2π内至少有一个根. 7、设 2ln(1)arctan x t y t t ⎧=+⎨=-⎩ 求 dy dx ,22d y dx . 8、设2(34)y f x =+, 且()f x ''存在, 求22d y dx . 9、已知方程 1xy y xe =+,求.(0)y '及(0)y ''.10、计算以xoy 面上的圆周22x y ax +=围成的闭区域为底,而以曲面 22z x y =+为顶的曲顶柱体的体积.三、证明:当 0x > 时,1ln(x x +>. (满分10分)四、求函数 ()lim 1nx nxn x e f x e →∞+=+ 的间断点,并判断其类型. (满分10分) 五、已知02()0()0x tf t dt x F x x a x ⎧⎪≠=⎨⎪=⎩⎰, 其中()f x 具有连续导数,且 (0)0f =,(0) 3.f '=问 (1) ()F x 在0x =点连续时,a 为何值?(2) ()F x 在0x =处是否可导?(3) 当()F x 在0x =处可导时,()F x '在0x =处是否连续? (满分10分)。
共-3-页,第-1-页 浙江海洋学院2012年硕士研究生入学考试初试试题(B 卷)报考专业: 海洋科学 考试科目: 601高等数学 注意事项:本试题的答案必须写在规定的答题纸上,写在试题上不给分.一、填空题:1~7小题,每小题4分,满分28分,请将答案写在答题纸指定的位置上。
(1)设0, 0,(), 0,x f x x x ≤⎧=⎨>⎩20, 0,()e , 0,x x g x x -≤⎧⎪=⎨->⎪⎩则[()] g f x =. (2)若0x →时,211kx +-与sin ln(1)x x +是等价无穷小,则常数 k =.(3)已知1ln 2f x x ⎛⎫'= ⎪⎝⎭,且(0)1f =,则()f x = . (4)设函数()f x 在0x =处连续,且0()lim2ln(1)x f x x →=-+,则(0)f '= . (5)函数+2d ()ln x t f x t t∞=⎰的定义域为 . (6)微分方程1y y '''+=的通解为 .(7)设2arctan 1x z y=+,则(1,1)d z = . 二、选择题:8~14小题,每小题4分,满分28分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内。
(8)设()f x 在点0x 的某邻域内有定义,且()f x 在点0x 间断,则在点0x 处必定间断的函数是( )(A )()sin f x x . (B )()sin f x x +. (C )2()f x . (D )()f x .(9)设函数()f x 在点0x 处左、右导数均存在,则函数()f x 在点0x 处( )(A )可导. (B )不可导. (C )连续. (D )不连续.(10)设函数()y f x =在(,)-∞+∞连续,其一阶导数的图形如图所示,则曲线()y f x =。
经过一年的努力奋斗终于如愿以偿考到自己期望的学校,在这一年的时间内,我秉持着天将降大任于斯人也必先苦其心志劳其筋骨饿其体肤空乏其身的信念终于熬过了这段难熬却充满期待和自我怀疑的岁月。
可谓是痛并快乐着。
在这期间,我不止一次地怀疑自己有没有可能成功上岸,这样的想法,充斥在我的头脑中太多次,明知不可想这么多,但在休息时,思想放空的时候就会凭空冒出来,难以抵挡。
这对自己的心绪实在是太大的干扰,所以在此想跟大家讲,调整好心态,无论成功与否,付出自己全部的努力,到最后,总不会有那种没有努力过而与成功失之交臂的遗憾。
总之就是,付出过,就不会后悔。
在此,我终于可以将我这一年来的所有欣喜,汗水,期待,惶惑,不安全部写出来,一来是对这一重要的人生转折做一个回顾和告别,再有就是,希望我的这些经验,可以给大家以借鉴的作用。
无论是心态方面,考研选择方面,还是备考复习方面。
都希望可以跟大家做一个深入交流,否则这一年来的各种辛酸苦辣真是难吐难吞。
由于心情略微激动了些,所以开篇部分可能略显鸡汤,不过,认真负责的告诉大家,下面的内容将是满满的干货。
只是由于篇幅过长还望大家可以充满耐心的把它看完。
文章结尾会附赠我的学习资料供各位下载使用。
浙江海洋大学数学的初试科目为:(101)思想政治理论(201)英语一(601)数学分析和(807)高等代数参考书目为:1.《高等代数学》高等教育出版社第三版北大数学系编著2.《数学分析(上、下)》高等教育出版社第三版华师大编著先谈谈英语吧其实英语每什么诀窍,就是把真题读透彻,具体方法我总结如下:第一,扫描提干,划关键项。
第二,通读全文,抓住中心。
1. 通读全文,抓两个重点:①首段(中心句、核心概念常在第一段,常在首段出题);②其他各段的段首和段尾句。
(其他部分略读,有重点的读)2. 抓住中心,用一分半时间思考3个问题:①文章叙述的主要内容是什么?②文章中有无提到核心概念?③作者的大致态度是什么?第三,仔细审题,返回原文。
2012年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学注意事项:答题前,考生务必将自己的姓名、考场号、座位号、考生号填写在答题卡上. 本试卷的试题答案必须答在答题卡上,答在试卷上无效. 一、选择题 (每小题2 分,共60 分)在每小题的四个备选答案中选出一个正确答案, 用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.1.函数 xx y 1arctan 4++=的定义域是 ( )A .[4-,+∞)B .(4-,+∞)C .[4-, 0)⋃(0,+∞)D .(4-, 0)⋃(0,+∞) 【答案】C.【解析】 x +4要求04≥+x ,即4-≥x ;x1arctan 要求0≠x .取二者之交集,得∈x [4-, 0)⋃(0,+∞) 应选C.2.下列函数为偶函数的是( )A .()x x y -+=1log 32B .x x y sin =C . ()x x ++1ln D. x e y =【答案】B.【解析】 显然A ,D 中的函数都是非奇非偶,应被排除;至于C , 记 ()()x x x f ++=1ln 2 则 ()()()⎥⎦⎤⎢⎣⎡-+⎪⎭⎫ ⎝⎛+-=-x x x f 1ln 2()x x-+=1ln2=++=xx 11ln2()().1ln 2x f x x -=++-所以()x f 为奇函数,C 也被排除.应选B.3.当0→x 时,下列无穷小量中与)21ln(x +等价的是( )A . xB .x 21C .2xD .x 2 【答案】D.【解析】因为12)21ln(lim0=+→xx x ,所以应选D.4.设函数()xx f 1sin 2=, 则0=x 是()x f 的( )A .连续点B .可去间断点C .跳跃间断点D .第二类间断点 【答案】D .【解析】 因为()x f 在0=x 处无定义,且无左、右极限,故0=x 是()x f 的第二类间断点.选D . 5.函数3x y =在0=x 处A .极限不存在B .间断C .连续但不可导D .连续且可导 【答案】C.【解析】因为3x y =是初等函数,且在0=x 处有定义,故()x f 在0=x 处连续;又321.31x y =',故()x f 在0=x 处不可导.综上,应选 C.6.设函数()()x x x f ϕ= ,其中()x ϕ在0=x 处连续且的()00≠ϕ,则()0f '( )A .不存在B .等于()0ϕ'C .存在且等于0D .存在且等于()0ϕ 【答案】A. 【解析】()()()00lim 00--='-→-x f x f f x ()xx x x 0lim0--=-→ϕ()()0lim 0ϕϕ-=-=-→x x ; ()()()00lim 00--='+→+x f x f f x ()x x x x 0lim 0-=+→ϕ()()0lim 0ϕϕ==+→x x ; 因为()≠'-0f ()0+'f ,所以()0f '不存在,选A. 7.若函数()u f y =可导,x e u =,则=dy ( )A .()dx e f x 'B .()()x x e d e f 'C .()dx e x f x .'D .()[]()x x e d e f '【答案】D B.【解析】根据一阶微分形式的不变性知 ()()()x x e d e f du u f dy '='=,故选B. 8.过曲线()x f y 1=有水平渐进线的充分条件是( ) A .()0lim =∞→x f x B .()∞=∞→x f x limC .()0lim 0=→x f x D .()∞=→x f x 0lim【答案】B.【解析】根据水平渐进线的定义: 如果()C x f x =∞→lim 存在,则称C y =为曲线()x f y =的一条水平渐进线,易判断出应选B.9.设函数x x y sin 21-=,则=dydx( ) A . y cos 211- B .x cos 211-C .ycos 22- D .x cos 22-【答案】D .【解析】因为x x x dx dy cos 211sin 21-='⎪⎭⎫⎝⎛-=,所以,=-==x dx dy dy dx cos 21111xc o s 22-,选D . 10.曲线()⎩⎨⎧<+≥+=,0,sin 1,0,1x x x x x f 在点()1,0处的切线斜率是( )A .0B .1C .2D .3【答案】B.【解析】 因为()()()00lim00--='-→-x f x f f x ()x x x 1sin 1lim 0-+=-→1sin lim 0==-→xx x ; ()()()00lim00--='+→+x f x f f x ()111l i m 0=-+=+→xx x ,故()10='f 存在. 所以,曲线()⎩⎨⎧<+≥+=,0,sin 1,0,1x x x x x f 在点()1,0处的切线斜率是()10='f ,选B.11. 方程033=++c x x (其中c 为任意实数)在区间()1,0内实根最多有( ) A .4个 B .3 个 C .2个 D .1个 【答案】D .【解析】 令c x x y ++=33.则0332>+='x y ,因此曲线c x x y ++=33在()1,0内是上升的,它至多与x 轴有一个交点,即方程033=++c x x 在区间()1,0内至多有一个实根.选D .12.若()x f '连续,则下列等式正确的是( )A .()[]()x f dx x f ='⎰ B .()()x f dx x f ='⎰ C .()()x f x df =⎰ D .()[]()x f dx x f d =⎰【答案】A .13.如果()x f 的一个原函数为x x arcsin -,则()=⎰dx x f 在( ) A .C x +++2111 B .C x+--2111 C .C x x +-arcsin D .C x+-+2111【答案】C.【解析】根据原函数及不定积分的定义,立知()=⎰dx x f C x x +-arcsin ,选C. 14.设()1='x f ,且()10=f ,则()=⎰dx x f ( )A .C x +B .C x x ++221C .C x x ++2D .C x +221【答案】B.【解析】因为()1='x f ,故 ()C x dx x f +==⎰1 .又()10=f ,故.1=C 即 ()1+=x x f .所以,()=⎰dx x f ().2112C x x dx x ++=+⎰选B. 15. =-⎰dt t dx d x2012sin 2)cos (( ) A .2cos x - B .()x x cos .sin cos 2C . 2c o s x xD . ()2i n c o s x【答案】B. 【解析】 =-⎰dt t dx d x 2012sin 2)cos (()()⎥⎦⎤⎢⎣⎡'--x x sin .sin cos 2()x x cos .sin cos 2=,选B. 16.=-⎰dx e x x 2132( )A .1B .0C .121--eD .11--e 【答案】C. 【解析】=-⎰dx e x x 2132)(212x e d x -⎰-(分部)()⎥⎦⎤⎢⎣⎡-+-=⎰--21010222|x d e e x x x 11121|2----=--=e ee x .选 C.17.下列广义积分收敛的是( )A . ⎰10ln 1xdx x B.⎰10031dx xxC .⎰+∞1ln 1xdx xD .dx e x ⎰+∞--35 【答案】D. 【解析】因为 ⎰+→+100ln 1lim εεxdx x ()⎰+→=10ln ln lim εεx xd∞==+→|120ln 21lim εεx ,所以,⎰10031dx xx 发散; 因为 ⎰+→+10031lim εεdx xx ⎰-→+=1034lim εεdx x ∞=-=+→|1031lim 3εεx ,所以,⎰10ln 1xdx x发散; 因为⎰+∞1ln 1xdx x ()⎰+∞=1ln ln x xd ∞==+∞|12ln 21x ,所以,⎰+∞1ln 1xdx x发散;dx e x⎰+∞--35()()151535355105151551|e e e x d e x x =--=-=--=+∞--+∞--⎰收敛。
共-3-页,第-1-页 浙江海洋学院2012年硕士研究生入学考试初试试题(B 卷)
报考专业: 海洋科学 考试科目: 601高等数学 注意事项:本试题的答案必须写在规定的答题纸上,写在试题上不给分.
一、填空题:1~7小题,每小题4分,满分28分,请将答案写在答题纸指定的位置上。
(1)设0, 0,(), 0,x f x x x ≤⎧=⎨>⎩20, 0,()e , 0,
x x g x x -≤⎧⎪=⎨->⎪⎩则[()] g f x =. (2)若0x →时,211kx +-与sin ln(1)x x +是等价无穷小,则常数 k =.
(3)已知1ln 2f x x ⎛⎫'= ⎪⎝⎭
,且(0)1f =,则()f x = . (4)设函数()f x 在0x =处连续,且0()lim
2ln(1)x f x x →=-+,则(0)f '= . (5)函数+2d ()ln x t f x t t
∞=⎰的定义域为 . (6)微分方程1y y '''+=的通解为 .
(7)设2arctan 1x z y
=+,则(1,1)d z = . 二、选择题:8~14小题,每小题4分,满分28分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内。
(8)设()f x 在点0x 的某邻域内有定义,且()f x 在点0x 间断,则在点0x 处必定间断的函数是( )
(A )()sin f x x . (B )()sin f x x +. (C )
2()f x . (D )()f x .
(9)设函数()f x 在点0x 处左、右导数均存在,
则函数()f x 在点0x 处( )
(A )可导. (B )不可导. (C )
连续. (D )不连续.
(10)设函数()y f x =在(,)-∞+∞连续,其一阶。