直线和圆的方程知识与典型例题
- 格式:doc
- 大小:3.48 MB
- 文档页数:13
直线与圆1.本单元知识点本单元的学习重点包括:直线的斜率、直线的方程、直线与直线的位置关系,圆的方程、圆与圆的位置关系,直线与圆的位置关系,直线与圆的距离问题,其中直线与圆的位置关系是高考热点.2.典型例题选讲例1. 过点M (0,1)作直线,使它被两直线082:,0103:21=-+=+-y x l y x l 所截得的线段恰好被M 所平分,求此直线的方程.说明:直线方程有三种基本形式:点斜式、两点式、一般式,求直线方程时应根据题目条件灵活选择,并注意不同形式的适用范围. 如采用点斜式,需要注意讨论斜率不存在的情况. 例2.已知圆0822:221=-+++y x y x C 与圆024102:222=-+-+y x y x C 交于A,B 两点.(1)求直线AB 的方程;(2)求过A 、B 两点且面积最小的圆的方程.说明:应用两圆相减求两圆公共弦的方法,可避免通过求两个交点再求公共弦方程. 另外,在求解与圆有关的问题时,应注意多利用圆的相关几何性质,这样利于简化解题步骤.例3.若过点A (4,0)的直线l 与曲线1)2(22=+-y x 有公共点,求直线l 的斜率k 的取值范围. (一题多解)说明:直线与圆的位置关系问题,可以从几何和代数两方面入手. 相切问题应抓住角度问题求斜率;相交问题应抓住半径r 、弦心距d 、半弦长2l 构造的直角三角形使问题简化. 例4.设定点M (-3,4),动点N 在圆422=+y x 上运动,以OM ,ON 为邻边作平行四边形MONP ,求点P 的轨迹.说明:轨迹方程在必修2第122页有例题,求动点的轨迹方程要特别注意考虑轨迹与方程间的等价性,有时求得方程后还要添上或去掉某些点.3.自测题选择题:1.过点A (1,-1)且与线段)11(0323≤≤-=--x y x 相交的直线的倾斜角的取值范围是( )A. ]2,4[ππ B. ],2[ππ C. ],2[]4,0(πππ D.),2[]4,0[πππ2.若直线02)1(2=-++ay x a 与直线012=++y ax 垂直,则=a ( )A.-2B.0C.-1或0D.222±3.若P (2,1)为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( )A. 03=--y xB.032=-+y xC.03=-+y xD.052=--y x4.已知圆1)3()2(:221=-+-y x C ,圆9)4()3(:222=-+-y x C ,M ,N 分别是圆上的动点,P 为x 轴上的动点,则PN PM +的最小值为( )A. 425-B.117-C.226-D.175.已知)3,0(),0,3(B A -,若点P 在0222=-+x y x 上运动,则PAB ∆面积的最小值为( )A.6B. 26C. 2236+D.2236-6.曲线241x y -+=与直线4)2(+-=x k y 有两个交点,则实数k 的取值范围是( )A. )125,0(B.),125(+∞C. ]43,31(D.]43,125(填空题:7.圆心在直线02=-y x 上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦长为32,则圆C 的标准方程为______________8.若圆422=+y x 与圆)0(06222>=-++a ax y x 的公共弦长为32,则=a _______9.设圆05422=--+x y x 的弦AB 的中点为P(3,1),则直线AB 的方程为_____________10.已知P 是直线0843=++y x 上的动点,PA 、PB 是圆012222=+--+y x y x 的两切线,A 、B 是切点,C 是圆心,则四边形PACB 的面积的最小值为__________解答题:11. 在ABC ∆中,)1,3(-A ,AB 边上的中线CM 所在直线方程为059106=-+y x ,B ∠的平分线BT 的方程为0104=+-y x .(1)求顶点B 的坐标; (2)求直线BC 的方程.12.已知点)3,2(--P ,圆9)2()4(:22=-+-y x C ,过P 点作圆C 的两条切线,切点分别为A 、B.(1)求过P 、A 、B 三点的圆的方程;(2)求直线AB 的方程.。
直线与圆经典题型题型一:对称性求最值例题:已知点M (3,5),在直线l :x ﹣2y +2=0和y 轴上各找一点P 和Q ,使△MPQ 的周长最小.解:由点M (3,5)及直线l ,可求得点M 关于l 的对称点M 1(5,1).同样容易求得点M 关于y 轴的对称点M 2(﹣3,5).据M 1及M 2两点可得到直线M 1M 2的方程为x +2y ﹣7=0.得交点P (,).令x=0,得到M 1M 2与y 轴的交点Q (0,).解方程组x +2y ﹣7=0,x ﹣2y +2=0,故点P (,)、Q (0,)即为所求.1221M M PQ Q M P M PQ MQ MP C MPQ ≥++=++=∆题型二:反射光线问题已知光线经过已知直线l1:3x﹣y+7=0和l2:2x+y+3=0的交点M,且射到x轴上一点N(1,0)后被x轴反射.(1)求点M关于x轴的对称点P的坐标;(2)求反射光线所在的直线l3的方程.(3)求与l3距离为的直线方程.【分析】(1)联立方程组,求出M的坐标,从而求出P的坐标即可;(2)法一:求出直线的斜率,从而求出直线方程即可;法二:求出直线PN的方程,根据对称性求出直线方程即可;(3)设出与l3平行的直线方程,根据平行线的距离公式求出即可.【解答】解:(1)由得,∴M(﹣2,1).所以点M关于x轴的对称点P的坐标(﹣2,﹣1).…(4分)(2)因为入射角等于反射角,所以∠1=∠2.直线MN的倾斜角为α,则直线l3的斜斜角为180°﹣α.,所以直线l3的斜率.故反射光线所在的直线l3的方程为:.即.…(9分)解法二:因为入射角等于反射角,所以∠1=∠2.根据对称性∠1=∠3,∴∠2=∠3.所以反射光线所在的直线l3的方程就是直线PN的方程.直线PN的方程为:,整理得:.故反射光线所在的直线l3的方程为.…(9分)(3)设与l3平行的直线为,根据两平行线之间的距离公式得:,解得b=3,或,所以与l3为:,或.…(13分)题型三:直线恒过点问题已知直线方程为(2+m)x+(1﹣2m)y+4﹣3m=0.(Ⅰ)证明:直线恒过定点M;(Ⅱ)若直线分别与x轴、y轴的负半轴交于A,B两点,求△AOB面积的最小值及此时直线的方程.【分析】(Ⅰ)直线方程按m集项,方程恒成立,得到方程组,求出点的坐标,即可证明:直线恒过定点M;(Ⅱ)若直线分别与x轴、y轴的负半轴交于A,B两点,说明直线的斜率小于0,设出斜率根据直线过的定点,写出直线方程,求出△AOB面积的表达式,利用基本不等式求出面积的最小值,即可得到面积最小值的直线的方程.【解答】(Ⅰ)证明:(2+m)x+(1﹣2m)y+4﹣3m=0化为(x﹣2y﹣3)m=﹣2x ﹣y﹣4.(3分)得∴直线必过定点(﹣1,﹣2).(6分)(Ⅱ)解:设直线的斜率为k(k<0),则其方程为y+2=k(x+1),∴OA=|﹣1|,OB=|k﹣2|,(8分)S△AOB=•OA•OB=|(﹣1)(k﹣2)|=|﹣|..(10分)∵k<0,∴﹣k>0,∴S=[﹣]=[4+(﹣)+(﹣k)]≥4.△AOB当且仅当﹣=﹣k,即k=﹣2时取等号.(13分)∴△AOB的面积最小值是4,(14分)直线的方程为y+2=﹣2(x+1),即y+2x+4=0.(15分)2.已知直线l的方程为2x+(1+m)y+2m=0,m∈R,点P的坐标为(﹣1,0).(1)求证:直线l恒过定点,并求出定点坐标;(2)求点P到直线l的距离的最大值.【分析】(1)把直线方程变形得,2x+y+m(y+2)=0,联立方程组,求得方程组的解即为直线l恒过的定点.(2)设点P在直线l上的射影为点M,由题意可得|PM|≤|PQ|,再由两点间的距离公式求得点P到直线l的距离的最大值【解答】(1)证明:由2x+(1+m)y+2m=0,得2x+y+m(y+2)=0,∴直线l恒过直线2x+y=0与直线y+2=0的交点Q,解方程组,得Q(1,﹣2),∴直线l恒过定点,且定点为Q(1,﹣2).(2)解:设点P在直线l上的射影为点M,则|PM|≤|PQ|,当且仅当直线l与PQ垂直时,等号成立,∴点P到直线l的距离的最大值即为线段PQ的长度,等于=2.题型四:动直线问题已知点A(1,2)、B(5,﹣1),(1)若A,B两点到直线l的距离都为2,求直线l的方程;(2)若A,B两点到直线l的距离都为m(m>0),试根据m的取值讨论直线l 存在的条数,不需写出直线方程.【分析】(1)要分为两类来研究,一类是直线L与点A(1,2)和点B(5,﹣1)两点的连线平行,一类是线L过两点A(1,2)和点B(5,﹣1)中点,分类解出直线的方程即可;(2)根据A,B两点与直线l的位置关系以及m与两点间距离5的一半比较,得到满足条件的直线.【解答】解:∵|AB|==5,|AB|>2,∴A与B可能在直线l的同侧,也可能直线l过线段AB中点,①当直线l平行直线AB时:k AB=,可设直线l的方程为y=﹣x+b依题意得:=2,解得:b=或b=,故直线l的方程为:3x+4y﹣1=0或3+4y﹣21=0;②当直线l过线段AB中点时:AB的中点为(3,),可设直线l的方程为y﹣=k (x﹣3)依题意得:=2,解得:k=,故直线l的方程为:x﹣2y﹣=0;(2)A,B两点到直线l的距离都为m(m>0),AB平行的直线,满足题意得一定有2条,经过AB中点的直线,若2m<|AB|,则有2条;若2m=|AB|,则有1条;若2m>|AB|,则有0条,题型五:斜率取值范围已知点A(1,1),B(﹣2,2),直线l过点P(﹣1,﹣1)且与线段AB始终有交点,则直线l的斜率k的取值范围为k≤﹣3,或k≥1.【分析】由题意画出图形,数形结合得答案.【解答】解:如图,∵A(1,1),B(﹣2,2),直线l过点P(﹣1,﹣1),又,∴直线l的斜率k的取值范围为k≤﹣3,或k≥1.故答案为:k≤﹣3,或k≥1.题型六:对称问题已知直线l:y=3x+3求(1)点P(4,5)关于l的对称点坐标;(2)直线y=x﹣2关于l对称的直线的方程.【分析】(1)设点P(4,5)关于直线y=3x+3对称点P′的坐标为(m,n),得到关于m,n的方程组,求得m、n的值,可得P′的坐标;(2)求出交点坐标,在直线y=x﹣2上任取点(2,0),得到对称点坐标,求出直线方程即可.【解答】解:(1)设点P(4,5)关于直线y=3x+3对称点P′的坐标为(m,n),则由,求得m=﹣2,n=7,故P′(﹣2,7).(2)由,解得:交点为,在直线y=x﹣2上任取点(2,0),得到对称点为,所以得到对称的直线方程为7x+y+22=0题型七:截线段长问题已知直线l经过点P(3,1),且被两平行直线l1;x+y+1=0和l2:x+y+6=0截得的线段之长为5,求直线l的方程.【分析】法一如图,若直线l的斜率不存在,直线l的斜率存在,利用点斜式方程,分别与l1、l2联立,求得两交点A、B的坐标(用k表示),再利用|AB|=5可求出k的值,从而求得l的方程.法二:求出平行线之间的距离,结合|AB|=5,设直线l与直线l1的夹角为θ,求出直线l的倾斜角为0°或90°,然后得到直线方程.就是用l1、l2之间的距离及l 与l1夹角的关系求解.法三:设直线l1、l2与l分别相交于A(x1,y1),B(x2,y2),则通过求出y1﹣y2,x1﹣x2的值确定直线l的斜率(或倾斜角),从而求得直线l 的方程.【解答】解:解法一:若直线l的斜率不存在,则直线l的方程为x=3,此时与l1、l2的交点分别为A′(3,﹣4)或B′(3,﹣9),截得的线段AB的长|AB|=|﹣4+9|=5,符合题意.若直线l的斜率存在,则设直线l的方程为y=k(x﹣3)+1.解方程组得A(,﹣).解方程组得B(,﹣).由|AB|=5.得(﹣)2+(﹣+)2=52.解之,得k=0,直线方程为y=1.综上可知,所求l的方程为x=3或y=1.题型八:直线夹角问题已知直线l:5x+2y+3=0,直线l′经过点P(2,1)且与l的夹角等于45,求直线l'的一般方程.【分析】设出直线l′的斜率为k′,通过直线的夹角公式求出直线的斜率,然后求出直线的方程.【解答】解:设直线l′的斜率为k′,则,…(7分),…(10分)直线l′:7x﹣3y﹣11=0和3x+7y﹣13=0;…(13分)本题是基础题,考查直线方程的求法,夹角公式的应用,注意夹角公式与到角公式的区别,考查计算能力.。
直线和圆的方程一、选择题1.(2003北京春文12,理10)已知直线ax +by +c =0(abc ≠0)与圆x 2+y 2=1相切,则三条边长分别为|a |,|b |,|c |的三角形( )A.是锐角三角形B.是直角三角形C.是钝角三角形D.不存在2.(2003北京春理,12)在直角坐标系xOy 中,已知△AOB 三边所在直线的方程分别为x =0,y =0,2x +3y =30,则△AOB 内部和边上整点(即横、纵坐标均为整数的点)的总数是( )A.95B.91C.88D.75 3.(2002京皖春文,8)到两坐标轴距离相等的点的轨迹方程是( ) A.x -y =0 B.x +y =0 C.|x |-y =0 D.|x |-|y |=04.(2002京皖春理,8)圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠2π+k π,k ∈Z )的位置关系是( ) A.相交 B.相切 C.相离 D.不确定的5.(2002全国文)若直线(1+a )x +y +1=0与圆x 2+y 2-2x =0相切,则a 的值为( )A.1,-1B.2,-2C.1D.-16.(2002全国理)圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( ) A.21 B.23 C.1D.37.(2002北京,2)在平面直角坐标系中,已知两点A (co s 80°,sin80°),B (co s 20°,sin20°),则|AB |的值是( )A.21B.22C.23D.18.(2002北京文,6)若直线l :y =kx 3-与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A.)3,6[ππB.)2,6(ππC.)2,3(ππD.]2,6[ππ9.(2002北京理,6)给定四条曲线:①x 2+y 2=25,②4922y x +=1,③x 2+42y =1,④42x +y 2=1.其中与直线x +y -5=0仅有一个交点的曲线是( )A.①②③B.②③④C.①②④D.①③④10.(2001全国文,2)过点A (1,-1)、B (-1,1)且圆心在直线x +y -2=0上的圆的方程是( )A.(x -3)2+(y +1)2=4B.(x +3)2+(y -1)2=4C.(x -1)2+(y -1)2=4D.(x +1)2+(y +1)2=4 11.(2001上海春,14)若直线x =1的倾斜角为α,则α( )A.等于0B.等于4π C.等于2π D.不存在12.(2001天津理,6)设A 、B 是x 轴上的两点,点P 的横坐标为2且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A.x +y -5=0B.2x -y -1=0C.2y -x -4=0D.2x +y -7=013.(2001京皖春,6)设动点P 在直线x =1上,O 为坐标原点.以OP 为直角边,点O 为直角顶点作等腰Rt △OP Q ,则动点Q 的轨迹是( )A.圆B.两条平行直线C.抛物线D.双曲线14.(2000京皖春,4)下列方程的曲线关于x =y 对称的是( ) A.x 2-x +y 2=1 B.x 2y +xy 2=1 C.x -y =1 D.x 2-y 2=115.(2000京皖春,6)直线(23-)x +y =3和直线x +(32-)y =2的位置关系是( ) A.相交不垂直 B.垂直 C.平行 D.重合16.(2000全国,10)过原点的直线与圆x 2+y 2+4x +3=0相切,若切点在第三象限,则该直线的方程是( )A.y =3xB.y =-3xC.y =33xD.y =-33x17.(2000全国文,8)已知两条直线l 1:y =x ,l 2:ax -y =0,其中a 为实数,当这两条直线的夹角在(0,12π)内变动时,a 的取值范围是( )A.(0,1)B.(3,33) C.(33,1)∪(1,3) D.(1,3)18.(1999全国文,6)曲线x 2+y 2+22x -22y =0关于( ) A.直线x =2轴对称B.直线y =-x 轴对称C.点(-2,2)中心对称D.点(-2,0)中心对称19.(1999上海,13)直线y =33x 绕原点按逆时针方向旋转30°后所得直线与圆(x -2)2+y 2=3的位置关系是( )A.直线过圆心B.直线与圆相交,但不过圆心C.直线与圆相切D.直线与圆没有公共点20.(1999全国,9)直线3x +y -23=0截圆x 2+y 2=4得的劣弧所对的圆心角为( )A.6πB.4π C .3πD.2π21.(1998全国,4)两条直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0垂直的充要条件是( )A.A 1A 2+B 1B 2=0B.A 1A 2-B 1B 2=0C.12121-=B B A A D.2121A A B B =122.(1998上海)设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线sin A ·x +ay +c =0与bx -sin B ·y +sin C =0的位置关系是( )A.平行B.重合C.垂直D.相交但不垂直23.(1998全国文,3)已知直线x =a (a >0)和圆(x -1)2+y 2=4相切,那么a 的值是( )A.5B.4C.3D.224.(1997全国,2)如果直线ax +2y +2=0与直线3x -y -2=0平行,那么系数a 等于( )A.-3B.-6C.-23 D.32 25.(1997全国文,9)如果直线l 将圆x 2+y 2-2x -4y =0平分,且不通过第四象限,那么直线l 的斜率的取值范围是( )A.[0,2]B.[0,1]C.[0,21] D.[0,21) 26.(1995上海,8)下列四个命题中的真命题是( )A.经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示B.经过任意两个不同的点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程(y -y 1)·(x 2-x 1)=(x -x 1)(y 2-y 1)表示C.不经过原点的直线都可以用方程1=+bya x 表示 D.经过定点A (0,b )的直线都可以用方程y =kx +b 表示 27.(1995全国文,8)圆x 2+y 2-2x =0和x 2+y 2+4y =0的位置关系是( ) A.相离 B.外切 C.相交 D.内切28.(1995全国,5)图7—1中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A.k 1<k 2<k 3B.k 3<k 1<k 2C.k 3<k 2<k 1D.k 1<k 3<k 2 29.(1994全国文,3)点(0,5)到直线y =2x 的距离是( ) A.25B.5C.23D.25图7—130.(2003上海春,2)直线y=1与直线y=3x+3的夹角为_____.31.(2003上海春,7)若经过两点A(-1,0)、B(0,2)的直线l与圆(x -1)2+(y-a)2=1相切,则a=_____.32.(2002北京文,16)圆x2+y2-2x-2y+1=0上的动点Q到直线3x+4y +8=0距离的最小值为.33.(2002北京理,16)已知P是直线3x+4y+8=0上的动点,P A,PB是圆x2+y2-2x-2y+1=0的两条切线,A、B是切点,C是圆心,那么四边形P ACB 面积的最小值为.34.(2002上海文,6)已知圆x2+(y-1)2=1的圆外一点P(-2,0),过点P作圆的切线,则两条切线夹角的正切值是.35.(2002上海理,6)已知圆(x+1)2+y2=1和圆外一点P(0,2),过点P作圆的切线,则两条切线夹角的正切值是.36.(2002上海春,8)设曲线C1和C2的方程分别为F1(x,y)=0和F2(x,y)=0,则点P(a,b) C1∩C2的一个充分条件为.37.(2001上海,11)已知两个圆:x2+y2=1①与x2+(y-3)2=1②,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例.推广的命题为:38.(2001上海春,6)圆心在直线y=x上且与x轴相切于点(1,0)的圆的方程为.39.(2000上海春,11)集合A={(x,y)|x2+y2=4},B={(x,y)|(x-3)2+(y-4)2=r2},其中r>0,若A∩B中有且仅有一个元素,则r的值是_____.40.(1997上海)设圆x2+y2-4x-5=0的弦AB的中点为P(3,1),则直线AB的方程是.41.(1994上海)以点C(-2,3)为圆心且与y轴相切的圆的方程是.42.(2003京春文,20)设A(-c,0),B(c,0)(c>0)为两定点,动点P到A点的距离与到B点的距离的比为定值a(a>0),求P点的轨迹.43.(2003京春理,22)已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.(Ⅰ)求动圆圆心的轨迹M的方程;(Ⅱ)设过点P,且斜率为-3的直线与曲线M相交于A、B两点.(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围.44.(2002全国文,21)已知点P 到两个定点M (-1,0)、N (1,0)距离的比为2,点N 到直线PM 的距离为1.求直线PN 的方程.45.(1997全国文,25)已知圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l :x -2y =0的距离为55,求该圆的方程.46.(1997全国理,25)设圆满足:(1)截y轴所得弦长为2;(2)被x轴分成两段圆弧,其弧长的比为3∶1.在满足条件(1)、(2)的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.47.(1997全国文,24)已知过原点O的一条直线与函数y=lo g8x的图象交于A、B两点,分别过点A、B作y轴的平行线与函数y=lo g2x的图象交于C、D 两点.(1)证明点C、D和原点O在同一条直线上.(2)当BC平行于x轴时,求点A的坐标.48.(1994上海,25)在直角坐标系中,设矩形OPQR的顶点按逆时针顺序依次为O(0,0),P(1,t),Q(1-2t,2+t),R(-2t,2),其中t∈(0,+∞).(1)求矩形OPQR在第一象限部分的面积S(t).(2)确定函数S(t)的单调区间,并加以证明.49.(1994全国文,24)已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数λ(λ>0).求动点M的轨迹方程,说明它表示什么曲线.答案解析1.答案:B解析:圆心坐标为(0,0),半径为 1.因为直线和圆相切.利用点到直线距离公式得:d =22||b a c +=1,即a 2+b 2=c 2.所以,以|a |,|b |,|c |为边的三角形是直角三角形.评述:要求利用直线与圆的基本知识,迅速找到a 、b 、c 之间的关系,以确定三角形形状.2.答案:B 解析一:由y =10-32x (0≤x ≤15,x ∈N )转化为求满足不等式y ≤10-32x (0≤x ≤15,x ∈N )所有整数y 的值.然后再求其总数.令x =0,y 有11个整数,x =1,y 有10个,x =2或x =3时,y 分别有9个,x =4时,y 有8个,x =5或6时,y 分别有7个,类推:x =13时y 有2个,x =14或15时,y 分别有1个,共91个整点.故选B.解析二:将x =0,y =0和2x +3y =30所围成的三角形补成一个矩形.如图7—2所示.对角线上共有6个整点,矩形中(包括边界)共有16×11=176.因此所求△AOB 内部和边上的整点共有26176+=91(个) 评述:本题较好地考查了考生的数学素质,尤其是考查了思维的敏捷性与清晰的头脑,通过不等式解等知识探索解题途径.3.答案:D解析:设到坐标轴距离相等的点为(x ,y ) ∴|x |=|y | ∴|x |-|y |=0 4.答案:C解析:圆2x 2+2y 2=1的圆心为原点(0,0)半径r 为22,圆心到直线x sin θ+y -1=0的距离为:1sin 11sin |1|22+=+=θθd∵θ∈R ,θ≠2π+k π,k ∈Z∴0≤sin 2θ<1 ∴d >22∴d >r ∴圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠2π+k π,k ∈Z )的位置关系是相离.图7—2解析:将圆x 2+y 2-2x =0的方程化为标准式:(x -1)2+y 2=1 ∴其圆心为(1,0),半径为1,若直线(1+a )x +y +1=0与该圆相切,则圆心到直线的距离d 等于圆的半径r∴11)1(|11|2=++++a a ∴a =-16.答案:A解析:先解得圆心的坐标(1,0),再依据点到直线距离的公式求得A 答案. 7.答案:D解析:如图7—3所示,∠AOB =60°,又|OA |=|OB |=1 ∴|AB |=1 8.答案:B方法一:求出交点坐标,再由交点在第一象限求得倾斜角的范围⎪⎪⎩⎪⎪⎨⎧+-=++=⇒⎩⎨⎧=-+-=k k y kx y x kx y 3232632)32(306323 ∵交点在第一象限,∴⎩⎨⎧>>00y x∴⎪⎪⎩⎪⎪⎨⎧>+->++032326032)32(3kk k∴k ∈(33,+∞)∴倾斜角范围为(2,6ππ)方法二:如图7—4,直线2x +3y -6=0过点A (3,0),B (0,2),直线l 必过点(0,-3),当直线过A 点时,两直线的交点在x 轴,当直线l 绕C 点逆时针旋转时,交点进入第一象限,从而得出结果.评述:解法一利用曲线与方程的思想,利用点在象限的特征求得,而解法二利用数形结合的思想,结合平面几何中角的求法,可迅速、准确求得结果.9.答案:D解析:联立方程组,依次考查判别式,确定D. 10.答案:C解析一:由圆心在直线x +y -2=0上可以得到A 、C 满足条件,再把A 点坐标(1,-1)代入圆方程.A 不满足条件.∴选C.解析二:设圆心C 的坐标为(a ,b ),半径为r ,因为圆心C 在直线x +y -2=0上,∴b =2-a . 由|CA |=|CB |,得(a -1)2+(b +1)2=(a +1)2+(b -1)2,解得a =1,b =1 因此所求圆的方程为(x -1)2+(y -1)2=4评述:本题考查圆的方程的概念,解法一在解选择题中有广泛的应用,应引起重视.图7—3图7—4解析:直线x =1垂直于x 轴,其倾斜角为90°. 12.答案:A解析:由已知得点A (-1,0)、P (2,3)、B (5,0),可得直线PB 的方程是x +y -5=0. 评述:本题考查直线方程的概念及直线的几何特征. 13.答案:B解析一:设P =1+bi ,则Q =P (±i ), ∴Q =(1+bi )(±i )=±b i ,∴y =±1 解析二:设P 、Q 点坐标分别为(1,t ),(x ,y ), ∵OP ⊥OQ ,∴1t·xy=-1,得x +ty =0 ①∵|OP |=|OQ |,∴2221y x t +=+,得x 2+y 2=t 2+1②由①得t =-y x ,将其代入②,得x 2+y 2=22y x +1,(x 2+y 2)(1-21y)=0.∵x 2+y 2≠0,∴1-21y=0,得y =±1. ∴动点Q 的轨迹为y =±1,为两条平行线. 评述:本题考查动点轨迹的基本求法. 14.答案:B解析:∵点(x ,y )关于x =y 对称的点为(y ,x ),可知x 2y +xy 2=1的曲线关于x =y 对称. 15.答案:B 解析:直线(23-)x +y =3的斜率k 1=32-,直线x +(32-)y =2的斜率k 2=23+,∴k 1·k 2=)23)(32(+-=-1.16.答案:C解析一:圆x 2+y 2+4x +3=0化为标准式(x +2)2+y 2=1,圆心C (-2,0).设过原点的直线方程为y =kx ,即kx -y =0.由1|2|2+-k k =1,解得k =±33,∵切点在第三象限, ∴k >0,所求直线方程为y =33x . 解析二:设T 为切点,因为圆心C (-2,0),因此CT =1,OC =2,△OCT 为Rt △.如图7—5,∴∠CO T=30°,∴直线OT 的方程为y =33x . 评述:本题考查直线与圆的位置关系,解法二利用数与形的完美图7—5结合,可迅速、准确得到结果.17.答案:C解析:直线l 1的倾斜角为4π,依题意l 2的倾斜角的取值范围为(4π-12π,4π)∪(4π,4π+12π)即:(6π,4π)∪(4π,3π),从而l 2的斜率k 2的取值范围为:(33,1)∪(1,3). 评述:本题考查直线的斜率和倾斜角,两直线的夹角的概念,以及分析问题、解决问题的能力.18.答案:B解析:由方程(x +2)2+(y -2)2=4如图7—6所示,故圆关于y =-x 对称 故选B.评述:本题考查了圆方程,以及数形结合思想.应注意任何一条直径都是圆的对称轴.19.答案:C解析:直线y =33x 绕原点逆时针旋转30°所得的直线方程为:y =3x .已知圆的圆心(2,0)到y =3x 的距离d =3,又因圆的半径r =3,故直线y =3x 与已知圆相切.评述:本题考查直线的斜率和倾斜角以及直线与圆的位置关系. 20.答案:C解析:如图7—7所示,由⎪⎩⎪⎨⎧=+=-+4032322y x y x消y 得:x 2-3x +2=0 ∴x 1=2,x 2=1 ∴A (2,0),B (1,3)∴|AB |=22)30()12(-+-=2又|OB |=|OA |=2∴△AOB 是等边三角形,∴∠AOB =3π,故选C.评述:本题考查直线与圆相交的基本知识,及正三角形的性质以及逻辑思维能力和数形结合思想,同时也体现了数形结合思想的简捷性.如果注意到直线AB 的倾斜角为120°.则等腰△OAB 的底角为60°.因此∠AOB =60°.更加体现出平面几何的意义.21.答案:A图7—6图7—7解法一:当两直线的斜率都存在时,-11B A ·(22B A -)=-1,A 1A 2+B 1B 2=0. 当一直线的斜率不存在,一直线的斜率为0时,⎩⎨⎧==⎩⎨⎧==0001221B A B A 或, 同样适合A 1A 2+B 1B 2=0,故选A. 解法二:取特例验证排除.如直线x +y =0与x -y =0垂直,A 1A 2=1,B 1B 2=-1,可排除B 、D. 直线x =1与y =1垂直,A 1A 2=0,B 1B 2=0,可排除C ,故选A.评述:本题重点考查两直线垂直的判定、直线方程的一般式等基本知识点,重点考查分类讨论的思想及逻辑思维能力.22.答案:C解析:由题意知a ≠0,s i n B ≠0,两直线的斜率分别是k 1=-a A sin ,k 2=Bbsin . 由正弦定理知k 1·k 2=-a A sin ·Bbsin =-1,故两直线垂直. 评述:本题考查两直线垂直的条件及正弦定理.23.答案:C解析:方程(x -1)2+y 2=4表示以点(1,0)为圆心,2为半径的圆,x =a 表示与x 轴垂直且与圆相切的直线,而此时的切线方程分别为x =-1和x =3,由于a >0,取a =3.故选C.评述:本题考查圆的方程、圆的切线方程及图象.利用数形结合较快完成此题. 24.答案:B解析一:若两直线平行,则22123-≠-=a , 解得a =-6,故选B.解析二:利用代入法检验,也可判断B 正确.评述:本题重点考查两条直线平行的条件,考查计算能力. 25.答案:A解析:圆的标准方程为:(x -1)2+(y -2)2=5.圆过坐标原点.直线l 将圆平分,也就是直线l 过圆心C (1,2),从图7—8看到:当直线过圆心与x 轴平行时,或者直线同时过圆心与坐标原点时都不通过第四象限,并且当直线l 在这两条直线之间变化时都不通过第四象限.当直线l 过圆心与x 轴平行时,k =0, 当直线l 过圆心与原点时,k =2. ∴当k ∈[0,2]时,满足题意.评述:本题考查圆的方程,直线的斜率以及逻辑推理能力,数形结合的思想方法. 26.答案:B解析:A 中过点P 0(x 0,y 0)与x 轴垂直的直线x =x 0不能用y -y 0=k (x -x 0)表示,因为其斜率k 不存在;C 中不过原点但在x 轴或y 轴无截距的直线y =b (b ≠0)或x =a (a ≠0)图7—8不能用方程bya x +=1表示;D 中过A (0,b )的直线x =0不能用方程y =kx +b 表示. 评述:本题考查直线方程的知识,应熟练掌握直线方程的各种形式的适用范围. 27.答案:C解析:将两圆方程分别配方得(x -1)2+y 2=1和x 2+(y -2)2=4,两圆圆心分别为O 1(1,0),O 2(0,2),r 1=1,r 2=2,|O 1O 2|=52122=+,又1=r 2-r 1<5<r 1+r 2=3,故两圆相交,所以应选C.评述:本题考查了圆的一般方程、标准方程及圆的关系以及配方法. 28.答案:D解析:直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2、α3均为锐角,且α2>α3,所以k 2>k 3>0,因此k 2>k 3>k 1,故应选D.评述:本题重点考查直线的倾斜角、斜率的关系,考查数形结合的能力. 29.答案:B解析:直线方程可化为2x -y =0,d =55|5|=-. 评述:本题重点考查直线方程的一般式及点到直线的距离公式等基本知识点,考查运算能力.30.答案:60°解析:因为直线y =3x +3的倾斜角为60°,而y =1与x 轴平行,所以y =1与y =3x +3的夹角为60°.评述:考查直线方程的基本知识及几何知识,考查数形结合的数学思想.31.答案:a =4±5解析:因过A (-1,0)、B (0,2)的直线方程为:2x -y +2=0.圆的圆心坐标为C (1,a ),半径r =1.又圆和直线相切,因此,有:d =5|22|+-a =1,解得a =4±5. 评述:本题考查直线方程、直线和圆的位置关系及点到直线的距离公式等知识. 32.答案:2解析:圆心到直线的距离d =5|843|++=3 ∴动点Q 到直线距离的最小值为d -r =3-1=2 33.答案:22解法一:∵点P 在直线3x +4y +8=0上.如图7—9. ∴设P (x ,432-- x ),C 点坐标为(1,1), S 四边形P ACB =2S △P AC图7—9=2·21·|AP |·|AC |=|AP |·|AC |=|AP | ∵|AP |2=|PC |2-|AC |2=|PC |2-1∴当|PC |最小时,|AP |最小,四边形P ACB 的面积最小. ∴|PC |2=(1-x )2+(1+2+43x )2=9)145(1025162522++=++x x x ∴|PC |min =3 ∴四边形P ACB 面积的最小值为22.解法二:由法一知需求|PC |最小值,即求C 到直线3x +4y +8=0的距离,∵C (1,1),∴|PC |=5|843|++=3,S P ACD =22. 34.答案:34解法一:圆的圆心为(0,1)设切线的方程为y =k (x +2).如图7—10. ∴kx +2k -y =0 ∴圆心到直线的距离为1|12|2+-k k =1∴解得k =34或k =0, ∴两切线交角的正切值为34. 解法二:设两切线的交角为α∵tan212=α,∴tan α=3441112tan 12tan22=-=-αα. 35.答案:34解析:圆的圆心为(-1,0),如图7—11. 当斜率存在时,设切线方程为y =kx +2 ∴kx -y +2=0 ∴圆心到切线的距离为1|2|2++-k k =1 ∴k =43, 图7—10图7—11即tan α=43 当斜率不存在时,直线x =0是圆的切线 又∵两切线的夹角为∠α的余角 ∴两切线夹角的正切值为34 36.答案:F 1(a ,b )≠0,或F 2(a ,b )≠0,或F 1(a ,b )≠0且F 2(a ,b )≠0或C 1∩C 2=∅或P ∉C 1等解析:点P (a ,b )∉C 1∩C 2,则 可能点P 不在曲线C 1上; 可能点P 不在曲线C 2上;可能点P 既不在曲线C 1上也不在曲线C 2上; 可能曲线C 1与曲线C 2不存在交点.37.答案:可得两圆对称轴的方程2(c -a )x +2(d -b )y +a 2+b 2-c 2-d 2=0 解析:设圆方程(x -a )2+(y -b )2=r 2 ① (x -c )2+(y -d )2=r 2 ② (a ≠c 或b ≠d ),则由①-②,得两圆的对称轴方程为: (x -a )2-(x -c )2+(y -b )2-(y -d )2=0, 即2(c -a )x +2(d -b )y +a 2+b 2-c 2-d 2=0.评述:本题考查圆的方程、圆的公共弦方程的概念,考查抽象思维能力和推广数学命题的能力.38.答案:(x -1)2+(y -1)2=1 解析一:设所求圆心为(a ,b ),半径为r . 由已知,得a =b ,r =|b |=|a |.∴所求方程为(x -a )2+(y -a )2=a 2又知点(1,0)在所求圆上,∴有(1-a )2+a 2=a 2,∴a =b =r =1. 故所求圆的方程为:(x -1)2+(y -1)2=1. 解析二:因为直线y =x 与x 轴夹角为45°. 又圆与x 轴切于(1,0),因此圆心横坐标为1,纵坐标为1,r =1.评述:本题考查圆的方程等基础知识,要注意利用几何图形的性质,迅速得到结果. 39.答案:3或7解析:当两圆外切时,r =3,两圆内切时r =7,所以r 的值是3或7.评述:本题考查集合的知识和两圆的位置关系,要特别注意集合代表元素的意义. 40.答案:x +y -4=0解析一:已知圆的方程为(x -2)2+y 2=9,可知圆心C 的坐标是(2,0),又知AB 弦的中点是P (3,1),所以k CP =2301--=1,而AB 垂直CP ,所以k AB =-1.故直线AB 的方程是x +y -4=0.解析二:设所求直线方程为y -1=k (x -3).代入圆的方程,得关于x 的二次方程:(1+k 2)x 2-(6k 2-2k +4)x +9k 2-6k -4=0,由韦达定理:x 1+x 2=221426k k k ++-=6,解得k =1.解析三:设所求直线与圆交于A 、B 两点,其坐标分别为A (x 1,y 1)、B (x 2,y 2),则有⎪⎩⎪⎨⎧=+-=+-9)2(9)2(22222121y x y x②-①得(x 2+x 1-4)(x 2-x 1)+(y 2-y 1)(y 2+y 1)=0 又AB 的中点坐标为(3,1),∴x 1+x 2=6,y 1+y 2=2. ∴1212x x y y --=-1,即AB 的斜率为-1,故所求方程为x +y -4=0.评述:本题考查直线的方程与圆的有关知识.要特别注意圆所特有的几何性质. 41.答案:(x +2)2+(y -3)2=4 解析:因为圆心为(-2,3),且圆与y 轴相切,所以圆的半径为2.故所求圆的方程为(x +2)2+(y -3)2=4.42.解:设动点P 的坐标为P (x ,y )由||||PB PA =a (a >0),得2222)()(yc x y c x +-++=a ,化简,得:(1-a 2)x 2+2c (1+a 2)x +c 2(1-a 2)+(1-a 2)y 2=0.当a ≠1时,得x 2+221)1(2aa c -+x +c 2+y 2=0.整理, 得:(x -1122-+a a c )2+y 2=(122-a ac )2当a =1时,化简得x =0.所以当a ≠1时,P 点的轨迹是以(1122-+a a c ,0)为圆心,|122-a ac |为半径的圆;当a =1时,P 点的轨迹为y 轴.评述:本题考查直线、圆、曲线和方程等基本知识,考查运用解析几何的方法解决问题的能力.43.(Ⅰ)解法一,依题意,曲线M 是以点P 为焦点,直线l 为准线的抛物线,所以曲线M 的方程为y 2=4x .解法二:设M (x ,y ),依题意有|MP |=|MN |,所以|x +1|=22)1(y x +-.化简得:y 2=4x .(Ⅱ)(i )由题意得,直线AB 的方程为y =-3(x -1).由⎪⎩⎪⎨⎧=--=.4),1(32x y x y 消y 得3x 2-10x +3=0,解得x 1=31,x 2=3. ① ②图7—12所以A 点坐标为(332,31),B 点坐标为(3,-23), |AB |=x 1+x 2+2=316. 假设存在点C (-1,y ),使△ABC 为正三角形,则|BC |=|AB |且|AC |=|AB |,即⎪⎪⎩⎪⎪⎨⎧=-++=+++.)316()32()131()316()32()13(222222y y 由①-②得42+(y +23)2=(34)2+(y -332)2,解得y =-9314. 但y =-9314不符合①, 所以由①,②组成的方程组无解.因此,直线l 上不存在点C ,使得△ABC 是正三角形.(ii )解法一:设C (-1,y )使△ABC 成钝角三角形,由⎩⎨⎧-=--=.1),1(3x x y 得y =23,即当点C 的坐标为(-1,23)时,A 、B 、C 三点共线,故y ≠23.又|AC |2=(-1-31)2+(y -332)2=334928y -+y 2, |BC |2=(3+1)2+(y +23)2=28+43y +y 2,|AB |2=(316)2=9256.当∠CAB 为钝角时,co sA =||||2||||||222AC AB BC AC AB ⋅-+<0.即|BC |2 >|AC |2+|AB |2,即9256334928342822++->++y y y y ,即y >392时,∠CAB 为钝角. 当|AC |2>|BC |2+|AB |2,即9256342833492822+++>+-y y y y ,即y <-3310时,∠CBA 为钝角. 又|AB |2>|AC |2+|BC |2,即2234283349289256y y y y++++->, 即0)32(,03433422<+<++y y y. 该不等式无解,所以∠ACB 不可能为钝角.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是)32(9323310≠>-<y y y 或. 解法二:以AB 为直径的圆的方程为(x -35)2+(y +332)2=(38)2. 圆心(332,35-)到直线l :x =-1的距离为38,所以,以AB 为直径的圆与直线l 相切于点G (-1,-332). 当直线l 上的C 点与G 重合时,∠ACB 为直角,当C 与G 点不重合,且A 、B 、C 三点不共线时,∠ACB 为锐角,即△ABC 中,∠ACB 不可能是钝角.因此,要使△ABC 为钝角三角形,只可能是∠CAB 或∠CBA 为钝角.过点A 且与AB 垂直的直线方程为)31(33332-=-x y . 令x =-1得y =932. 过点B 且与AB 垂直的直线方程为y +2333=(x -3). 令x =-1得y =-3310.又由⎩⎨⎧-=--=.1),1(3x x y 解得y =23,所以,当点C 的坐标为(-1,23)时,A 、B 、C 三点共线,不构成三角形.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是y <-3310或y >932(y ≠23).评述:该题全面综合了解析几何、平面几何、代数的相关知识,充分体现了“注重学科知识的内在联系”.题目的设计新颖脱俗,能较好地考查考生综合运用数学知识解决问题的能力.比较深刻地考查了解析法的原理和应用,以及分类讨论的思想、方程的思想.该题对思维的目的性、逻辑性、周密性、灵活性都进行了不同程度的考查.对运算、化简能力要求也较高,有较好的区分度.44.解:设点P 的坐标为(x ,y ),由题设有2||||=PN PM ,即2222)1(2)1(y x y x +-⋅=++.整理得 x 2+y 2-6x +1=0. ①因为点N 到PM 的距离为1,|M N|=2, 所以∠PMN =30°,直线PM 的斜率为±33, 直线PM 的方程为y =±33(x +1).② 将②式代入①式整理得x 2-4x +1=0. 解得x =2+3,x =2-3.代入②式得点P 的坐标为(2+3,1+3)或(2-3,-1+3);(2+3,-1-3)或(2-3,1-3).直线PN 的方程为y =x -1或y =-x +1.45.解:设圆的方程为(x -a )2+(y -b )2=r 2. 令x =0,得y 2-2by +b 2+a 2-r 2=0. |y 1-y 2|=222122124)(a r y y y y -=-+=2,得r 2=a 2+1①令y =0,得x 2-2ax +a 2+b 2-r 2=0, |x 1-x 2|=r b r x x x x 224)(2221221=-=-+,得r 2=2b 2②由①、②,得2b 2-a 2=1又因为P (a ,b )到直线x -2y =0的距离为55, 得d =555|2|=-b a ,即a -2b =±1. 综上可得⎩⎨⎧=-=-;12,1222b a a b 或⎩⎨⎧-=-=-121222b a a b 解得⎩⎨⎧-=-=11b a 或⎩⎨⎧==11b a于是r 2=2b 2=2.所求圆的方程为(x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2. 46.解:设所求圆的圆心为P (a ,b ),半径为r ,则P 到x 轴、y 轴的距离分别为|b |、|a |. 由题设圆P 截x 轴所得劣弧所对圆心角为90°,圆P 截x 轴所得弦长为2r ,故r 2=2b 2,又圆P 截y 轴所得弦长为2,所以有r 2=a 2+1, 从而有2b 2-a 2=1又点P (a ,b )到直线x -2y =0距离为d =5|2|b a -, 所以5d 2=|a -2b |2=a 2+4b 2-4ab ≥a 2+4b 2-2(a 2+b 2)=2b 2-a 2=1 当且仅当a =b 时上式等号成立,此时5d 2=1,从而d 取得最小值,由此有⎩⎨⎧=-=1222a b b a 解方程得⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 由于r 2=2b 2,知r =2,于是所求圆的方程为(x -1)2+(y -1)2=2或(x +1)2+(y +1)2=2评述:本题考查了圆的方程,函数与方程,求最小值问题,进一步考查了待定系数法、函数与方程思想.题中求圆的方程给出的三个条件比较新颖脱俗,灵活运用几何知识和代数知识将条件恰当转化,推演,即合乎逻辑、说理充分、陈述严谨.47.(1)证明:设A 、B 的横坐标分别为x 1,x 2,由题设知x 1>1,x 2>1,点A (x 1,lo g 8x 1),B (x 2,lo g 8x 2).因为A 、B 在过点O 的直线上,所以228118log log x x x x =, 又点C 、D 的坐标分别为(x 1,lo g 2x 1),(x 2,lo g 2x 2) 由于lo g 2x 1=2log log 818x =3lo g 8x 1,lo g 2x 2=2log log 828x =3lo g 8x 2,所以OC 的斜率和OD 的斜率分别为228222118112log 3log ,log 3log x x x x k x x x x k OD OC ====.由此得k OC =k OD ,即O 、C 、D 在同一条直线上.(2)解:由BC 平行于x 轴,有lo g 2x 1=lo g 8x 2,解得 x 2=x 13 将其代入228118log log x x x x =,得x 13lo g 8x 1=3x 1lo g 8x 1. 由于x 1>1,知lo g 8x 1≠0,故x 13=3x 1,x 1=3,于是点A 的坐标为(3,lo g 83).评述:本小题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查运算能力和分析问题的能力.48.解:(1)当1-2t >0即0<t <21时,如图7—13,点Q 在第一象限时,此时S (t )为四边形OPQK 的面积,直线QR 的方程为y -2= t (x +2t ).令x =0,得y =2t 2+2,点K 的坐标为(P ,2t 2+2).t t t S S S OKR OPQR OPQK 2)22(21)1(2222⋅+-+=-=)1(232t t t -+-=当-2t +1≤0,即t ≥21时,如图7—14,点Q 在y 轴上或第二象限,S (t )为△OP L的面积,直线PQ 的方程为y -t =-t1(x -1),令x =0得y =t +t 1,点L 的坐标为(0,t +t 1),S △OPL =1)1(21⋅+t t)1(21tt += 所以S (t )=⎪⎪⎩⎪⎪⎨⎧≥+<<-+-21 )1(21210 )1(232t t t t t t t(2)当0<t <21时,对于任何0<t 1<t 2<21,有S (t 1)-S (t 2)=2(t 2-t 1)[1-(t 1+t 2)+(t 12+t 1t 2+t 22)]>0,即S (t 1)> S (t 2),所以S (t )在区间(0,21)内是减函数. 图7—13图7—14当t ≥21时,对于任何21≤t 1≤t 2,有S (t 1)-S (t 2)=21(t 1-t 2)(1-211t t ), 所以若21≤t 1≤t 2≤1时,S (t 1)>S (t 2);若1≤t 1≤t 2时,S (t 1)<S (t 2),所以S (t )在区间[21,1]上是减函数,在区间[1,+∞)内是增函数,由2[121+(21)2-(21)3]=45=S (21)以及上面的证明过程可得,对于任何0<t 1<21≤t 2<1,S (t 2)<45≤S (t 1),于是S (t )的单调区间分别为(0,1]及[1,+∞),且S (t )在(0,1]内是减函数,在[1,+∞)内是增函数.49.解:如图7—15,设直线MN 切圆于N ,则动点M 组成的集合是:P ={M ||MN |=λ|MQ |},(λ>0为常数)因为圆的半径|ON |=1,所以|MN |2=|MO |2-|ON |2=|MO |2-1.设点M 的坐标为(x ,y ),则2222)2(1y x y x +-=-+λ整理得(λ2-1)(x 2+y 2)-4λ2x +(1+4λ2)=0当λ=1时,方程化为x =45,它表示一条直线,该直线与x 轴垂直,交x 轴于点(45,0); 当λ≠1时,方程化为(x -1222-λλ)2+y 2=)1(3122-+λλ它表示圆心在(1222-λλ,0),半径为|1|3122-+λλ的圆. 评述:本题考查曲线与方程的关系、轨迹的概念等解析几何的基本思想以及综合运用知识的能力.图7—15。
直线与圆的方程直线与圆是几何学中的基本概念,在解决几何问题时经常需要用到它们的方程。
本文将介绍直线与圆的方程的基本形式和求解方法,并通过实例加深理解。
一、直线的方程直线的方程可以使用点斜式、斜截式和两点式来表示。
下面逐一介绍这三种形式的方程表示方法。
1. 点斜式方程点斜式方程形式为 y-y₁=m(x-x₁),其中 (x₁,y₁) 是直线上的某一点,m 是直线的斜率。
通过已知点和斜率,可以轻松写出点斜式方程。
例如,如果已知直线过点 (2,3),斜率为 2/3,则点斜式方程为 y-3=(2/3)(x-2)。
2. 斜截式方程斜截式方程形式为 y=mx+b,其中 m 是直线的斜率,b 是直线与 y轴的截距。
通过已知斜率和截距,可以得到斜截式方程。
例如,如果已知直线斜率为 -1/2,截距为 2,则斜截式方程为 y=(-1/2)x+2。
3. 两点式方程两点式方程形式为 (y-y₁)/(y₂-y₁)=(x-x₁)/(x₂-x₁),其中 (x₁,y₁)和 (x₂,y₂) 是直线上的两个不同点。
通过已知两个点,可以计算出两点式方程。
例如,已知直线经过点 (1,3) 和 (4,7),则两点式方程为 (y-3)/(7-3)=(x-1)/(4-1)。
二、圆的方程圆的方程可以使用标准式和一般式来表示。
下面逐一介绍这两种形式的方程表示方法。
1. 标准式方程标准式方程形式为 (x-h)²+(y-k)²=r²,其中 (h,k) 是圆心坐标,r 是半径。
通过已知圆心和半径,可以直接写出标准式方程。
例如,如果已知圆心坐标为 (2,-3),半径为 5,则标准式方程为 (x-2)²+(y+3)²=25。
2. 一般式方程一般式方程形式为 x²+y²+Ax+By+C=0,其中 A、B、C 是常数。
通过已知圆心和半径,可以将一般式方程转化为标准式方程。
例如,如果已知圆心坐标为 (2,-3),半径为 5,则一般式方程为 x²+y²-4x+6y+20=0。
高考复习直线和圆的方程知识点归纳及相关历年高考考题目汇总2022届高三冲刺数学:精彩十五天第七章直线和圆的方程一、考试内容:1.直线的倾斜角和斜率,直线方程的点斜式和两点式.直线方程的一般式.2.两条直线平行与垂直的条件.两条直线的交角.点到直线的距离.3.用二元一次不等式表示平面区域.简单的线性规划问题.4.曲线与方程的概念.由已知条件列出曲线方程.5.圆的标准方程和一般方程.圆的参数方程.二、考试要求:1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系.3.了解二元一次不等式表示平面区域.4.了解线性规划的意义,并会简单的应用.5.了解解析几何的基本思想,了解坐标法.6.掌握圆的标准方程和一般方程,了解参数方程的概念。
理解圆的参数方程.三、知识要点及重要思想方法:(一)直线方程.1.直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与某轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是0180(0).注:①当90或某2某1时,直线l垂直于某轴,它的斜率不存在.②每一条直线都存在惟一的倾斜角,除与某轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.2.直线方程的几种形式:点斜式、截距式、两点式、斜切式.特别地,当直线经过两点(a,0),(0,b),即直线在某轴,y轴上的截距分别为a,b(a0,b0)时,直线方程是:某ayb1.23注:若yy2323某2是一直线的方程,则这条直线的方程是y某2,但若某2(某0)则不是这条线.附:直线系:对于直线的斜截式方程yk某b,当k,b均为确定的数值时,它表示一条确定的直线,如果k,b变化时,对应的直线也会变化.①当b为定植,k变化时,它们表示过定点(0,b)的直线束.②当k为定值,b变化时,它们表示一组平行直线.3.⑴两条直线平行:l1∥l2k1k2两条直线平行的条件是:①l1和l2是两条不重合的直线.②在l1和l2的斜率都存在的前提下得到的.因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.(一般的结论是:对于两条直线l1,l2,它们在y轴上的纵截距是b1,b2,则l1∥l2k1k2,且b1b2或l1,l2的斜率均不存在,即A1B2B1A2是平行的必要不充分条件,且C1C2)推论:如果两条直线l1,l2的倾斜角为1,2则l1∥l212.⑵两条直线垂直:两条直线垂直的条件:①设两条直线l1和l2的斜率分别为k1和k2,则有l1l2k1k21这里的前提是l1,l2的斜率都存在.②l1l2k10,且l2的斜率不存在或k20,且l1的斜率不存在.(即A1B2A2B10是垂直的充要条件)4.直线的交角:⑴直线l1到l2的角(方向角);直线l1到l2的角,是指直线l1绕交点依逆时针方向旋转到与l2重合时所转动的角,它的范围是(0,),当90时tank2k11k1k2.⑵两条相交直线l1与l2的夹角:两条相交直线l1与l2的夹角,是指由l1与l2相交所成的四个角中最小的正角,又称为l1和l2所成的角,它的取值范围是0,2,当90,则有tank2k11k1k2.5.过两直线l1:A1某B1yC10l2:A2某B2yC20的交点的直线系方程A1某B1yC1(A2某B2yC2)0(为参数,A2某B2yC20不包括在内)6.点到直线的距离:⑴点到直线的距离公式:设点P(某0,y0),直线l:A某则有d注:1.两点P1(某1,y1)、P2(某2,y2)的距离公式:|P1P2特例:点P(某,y)到原点O的距离:|OP||A某0By0CAB22ByC0,P到l的距离为d,.(某2某1)(y2y1)22.22某y2.定比分点坐标分式。
圆的方程、直线和圆的位置关系【知识要点】 一、 圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆 (一)圆的标准方程(x a)2 ( y b)2 r 2 这个方程叫做圆的标准方程。
新疆 王 新敞 学案说 明:1、若圆心在坐标原点上,这时 a b 0 ,则圆的方程就是 x2 y2 r 2 。
2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要 a, b, r 三个量确定了且 r >0,圆的方程就给定了。
就是说要确定圆的方程,必须具备三个独立的条件新疆确定 a, b, r ,可以根据条件,利用待定系数法来解决。
王 新敞 学案(二)圆的一般方程将圆的标准方程 (x a)2 ( y b)2 r 2 ,展开可得 x 2 y 2 2ax 2by a 2 b2 r 2 0 。
可见,任何一个圆的方程都可以写成 : x2 y2 Dx Ey F 0问题:形如 x2 y2 Dx Ey F 0 的方程的曲线是不是圆?将方程x2y2DxEyF0 左边配方得:(x D )2 2(x E )2 2D2 E2 4F 2(1)当 D 2E24F>0时,方程(1)与标准方程比较,方程x2y2DxEyF0 表示以(D , 2E 2)为圆D2 E2 4F心,以2为半径的圆。
,(3)当 D2 E 2 4F <0 时,方程 x 2 y 2 Dx Ey F 0 没有实数解,因而它不表示任何图形。
圆的一般方程的定义:当 D2 E2 4F >0 时,方程 x2 y2 Dx Ey F 0 称为圆的一般方程.圆的一般方程的特点:(1) x2 和 y2 的系数相同,不等于零;(2)没有 xy 这样的二次项。
(三)直线与圆的位置关系1、直线与圆位置关系的种类(1)相离---求距离;(2)相切---求切线;(3)相交---求焦点弦长。
2、直线与圆的位置关系判断方法:几何方法主要步骤:(1)把直线方程化为一般式,利用圆的方程求出圆心和半径(2)利用点到直线的距离公式求圆心到直线的距离(3)作判断: 当 d>r 时,直线与圆相离;当 d=r 时,直线与圆相切;当 d<r 时,直线与圆相交。
数学基础知识与典型例题直线和圆的方程直线和圆的方程知识关系直线的方程一、直线的倾斜角和斜率1.直线的倾斜角:一条直线向上的方向与x轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x轴平行或重合时,其倾斜角为0,故直线倾斜角α的范围是0180α<≤.2.直线的斜率:倾斜角不是90的直线其倾斜角α的正切叫这条直线的斜率k,即tankα=.注:①每一条直线都有倾斜角,但不一定有斜率.②当90=α时,直线l垂直于x轴,它的斜率k不存在.③过两点111(,)P x y、222(,)P x y12()x x≠的直线斜率公式2121tany ykx xα-==-二、直线方程的五种形式及适用条件名称方程说明适用条件斜截式y=kx+bk—斜率b—纵截距倾斜角为90°的直线不能用此式点斜式y-y0=k(x-x0)(x0,y0)—直线上已知点,k ──斜率倾斜角为90°的直线不能用此式两点式121y yy y--=121x xx x--(x1,y1),(x2,y2)是直线上两个已知点与两坐标轴平行的直线不能用此式截距式xa+yb=1a—直线的横截距b—直线的纵截距过(0,0)及与两坐标轴平行的直线不能用此式一般式A x+B y+C=0(A、B不全为零)A、B不能同时为零例8. 与直线:23x y +(1,4)A -的'的方__________例9. 已知二直线8:1+y mx l 和2:2+my x l ,若21l l ⊥,m =_____,n =____.两直线的位置关系⑵两条相交直线1l与2l的夹角:两条相交直线1l与2l的夹角,是指由1l与2l相交所成的四个角中最小的正角θ,又称为1l和2l所成的角,它的取值范围是0,2π⎛⎤⎥⎦⎝,当两直线的斜率k1,k2都存在且k1·k2≠-1时,则有2112tan1k kk kθ-=+.4.距离公式。
⑴已知一点P(x0,y0)及一条直线l:A x+B y+C=0,则点P到直线l的距离d=0022||Ax By CA B+++;⑵两平行直线l1:A x+B y+C1=0,l2:A x+B y+C2=0之间的距离d=1222||C CA B-+。
直线和圆一.直线1.斜率与倾斜角:tan k θ=,[0,)θπ∈(1)[0,2πθ∈时,0k ≥;(2)2πθ=时,k 不存在;(3)(,)2πθπ∈时,0k <(4)当倾斜角从0︒增加到90︒时,斜率从0增加到+∞;当倾斜角从90︒增加到180︒时,斜率从-∞增加到02.直线方程(1)点斜式:)(00x x k y y -=-(2)斜截式:y kx b =+(3)两点式:121121x x x x y y y y --=--(4)截距式:1x y a b +=(5)一般式:0C =++By Ax 3.距离公式(1)点111(,)P x y ,222(,)P x y 之间的距离:12PP =(2)点00(,)P x y 到直线0Ax By C ++=的距离:d =(3)平行线间的距离:10Ax By C ++=与20Ax By C ++=的距离:d =4.位置关系(1)截距式:y kx b =+形式重合:1212k k b b ==相交:12k k ≠平行:1212 k k b b =≠垂直:121k k ⋅=-(2)一般式:0Ax By C ++=形式重合:1221A B A B =且1221A C A C =且1212B C C B =平行:1221A B A B =且1221A C A C ≠且1212B C C B ≠垂直:12120A AB B +=相交:1221A B A B ≠5.直线系1112220A x B y C A x B y C λ++++=+()表示过两直线1111:0l A x B y C ++=和2222:0l A x B y C ++=交点的所有直线方程(不含2l )二.圆1.圆的方程(1)标准形式:222()()x a y b R -+-=(0R >)(2)一般式:220x y Dx Ey F ++++=(2240D E F +->)(3)参数方程:00cos sin x x r y y r θθ=+⎧⎨=+⎩(θ是参数)【注】题目中出现动点求量时,通常可采取参数方程转化为三角函数问题去解决.(4)以11(,)A x y ,22(,)B x y 为直径的圆的方程是:()()()()0A B A B x x x x y y y y --+--=2.位置关系(1)点00(,)P x y 和圆222()()x a y b R -+-=的位置关系:当22200()()x a y b R -+-<时,点00(,)P x y 在圆222()()x a y b R -+-=内部当22200()()x a y b R -+-=时,点00(,)P x y 在圆222()()x a y b R -+-=上当22200()()x a y b R -+->时,点00(,)P x y 在圆222()()x a y b R -+-=外(2)直线0Ax By C ++=和圆222()()x a y b R -+-=的位置关系:判断圆心(,)O a b 到直线0Ax By C ++=的距离d =R 的大小关系当d R <时,直线和圆相交(有两个交点);当d R =时,直线和圆相切(有且仅有一个交点);当d R <时,直线和圆相离(无交点);判断直线与圆的位置关系常见的方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系.(2)代数法:联立直线与圆的方程消元后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内可判断直线与圆相交.3.圆和圆的位置关系判断圆心距12d O O =与两圆半径之和12R R +,半径之差12R R -(12R R >)的大小关系当12d R R >+时,两圆相离,有4条公切线;当12d R R =+时,两圆外切,有3条公切线;当1212R R d R R -<<+时,两圆相交,有2条公切线;当12d R R =-时,两圆内切,有1条公切线;当120d R R ≤<-时,两圆内含,没有公切线;4.当两圆相交时,两圆相交直线方程等于两圆方程相减5.弦长公式:l =例题:例1若圆x 2+y 2=1与直线y =kx +2没有公共点,则实数k 的取值范围是________.例2已知两圆C 1:x 2+y 2-2x +10y -24=0,C 2:x 2+y 2+2x +2y -8=0,则两圆公共弦所在的直线方程是____________.例3设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则实数m 的值是________.例4若a ,b ,c 是直角三角形ABC 三边的长(c 为斜边),则圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为________.例5已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB |=423,求|MQ |及直线MQ 的方程;(2)求证:直线AB 恒过定点.例6过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为2,则直线l 的斜率为________.例7圆x 2-2x +y 2-3=0的圆心到直线x +3y -3=0的距离为________.例8圆心在原点且与直线x +y -2=0相切的圆的方程为____________________.例9已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为________________.例10(1)与曲线C :x 2+y 2+2x +2y =0相内切,同时又与直线l :y =2-x 相切的半径最小的圆的半径是________.(2)已知实数x ,y 满足(x -2)2+(y +1)2=1则2x -y 的最大值为________,最小值为________.例11已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.例12已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是________.例13平面直角坐标系xoy 中,直线10x y -+=截以原点O (1)求圆O 的方程;(2)若直线l 与圆O 切于第一象限,且与坐标轴交于D ,E ,当DE 长最小时,求直线l 的方程;(3)设M ,P 是圆O 上任意两点,点M 关于x 轴的对称点为N ,若直线MP 、NP 分别交于x 轴于点(m ,0)和(n ,0),问mn 是否为定值?若是,请求出该定值;若不是,请说明理由.例14圆x 2+y 2=8内一点P (-1,2),过点P 的直线l 的倾斜角为α,直线l 交圆于A 、B 两点.(1)当α=43π时,求AB 的长;(2)当弦AB 被点P 平分时,求直线l 的方程.例15已知半径为5的动圆C 的圆心在直线l :x -y +10=0上.(1)若动圆C 过点(-5,0),求圆C 的方程;(2)是否存在正实数r ,使得动圆C 中满足与圆O :x 2+y 2=r 2相外切的圆有且仅有一个,若存在,请求出来;若不存在,请说明理由.。
圆的一般方程【知识梳理】圆的一般方程(1)圆的一般方程的概念:当D 2+E 2-4F >0时,二元二次方程x 2+y 2+Dx +Ey +F =0叫做圆的一般方程.(2)圆的一般方程对应的圆心和半径:圆的一般方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)表示的圆的圆心为(-D 2,-E 2),半径长为12D 2+E 2-4F . 【常考题型】题型一、圆的一般方程的概念辨析【例1】 若方程x 2+y 2+2mx -2y +m 2+5m =0表示圆,求(1)实数m 的取值范围;(2)圆心坐标和半径.[解] (1)据题意知D 2+E 2-4F =(2m )2+(-2)2-4(m 2+5m )>0,即4m 2+4-4m 2-20m >0, 解得m <15, 故m 的取值范围为(-∞,15). (2)将方程x 2+y 2+2mx -2y +m 2+5m =0写成标准方程为(x +m )2+(y -1)2=1-5m , 故圆心坐标为(-m,1),半径r =1-5m .【类题通法】形如x 2+y 2+Dx +Ey +F =0的二元二次方程,判定其是否表示圆时可有如下两种方法: ①由圆的一般方程的定义令D 2+E 2-4F >0,成立则表示圆,否则不表示圆,②将方程配方后,根据圆的标准方程的特征求解,应用这两种方法时,要注意所给方程是不是x 2+y 2+Dx +Ey +F =0这种标准形式,若不是,则要化为这种形式再求解.【对点训练】1.下列方程各表示什么图形?若表示圆,求其圆心和半径.(1)x 2+y 2+x +1=0;(2)x 2+y 2+2ax +a 2=0(a ≠0);(3)2x 2+2y 2+2ax -2ay =0(a ≠0).解:(1)∵D =1,E =0,F =1,∴D 2+E 2-4F =1-4=-3<0,∴方程(1)不表示任何图形.(2)∵D =2a ,E =0,F =a 2,∴D 2+E 2-4F =4a 2-4a 2=0,∴方程表示点(-a,0).(3)两边同除以2,得x 2+y 2+ax -ay =0,D =a ,E =-a ,F =0,∴D 2+E 2-4F =2a 2>0,∴方程(3)表示圆,它的圆心为(-a 2,a 2), 半径r =12 D 2+E 2-4F =22|a |. 题型二、圆的一般方程的求法【例2】 已知△ABC 的三个顶点为A (1,4),B (-2,3),C (4,-5),求△ABC 的外接圆方程、外心坐标和外接圆半径.[解] 法一:设△ABC 的外接圆方程为x 2+y 2+Dx +Ey +F =0,∵A ,B ,C 在圆上,∴⎩⎪⎨⎪⎧ 1+16+D +4E +F =0,4+9-2D +3E +F =0,16+25+4D -5E +F =0,∴⎩⎪⎨⎪⎧ D =-2,E =2,F =-23,∴△ABC 的外接圆方程为x 2+y 2-2x +2y -23=0,即(x -1)2+(y +1)2=25.∴外心坐标为(1,-1),外接圆半径为5.法二:∵k AB =4-31+2=13,k AC =4+51-4=-3, ∴k AB ·k AC =-1,∴AB ⊥AC .∴△ABC 是以角A 为直角的直角三角形,∴外心是线段BC 的中点,坐标为(1,-1),r =12|BC |=5. ∴外接圆方程为(x -1)2+(y +1)2=25.应用待定系数法求圆的方程时:(1)如果由已知条件容易求得圆心坐标、半径或需利用圆心的坐标或半径列方程的问题,一般采用圆的标准方程,再用待定系数法求出a ,b ,r .(2)如果已知条件与圆心和半径都无直接关系,一般采用圆的一般方程,再用待定系数法求出常数D 、E 、F .【对点训练】2.求经过点A (-2,-4)且与直线x +3y -26=0相切于点B (8,6)的圆的方程. 解:设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心坐标为⎝⎛⎭⎫-D 2,-E 2. ∵圆与x +3y -26=0相切,∴6+E 28+D 2·⎝⎛⎭⎫-13=-1,即E -3D -36=0.①∵(-2,-4),(8,6)在圆上,∴2D +4E -F -20=0,②8D +6E +F +100=0.③联立①②③,解得D =-11,E =3,F =-30,故所求圆的方程为x 2+y 2-11x +3y -30=0.题型三、代入法求轨迹方程【例3】 已知△ABC 的边AB 长为4,若BC 边上的中线为定长3,求顶点C 的轨迹方程.[解] 以直线AB 为x 轴,AB 的中垂线为y 轴建立坐标系(如图),则A (-2,0),B (2,0),设C (x ,y ),BC 中点D (x 0,y 0).∴⎩⎨⎧2+x 2=x 0,0+y 2=y 0. ①∵|AD |=3,∴(x 0+2)2+y 20=9. ②将①代入②,整理得(x +6)2+y 2=36.∵点C 不能在x 轴上,∴y ≠0.综上,点C 的轨迹是以(-6,0)为圆心,6为半径的圆,去掉(-12,0)和(0,0)两点. 轨迹方程为(x +6)2+y 2=36(y ≠0).用代入法求轨迹方程的一般步骤【对点训练】3.过点A (8,0)的直线与圆x 2+y 2=4交于点B ,则AB 中点P 的轨迹方程为________________. 解析:设点P 的坐标为(x ,y ),点B 为(x 1,y 1),由题意,结合中点坐标公式可得x 1=2x -8,y 1=2y ,故(2x -8)2+(2y )2=4,化简得(x -4)2+y 2=1,即为所求.答案:(x -4)2+y 2=1【练习反馈】1.圆x 2+y 2-4x +6y =0的圆心坐标是( )A .(2,3)B .(-2,3)C .(-2,-3)D .(2,-3)解析:选D 圆的方程化为(x -2)2+(y +3)2=13,圆心(2,-3),选D.2.已知方程x 2+y 2-2x +2k +3=0表示圆,则k 的取值范围是( )A .(-∞,-1)B .(3,+∞)C .(-∞,-1)∪(3,+∞)D .(-32,+∞) 解析:选A 方程可化为:(x -1)2+y 2=-2k -2,只有-2k -2>0,即k <-1时才能表示圆.3.方程x 2+y 2+2ax -by +c =0表示圆心为C (2,2),半径为2的圆,则a =________,b =________,c =________.解析:∵⎩⎪⎨⎪⎧ -2a 2=2,--b 2=2,12 4a 2+b 2-4c =2,∴⎩⎪⎨⎪⎧ a =-2,b =4,c =4.答案:-2,4,44.设A 为圆(x -1)2+y 2=1上的动点,P A 是圆的切线且|P A |=1,则P 点的轨迹方程是________.解析:设P (x ,y )是轨迹上任一点,圆(x -1)2+y 2=1的圆心为B (1,0),则|P A |2+1=|PB |2,∴(x -1)2+y 2=2.答案:(x -1)2+y 2=25.求过点(-1,1),且圆心与已知圆x 2+y 2-6x -8y +15=0的圆心相同的圆的方程. 解:设所求的圆的方程为:x 2+y 2+Dx +Ey +F =0,又圆x 2+y 2-6x -8y +15=0的圆心为(3,4),依题意得⎩⎪⎨⎪⎧2-D +E +F =0,-D 2=3,-E 2=4, 解此方程组,可得⎩⎪⎨⎪⎧D =-6,E =-8,F =0. ∴所求圆的方程为x 2+y 2-6x -8y =0.。
高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:. 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .(2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .说明:对本题,易发生以下误解:由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x .又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t . 解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2. ∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+= )(242222b a b a +-+≥ 1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=. 将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例 6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D .说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。
高中数学例题:直线与圆的位置关系例1.已知P (x 0,y 0)在圆x 2+y 2=R 2的内部,试判断直线x 0x+y 0y=R 2与圆的位置关系.【答案】相离【解析】 ∵点P (x 0,y 0)在圆x 2+y 2=R 2的内部,∴22200x y R +<.又圆心O (0,0)到直线x 0x+y 0y=R 2的距离为2d =22200x y R +<,1R >=,∴2R R R =,即d >R . ∴直线x 0x+y 0y=R 2与圆x 2+y 2=R 2相离.【总结升华】判定直线与圆的位置关系采用几何法比采用代数法的计算量要小得多,因此,我们一般采用几何法来解决直线与圆的位置关系的有关问题.例2.已知直线:430--+=l kx y k 与曲线22:68210+--+=C x y x y .(1)求证:不论k 为何值,直线l 和曲线C 恒有两个交点;(2)求当直线l 被曲线C 所截的线段最短时此线段所在的直线的方程.【答案】(1)略(2)10x y --=【证明】(1) 证法一:将直线l 与曲线C 的方程联立得22430 68210 kx y k x y x y --+=⎧⎨+--+=⎩①②,消去y得(1+k2)x2―2(4k2+k+3)x+2(8k2+4k+3)=0.③∵Δ=4(4k2+k+3)2―8(1―k2)(8k+4k+3)=12k2―8k+12=21812039k⎡⎤⎛⎫-+>⎢⎥⎪⎝⎭⎢⎥⎣⎦,∴方程③有两相异实根,从而,由①②组成的方程组有两组解,即直线l与曲线C恒有两个交点.证法二:将曲线C的方程配方得(x―3)2+(y―4)2=4,它表示以C(3,4)为圆心,2为半径的圆.设圆心C到直线l的距离为d,则222222121211k k kdk k⎛⎫++===+≤++,即d r≤<,∴直线l与曲线C恒有两个交点.证法三:注意到直线l:kx―y―4k+3=0可化为y―3=k(x―4),可知直线l恒过定点A(4,3).∵曲线C是以C(3,4)为圆心,2为半径的圆,(见“证法二”)又42+32-6×4-8×3+21<0,即点A在圆C内,∴直线l与曲线C恒有两个交点.(2)设直线l被曲线C所截的线段为AB,当PQ⊥AB时,||AB最小,直线PQ的斜率43134PQk-==--,所以直线AB的斜率1ABk=,其方程l为:10x y--=【总结升华】证法一抓住了直线与圆的位置关系的代数特征,从而转化为对方程的解的研究,这是研究直线与曲线的位置关系的基本方法;证法二抓住了直线与圆的位置关系的几何特征,从而转化为研究圆心到直线的距离,抓住几何特征对于研究圆的问题特别有效;证法三通过判定直线过圆内一定点,从而使问题获证.由上述三种解法可知,解题的切入点不同,解法就有优劣之分.因此,在解题时,审题要慢,要仔细地分析题意,透彻地理解题意,挖掘其中的隐含条件,从而找到解决问题的捷径.举一反三:【变式1】若直线y=x+b 与曲线3y =有公共点,则b 的值范围是( )A .[1,1-+B .[1-+C .[1-D .[1【答案】C【解析】曲线方程可化简为()()22234(13)x y y -+-=≤≤,即表示圆心为(2,3),半径为2的半圆,依据数形结合,当直线y x b =+与此半圆相切时须满足圆心(2,3)到直线y x b =+距离等于2,解得1b =+或1b =-因为是下半圆,故可得1b =+,当直线过(0,3)时,解得3b =,故13b -≤≤,所以C 正确.【变式2】已知直线l :(2m+1)x+(m+1)y=7m+4,圆C :(x ―1)2+(y ―2)2=25,则m 为任意实数时,l 与C 是否必相交?【答案】相交。
直线与圆的位置关系的应用问题为了解直线与圆的位置关系的应用问题,我们首先需要掌握直线与圆的基本性质和定义。
直线是由无限多点连成的一条无宽度的路径,而圆是由中心点和半径确定的,周围的所有点到中心点的距离都相等。
在解决直线与圆的位置关系的应用问题时,我们常常会遇到以下几种情况:直线与圆相交,直线在圆内或圆外切,直线与圆相切。
在接下来的讨论中,我们将会具体分析这几种情况并且给出相关的例题。
情况一:直线与圆相交当直线与圆有两个交点时,我们可以利用勾股定理和圆的性质来求解。
假设直线的方程为y = kx + b,圆的方程为(x - m)^2 + (y - n)^2 =r^2。
我们可以将直线方程带入圆的方程,然后解方程组得到交点坐标。
通过计算交点的坐标,我们可以得到直线与圆的位置关系以及两个交点的具体位置。
情况二:直线在圆内或圆外切当直线与圆相切时,我们可以利用距离公式来求解。
首先,我们找到圆心到直线的距离,并与圆的半径进行比较。
如果圆心到直线的距离与半径相等,则直线在圆上;如果圆心到直线的距离大于半径,则直线在圆外;如果圆心到直线的距离小于半径,则直线在圆内。
情况三:直线与圆相切当直线与圆相切时,我们可以利用切线的性质来求解。
切线与圆相切于一点,且与该点的切线垂直。
我们可以利用切线的斜率与圆心到该点的连线的斜率乘积为-1来求解切点的坐标。
通过计算切点的坐标,我们可以得到直线与圆的位置关系以及切点的具体位置。
下面我们通过两个具体的例题来进一步说明直线与圆的位置关系的应用问题。
例题一:已知直线y = 2x + 1与圆(x - 2)^2 + (y - 3)^2 = 4相交,求交点的坐标。
解:将直线方程y = 2x + 1代入圆的方程(x - 2)^2 + (y - 3)^2 = 4,得到(x - 2)^2 + (2x + 1 - 3)^2 = 4。
展开并化简方程,得到5x^2 + 8x + 12 = 0。
解这个二次方程,可得到两个交点的x坐标为-1和-2。
直线与圆的位置关系例题例题一:给定直线的方程为:y = 2x + 3,圆的方程为:(x - 1)^2 + (y - 2)^2 = 9,判断该直线与圆的位置关系。
解答一:首先,我们可以观察到圆的圆心坐标为(1, 2),半径为3。
我们可以计算直线在x轴上的截距为3/2,也就是说直线与x轴的交点为(0, 3/2)。
接下来,我们可以将直线代入圆的方程来判断它们的位置关系:(0 - 1)^2 + (3/2 - 2)^2 = 91 + (−1/2)^2 = 91 + 1/4 = 95/4 = 9由于等式左边不等于右边,因此直线和圆没有交点,它们是相离的。
例题二:给定直线的方程为:x + y = 4,圆的方程为:(x - 2)^2 + (y - 2)^2 = 4,判断该直线与圆的位置关系。
解答二:首先,我们观察到圆的圆心坐标为(2, 2),半径为2。
然后,我们可以令x = 0,来计算直线与y轴的截距,即直线与y轴的交点为(0, 4)。
接下来,我们将直线代入圆的方程来判断它们的位置关系:(0 - 2)^2 + (4 - 2)^2 = 44 + 4 = 4由于等式左边等于右边,因此直线和圆有交点,它们是相交的。
例题三:给定直线的方程为:y = -3x + 2,圆的方程为:(x - 1)^2 + (y + 1)^2 = 4,判断该直线与圆的位置关系。
解答三:首先,我们观察到圆的圆心坐标为(1, -1),半径为2。
然后,我们可以计算直线在x轴上的截距为2/3,也就是说直线与x轴的交点为(0, 2/3)。
接下来,我们将直线代入圆的方程来判断它们的位置关系:(0 - 1)^2 + (2/3 + 1)^2 = 41 + (5/3)^2 = 41 + 25/9 = 49/9 + 25/9 = 434/9 = 4.由于等式左边不等于右边,因此直线和圆没有交点,它们是相离的。
例题四:给定直线的方程为:x - 2y = 6,圆的方程为:(x - 3)^2 + (y + 1)^2 = 9,判断该直线与圆的位置关系。
直线和圆知识点总结1、直线的倾斜角:1定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角.当直线l 与x 轴重合或平行时,规定倾斜角为0;2倾斜角的范围[)π,0.如1直线023cos =-+y x θ的倾斜角的范围是____答:5[0][)66,,πππ; 倾斜角的取值范围是0°≤α<180°.倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k 表示.倾斜角是90°的直线没有斜率.2过点),0(),1,3(m Q P -的直线的倾斜角的范围m 那么],32,3[ππα∈值的范围是______答:42≥-≤m m 或2、直线的斜率:1定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan αα≠90°;倾斜角为90°的直线没有斜率;2斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212121x x x x y y k ≠--=;3直线的方向向量(1,)a k =,直线的方向向量与直线的斜率有何关系4应用:证明三点共线: AB BC k k =.如1 两条直线钭率相等是这两条直线平行的____________条件答:既不充分也不必要;2实数,x y满足3250x y --= 31≤≤x ,则x y 的最大值、最小值分别为______答:2,13-3、直线的方程:1点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x 轴的直线.直线的斜率0=k 时,直线方程为1y y =;当直线的斜率k 不存在时,不能用点斜式求它的方程,这时的直线方程为1x x =.2斜截式:已知直线在y 轴上的截距为b 和斜率k ,则直线方程为y kx b =+,它不包括垂直于x 轴的直线.3两点式:已知直线经过111(,)P x y 、222(,)P x y 两点,则直线方程为121121x x x x y y y y --=--,它不包括垂直于坐标轴的直线.若要包含倾斜角为00或090的直线,两点式应变为))(())((121121y y x x x x y y --=--的形式.4截距式:已知直线在x 轴和y 轴上的截距为,a b ,则直线方程为1=+by a x,它不包括垂直于坐标轴的直线和过原点的直线.5一般式:任何直线均可写成0Ax By C ++=A,B 不同时为0的形式.如1经过点2,1且方向向量为v=-1,3的直线的点斜式方程是___________答:12)y x -=-;2直线(2)(21)(34)0m x m y m +----=,不管m 怎样变化恒过点______答:(1,2)--;3若曲线||y a x =与(0)y x a a =+>有两个公共点,则a 的取值范围是_______答:1a > 提醒:1直线方程的各种形式都有局限性.如点斜式不适用于斜率不存在的直线,还有截距式呢;2直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等⇔直线的斜率为-1或直线过原点;直线两截距互为相反数⇔直线的斜率为1或直线过原点;直线两截距绝对值相等⇔直线的斜率为1±或直线过原点.如过点(1,4)A ,且纵横截距的绝对值相等的直线共有___条答:34.设直线方程的一些常用技巧:1知直线纵截距b ,常设其方程为y kx b =+;2知直线横截距0x ,常设其方程为0x my x =+它不适用于斜率为0的直线;3知直线过点00(,)x y ,当斜率k 存在时,常设其方程为00()y k x x y =-+,当斜率k 不存在时,则其方程为0x x =;4与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=;5与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.提醒:求直线方程的基本思想和方法是恰当选择方程的形式,利用待定系数法求解.5、点到直线的距离及两平行直线间的距离:1点00(,)P x y 到直线0Ax By C ++=的距离d =;2两平行线1122:0,:0l Ax By C l Ax By C ++=++=间的距离为d =6、直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=的位置关系:1平行⇔12210A B A B -=斜率且12210B C B C -≠在y 轴上截距;2相交⇔12210A B A B -≠;3重合⇔12210A B A B -=且12210B C B C -=.提醒:1 111222A B C A B C =≠、1122A B A B ≠、111222A B C A B C ==仅是两直线平行、相交、重合的充分不必要条件 为什么2在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中提到的两条直线都是指不重合的两条直线;3直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=垂直⇔12120A A B B +=.如1设直线1:60l x my ++=和2:(2)320l m x y m -++=,当m =_______时1l ∥2l ;当m =________时1l ⊥2l ;当m _________时1l 与2l 相交;当m =_________时1l 与2l 重合答:-1;12;31且m m ≠≠-;3;2已知直线l 的方程为34120x y +-=,则与l 平行,且过点—1,3的直线方程是______答:3490x y +-=;3两条直线40ax y +-=与20x y --=相交于第一象限,则实数a 的取值范围是____答:12a -<<;4设,,a b c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线sin 0A x ay c ++=与sin sin 0bx B y C -+=的位置关系是____答:垂直;5已知点111(,)P x y 是直线:(,)0l f x y =上一点,222(,)P x y 是直线l 外一点,则方程1122(,)(,)(,)f x y f x y f x y ++=0所表示的直线与l 的关系是____答:平行;6直线l 过点1,0,且被两平行直线360x y +-=和330x y ++=所截得的线段长为9,则直线l 的方程是________答:43401x y x +-==和7、特殊情况下的两直线平行与垂直:当两条直线中有一条直线没有斜率时:1当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,互相平行;2当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.8、对称中心对称和轴对称问题——代入法:如1已知点(,)M a b 与点N x轴对称,点P 与点N y 轴对称,点Q 与点P 直线0x y +=对称,则点Q 的坐标为_______答:(,)b a ;3点A4,5直线l 的对称点为B-2,7,则l 的方程是_________答:3y=3x +;4已知一束光线通过点A-3,5,经直线l :3x -4y+4=0反射.如果反射光线通过点B2,15,则反射光线所在直线的方程是_________答:18x 510y -=+;5已知ΔABC 顶点A3,-1,AB边上的中线所在直线的方程为6x+10y -59=0,∠B 的平分线所在的方程为x -4y+10=0,求BC边所在的直线方程答:29650x y +-=;6直线2x ―y ―4=0上有一点P,它与两定点A4,-1、B3,4的距离之差最大,则P的坐标是______答:5,6;7已知A x ∈轴,:B l y x ∈=,C2,1,ABC 周长的最小值为______答:提醒:在解几中遇到角平分线、光线反射等条件常利用对称求解.9.1直线过定点.如直线3m+4x+5-2my+7m-6=0,不论m 取 何值恒过定点-1,22直线系方程1与已知直线Ax+By+C=0平行的直线的设法: Ax+By+m=0 m ≠C2 与已知直线Ax+By+C=0垂直的直线的设法:Bx-Ay+m=03经过直线1l ∶1A x+1B y+1C =0,2l ∶2A x+2B y+2C =0交点的直线设法:1A x+1B y+1C +λ2A x+2B y+2C =0λ为参数,不包括2l3对称 1点点对称中点坐标公式2线点对称转化为点点对称,或代入法,两条直线平行3点线对称点和对称点的连线被线垂直平分,中点在对称轴上、kk’=-1二个方程4线线对称求交点,转化为点线对称10、圆的方程:⑴圆的标准方程:()()222x a y b r -+-=.⑵圆的一般方程:22220(D E 4F 0)+-x y Dx Ey F ++++=>,特别提醒:只有当22D E 4F 0+->时,方程220x y Dx Ey F ++++=才表示圆心为(,)22D E --,半径为的圆二元二次方程220Ax Bxy Cy Dx Ey F +++++=表示圆的充要条件是什么 0,A C =≠且0B =且2240D E AF +->;⑶圆的参数方程:{cos sin x a r y b r θθ=+=+θ为参数,其中圆心为(,)a b ,半径为r .圆的参数方程的主要应用是三角换元:222cos ,sin x y r x r y r θθ+=→==;22x y t +≤cos ,sin (0x r y r r θθ→==≤≤.⑷()()1122A ,,,x y B x y 为直径端点的圆方程()()()()12120x x x x y y y y --+--=如1圆C 与圆22(1)1x y -+=直线y x =-对称,则圆C 的方程为____________答:22(1)1x y ++=;2圆心在直线32=-y x 上,且与两坐标轴均相切的圆的标准方程是__________答:9)3()3(22=-+-y x 或1)1()1(22=++-y x ;3已知(P -是圆{cos sin x r y r θθ==θ为参数,02)θπ≤<上的点,则圆的普通方程为________,P 点对应的θ值为_______,过P 点的圆的切线方程是___________答:224x y +=;23π;40x -+=;4如果直线l 将圆:x 2+y 2-2x-4y=0平分,且不过第四象限,那么l 的斜率的取值范围是____答:0,2;5方程x 2+y 2-x+y+k=0表示一个圆,则实数k 的取值范围为____答:21<k ;6若{3cos {(,)|3sin x M x y y θθ===θ为参数,0)}θπ<<,{}b x y y x N +==|),(,若φ≠N M ,则b 的取值范围是_________答:(-11、点与圆的位置关系:已知点()00M ,x y 及圆()()()222C 0:x-a y b r r +-=>,1点M 在圆C 外()()22200CM r x a y b r ⇔>⇔-+->;2点M 在圆C 内⇔ ()()22200CM r x a y b r <⇔-+-<;3点M 在圆C 上()20CM r x a ⇔=⇔-()220y b r +-=.如点P5a+1,12a 在圆x -12+y 2=1的内部,则a 的取值范围是______答:131||<a12、直线与圆的位置关系:直线:0l Ax By C ++=和圆()()222C :x a y b r -+-= ()0r >有相交、相离、相切.可从代数和几何两个方面来判断:1代数方法判断直线与圆方程联立所得方程组的解的情况:0∆>⇔相交;0∆<⇔相离;0∆=⇔相切;2几何方法比较圆心到直线的距离与半径的大小:设圆心到直线的距离为d ,则d r <⇔相交;d r >⇔相离;d r =⇔相切.提醒:判断直线与圆的位置关系一般用几何方法较简捷.如1圆12222=+y x 与直线sin 10(,2x y R πθθθ+-=∈≠k π+,)k z ∈的位置关系为____答:相离;2若直线30ax by +-=与圆22410x y x ++-=切于点(1,2)P -,则ab 的值____答:2;3直线20x y +=被曲线2262x y x y +--150-=所截得的弦长等于 答:4一束光线从点A -1,1出发经x 轴反射到圆C:x-22+y-32=1上的最短路程是 答:4;5已知(,)(0)M a b ab ≠是圆222:O x y r +=内一点,现有以M 为中点的弦所在直线m 和直线2:l ax by r +=,则A .//m l ,且l 与圆相交 B .l m ⊥,且l 与圆相交C .//m l ,且l 与圆相离D .l m ⊥,且l 与圆相离答:C ;6已知圆C :22(1)5x y +-=,直线L :10mx y m -+-=.①求证:对m R ∈,直线L 与圆C总有两个不同的交点;②设L 与圆C 交于A 、B 两点,若AB =求L 的倾斜角;③求直线L 中,截圆所得的弦最长及最短时的直线方程. 答:②60或120 ③最长:1y =,最短:1x =13、圆与圆的位置关系用两圆的圆心距与半径之间的关系判断:已知两圆的圆心分别为12O O ,,半径分别为12,r r ,则1当1212|O O r r |>+时,两圆外离;2当1212|O O r r |=+时,两圆外切;3当121212<|O O r r r r -|<+时,两圆相交;4当1212|O O |r r |=|-时,两圆内切;5当12120|O O |r r ≤|<|-时,两圆内含.如双曲线22221x y a b-=的左焦点为F 1,顶点为A 1、A 2,P 是双曲线右支上任意一点,则分别以线段PF 1、A 1A 2为直径的两圆位置关系为 答:内切14、圆的切线与弦长:1切线:①过圆222x y R +=上一点00(,)P x y 圆的切线方程是:200xx yy R +=,过圆222()()x a y b R -+-=上一点00(,)P x y 圆的切线方程是:200()()()()x a x a y a y a R --+--=,一般地,如何求圆的切线方程抓住圆心到直线的距离等于半径;②从圆外一点引圆的切线一定有两条,可先设切线方程,再根据相切的条件,运用几何方法抓住圆心到直线的距离等于半径来求;③过两切点的直线即“切点弦”方程的求法:先求出以已知圆的圆心和这点为直径端点的圆,该圆与已知圆的公共弦就是过两切点的直线方程;③切线长:过圆220x y Dx Ey F ++++=222()()x a y b R -+-=外一点00(,)P x y 所引圆的切线的长为如设A 为圆1)1(22=+-y x 上动点,PA 是圆的切线,且|PA|=1,则P 点的轨迹方程为__________答:22(1)2x y -+=;2弦长问题:①圆的弦长的计算:垂径定理常用弦心距d ,半弦长12a及圆的半径r 所构成的直角三角形来解:2221()2r d a =+;②过两圆1:(,)0C f x y =、2:(,)0C g x y =交点的圆公共弦系为(,)(,)0f x y g x y λ+=,当1λ=-时,方程(,)(,)0f x y g x y λ+=为两圆公共弦所在直线方程..15.解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等16. 圆的切线和圆系方程1.过圆上一点的切线方程:圆222r y x =+,圆上一点为00,y x ,则过此点的切线方程为0x x+ 0y y= 2r 课本命题.圆222r y x =+,圆外一点为00,y x ,则过此点的两条切线与圆相切,切点弦方程为200r y y x x =+.2.圆系方程:①设圆C1∶011122=++++F y E x D y x 和圆C2∶022222=++++F y E x D y x .若两圆相交,则过交点的圆系方程为11122F y E x D y x +++++λ22222F y E x D y x ++++=0λ为参数,圆系中不包括圆C2,λ=-1为两圆的公共弦所在直线方程.②设圆C ∶022=++++F Ey Dx y x 与直线l :Ax+By+C=0,若直线与圆相交,则过交点的圆系方程为F Ey Dx y x ++++22+λAx+By+C=0λ为参数.例题 1经过点P 2,m 和Q 2m ,5的直线的斜率等于12,则m 的值是 BA .4B .3C .1或3D .1或4变:的取值范围的斜率的直线求经过点 )1,cos (),sin ,2( k l B A θθ--2. 已知直线l 过P -1,2,且与以A -2,-3、B3,0为端点的线段相交,求直线l 的斜率的取值范围.点评:要用运动的观点,研究斜率与倾斜角之间的关系 答案: ⎝⎛⎦⎥⎤-∞,-12∪5,+∞ 3.已知坐标平面内三点A (-1,1),B (1,1),C (2,3+1),若D 为△ABC 的边AB 上一动CD 斜率k 的变化范围.答案:⎝⎛⎦⎥⎤-∞,-12∪5,+∞ 1.求a 为何值时,直线l 1:a +2x +1-ay -1=0与直线l 2:a -1x +2a +3y +2=0互相垂直答案:a=-12.求过点P 1,-1,且与直线l 2:2x +3y +1=0垂直的直线方程.答案:3x -2y -5=0.例2.求过定点P 2,3且在两坐标轴上的截距相等的直线方程.例3.已知△ABC 的顶点A 1,-1,线段BC 的中点为D 3,23.1求BC 边上的中线所在直线的方程;2若边BC 所在直线在两坐标轴上的截距和是9,求BC 所在直线的方程. 例4.方程m 2-2m -3x +2m 2+m -1y =2m -6满足下列条件,请根据条件分别确定实数m 的值.1方程能够表示一条直线;答案:m 1-≠2方程表示一条斜率为-1的直线.答案:m 2-=例5.直线l 的方程为a -2y =3a -1x -1a ∈R .1求证:直线l 必过定点;答案:15,352若直线l 在两坐标轴上的截距相等,求l 的方程;答案:5x +5y -4=0 3若直线l 不过第二象限,求实数a 的取值范围.答案:分斜率存在与不存在例1:求点A-2,3到直线 l :3x+4y+3=0的距离 d= . 例2:已知点a,2到直线l: x-y+1=0的距离为2,则a= . a <0例3:求直线 y=2x+3直线l : y=x+1对称的直线方程.类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.变式1:求过两点)4,1(A 、)2,3(B 且被直线0=y 平分的圆的标准方程. 变式2:求过两点)4,1(A 、)2,3(B 且圆上所有的点均直线0=y 对称的圆的标准方程.类型二:切线方程、切点弦方程、公共弦方程例4 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y根据r d =∴21422=++-k k .解得43=k ,所以()4243+-=x y ,即01043=+-y x 因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .类型三:弦长、弧问题例7、求直线063:=--y x l 被圆042:22=--+y x y x C 截得的弦AB 的长. 例8、直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为 解:依题意得,弦心距3=d ,故弦长2222=-=d r AB ,从而△OAB 是等边三角形,故截得的劣弧所对的圆心角为3π=∠AOB . 例9、求两圆0222=-+-+y x y x 和522=+y x 的公共弦长类型四:直线与圆的位置关系例10、已知直线0323=-+y x 和圆422=+y x ,判断此直线与已知圆的位置关系.类型五:圆与圆的位置关系 例13、判断圆02662:221=--++y x y x C 与圆0424:222=++-+y x y x C 的位置关系,例14:圆0222=-+x y x 和圆0422=++y y x 的公切线共有 条. 类型六:圆中的最值问题例15:圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是例16 1已知圆1)4()3(221=-+-y x O :,),(y x P 为圆O 上的动点,求22y x d +=的最大、最小值.2已知圆1)2(222=++y x O :,),(y x P 为圆上任一点.求12--x y 的最大、最小值,求y x 2-的最大、最小值.例17:已知)0,2(-A ,)0,2(B ,点P 在圆4)4()3(22=-+-y x 上运动,则22PB PA +的最小值是 . 解:设),(y x P ,则828)(2)2()2(222222222+=++=+-+++=+OP y x y x y x PB PA .设圆心为)4,3(C ,则325min =-=-=r OC OP ,∴22PB PA +的最小值为268322=+⨯.。
直线与方程知识点及典型例题1. 直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180° 2. 直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即k=tan α。
斜率反映直线与轴的倾斜程度。
当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; 当直线l 与x 轴垂直时, α= 90°, k 不存在. 当[)90,0∈α时,0≥k ; 当()180,90∈α时,0<k ; 当90=α时,k 不存在。
例.如右图,直线l 1的倾斜角α=30°,直线l 1⊥l 2,求直线l 1和解:k 1=tan30°=33∵l 1⊥l 2 ∴ k 1²k 2 =—1 ∴k 2 =—3例:直线053=-+y x 的倾斜角是( )A.120°B.150°C.60° ②过两点P 1 (x 1,y 1)、P 1(x 1,y 1) 的直线的斜率公式:)(211212x x x x y y k ≠--=注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
例.设直线 l 1经过点A(m ,1)、B(—3,4),直线 l 2经过点C(1,m )、D(—1,m +1), 当(1) l 1/ / l 2 (2) l 1⊥l 1时分别求出m 的值※三点共线的条件:如果所给三点中任意两点的斜率都有斜率且都相等,那么这三点共线。
3. 直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x 注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。
直线与圆一、选择题:1。
若直线x y a 3++=0过圆x y x y 22++2-4=0的圆心,则a 的值为 (A )-1 (B ) 1 (C ) 3 (D) -3.2。
设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =(A )4 (B )42 (C )8 (D )2【答案】C【解析】设和两坐标轴相切圆的方程为:222()()x m y m m -+-=,将(4,1)带入方程整理得:210170m m -+=,12=C C 22(10)4178.-⨯=二、填空题:3。
若直线与直线250x y -+=与直线260x my +-=互相垂直,则实数m =_______【答案】1【解析】:121212,,12k k k k m ==-∴⋅=-直线互相垂直,,即12()1,12m m⋅-=-∴= 4.已知圆22:12,C x y +=直线:4325.l x y +=(1)圆C 的圆心到直线l 的距离为 .(2) 圆C 上任意一点A 到直线l 的距离小于2的概率为 .答案:5,166。
已知圆C 经过A (5,1),B(1,3)两点,圆心在x 轴上.则C 的方程为___________.答案: ()22210x y -+= 解析:直线AB 的斜率是k AB =311152-=--,中点坐标是(3,2).故直线AB 的中垂线方程()223y x -=-,由()223,0,y x y -=-⎧⎪⎨=⎪⎩得圆心坐标C (2,0),r=|223110+=圆的方程为()22210x y -+=。
10.过原点的直线与圆222440x y x y +--+=相交所得弦的长为2,则该直线的方程为【答案】20x y -=12.(本小题满分13分) 设直线11221212:x+1:y=k x 1k k k k +20l y k l =-⋅=,,其中实数满足,(I )证明1l 与2l 相交;(II )证明1l 与2l 的交点在椭圆222x +y =1上。
直线和圆的方程知识关系
直线的方程一、直线的倾斜角和斜率
1.直线的倾斜角:一条直线向上的方向与x轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x轴平行或重合时,其倾斜角为0o,故直线倾斜角α的范围是0180
α<
o o
≤.
2.直线的斜率:倾斜角不是90o的直线其倾斜角α的正切叫这条直线的斜率k,即
tan
kα
=.
注:①每一条直线都有倾斜角,但不一定有斜率.
②当ο
90
=
α时,直线l垂直于x轴,它的斜率k不存在.
③过两点
111
(,)
P x y、
222
(,)
P x y
12
()
x x
≠的直线斜率公式21
21
tan
y y
k
x x
α
-
==
-
二、直线方程的五种形式及适用条件
名称方程说明适用条件
斜截式y=kx+b
k—斜率
b—纵截距
倾斜角为90°的直线
不能用此式
点斜式y-y0=k(x-x0)
(x0,y0)—直线上已
知点,
k ──斜率
倾斜角为90°的直线
不能用此式
两点式1
21
y y
y y
-
-
=1
21
x x
x x
-
-
(x1,y1),(x2,y2)
是直线上两个已知
点
与两坐标轴平行的直
线不能用此式
截距式
x
a
+
y
b
=1
a—直线的横截距
b—直线的纵截距
过(0,0)及与两坐
标轴平行的直线不能
用此式
一般式
A x+
B y+C=0
(A、B不全为零)
A、B不能同时为零
直线和圆的方程
简单的线性规划例13. 若点(3,1)和(4
-,6)在直线0
2
3=
+
-a
y
x的两侧,则实数a的取值范围是
()724
A a a
<->
或()724
B a
-<<()724
C a a
=-=
或(D)以上都不对例14. ABC
∆的三个顶点的坐标为(2,4)
A,(1,2)
B-,(1,0)
C,点(,)
P x y在ABC
∆内部及边界上运动,则2
y x
-的最大值为,最小值为。
例15. 不等式组:
10
x y
x y
y
-+
+
⎧
⎪
⎨
⎪
⎩
≥
≤
≥
表示的平面区域的面积是;
例16.20个劳动力种50亩地,这些地可种蔬菜、棉花或水稻,如果种这些农作物每亩地所需的劳动力和预计产值如下表。
问怎样安排才能使每亩都种上农作物,所有的劳动力都有工作且农作物的预计产值最高?
例17.某集团准备兴办一所中学,投资1200万用于硬件建设.为了考虑社会效益和经济利益,对该地区教育市场进行调查,得出一组数据列表(以班为单位)如下:
根据有关规定,除书本费、办公费外,初中生每年可收取学费600元,高中生每年可收取学费1500元.因生源和环境等条件限制,办学规模以20至30个班为宜.
程。
例30.已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆,⑴求实数m取值范围;⑵求圆的半径r取值范围;⑶求圆心轨迹方程
数学基础知识与典型例题(第七章直线和圆的方程)答案
例1.A 例2.B 例3.C 例4. 1()2
-、0,3 例5. 02=--y x 例6.B 例7.C 例8. 2x +3y +10=0 例9. 0,8, 例10. 135290x y +-=
例11. 解:⑴∵ k BC =5,∴ BC 边上的高AD 所在直线斜率k=5
1-
∴ AD 所在直线方程y +1=51-(x -2) 即x +5y +3=0
⑵∵ AB 中点为(3,1),k AB =2,∴ AB 中垂线方程为x +2y -5=0
⑶设∠A 平分线为AE ,斜率为k ,
则直线AC 到AE 的角等于AE 到AB 的角。
∵ k AC =-1,k AB =2,∴ 12112k k k k
+-=-+, ∴ k 2+6k -1=0,∴ k =-3-10(舍),k =-3+10
∴ AE 所在直线方程为(10-3)x -y -210+5=0
评注:在求角A 平分线时,必须结合图形对斜率k 进行取舍。
一般地涉及到角平分线这类问题时,都要对两解进行取舍。
也可用轨迹思想求AE 所在直线方程,设P(x ,y )
为直线AE 上任一点,则P 到AB 、AC
=,化简即可。
还可注意到,AB 与AC 关于AE 对称。
例12. 解题思路分析:
直线l 是过点P 的旋转直线,因此是选其斜率k 作为参数,还是选择点Q (还是M )
作为参数是本题关键。
通过比较可以发现,选k 作为参数,运算量稍大,因此选用点参数。
解:设Q (x 0,4x 0),M (m ,0)
∵ Q ,P ,M 共线∴P PM k k =Q
∴ 0044466x x m
-=--解之得:0051x m x =- ∵ x 0>0,m >0∴ x 0-1>0
∴ 20000101||4221
OMQ x S OM x mx x ∆===- 令x 0-1=t ,则t >0,210(1)110(2)t S t t t
+==++≥40 当且仅当t =1,x 0=11时,等号成立,此时Q (11,44),直线l :x +y -10=0 评注:
例13.B 例14.42-例15.14
例16. 种蔬菜20亩,棉花30亩,水稻不种,总产值最高27万元.
例17.解:设初中x 个班,高中y 个班,则2030(1)28581200x y x y +⎧⎨+⎩≤≤≤⑵
设年利润为s ,
则y x y x y x s 22.16.15.22.1215.04006.060+=⨯-⨯-⨯+⨯=
作出(1)、(2)表示的平面区域,
如图,过点A 时,S 有最大值,
由⎩⎨⎧=+=+1200
582830y x y x 解得A (18,12). 易知当直线1.2x +2y=s
即学校可规划初中18个班,高中12个班,
6.45122182.1max =⨯+⨯=∴s (万元).
可获最大年利润为45.6万元.
评 线性规划是直线方程的简单应用,是新增添的教学内容,是新大纲重视知识应用的体现,根据考纲要求,了解线性不等式表示的平面区域,了解线性规划的意义并会简单应用,解决此类问题,关键是读懂内容,根据要求,求出线性约束条件和目标函数,直线性约束条件下作出可行域,然后求线性目标函数在可行域中的最优解,归纳如下步骤:①根据实际问题的约束条件列出不等式,②作出可行域,写出目标函数,③确定目标函数的最优位置,从而获得最优解.但在解答时,格式要规范,作图要精确,特别是最优解的求法,作时还是比较困难的.是函数方程思想的应用.
例18.A 例19.D 例20. x 2+)1(142±≠=x y 例21. (x 9
4)34()3422=-+-y 例22. 解:以12O O 的中点O 为原点,12O O 所在直线为x 轴, 建立如图所示的平面直角坐标系,则
1(20)O -,,2(20)O ,.由已知PM =,
得222PM PN =.因为两圆半径均为1,
所以221212(1)PO PO -=-.设()P x y ,,
则2222(2)12[(2)1]x y x y ++-=-+-,
即22(6)33x y -+=.(或221230x y x +-+=)
例23.D 例24.C 例25.C 例26.B 例27. x 2+(y -1)2=1 例28. x +y =0或x +7y -6=0
例29. 解:x 2+y 2-6x -8y =0即(x -3)2+(y -4)2=25, 设所求直线为y =kx 。
∵圆半径为5,圆心M (3,4)到该直线距离为3,
∴
3d ==, ∴22924169(1)k k k -+=+,∴724
k =。
∴所求直线为y x 24
7=或0=x 。
例30.⑴m 满足[-2(m +3)]2+[2(1-4m 2)]2-4(16m 4+9)>0,
即7m 2-6m -1<0,∴117
m -<<
⑵半径r =
∵ 117m -<<,∴ 37
m =时,max 7r =, ∴ 0<r ≤
⑶设圆心P (x ,y ),则2341
x m y m =+⎧⎨=-⎩ 消去m 得:y =4(x -3)2-1,又117
m -<< ∴ 2047
x << ∴ 所求轨迹方程为(x -3)2=41(y +1)(2047
x <<)。