苏科版七年级下基础练习
- 格式:doc
- 大小:149.50 KB
- 文档页数:4
七年级数学专题练习(1)1.下列计算正确的是【 】A .a +a 2=2a 3B .a 2•a 3=a 6C .(2a 4)4=16a 8D .(-a )6÷a 3=a 3 2. 下列的计算一定正确的是 ( )A .3362b b b+= ; B .()22239pq p q -=-C .(12a 2b 3c )÷(6ab 2)=2ab D .(x 2﹣4x )x ﹣1=x ﹣43.下列计算正确的是( )A .(a 3)4=a 7B .a 8÷a 4=a 2C .(2a 2)3·a 3=8a 9D .4a 5-2a 5=2 4.下列计算:(1)n n n a a a 2=⋅,(2)1266a a a =+,(3)55c c c =⋅,(4)877222=+,(5)93339)3(y x xy = 中正确的个数为 ( ) A .3个 B .2个 C .1个 D .0个 5.用科学记数法表示0.000034,结果是A .3.4×10-4B .3.4×10-5 C .0.34×10-4 D .34×10-66.研究表明,甲型H 1N 1流感球形病毒细胞的直径约为0.00000156m ,用科学记数法表示这个数【 】A .0.156×10-5B .0.156×105C .1.56×10-6D .1.56×1067. 自2013年2月以来,上海市、安徽省、江苏省先后发生不明原因重症肺炎病例,确诊人感染H7N9禽流感,H7N9禽流感病毒颗粒呈多形性,其中球形直径约120nm ,这个数用科学计数法表示为________________m .(注:1nm=910-m )8.PM 2.5是指大气压中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为 ( )A .0.25×10-5米B .2.5×10-7米C .2.5×10-6米D .2.5×10-8米9.如果0125(0.1),(0.1),()3a b c --=-=-=-,那么a ,b ,c 的大小关系为【 】A .a >b >cB .c >a >bC .c >b >aD .a >c >b10.如果a =(-99)0,b =(-0.1)-1 c =(-53)-2 ,那么a ,b ,c 三数的大小为 ( )A .a >b >cB .c >a >bC .a >c >bD .c >b >a6.(-2)2013+(-2)2014的值为A .2B .-2C .-22013D .2201311.若x 2+mx +16是完全平方式,则m 的值是 . 12.若92+-ax x 是一个完全平方式,则a = . 13.若多项式225x kx ++是一个完全平方式,则m = ;14. 以下列各组线段为边,能组成三角形的是 ( ) A .2cm 、2cm 、4cm B .8cm 、6cm 、3cm C .2cm 、6cm 、3cm D .11cm 、4cm 、6cm 15.以下列各组线段为边,能组成三角形的是( )。
第9章整式乘法与因式分解9.5多项式的因式分解基础过关全练知识点1公因式1.多项式4a2b(a-b)-6ab2(b-a)中,各项的公因式是()A.4abB.2abC.ab(a-b)D.2ab(a-b)知识点2因式分解2.(2022江苏无锡新吴期中)下列等式从左到右的变形,属于因式分解的是()A.(x+1)(x-1)=x2-1B.6ab=2a·3bC.x2-2x+1=x(x-2)+1D.x2-8x+16=(x-4)23.【教材变式·P73T1(2)变式】因为(3x-1)(x-2)=3x2-7x+2,所以把多项式3x2-7x+2因式分解的结果为.知识点3用提公因式法进行因式分解4.(2022江苏泰州泰兴月考)2x(a-b)-4y(b-a)分解因式的结果是()A.(a-b)(2x-4y)B.(a-b)(2x+4y)C.2(a-b)(x-2y)D.2(a-b)(x+2y)5.【新独家原创】 2 0232-2 023肯定能被整除,横线上应填() A.2 020 B.2 021C.2 023D.2 0246.(2022江苏常州中考)分解因式:x2y+xy2=.知识点4用平方差公式进行因式分解7.(2022山东烟台中考)把x2-4因式分解为.8.【教材变式·P84T3变式】若多项式9a2+M能用平方差公式分解因式,则单项式M=.(写出一个即可)知识点5用完全平方公式进行因式分解9.(2022广西河池中考)多项式x2-4x+4因式分解的结果是()A.x(x-4)+4B.(x+2)(x-2)C.(x+2)2D.(x-2)210.若关于x的二次三项式x2+2(m-3)x+16可用完全平方公式分解因式,则m的值为.知识点6综合运用多种方法进行因式分解11.【新独家原创】下列数中,能整除(-8)2 024+(-8)2 023的是()A.3B.5C.7D.912.【易错题】分解因式:(1)ax2-2axy+ay2;(2)x3-4x.能力提升全练13.(2022湖南永州中考,6,★☆☆)下列因式分解正确的是()A.ax+ay=a(x+y)+1B.3a+3b=3(a+b)C.a2+4a+4=(a+4)2D.a2+b=a(a+b)14.(2022江苏苏州中考,10,★☆☆)已知x+y=4,x-y=6,则x2-y2=.15.(2022江苏扬州中考,11,★☆☆)分解因式:3m2-3=.16.(2022江苏南京鼓楼期中,17,★☆☆)因式分解:(1)3a3-12ab2;(2)x3-2x2y+xy2;(3)a2(x-3y)+9b2(3y-x).17.【代数推理】(2022江苏苏州相城期末,21,★★☆)已知a是一个正整数,且a除以3余1.判断a2+4a+4是否一定能被9整除,并说明理由.素养探究全练18.【运算能力】多项式乘法:(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左使用,即可得到用“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b).示例:分解因式x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).(1)尝试:分解因式x2+6x+8=(x+)(x+);(2)应用:请用上述方法解方程x2-3x-4=0.答案全解全析基础过关全练1.D各项的公因式是2ab(a-b).故选D.2.D A.从左到右的变形是整式乘法运算,不是因式分解,故本选项不符合题意;B.等式的变形不是因式分解,故本选项不符合题意;C.等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;D.从左到右的变形属于因式分解,故本选项符合题意.故选D.3.答案(3x-1)(x-2)解析根据整式乘法和因式分解之间的关系可得3x2-7x+2=(3x-1)(x-2).4.D因为2x(a-b)-4y(b-a)=2x(a-b)+4y(a-b)=2(a-b)(x+2y).故选D.5.C原式=2 023×(2 023-1)=2 023×2 022,则2 0232-2 023肯定能被2 023整除.故选C.6.答案xy(x+y)解析x2y+xy2=xy·x+xy·y==xy(x+y).7.答案(x+2)(x-2)解析x2-4=x2-22=(x+2)(x-2).8.答案-1(答案不唯一)解析因为9a2+M能用平方差公式分解因式,所以单项式M可以为-1(答案不唯一).9.D原式=x2-2×2·x+22=(x-2)2.故选D.10.答案7或-1解析由题意得x2+2(m-3)x+16=(x±4)2,所以x2+2(m-3)x+16=x2±8x+16,所以2(m-3)=±8,所以m-3=±4,所以m=7或m=-1.故答案为7或-1.11.C(-8)2 024+(-8)2 023=(-8)2 023×(-8)+(-8)2 023=(-8)2 023×(-8+1)=(-8)2 023×(-7)=82 023×7,所以(-8)2 024+(-8)2 023能被7整除.故选C.12.解析(1)原式=a(x2-2xy+y2)=a(x-y)2.(2)原式=x(x2-4)=x(x+2)(x-2).能力全练全练13.B A选项,ax+ay=a(x+y),故该选项不符合题意;B选项,3a+3b=3(a+b),故该选项符合题意;C选项,a2+4a+4=(a+2)2,故该选项不符合题意;D选项,a2与b没有公因式,故该选项不符合题意.故选B.14.答案24解析因为x+y=4,x-y=6,所以x2-y2=(x+y)(x-y)=4×6=24.15.答案3(m+1)(m-1)解析原式=3(m2-1)=3(m+1)(m-1).16.解析(1)原式=3a(a2-4b2)=3a(a+2b)(a-2b).(2)原式=x(x2-2xy+y2)=x(x-y)2.(3)原式=(x-3y)(a2-9b2)=(x-3y)(a+3b)(a-3b).17.解析一定能被9整除.理由如下:设a除以3余1的商为b,则a=3b+1,a2+4a+4=(a+2)2=(3b+3)2=[3(b+1)]2=9(b+1)2,所以a2+4a+4一定能被9整除.素养探究全练18.解析(1)2;4.(2)原方程可以变形为(x-4)(x+1)=0,∴x-4=0或x+1=0,∴x=4或x=-1.。
1专题9.4 单项式乘以多项式(专项练习)一、单选题1.下列计算中,正确的是( ) A .236a a a ⋅=B .()326a a =C .336a a a +=D .236a a a ⋅=2.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,其运算的实质为( ) A .同底数幂的乘法法则 B .乘法交换律C .乘法结合律D .乘法分配律3.下列运算正确的是( ) A .(8x 3-4x 2)÷4x = 2x 2-x B .x 5x 2 = x 10 C .x 2y 3÷(xy 3)= x yD .(x 2y 3)2 = x 4y 5 4.在一次数学课上,学习了单项式乘多项式,小明回家后,拿出课堂笔记本复习,发现这样一道题:()23323163x x x x x --+-=++,“□”的地方被墨水污染了,你认为“□”内应填写( ) A .29xB .29x -C .9xD .9x -5.计算()()3252345a a a a -+--等于( )A .151********a a a -+B .876729a a a ---C .876101520a a a +-D .876101520a a a -+6.计算(4x 2+12x 2y 2)÷(-2x)2正确的结果是( ) A .1-3y 2B .-1-3y 2C .1+3y 2D .-1+3y 27.下列运算正确的是( ) A .2a +2b =2ab B .(﹣a 2b )3=a 6b 3 C .3ab 2÷13ab =b D .2ab •a 3b =2a 4b 28.若x y 2-=,xy 3=,则22xy x y -的值为( ) A .1B .1-C .6D .6-29.一个三角形的底边为2m ,高为m +4n ,它的面积为( ) A .m 2+4mnB .2m 2+8mnC .m 2+8mnD .2122m mn + 10.一个长方体的长、宽、高分别为3x -4,2x 和x ,则它的体积等于( ) A .()313x 42x=3x 4x 2-⋅- B .21x 2x=x 2⋅ C .()323x-42x x=6x 8x ⋅⋅- D .()23x-42x=6x 8x ⋅-11.已知22xy =-,则()523xy x y xy y ---的值为( ) A .2B .6C .10D .1412.如图,长和宽为a 、b 的长方形的周长为14,面积为10,则ab (a+b )的值为( )A .140B .70C .35D .2413.如图,阴影部分的面积为( )A .4xyB .5xyC .92xy D .112xy 14.一张长方形餐桌的表面如图所示,图中空白部分的面积是阴影部分面积的( )A .2倍B .3倍C .12D .1315.如图,边长分别为a 和b 的两个正方形拼接在一起,则图中阴影部分的面积为()3A .22bB .()2b a -C .212b D .22b a -二、填空题16.若│x -3│+(y +15)2=0,则x 2+y =___________.17.已知22m n 5+=,那么()()m m n n m n +--的值是________.18.用16米长的篱笆围成长方形的生物园饲养小兔,如果生物园的宽为a 米,则这个生物园的面积为______平方米.19.若长方形的面积是2226a ab a -+,一边长为2a ,则此长方形的周长为________. 20.如果(1)x m x ++中不含x 的一次项,那么m 的值为_________.21.已知单项式M 、N 满足等式()23356x M x x y N -=+,则M =______,N =______.22.如果用“☆”表示一种新的运算,而且规定它有如下运算法则:a☆b=a (a -3b 2),则2x☆y 的运算结果是___________;当x =-1,y =1时,这个代数式的值为_____. 23.如图,通过计算大长方形的面积可得到的恒等式为________.三、解答题 24.计算:()()22221232x xy y x y xy x ⎛⎫⋅---⋅-⎪⎝⎭25.222[23(3)]x y xy xy y x ---26.定义:若2a b +=,则称a 与b 是关于1的平衡数.4(1)4与 是关于1的平衡数,6x +与 是关于1的平衡数.(用含x 的代数式表示)(2)若()()22324,22a x x x b x x =-+-=--,判断a 与b 是否是关于1的平衡数,并说明理由.27.阅读:已知x 2y=3,求2xy(x 5y 2-3x 3y -4x)的值.分析:考虑到x ,y 的可能值较多,不能逐一代入求解,故考虑整体思想,将x 2y=3整体代入.解:2xy(x 5y 2-3x 3y -4x)=2x 6y 3-6x 4y 2-8x 2y =2(x 2y)3-6(x 2y)2-8x 2y =2×33-6×32-8×3=-24.你能用上述方法解决以下问题吗?试一试! (1)已知ab=3,求(2a 3b 2-3a 2b+4a)·(-2b)的值;(2)已知a 2+a -1=0,求代数式a 3+2a 2+2018的值.5参考答案1.B【分析】根据同底数幂的乘法,幂的乘方,合并同类项,单项式乘单项式的法则进行计算,逐个判断即可.解:A. 235a a a ⋅=,故此选项错误; B. ()326a a =,正确;C. 3332a a a +=,故此选项错误;D. 2236a a a ⋅=,故此选项错误; 故选:B .【点拨】本题考查同底数幂的乘法,幂的乘方,合并同类项,单项式乘单项式的计算,掌握运算法则正确计算是解题关键. 2.D【分析】单项式与多项式相乘的法则,就是根据单项式去乘多项式的每一项,再把所得的积相加,就是乘法的分配律.解:乘法的分配律:a (b +c )=ab +ac . 故选:D .【点拨】本题考查了单项式乘多项式法则的依据. 3.A【分析】根据整式的除法法则、同底数幂相乘的法则、积的乘方和幂的乘方法则对各选项进行分析即可求解.解:(8x 3﹣4x 2)÷4x =2x 2﹣x ,故选项A 正确; x 5x 2 =x 7≠x 10,故选项B 错误; x 2y 3÷(xy 3)=x≠x y ,故选项C 错误; (x 2y 3)2=x 4y 6≠x 4y 5.故选项D 错误. 故选:A .【点拨】本题考查了同底数幂的乘法、多项式除以单项式、单项式除以单项式及积的乘方,题目比较简单,掌握整式的运算法则是解决本题的关键.6【分析】利用单项式与多项式相乘的运算法则计算即可.【详解】2323(231)693x x x x x x --+-=-+.即“□”=29x -. 故选B .【点拨】本题考查了单项式乘多项式,单项式乘多项式就是用单项式去乘多项式的每一项,再把所得的积相加.特别注意积的符号. 5.D【分析】根据单项式乘以多项式的运算法则即可求解. 【详解】()()3258762345101520a a a a aa a -+--=-+,故选D .【点拨】此题主要考查整式的运算,解题的关键是熟知其运算法则. 6.C【分析】先计算积的乘方,再按照多项式除以单项式的法则进行运算即可. 解:(4x 2+12x 2y 2)÷(-2x)22222(412)(4)x x y x =+÷ 213.y =+故选C .【点拨】本题考查的是多项式除以单项式,掌握运算顺序与运算法则是解题的关键. 7.D【分析】直接利用整式的混合运算法则分别计算判断即可. 解:A 、2a +2b ,不是同类项,无法合并,故此选项错误; B 、(﹣a 2b )3=﹣a 6b 3,故此选项错误; C 、3ab 2÷13ab =9b ,故此选项错误; D 、2ab •a 3b =2a 4b 2,正确. 故选:D .【点拨】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.7【分析】把所给两式的左右两边分别相乘,整理即可得出答案. 解:☆x y 2-=,xy 3=, ☆(x -y)·xy=2×3, ☆x 2y -xy 2=6, ☆22xy x y 6-=- 故选:D .【点拨】本题考查了单项式与多项式的乘法运算,单项式与多项式相乘,用单项式与多项式中的每个项分别相乘,再把得到的积相加. 9.A【分析】利用三角形面积公式列出关系式,计算即可得到结果. 解:根据题意得:三角形面积为212(4)42⨯⨯+=+m m n m mn 故选:A .【点拨】此题考查了单项式乘多项式和三角形面积公式,熟练掌握单项式乘多项式的运算法则是解本题的关键. 10.C【分析】根据长方体的体积=长×宽×高,列出算式,再根据单项式乘多项式的运算法则计算即可.解:由题意知,V 长方体=(3x -4)•2x•x=6x 3-8x 2. 故选:C.【点拨】本题考查了多项式乘单项式的运算法则,要熟练掌握长方体的体积公式. 11.C【分析】先把代数式进行整理,然后把22xy =-代入计算,即可得到答案.解:☆22xy =-, ☆()523xy x y xy y --- =36242x y x y xy -++8=23222()()xy xy xy -++ =32(2)(2)(2)--+-+- =842+- =10. 故选:C .【点拨】本题考查了幂的乘方,求代数式的值,解题的关键是熟练掌握运算法则,正确的进行化简. 12.B【分析】直接利用长方形面积求法以及长方形周长求法得出ab ,a+b 的值,进而得出答案. 解:☆长和宽为a 、b 的长方形的周长为14,面积为10, ☆2(a+b )=14,ab=10, 则a+b=7,故ab (a+b )=7×10=70. 故选:B .【点拨】此题主要考查了单项式乘以多项式,正确得出a+b 的值是解题关键. 13.D【分析】阴影部分面积可以表示为大长方形加上小长方形面积的差,大长方形的面积为2x (3y -0.5y ),小长方形的面积为0.5xy ,然后直接计算. 解:如图,将原不规则图形分割成两个长方形,则 阴影部分的面积=2x (3y -0.5y )+0.5xy=6xy -xy+0.5xy=112xy , 故选D.【点拨】本题考查了单项式乘多项式的运算,是整式在生活的应用.用代数式表示两部分的面积后,再求和.14.A9【分析】根据长方形的面积公式计算出阴影部分面积和空白部分的面积,即可得到结论. 【详解】空白部分的面积为:2223223233a b b a a b b a ab ⎛⎫⎛⎫⨯-+⨯-+⨯= ⎪ ⎪⎝⎭⎝⎭ 阴影部分的面积为:2133ab ab ab -=☆空白部分的面积是阴影部分面积的2倍. 故选:A【点拨】本题考查了整式的混合运算,正确识别图形搞清楚各部分的关系是解题的关键. 15.C【分析】根据三角形和矩形的面积公式,利用割补法,即可求解. 【详解】由题意得:11()22BCDSCD BC a b a =⋅⋅=⋅+⋅,21122DEFS DF EF b =⋅⋅=,11()22ABESAB AE b a a =⋅⋅=-⋅,()ACDF S CD DF a b b =⋅=+⋅四边形, ☆S 阴影=BCD DEF ABE ACDF S S S S ---四边形=2111()()()222a b b a b a b b a a+⋅-⋅+⋅---⋅=212b . 故选C .【点拨】本题主要考查求阴影部分图形的面积,掌握割补法求面积,是解题的关键. 16.6-【分析】首先依据非负数的性质求得x 、y 的值,然后再代入求解即可. 解:2|3|(15)0x y -++=,3x ∴=,15y =-.223(15)9156x y ∴+=+-=-=-.10故答案为:6-.【点拨】本题主要考查的是非负数的性质,依据非负数的性质求得x 、y 的值是解题的关键. 17.5【分析】先运用单项式乘以多项式法则去括号,再合并同类项,最后运用整体思想解题即可. 解:原式()()2222m m n n m n m mn mn n m n =+--=+-+=+,当22m n 5+=时,原式5=, 故答案是:5.【点拨】本题考查整式的化简求值,涉及单项式乘以多项式、合并同类项、整体代入等知识,是重要考点,难度较易,掌握相关知识是解题关键. 18.28a a -+【分析】根据题意该长方形的长为16282aa -=-,然后可直接进行求解. 解:由题意得: 该长方形的长为16282aa -=-, ☆这个生物园的面积为:()288a a a a -=-+; 故答案为28a a -+.【点拨】本题主要考查整式乘除的应用,熟练掌握整式的乘除是解题的关键. 19.626a b -+【分析】根据长方形面积除以一边求出另一边,进而求出长方形的周长即可. 【详解】根据题意得:(2226a ab a -+)÷(2a )=a−b +3, 则这个长方形的周长为2(2a +a−b +3)=6a−2b +6, 故答案为:626a b -+.【点拨】此题考查了整式的除法,熟练掌握除法法则是解本题的关键. 20.-1【分析】先把原式化为2(1)x m x ++,结合条件,得m+1=0,即可求解.11【详解】☆(1)x m x ++=2(1)x m x ++,且不含x 的一次项,☆m+1=0,解得:m=-1.故答案是:-1.【点拨】本题主要考查整式的乘法法则以及多项式的项的概念,掌握多项式的一次项的概念,是解题的关键.21.32xy 215x -【分析】根据单项式乘多项式的运算法则即可求解.【详解】☆()23356x M x x y N -=+ ☆2233156xM x x y N -=+☆2336xM x y =,N =215x -☆M =()2363x y x ÷=32xy 故填: (1). 32xy (2). 215x -【点拨】此题主要考查整式的乘法,解题的关键是熟知单项式乘多项式以及单项式除单项式的运算法则.22.22(23)x x y -或2246x xy - 10【解析】试题分析:2x☆y=()2222x 2x 346xy y x -=-;当x=-1,y=1时,()2246xy 46114610x -=-⨯-⨯=+=.23.2a (a +b )=2a 2+2ab【解析】解:长方形的面积等于:2a (a +b ),也等于四个小图形的面积之和:a 2+a 2+ab +ab =2a 2+2ab ,即2a (a +b )=2a 2+2ab .故答案为:2a (a +b )=2a 2+2ab .点拨:本题考查了单项式乘多项式的几何解释,列出面积的两种不同表示方法是解题的关键.24.32245-x y x y【分析】先单项式乘多项式法则计算,再利用单项式与单项式法则计算,最后合并同类项即可,解:原式332222233x y x y x y x y =-+-,1232245x y x y =-.【点拨】本题考查整式的乘法混合运算,掌握整式乘法的运算法则,同类项以及合并同类项法则世界关键.25.227xy x y -.【分析】先计算括号内的整式乘法,再去括号,然后计算整式的加减法即可得.【详解】原式()22222293x y xy xy x y --+=, 22222293x y xy xy x y =+--,227xy x y =-.【点拨】本题考查了整式的乘法与加减法,熟练掌握整式的运算法则是解题关键. 26.(1)2-,4x --;(2)a 与b 不是关于1的平衡数,理由见解析.【分析】(1)先根据关于1的平衡数的定义列出运算式子,再计算有理数的减法、整式的加减法即可得;(2)根据整式的乘法与加减法运算求出+a b 的值即可得出答案.【详解】(1)242-=-,即4与2-是关于1的平衡数,()264x x -+=--,即6x +与4x --是关于1的平衡数,故答案为:2-,4x --;(2)a 与b 不是关于1的平衡数,理由如下:()()22324,22a x x x b x x =-+-=--,()223422)2(a b x x x x x ∴+=-+-+--,222322422x x x x x =---+-+,2=-,故a 与b 不是关于1的平衡数.【点拨】本题考查了有理数的减法、整式的加减法与乘法,理解关于1的平衡数的定义是解题关键.27.(1)-78;(2)2019.【分析】(1)将待求式展开化为−4(ab)3+6(ab)2−8ab形式,将ab=3整体代入所化简的式子求值即可;(2)所求式子第二项拆项后,前两项提取a,将已知等式变形为a2+a=1代入计算即可求出值.解:(1)(2a3b2-3a2b+4a)·(-2b)=-4a3b3+6a2b2-8ab=-4(ab)3+6(ab)2-8ab将ab=3代入上式,得−4×33+6×32−8×3=-78所以(2a3b2-3a2b+4a)·(-2b)=−78(2)☆a2+a=1,☆a3+2a2+2018=a3+a2+a2+2018=a(a2+a)+a2+2018=a+a2+2018=1+2018=2019.【点拨】本题考查了单项式乘多项式,将所求式子进行适当的变形和整体代入是解题关键.13。
专题7.17 认识三角形(与三角形有关的线段)(知识讲解)【学习目标】1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法;2. 理解并会应用三角形三边间的关系;3. 理解三角形的高、中线、角平分线及重心的概念,学会它们的画法及简单应用;4. 对三角形的稳定性有所认识,知道这个性质有广泛的应用.【要点梳理】要点一、三角形的定义及分类1. 定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.特别说明:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角;③三角形的顶点:即相邻两边的公共端点.(2)三角形定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.(3)三角形的表示:三角形用符号“△”表示,顶点为A、B、C的三角形记作“△ABC”,读作“三角形ABC”,注意单独的△没有意义;△ABC的三边可以用大写字母AB、BC、AC来表示,也可以用小写字母a、b、c来表示,边BC用a表示,边AC、AB 分别用b、c表示.2.三角形的分类(1)按角分类:特别说明:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.(2)按边分类:特别说明:①等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;②等边三角形:三边都相等的三角形.要点二、三角形的三边关系定理:三角形任意两边的和大于第三边.推论:三角形任意两边的差小于第三边.特别说明:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.要点三、三角形的高、中线与角平分线1、三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.三角形的高的数学语言:如下图,AD是ΔABC的高,或AD是ΔABC的BC边上的高,或AD⊥BC于D,或∠ADB=∠ADC=∠90°.注意:AD是ΔABC的高∠ADB=∠ADC=90°(或AD⊥BC于D);特别说明:(1)三角形的高是线段;(2)三角形有三条高,且相交于一点,这一点叫做三角形的垂心;(3)三角形的三条高:(ⅰ)锐角三角形的三条高在三角形内部,三条高的交点也在三角形内部;(ⅱ)钝角三角形有两条高在三角形的外部,且三条高的交点在三角形的外部;(ⅲ)直角三角形三条高的交点是直角的顶点.2、三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线.三角形的中线的数学语言:如下图,AD是ΔABC的中线或AD是ΔABC的BC边上的中线或BD=CD=BC.特别说明:(1)三角形的中线是线段;(2)三角形三条中线全在三角形内部;(3)三角形三条中线交于三角形内部一点,这一点叫三角形的重心;(4)中线把三角形分成面积相等的两个三角形.3、三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.三角形的角平分线的数学语言:如下图,AD是ΔABC的角平分线,或∠BAD=∠CAD且点D在BC上.注意:AD是ΔABC的角平分线∠BAD=∠DAC=∠BAC (或∠BAC=2∠BAD=2∠DAC) .特别说明:(1)三角形的角平分线是线段;(2)一个三角形有三条角平分线,并且都在三角形的内部;(3)三角形三条角平分线交于三角形内部一点,这一点叫做三角形的内心;(4)可以用量角器或圆规画三角形的角平分线.要点四、三角形的稳定性三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性.特别说明:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在门框未安好之前,先在门框上斜着钉一根木板,使它不变形.【典型例题】类型一、与三角形有关线段➽➼三角形的边段➽➼概念✭✭分类1.如图所示,(1)图中有几个三角形?(2)说出的边和角.(3)是哪些三角形的边?是哪些三角形的角?【答案】(1)图中有:,,,,,共5个;(2)的边:,,,角:,,;(3)是,,的边;是,,的角.【分析】(1)分类找三角形,含AB的,含AD(不含AB)的,含DE(不含AD)的三类即可;(2)根据组成三角形的三条线段一一找出,利用三角形两边的夹角即可找出;(3)观察图形,找出含AD的三角形,先找AD左边的,再找AD右边的即可,根据三角形内角的定义,角的两边是三角形的边,找到第三边,在∠C的内部在线段看与角的两边是否相交即可解:(1)图中有:以AB为边的三角形有△ABD,△ABC,以AD为边的三角形有△ADE,△ADC,再以DE为边三角形有△DEC,一共有5个三角形分别为,,,,;(2)的边:,,,角:,,;(3)是,,的边;是,,的角.【点拨】本题考查三角形的识别,三角形的基本要素,三角形个数,观察图形找出图中的三角形,三角形的组成,找以固定线段的三角形,和固定角的三角形,掌握利用分类思想找出所有的图形,三角形的边与角,共线段三角形以及共角三角形是解题关键.举一反三:【变式】如图,以BD为边的三角形有哪些?分别写出来;以∠1为内角的三角形有哪些?分别写出来.【分析】先根据BD边找三角形,再根据∠1找三角形.解:以BD为边的三角形有:△BDC,△BDO,以∠1为内角的三角形有:△EOC,△ACD.【点拨】本题考查了三角形的内角和边的概念,学会分类的方法找三角形是本题的解题关键.2.已知的三边长分别为a,b,c.若a,b,c满足,试判断的形状.【答案】的形状是等边三角形.【分析】利用平方数的非负性,求解a,b,c的关系,进而判断.解:∵,∴,∴a=b=c,∴是等边三角形.【点拨】本题主要是考查了三角形的分类,熟练掌握各类三角形的特点,例如三边相等为等边三角形,含的三角形为直角三角形等,这是解决此类题的关键.举一反三:【变式】满足下列条件的三角形是锐角三角形、直角三角形还是钝角三角形.(1)△ABC中,∠A=30°,∠C=∠B;(2)三个内角的度数之比为1:2:3.【答案】(1)锐角三角形;(2)直角三角形.【分析】根据角的分类对三角形进行分类即可.解:(1)∵∠A=30°,∠C=∠B,∠A+∠C+∠B=180°,∴∠C=∠B=75°,∴满足条件的三角形是锐角三角形.(2)∵三个内角的度数之比为1∶2∶3,∴可求得每个内角的度数分别为30°,60°,90°,∴满足条件的三角形是直角三角形.【点拨】本题主要考查了三角形的分类问题.类型二、与三角形有关线段➽➼构成三角形条件✭✭确定第三边取值范围3.判断下列长度的三条线段能否拼成三角形?为什么?(1)3cm、8cm、4cm;(2)5cm、6cm、11cm;(3)5cm、6cm、10cm;【答案】(1)不能,因为3cm+4cm <8cm;(2)不能,因为5cm+6cm=11cm;(3)能,因为5cm+6cm>10cm【分析】略举一反三:【变式】如图所示三条线段a,b,c能组成三角形吗?你是用什么方法判别的?【答案】三条线段a,b,c能组成三角形,理由见分析【分析】只需要利用作图方法证明即可.解:三条线段a,b,c能组成三角形,理由如下:如图所示,根据线段的和差可知,∴三条线段a,b,c能组成三角形.【点拨】本题主要考查了构成三角形的条件,线段的尺规作图,证明是解题的关键.4.己知三角形的两边长为5和7,第三边的边长a.(1)求a的取值范围;(2)若a为整数,当a为何值时,组成的三角形的周长最大,最大值是多少?【答案】(1) (2)当时,三角形的周长最大为【分析】(1)根据三角形三边关系求解即可得到答案;(2)由(1)取最大值即可得到答案.(1)解:由三角形的三边关系可知,即,∴a的取值范围是;(2)解:由(1)知,a的取值范围是,a是整数,∴当时,三角形的周长最大,此时周长为:,∴周长的最大值是23.【点拨】本题考查三角形三边关系:任意两边之和大于第三边,任意两边之差小于第三边.举一反三:【变式】已知:中,,,,求的范围.【答案】【分析】根据三角形的三边关系列不等式求解即可.解:∵是的三边,∴,即:,解得:,故答案为:.【点拨】本题考查了三角形的三边关系、解不等式组;熟练掌握三角形的三边关系以及解不等式组的方法是解题的关键.类型三、与三角形有关线段➽➼三角形的高➽➼作图✭✭求值(等面积法)5.在如图所示的方格纸中,每个小正方形的边长均为1,点A,点B,点C均在小正方形的顶点上.(1) 画出中边上的高;(2) 直接写出的面积为___.【答案】(1)见分析(2)【分析】(1)结合网格图,直接利用三角形高线作法得出答案;(2)结合网格图,直接利用三角形的面积求法得出答案.(1)解:如图所示:即为所求;(2)解:.故答案为:【点拨】本题主要考查了应用设计与作图以及三角形面积求法,正确得出三角形高线的位置是解题关键.举一反三:【变式】如图:(1) 用三角尺分别作出锐角三角形,直角三角形和钝角三角形的各边上的高线.(2) 观察你所作的图形,比较三个三角形中三条高线的位置,与三角形的类型有什么关系?【分析】(1)根据三角形高的画法画图即可;(2)根据(1)所作图形进行求解即可.(1)解;如图所示,即为所求;(2)解:由(1)可知,锐角三角形的三条高线的交点在三角形内部;直角三角形的三条高线的交点为直角顶点;钝角三角形的三条高线的交点在三角形外部.【点拨】本题主要考查了画三角形的高,三角形高线的交点,正确画出三角形的高是解题的关键.6.如图,分别是的中线和高,,.求和的长.【答案】,【分析】利用,求出,再根据是的中线,得到,即可得解.解:由题意,得:,∴,∵是的中线,∴,∴.【点拨】本题考查三角形的高线和中线.熟练掌握三角形的中线是三角形的顶点到对边中点所连线段,是解题的关键.举一反三:【变式】如图,分别是的高,若,求的长.【答案】【分析】利用,根据等面积法即可求解.解:∵分别是的高,∴∵,∴,∴.【点拨】本题考查了三角形面积的计算公式,掌握等面积法求解是解题的关键.类型四、与三角形有关线段➽➼三角形中线➽➼求线段长✭✭求面积✭✭周长7.如图,在中边上的中线把的周长分成和两部分,求和的长.【答案】【分析】先根据和三角形的中线列出方程求解,分类讨论,注意答案是否满足条件,即是否满足题目给出的条件、是否满足三角形三边的关系.解:设,则,边上的中线把的周长分成和两部分,,当时,,解得:,,,,,,满足三边关系,;当时,,解得:,,,,,不满足三角形三边关系,所以舍去,.【点拨】本题考查了三角形中线的性质和三边的关系,解题的关键是找到等量关系,列出方程.举一反三:【变式】如图,已知、分别是的高和中线,,.试求:(1) 的面积;(2) 的长度;(3) 与的周长的差.【答案】(1);(2);(3).【分析】(1)先根据三角形面积公式计算出,然后利用是边的中线,得到;(2)利用面积法得到,即可求出的长;(3)由的周长-的周长=,即可求得答案.(1)解:是直角三角形,,,,是上的中线,,,;(2)解:,是上的高,,;(3)解:是边上的中线,,的周长-的周长=,即和的周长差是.【点拨】本题考查了三角形的面积公式,以及三角形的中线将三角形分成面积相等的两部分,熟练掌握相关的性质与公式是解决此题的关键.8.如图,中,,,,.若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒2cm.设运动的时间为t秒.(1) 当t=___________时,把的周长分成相等的两部分?(2) 当t=___________时,把的面积分成相等的两部分?(3) 当t为何值时,的面积为12?【答案】(1)6(2)6.5(3) 2或6.5秒【分析】(1)先求出的周长为24cm,所以当把的周长分成相等的两部分时,点P在上,此时,再根据时间=路程÷速度即可求解;(2)根据中线的性质可知,点P在中点时,把的面积分成相等的两部分,进而求解即可;(3)分两种情况:①P在上;②P在上.解:(1)中,∵,,,∴的周长,∴当把的周长分成相等的两部分时,点P在上,此时,∴,解得.故答案为:6;(2)当点P在中点时,把的面积分成相等的两部分,此时,∴,解得.故答案为:6.5;(3)分两种情况:①当P在上时,∵的面积=12,∴,∴,∴,;②当P在上时,∵的面积=12=面积的一半,∴P为中点,∴,.故t为2或6.5秒时,的面积为12.【点拨】本题考查了一元一次方程的应用,三角形的周长与面积,三角形的中线,难度适中.利用分类讨论的思想是解(3)题的关键.举一反三:【变式】已知的面积为S,根据下列条件完成填空.图1图2图3(1) 是的边BC上的中线,如图1,则的面积为(用含S的式子表示,下同);是的边上的中线,如图2,则的面积为;是的边上的中线,如图3,则的面积为;……(2) 在图2022中,是的边上的中线,则的面积为.【答案】(1),,(2)【分析】(1)利用三角形的一条中线把三角形的面积分成相等的两部分求解即可;(2)根据(1)中的求解可得规律,利用规律即可求解.(1)解:∵是的边BC上的中线,的面积为S,如图1,∴;又∵是的边上的中线,如图2,∴;∵是的边上的中线,如图3,∴,故答案为:,,(2)解:∵,,,,以此类推,可得,∴当时,,故答案为:【点拨】本题考查了三角形中线的性质,熟记三角形的一条中线把三角形的面积分成相等的两部分是解题的关键.类型五、与三角形有关线段➽➼三角形角平分线➽➼求线段长✭✭求面积9.如图,是的角平分线,,交AC于点F,已知,求的度数.【答案】【分析】根据平行线的性质得到,再根据角平分线的定义得到即可得到答案.解:∵,,∴,∵是的角平分线,∴,∴.【点拨】本题主要考查了平行线的性质,三角形角平分线的定义,根据平行线的性质求出是解题的关键.举一反三:【变式】如图,点为直线上一点,,平分,求证:AB CD.【分析】根据平行线的判定定理求解即可.解:平分,,,,∴.【点拨】本题考查了平行线的判定,熟记“内错角相等,两直线平行”是解题的关键.10.如图,中,按要求画图:(1) 的平分线;(2) 画出中边上的中线;(3) 画出中边上的高.【分析】(1)画出的平分线交于D即可;(2)取的中点E,连接,中线即为所求;(3)过点C作交的延长线于F,即为中边上的高.(1)解:如图,即为所求;(2)解:如图,中线即为所求;(3)解:如图,高即为所求.【点拨】本题考查了作三角形的角平分线、中线和高线,解决本题的关键是掌握基本作图方法.举一反三:【变式】在边长为1的正方形网格中:(1) 画出沿方向平移2个单位后的;(2) 与的重叠部分面积为多少?【答案】(1)图见分析(2)重叠部分面积为10【分析】(1)根据题意画出沿方向平移2个单位后的即可;(2)正方形的边长为1,根据图形进行求解即可.解:(1)沿方向平移2个单位后的如图所示:(2)∵正方形的边长为1,根据(1)中的图形可得,重叠部分的面积为:.【点拨】本题考查了作图—平移变换,灵活运用所学知识求解是解决本题的关键.类型六、与三角形有关线段➽➼三角形的稳定性✭✭四边形的不稳定性9.下列图形中哪些具有稳定性?【答案】(1)(4)(6)中的图形具有稳定性.【分析】根据三角形的稳定性可直接进行求解.解:具有三角形稳定性的有(1)(4)(6).【点拨】本题主要考查三角形的稳定性,熟练掌握三角形的稳定性是解题的关键.举一反三:【变式1】(1)下列图形中具有稳定性是;(只填图形序号)(2)对不具有稳定性的图形,请适当地添加线段,使之具有稳定性.【答案】(1)①④⑥;(2)图见分析【分析】根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性.解:(1)具有稳定性的是①④⑥三个.(2)如图所示:【点拨】本题主要考查了三角形的稳定性,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.【变式2】如图(1)扭动三角形木架,它的形状会改变吗?如图(2)扭动四边形木架,它的形状会改变吗?如图(3)斜钉一根木条的四边形木架的形状形状会改变吗?为什么?归纳:①三角形木架的形状______,说明三角形具有______;②四边形木架的形状______说明四边形没有______.【答案】图(1)扭动三角形木架,它的形状不会改变,因为三角形具有稳定性;图(2)扭动四边形木架,它的形状会改变,四边形不稳定;图(3)斜钉一根木条的四边形木架的形状形状不会改变,四边形变成两个三角形,三角形具有稳定性;归纳:①是三角形,稳定性;②四边形,稳定性.【分析】①根据三角形的稳定性进行解答即可;②根据四边形的不稳定性进行解答即可.解:图(1)扭动三角形木架,它的形状不会改变,因为三角形具有稳定性;图(2)扭动四边形木架,它的形状会改变,四边形不稳定;图(3)斜钉一根木条的四边形木架的形状形状不会改变,四边形变成两个三角形,三角形具有稳定性;归纳:①由三角形具有稳定性知,三角形木架的形状不会改变,这说明三角形具有稳定性.故答案为:是三角形,稳定性;②四边形木架的形状是四边形,四边形具有不稳定性.故答案为:四边形,稳定性.【点拨】本题考查的是三角形的稳定性,三角形的稳定性和四边形的不稳定性在实际生活中的应用问题,比较简单.。
专题11.6 用一元一次不等式解决问题(专项练习)一、单选题1.(2020·浙江省杭州市萧山区高桥初级中学八年级期中)如果代数式32x-的值不小于3-,那么x 的取值范围是( ) A .0x ≥B .0x >C .12x ≤D .12x <-2.(2021·浙江湖州市·八年级期末)某超市开展促销活动,一次购买的商品超过88元时,就可享受打折优惠.小明同学准备为班级购买奖品.需买6本笔记本和若干支钢笔.已知笔记本每本4元.钢笔每支7元,如果小明想享受打折优惠,那么至少买钢笔( ) A .12支B .11支C .10支D .9支3.(2020·浙江杭州市·八年级期末)根据数量关系“y 与6的和不小于1”列不等式,正确的是( ) A .61y +>B .61y +≥C .61y +<D .61y +≤4.(2020·山东日照市·九年级二模)为了奉献爱心,贡献自己的一份力量,本次新冠状病毒疫情期间,九年级4班18名团员计划在家加工2250个口罩,奉献给社区志愿者,并规定每人每天加工a 个口罩(a 为整数),干了几天以后,其中4人因特殊情况没能继续,若剩下的同学每人每天多加工3个口罩,则提前完成了这次任务,由此可知a 的值最多是( ) A .8B .9C .10D .115.(2020·河北九年级其他模拟)x 的3倍与它的14的差不少于5,列出的关系式为( ) A .1354x x -≥ B .1354x x -≤C .1354x x ->D .1354x x -<6.(2019·山西七年级期末)太原市出租车的收费标准是:白天起步价8元(即行驶距离不超过3km 都需付8元车费),超过3km 以后,每增加1km ,加收1.6元(不足1km 按1km 计),某人从甲地到乙地经过的路程是xkm ,出租车费为16元,那么x 的最大值是( ) A .11B .8C .7D .57.(2020·瑞安市安阳实验中学八年级月考)商店为了对某种商品进行促销,将定价为5元的商品,以下列方式优惠销售:若购买不超过8件,则按原价付款;若一次性购买8件以上,则超出的部分打八折,小明带了70元钱,最多可以购买该商品( )A .14件B .15件C .16件D .17件8.(2021·全国七年级)在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对得10分,答错或不答扣5分,则至少答对多少题,得分才不低于80分?设答对x 题,可列不等式为( ) A .105(20)80x x -- B .105(20x x +- )80 C .105(20)80x x -->D .105(20x x +- )80>9.(2021·湖南益阳市·八年级期末)李老师网购了一本《好玩的数学》,让大家猜书的价格.甲说:“不少于10元”,乙说:“少于12元”.老师说:“大家说的都没有错”.则这本书的价格x (元)所在的范围为( ) A .10≤x <12B .10≤x ≤12C .10<x <12D .10<x ≤1210.(2021·浙江湖州市·八年级期末)假期,小云带150元去图书馆,下表记录了他当天的所有支出,其中小零食支出的金额不小心被涂黑了,如果平均每包小零食的售价为5元,那么小云可能剩下的金额是( )A .1元B .2元C .3元D .4元11.(2021·广东佛山市·八年级期末)某电信公司推出两种手机收费方案.方案A :月租费30元,本地通话话费0.15元/分;方案B :不收月租费,本地通话话费为0.3元/分.设婷婷的爸爸一个月通话时间为x 分钟,婷婷的爸爸一个月通话时间为多少时,选择方案A 比方案B 优惠?( ) A .100分钟B .150分钟C .200分钟D .250分钟12.(2021·全国八年级)运行程序如图所示,规定:从“输入一个值x ”到“结果是否26>”为一次程序操作,如果程序操作进行了1次后就停止,则x 最小整数值取多少( )A.7B.8C.9D.10 13.(2020·贵州黔西南布依族苗族自治州·八年级期末)等腰三角形的周长为20cm且三边均为整数,底边可能的取值有()个.A.1B.2C.3D.4 14.(2021·黑龙江齐齐哈尔市·九年级期末)某校组织10名党员教师和38名优秀学生团干部去某地参观学习.学校准备租用汽车,学校可选择的车辆(除司机外)分别可以乘坐4人或6人,为了安全每辆车上至少有1名教师,且没有空座,那么可以选择的方案有()A.2种B.3种C.4种D.5种15.(2021·广东潮州市·七年级期末)某次足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分,若小组赛中某队的积分为5分,则该队必是().A.两胜一负B.一胜两平C.五平一负D.一胜一平一负二、填空题16.(2021·浙江杭州市·八年级期末)“比x小1的数大于x的2倍”用不等式表示为_________.17.(2020·山西七年级期末)某超市在一次促销活动中规定:消费者消费满300元或超过300元就可领取礼品.某人准备买15瓶啤酒和若干袋火腿肠,已知啤酒每瓶5元,火腿肠每袋15元,他至少买_______袋火腿肠才能领取礼品.18.(2020·全国课时练习)当x______________时,114x--的值是非负数.19.(2020·广西百色市·七年级期中)华润超市在2019年中从某商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于疫情影响,该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打____折20.(2020·浙江杭州市·八年级期末)一次生活常识知识竞赛一共有30道题,答对一题得4分,不答得0分,答错扣2分.小聪有2道题没答,竞赛成绩超过80分,则小聪至多答错了________道题.21.(2020·广东江门市·七年级期末)某商店对一商品进行促销活动,将定价为10元的商品,按以下方式优惠销售:若购买不超过5件按原价付款;若一次性购买5件以上,超过部分打8折,现有98元钱,最多可以购买该商品_______件.22.(2020·全国七年级课时练习)某商贩卖出两双皮鞋,相比进价,一双盈利30%,另一双亏本10%,两双共卖出200元.商贩在这次销售中要有盈利,则亏本的那双皮鞋的进价必须低于_________元23.(2020·湖北武汉市·七年级期末)某工厂计划m 天生产2160元个零件,若安排15名工人每人每天加工a 个零件(a 为整数)恰好完成.实际开工x 天后,其中3人外出培训,剩下的工人每人每天多加工2个零件,不能按期完成这次任务,则a 与m 的数量关系是_____________,a 的值至少为__________24.(2020·全国单元测试)当13x <<时,化简213x x -+-=________.25.(2020·四川巴中市·七年级期末)某同学设计了一个程序:对输入的正整数x ,首先进行奇偶识别,然后进行对应的计算,如下图所示.如果按1,2,3…的顺序依次逐个输入正整数x ,则首次输出大于100的y 的值是__________.26.(2020·江苏徐州市·七年级期末)疫情过后,地摊经济火爆,张阿姨以每件80元的价格购进50件衬衫,在地摊上以每件100元的价格出售,她至少销售__________件衬衫,所得销售额才能超过进货总价.27.(2020·河南洛阳市·七年级期末)现用甲、乙两种运输车将46吨救灾物资运往灾区,甲种车每辆载重5吨,乙种车每辆载重4吨,安排车辆不超过10辆,则甲种运输车至少需要安排 ________辆.28.(2020·洛阳市实验中学九年级月考)为改善教学条件,学校准备对现有多媒体设备进行升级改造,已知购买3个键盘和1个鼠标需要190元;购买2个键盘和3个鼠标需要220元.经过与经销商洽谈,键盘打八折,鼠标打八五折,若学校计划购买键盘和鼠标共50件,且总费用不超过1820元,则最多可购买键盘_____个.29.(2020·浙江省开化县第三初级中学八年级期中)“x 的4倍与1的差不大于3”用不等式表示为 ________________ .30.(2020·沙坪坝区·重庆八中八年级月考)今年立冬,某超市发起限时抢购饺子活动,规定立冬前一天(11月6日)价格打九折,立冬当天(11月7日)价格打八折,其余时间不打折,11月5日王老师在该超市选购甲、乙、丙三种饺子,他发现,2千克甲,4.2千克乙的总价和1千克甲,2千克乙,3千克丙在立冬当天(11月7日)的总价相等,都等于3千克甲,2.7千克乙,1.8千克丙在立冬前一天(11月6日)总价的2027,且4千克甲立冬前一天(11月6日)的总价不低于65元,也不超过100元.如果三种饺子每千克的价格均为正整数,则王老师11月5日买2千克甲,1千克乙,1千克丙共付款______元.三、解答题31.(2021·四川绵阳市·八年级期末)受“疫情”的影响,绵阳某水果批发市场某月只购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍.且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?(利润率=利润成本×100%)32.(2020·沙坪坝区·重庆八中八年级月考)受疫情影响,口罩价格不断走高.3月20日当天口罩的价格是年初的1.5倍;3月20日当天,王老师购买4盒口罩比年初多花了48元.(1)那么3月20日当天口罩的价格为每盒多少元?(2)3月20日,按照(1)中的口罩价格,某售卖点共卖出1000盒口罩.3月21日,政府决定投入储备口罩并规定其销售价在3月20日的基础上下调0.7%a出售.该售卖点按规定价出售一批储备口罩和非储备口罩,该售卖点的非储备口罩仍按3月20日的价格出售,3月21日当天的两种口罩总销量比3月20日增加了20%,且储备口罩的销量占总销量的56,两种口罩销售的总金额比3月20日至少提高了1%10a,求a的最大值.33.(2021·全国八年级)某班为了开展乒乓球比赛活动,准备购买一些乒乓球和乒乓球拍,通过去商店了解情况,甲乙两家商店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价48元,乒乓球每盒定价12元,经商谈,甲乙两家商店给出了如下优惠措施:甲店每买一副乒乓球拍赠送一盒乒乓球,乙店全部按定价的9折优惠.现该班急需乒乓球拍5副,乒乓球x盒(不少于5盒).(1)请用含x的代数式表示:去甲店购买所需的费用;去乙店购买所需的费用.(结果要求化简)(2)当需要购买40盒乒乓球时,通过计算,说明此时去哪家商店购买较为合算;(3)试探究,当购买乒乓球的盒数x取什么值时,去哪家商店购买更划算?34.(2021·高台县城关初级中学)某社区要进行十九届五中全会会议精神宣讲,需要印刷宣传材料。
专题9.2 单项式乘以单项式(基础篇)(专项练习)一、单选题1.计算的结果是( )A.B.C.D.2.下列计算中,正确的是().A.B.C.D.3.在代数式中,与y的值各减少,则该代数式的值减少了()A.B.C.D.4.x的m次方的5倍与的7倍的积是( )A.B.C.D.5.若=-10,则m-n等于()A.-3B.-1C.1D.36.若,则的值分别为( )A.3 2B.2,3C.3,3D.2,27.若单项式和的积为,则的值为()A.2B.30C.-15D.158.若□·3xy=27x3y4 ,则□内应填的单项式是()A.3x3y4B.9x2y2C.3x2y3D.9x2y39.若(am+1bn+2)•(a2n-1b2m)=a5b3,则m+n的值为( )A.1B.2C.3D.﹣310.某商品原价为a元,因需求量增大,经营者连续两次提价,两次分别提价10%,后因市场物价调整,又一次性降价20%,降价后这种商品的价格是()A.1.08a元B.0.88a元C.0.968a元D.a元二、填空题11.计算:__________.12.计算___________13.若(anb•abm)3=a9b15,则m•n=________.14.已知8×2m×16m=211,则m的值为____.15.若,则______.16.若单项式与是同类项,则这两个单项式的积是_____.17.一个长方形的长为.宽为则它的面积为________.18.我国陆地面积约是,平均每平方千米的陆地上,一年从太阳得到的能量约相当于燃烧煤所产生的能量,求在我国陆地上,一年内从太阳得到的能量约相当于燃烧______吨煤所产生的能量.三、解答题19.计算(1) (2)20.先化简,再求值:,其中21.化简再求值:,其中.22.已知单项式和单项式的积与是同类项,求的值.23.计算:(1) ;(2) ;(3) (把作为整体看作一个因式的底数).24.小王购买了一套房子,他准备将地面都铺上地砖,地面结构如图所示,请根据图中的数据(单位:米),解答下列问题:(1)用含x,y的代数式表示地面总面积;(2)若x=5,y=1,铺地砖每平方米的平均费用为100元,则铺地砖的总费用为多少元?参考答案1.A【分析】直接利用单项式乘以单项式运算法则化简求出答案即可.解:.故选:A.【点拨】此题主要考查了单项式乘以单项式,正掌握运算法则是解题关键.2.C【分析】根据幂的乘方、同底数幂的乘法、单项式乘单项式、合并同类项逐一判断即可求解.解:A、,故该选项不符合题意;B、,故该选项不符合题意;C、,故该选项符合题意;D、,故该选项不符合题意;故选:C.【点拨】本题考查幂的乘方、同底数幂的乘法、单项式乘单项式、合并同类项,解答本题的关键是明确它们各自的计算方法,计算出正确的结果.3.D【分析】x与y的值各减少,则原式可变为从而可作出判断.解:x与y的值各减少,则:原式故选:D.【点拨】本题主要考查的是代数式求值,列出x与y的值各减少后的代数式是解题的关键.4.C【分析】x的m次方的5倍为,的7倍是,据此求解即可.解:根据题意得,x的m次方的5倍与x2的7倍的积为:.故选C.【点拨】本题主要考查了单项式乘以单项式,正确理解题意是解题的关键.5.B【分析】首先根据单项式乘单项式的运算法则计算求出m,n的值,然后代入计算即可.解:∴∴解得∴m-n=1-2=-1,故选:B.【点拨】本题主要考查代数式求值,掌握单项式乘单项式的运算法则是关键.6.B【分析】利用同底数幂的乘法法则将原式变形为,从而得到7n=14,2+k=5,可得结果.解:∵,∴7n=14,2+k=5,∴n=2,k=3,故选B.【点拨】本题考查了同底数幂的乘法,解题的关键是掌握运算法则.7.D【分析】先按单项式乘以单项式的法则计算,再比较结果利用相同字母的指数相等构造等式,求出再求的值即可.解:单项式和的积为,,,,.故选择:D.【点拨】本题考查单项式与单项式相乘问题,掌握单项式与单项式的乘法法则,会用指数构造等式解决问题是本题解题关键.8.D【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解:因为9x2y3·3xy=27x3y4,则□内应填的单项式是9x2y3,故选:D.【点拨】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.9.B【分析】先利用单项式乘单项式法则,可得(am+1bn+2)•(a2n-1b2m)=am+2n•bn+2m+2,从而得到关于m,n的方程组,即可求解.解:(am+1bn+2)•(a2n-1b2m)=am+1+2n-1•bn+2+2m=am+2n•bn+2m+2,∵(am+1bn+2)•(a2n-1b2m)=a5b3,∴,两式相加,得3m+3n=6,解得m+n=2.故选:B【点拨】本题主要考查了利用单项式乘法求字母或代数式的值,熟练掌握单项式乘单项式法则是解题的关键.10.C【分析】根据题意可得,降价后这种商品的价格是a.解:根据已知可得a=0.968a(元)故选C【点拨】根据题意列出代数式,再化简;熟记常见的数量关系.11.【分析】根据单项式乘以单项式运算法则:系数、相同字母分别相乘,对于只在一个单项式中含有的字母,连同它的指数作为积的一个因式,结合同底数幂的乘法运算法则计算即可得到答案.解:,故答案为:.【点拨】本题考查整式乘法运算,涉及单项式乘以单项式、同底数幂乘法运算等知识,熟练掌握相关运算法则是解决问题的关键.12.【分析】根据幂的乘方运算、单项式乘以单项式的运算法则进行计算即可.解:.故答案为:【点拨】本题考查了整式的乘法、幂的乘方,解本题的关键在熟练掌握运算法则.单项式的乘法法则:单项式乘以单项式,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式.幂的乘方运算法则:幂的乘方,底数不变,指数相乘.13.8【分析】根据单项式乘单项式、积的乘方法则分别求出m、n,计算即可.解:(anb•abm)3=(an+1bm+1)3=a3n+3b3m+3,由题意得:3n+3=9,3m+3=15,解得:n=2,m=4,则mn=2×4=8,故答案为:8.【点拨】本题主要考查单项式乘单项式、积的乘方,掌握单项式乘单项式、积的乘方的法则是关键.14.【分析】先把式子左边化简成2n的形式,即可求得m的值.解:8×2m×16m=211故答案为【点拨】此题重点考察学生对整式乘法的应用,正确化简是解题的关键.15.8【分析】先把等号左边的代数式进行化简,然后指数相等求出m、n的值,进行计算即可.解:,∴,,∴,,∴;故答案为8.【点拨】本题考查了单项式乘以单项式,以及积的乘方运算,幂的乘方运算,同底数幂相乘,解题的关键是掌握单项式乘以单项式的运算法则.16.【分析】由同类项定义求出a,b的值,再求单项式的乘积即可.解:∵单项式与是同类项,∴,,即:,∴单项式的积为故答案为.【点拨】本题考查同类项定义以及单项式乘单项式,关键是根据同类项定义:所含字母相同,并且相同字母的指数也分别相等的项,求出a,b的值.17.4×106【分析】直接利用单项式乘以单项式运算法则求出即可.解:长方形的长为,宽为,∴长方形的面积为:8×103×5×102=4×106.故答案为:4×106.【点拨】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.18.【分析】根据每平方千米的土地上,一年从太阳得到的能量相当于燃烧1.3×105吨煤所产生的能量乘以我国陆地面积,计算即可得到所求的结果.解:根据题意得:()×(1.3×105)=.故答案为:【点拨】此题考查了整式的混合运算,是一道应用题,弄清题意是解本题的关键.19.(1) (2)【分析】(1)按照单项式乘以单项式的运算法则计算即可;(2)先计算积的乘方运算,再计算单项式乘以单项式,最后合并同类项即可.(1)解:;(2).【点拨】本题考查的是积的乘方运算,单项式乘以单项式,合并同类项,掌握“单项式乘以单项式的运算法则”是解本题的关键.20.,12【分析】先对整式进行化简,然后再代值求解即可.解:原式==,把代入得:原式=.【点拨】本题主要考查整式的化简求值,熟练掌握积的乘方、同底数幂的乘法及单项式乘单项式是解题的关键.21.,【分析】先根据积的乘方和单项式乘以单项式的计算法则化简,然后代值计算即可.解:,当时,原式.【点拨】本题主要考查了单项式乘以单项式,积的乘方,代数式求值,熟知相关计算法则是解题的关键.22.-16【分析】先将两个单项式相乘,再根据同类项的含义列出关于m、n、p的三元一次方程组,解方程即可求出m、n、p,再代入计算即可.解:,∵与是同类项,∴,解得,∵,∴,即所求式子的值为-16.【点拨】本题主要考查了单项式乘以单项式,同类项的含义等知识.理解互为同类项的含义得出关于m、n、p的三元一次方程组是解答本题的关键.23.(1) (2) (3)【分析】(1)根据单项式乘单项式法则计算即可;(2)根据单项式乘单项式法则计算即可;(3)根据单项式乘单项式法则计算即可.解:(1);(2);(3).【点拨】本题考查单项式乘单项式.掌握其运算法则是解题关键,注意(3)整体思想的运用.24.(1)地面总面积为6x+2y+18(m2);(2)铺地砖的总费用为5000元.【分析】(1)利用长方形面积公式,分块计算各房间结构的面积,再求和;(2)将x=5,y=1,铺地砖每平方米的平均费用为100元,代入(1)中式子计算即可解:(1)地面总面积为:6x+2×(6﹣3)+2y+3×(2+2)=6x+6+2y+12=6x+2y+18(m2);(2)当x=5,y=1,铺1m2地砖的平均费用为100元,总费用=(6×5+2×1+18)×100=50×100=5000元答:铺地砖的总费用为5000元.【点拨】本题考查代数式与图形面积,是常见考点,难度较易,掌握相关知识是解题关键.。
第1节生物体的基本结构一、选择题(本大题共16小题,共32.0分)1.叶肉细胞中的能量转换器是()A.细胞核B.线粒体C.线粒体和叶绿体D.叶绿体2.制作人的口腔上皮细胞临时标本时,在载玻片上滴的是:()A.自来水B.生理盐水C.葡萄糖水D.碘液3.切洋葱时眼睛会受到刺激,使人产生刺激的物质存在于细胞的()A.细胞核B.细胞质C.液泡D.细胞壁4.如图表示制作人体口腔上皮细胞临时装片的几个步骤,相关操作顺序正确的是()A.①②③④⑤⑥B.③②①④⑥⑤C.②①④⑥③⑤D.①②④⑥③⑤5.人的口腔上皮细胞不具有的结构是()A.细胞膜B.细胞壁C.细胞质D.细胞核6.生物细胞结构中遗传物质主要存在于()A.细胞壁中B.细胞质中C.细胞核中D.线粒体中7.近年玉林水果市场有大量沃柑上市,沃柑吃起来甘甜可口,这些甘甜的汁液来自果肉细胞中的()A.细胞壁B.细胞膜C.细胞核D.液泡8.细胞中的染色体存在于()A.细胞壁B.细胞膜C.细胞质D.细胞核9.制作洋葱鳞片叶内表皮细胞的临时装片时,用于载玻片上滴加的液体、染色用的液体分别为()A.生理盐水、自来水B.生理盐水、凉开水C.自来水、生理盐水D.清水、碘液10.下列有关实验观察的做法,正确的是()A.某同学在观察洋葱表皮细胞时,为指给其他同学看清晰的图象轻轻地挪动显微镜B.制作人口腔上皮细胞临时装片时,应先在载玻片中滴一滴清水再滴加碘液C.在验证植物制造淀粉的实验中,将叶片放入盛有酒精的烧杯中,然后放在酒精灯上加热进行脱色处理D.在野外观察动物的行为时不要惊扰动物,通过器官也可利用辅助工具进行系统的感知、考察和描述11.在白菜叶片和人血细胞中,分别含有的能量转换器是()A.线粒体:叶绿体和线粒体B.叶绿体:线粒体和叶绿体C.线粒体和叶绿体:线粒体D.叶绿体和线粒体;叶绿体12.吃水果时感到有的甜、有的酸、有的涩,这些酸甜物质主要来自果肉细胞的()A.细胞壁B.细胞膜C.液泡D.叶绿体13.汽车的发动机靠油来为汽车提供动力,如果我们将细胞比作汽车的话,在动植物细胞中,相当于发动机为细胞提供能量的转换器时()A.细胞质、液泡B.细胞核、细胞质C.线粒体D.细胞壁、细胞膜14.如图是制作人体口腔上皮细胞临时装片的实验过程,正确的操作步骤是()A.abcdB.bacdC.cadbD.dcab15.如图是生物体不同的结构,下列说法中错误的是()A.甲图中的④内具有遗传物质B.乙图中的衣藻既是一个植物细胞,也是一个植物体C.丙图中叶片上、下表层分布的是保护组织D.丙图和丁图中的生物虽然不同,但它们的结构层次是相同的16.同学们,你了解你自己的身体吗?你知道自己身体结构和功能的基本的单位是什么吗?()A.细胞组织B.组织C.器官D.系统二、填空题(本大题共2小题,共4.0分)17.在制作人口腔上皮细胞临时装片的实验中,需要用到90%的生理盐水。
七年级下册第十章《二元一次方程组》实际应用常考题专练1.甲、乙两种商品原来的单价和为100元.因市场变化,甲商品提价40%,乙商品降价10%,两种商品的单价和比原来提高了20%.问甲、乙两种商品原来的单价各是多少元?2.某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶价格下调了5%,已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料调价前每瓶各多少元?3.滴滴快车是一种便捷的出行工具,计价规则如表:计费项目里程费时长费远途费单价 1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算:时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里加收0.8元.小明与小亮各自乘坐滴滴快车,到同一地点约见,已知到达约见地点时他们的实际行车里程分别为6公里与8.5公里.设小明乘车时间为x分钟,小亮乘车时间为y分钟.(1)则小明乘车费为元(用含x的代数式表示),小亮乘车费为元(用含y的代数式表示);(2)若小明比小亮少支付3元钱,问小明与小亮的乘车时间哪个多?多几分钟?(3)在(2)的条件下,已知乘车时间较少的人先到达约见地点等候,等候时间是他自己乘车时间的一半,且比另一人乘车时间的少2分钟,问他俩谁先出发?先出发多少分钟?4.某超市对甲、乙两种商品进行打折销售,其中甲种商品打八折,乙种商品打七五折,已知打折前,买6件甲种商品和3件乙种商品需600元;打折后,买50件甲种商品和40件乙种商品需5200元.(1)打折前甲、乙两种商品每件分别为多少元?(2)某人购买甲种商品80件,乙种商品100件,问打折后购买这些商品比不打折可节省多少元?5.春节将至,一电商平台A对本年度最受消费者喜爱的某品牌辣椒酱进行促销,促销方式为:每人每次凡购买不超过15瓶的,每瓶4元,外加运费a元;超过15瓶的,超过的部分每瓶减少b元,并付运费a元,若设购买的瓶数为x瓶.(1)当x≤15时,请用含x和a的代数式表示购买所需费用:;当x>15时,请用含x和a,b的代数式表示购买所需费用:.(2)王老师和李老师看到促销信息后拟打算在该平台分别购买20瓶和26瓶该品牌辣椒酱,①经过预算,两位老师在该平台购买分别花费82元和100元,请通过计算求出a,b的值.②你能帮两位老师设计一种更省钱的购买方案吗?6.深圳市某小区为了以崭新的面貌迎接“创文”工作,决定请甲、乙两个装饰公司对小区外墙进行装饰维护.若由甲、乙两个公司合作,需8天完成,小区需支付费用12.8万元;若由甲公司单独做4天后,剩下的由乙公司来做,还需10天才能完成,小区需支付费用12.4万元.问:甲、乙两个装饰公司平均每天收取的费用分别是多少万元?7.用煤燃烧发电时,所说的标准煤是指含热量为7 000大卡/千克的煤.生产实际中,一般根据含热量相等,把所需标准煤的用煤量折合成含相同热量的实际用煤量来计算.(“大卡/千克”为一种热值单位)光明电厂生产中每发一度电需用标准煤0.36千克,现有煤矸石和大同煤两种可选为生产实际用煤,这两种煤的基本情况见下表:煤的品种含热量(大卡/千克)只用本种煤每发一度电的用煤量(千克/度)平均每燃烧一吨煤发电的生产成本购煤费用(元/吨)其他费用(元/吨)煤矸石1000 2.52 150 a(a>0)大同煤6000 m600 a2混合煤5000 0.504 510 0.8a2+0.2a (1)求生产中只用大同煤每发一度电的用煤量;(即表中m的值)(2)根据环保要求,光明电厂在大同煤中掺混煤矸石形成含热量为5 000大卡/千克的混合煤来燃烧发电,若使用这种混合煤比全部使用大同煤每发1 000度电的生产成本增加了5.04元,求表中a的值.(生产成本=购煤费用+其它费用)8.某旅行团去景点游览,共有成人和儿童20人,且旅行团中儿童人数多于成人.景点规定:成人票40元/张,儿童票20元/张.(1)若20人买门票共花费560元,求成人和儿童各多少人?(2)景区推出“庆元旦”优惠方案,具体方案为:方案一:购买一张成人票免一张儿童票费用;方案二:成人票和儿童票都打八折优惠;设:旅行团中有成人a人,旅行团的门票总费用为W元.①方案一:W1=;方案二:W2=;②试分析:随着a的变化,哪种方案更优惠?9.某学校决定新建一个科学实验室,需要购置一批开关盒.学校购置开关盒的经费预算是2800元,经市场调查,以下两种产品性能较好.型号A型B型样式类型双插座双开关三插座单开关价格32元/套28元/套(1)如果A型,B型开关盒各买40套来供应学生操作台,剩余的钱再用来购买若干套开关盒供应教师操作台和后期维护,恰好把预算经费用完.已知剩余的钱购买这两种开关盒的套数合计13套,求剩余的钱买A型、B型开关盒各多少套.(2)如果该校只选择A型开关盒,要求店家给予优惠政策.甲商店的优惠政策是:A型产品每购买20套,就再赠送1套A产品.乙商店的优惠政策是:购买A产品的数量一旦超过M套,此基础上每多3套A型产品,即可再赠送1套A型产品.为了买到尽量多的A型产品,最终选择在乙商店进行购买.求M的最大值.10.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16t;如果进行精加工,每天可加工6t,但两种加式方式不能同时进行,受季节条件的限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此公司研制了三种加工方案.方案一:将蔬菜全部进行粗加工;方案二:尽可能多的对蔬菜进行精加工,没有来得及加工的蔬菜在市场上全部销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天完成,你认为选择哪种方案获利最多,为什么?参考答案1.解:设甲商品的单价为x元/件,乙商品的单价为y元/件,依题意,得:,解得:.答:甲商品的单价为60元/件,乙商品的单价为40元/件.2.解:设碳酸饮料在调价前每瓶的价格为x元,果汁饮料调价前每瓶的价格为y元,根据题意得:,解得:.答:调价前碳酸饮料每瓶的价格为3元,果汁饮料每瓶的价格为4元.3.解:(1)小明乘车费为(0.3x+10.8)元(用含x的代数式表示),小亮乘车费为(0.3y+16.5)元.故答案为(0.3x+10.8),(0.3y+16.5).(2)由题意:10.8+0.3x+3=16.5+0.3y,∴x﹣y=9,∴小明比小亮的乘车时间多,多9分钟.(3)由(2)可知:小亮乘车时间为y分钟,小明乘车时间为(y+9)分钟.由题意:=﹣2,解得y=6.∴小明的乘车时间为6+9=15(分钟),小亮等候的时间为=3(分钟),∴小明比小亮先出发,先出发的时间=15﹣6﹣3=6(分钟),答:明比小亮先出发,先出发6分钟.4.解:(1)设打折前甲种商品每件x元,乙种商品每件y元,依题意,得:,解得:.答:打折前甲种商品每件40元,乙种商品每件120元.(2)80×40+100×120﹣80×0.8×40﹣100×0.75×120=3640(元).答:打折后购买这些商品比不打折可节省3640元.5.解:(1)当x≤15时,购买所需费用(4x+a)元;当x>15时,购买所需费用4×15+(4﹣b)(x﹣15)+a=[60+a+(4﹣b)(x﹣15)]元.故答案为:(4x+a)元;[60+a+(4﹣b)(x﹣15)]元.(2)①依题意,得:,解得:.答:a的值为7,b的值为1.②两人可以合在一起在该平台一次购买46瓶.60+7+(46﹣15)×(4﹣1)=160(元).∵160<182,∴两人合在一起在该平台一次购买46瓶,比分开购买更省钱.6.解:设甲装饰公司平均每天收取的费用为x万元,乙装饰公司平均每天收取的费用为y 万元,依题意,得:,解得:.答:甲装饰公司平均每天收取的费用为0.6万元,乙装饰公司平均每天收取的费用为1万元.7.解:(1)光明电厂生产1度电所用的大同煤为m千克,而标准煤用量为0.36千克.由题意得:0.36×7000=m×6000,解得m=0.42(或6000m=1000×2.52),答:光明电厂生产1度电所用的大同煤为0.42千克;煤的品种含热量只用本种煤每发平均每燃烧一吨煤发电的生产成(大卡/千克)一度电的用煤量(千克/度)本购煤费用(元/吨)其他费用(元/吨)煤矸石1000 2.52 150 a(a>0)大同煤6000 0.42 600 a2混合煤5000 0.504 510 0.8a2+0.2a (2)设1吨含热量为5000大卡/千克的混合煤中含p吨大同煤和q吨煤矸石,则:,解得:,(计算出混合煤中大同煤占80%,煤矸石占20%,或比例为4:1,即评1分)故购买1吨混合煤费用为0.8×600+0.2×150=510(元).其他费用为0.8a2+0.2a元.(4分)设光明电厂生产1度电用的混合煤为h千克,则:,解得:h=0.504(千克).(5分)[或:设生产1千度电用的混合煤中含x吨大同煤和y吨煤矸石.则:,解得:,(5分)]生产1千度电用的大同煤:1000×0.42=420(千克)=0.42(吨),生产1千度电用的混合煤:1000×0.504=504(千克)=0.504(吨),由题意可知数量关系:5.04=平均每燃烧1吨混合煤发电的生产成本×生产1千度电所用混合煤一平均每燃烧1吨大同煤发电的生产成本×生产1千度电所用大同煤(6分)即:(510+0.8a2+0.2a)×0.504﹣(600+a2)×0.42=5.04(8分)(所列方程正确,※未叙述仍评8分)化简并整理,得0.1008a﹣0.0168a2=0.(9分)(也可以直接写出方程:×[80%×(600+a2)+20%×(150+a)]﹣×(600+a2)=5.04)解得:a1=6,a2=0,(不合题意,应舍去)所以表中a的值为6.(10分)8.解:(1)设成人有x人,儿童有y人,根据题意,得:,解得:,答:成人有8人,儿童有12人;(2)①∵旅行团中有成人a人,∴旅行团中有儿童(20﹣a)人,则W1=40a+20(20﹣a﹣a)=400,W=0.8×[40a+20(20﹣a)]=16a+320;2②16a+320=400,解得:a=5,1°,当a<5时,W1>W2,故方案二更优惠;2°,当a=5时,W1=W2,两种方案一样;3°,当5<a<10时,W1<W2,故方案一更优惠.故答案为:400、16a+320.9.解:(1)剩余经费为:2800﹣(32+28)×40=400(元),设A型x套,B型y套,由题意得,,解得:,答:A型开关盒为9套,B型开关盒为4套;(2)∵2800÷32=87,∴在甲商店购买的开关盒为:87+80÷20=91(套),∵乙比甲买得多,则乙的总套数至少为92套,则87+×1≥92,解得:M≤72,即M的最大值为72套.10.解:①方案一获利为:4500×140=630000(元).②方案二获利为:7500×(6×15)+1000×(140﹣6×15)=675000+50000=725000(元).③设x天进行粗加工,y天进行精加工,由题意,得解得:所以方案三获利为:7500×6×10+4500×16×5=810000(元).由于810000>725000>630000,所以选择方案三获利最多.答:选择方案三获利最多.。
数学:8.3同底数幂的除法(2)同步练习(苏科版七年级下)【基础演练】一、填空题1. 计算:(1)42-= ,(2)4)2(-= ,(3)0)2009(-= ,(4)32-= , ( 5)3)2(--= ,⑹3)21(-= . 2. 用科学记数法表示下列各数:(1)0.000024=___ ____,(2)-0.00063=_____________.3.把数1.54×10-6化成小数是_ .4. 科学家发现一种病毒的直径约为0.000043米,用科学记数法表示为 .5.若0)5(-x 有意义,则x , 若3)1(-+x 有意义,则x .二、选择题6. 25-的正确结果是( )A .-125 ;B .125; C .110; D .-110. 7. 计算0)3(π-的结果是( )A .0;B .1;C .3-π;D .π-3.8. 下列计算中,正确的是( )A.21222=⨯- ; B. 0(9)1-=- ; C.223a13=-a (a≠0) ; D. 3535a a a a ÷=⨯-. 9.计算202)101()101()101(++-后其结果为( ) A.1; B.201; C.1011001; D.1001001. 10. 若23.0-=a ,23--=b ,2)31(--=c ,d=01()3-, 则( ) A.a<b<c<d ; B.b<a<d<c ; C.a<d<c<b ; D.c<a<d<b.三、解答题11.计算:⑴0)2(|3|-+-; ⑵61022÷;⑶652)2(∙--; ⑷47)4()4(-∙--;⑸323-⎛⎫ ⎪⎝⎭; ⑹5(2)--.12.计算: ⑴03321()(1)()333-+-+÷-; ⑵02(3)(0.2)π--+-;⑶15207(27)(9)(3)---⨯-÷-; ⑷132223)32()23()65()56(---+÷-+÷.13.一包饼干的质量是250克,它等于多少吨?用科学记数法表示.【能力提升】14.若02)3()63(2-+--x x 有意义,则x 的取值范围是( )A .x>3;B .x<2 ;C .x ≠3或x ≠2;D .x ≠3且x ≠2.15.某种植物花粉的直径约为35000纳米,1纳米=910-米,用科学记数法表示该种花粉的直径为 . 16. 已知827)32(=-x ,则x= . 17.计算:20082009)81()125.0(---÷-.18.已知:200932122221----+⋅⋅⋅++++=s ,请你计算右边的算式求出S 的值.参考答案1.(1)-16,(2)16,(3)1,(4)81,(5)81-,⑹8.2.(1)5104.2-⨯,(2)-0.00063=4103.6-⨯-.3. 0.00000154.4.5103.4-⨯米.5.5≠x ,1-≠x .6.B ;7.B ;8.D ;9.C ;10.B.11.⑴4; ⑵161; ⑶-2; ⑷641-; ⑸827;⑹321-. 12.⑴3; ⑵26; ⑶9; ⑷2.13.4105.2-⨯.14.D .15.5105.3-⨯米.16. x=3.17.-8.18.解:等式可变形为:200932212121211+⋅⋅⋅++++=s . ①①式两边都乘以2得:20083221212121122+⋅⋅⋅+++++=s . ②②-①得:2009212-=s .。
苏科版数学七年级下册第十章二元一次方程组实际应用常考题练习(一)1.小敏和小强参加社会实践,要用白板纸做长方体包装盒,准备把所有白板纸分成两部分,一部分做盒身,另一部分做盒底,已知每张白板纸可以做盒身2个,或者做盒底3个,且一个盒身和两个盒底恰好做成一个包装盒.(1)现有12张白板纸,问能否使做成的盒身与盒底正好配套,为什么?(2)在(1)条件下,小敏和小强经过尝试发现,将一张白板纸经过适当套裁就可以裁出一个盒身和一个盒底,请把这种套裁方式综合考虑,探究能否使裁出的盒身与盒底正好配套,若能,请求出最多可做包装盒的个数;否则说明理由.2.某公司要把240吨矿石运往A、B两地,现用大、小两种货车共20辆,恰好能一次性装完这批矿石.已知这两种货车的载重量分别为15吨/辆和10吨/辆,求这两种货车各用多少辆?3.为保护环境的需要,电动汽车已经成为未来汽车生产和销售的大趋势,市场上各种品牌的电动汽车如雨后春笋般涌现出来.某电动汽车经销商负责销售某种品牌的A型和B型电动汽车,今年9月份共售出该品牌汽车的A型和B型电动汽车共413台,受国庆黄金周的影响,10月份该经销商售出这两种型号的汽车达到510台,其中A型和B型汽车的销量分别比9月份增长25%和20%.(1)今年10月份,该经销商销售的A型和B型汽车分别是多少台?(2)该品牌电动汽车生产厂家为了占领市场提高销量,决定对该经销商采取销售奖励活动,若A型电动汽车每台售价为10万元,B型电动汽车每台售价为12万元,奖励办法是:每销售一台A型电动汽车按每台汽车售价的a%给予奖励,每销售一台B型汽车按每台汽车售价的(a+0.2)%给予奖励,奖励办法出台后的11月份,A型汽车的销量比10月份增加了10a%,而B型汽车受到某问题零件召回的影响,销售量比10月份减少了20a%,如果11月份该经销商共获得奖励金额为355680元,求a的值.【参考学习:我们以后会学到这样的运算:①a(b+c)=ab+ac,即单项式乘以多项式就是用单项式乘以多项式的每一项,再把所得结果相加;②(a+b)(m+n)=am+an+bm+bn,即多项式乘以多项式就是用一个多项式的每一项乘以另一个多项式的每一项,再把所得的结果相加.此题在解方程时要用到这样的运算哦!】4.如图,在3×3的方格中,已知各行、各列及对角线上的三个数之和都相等,求x,y的值.5.某加工厂生产A、B两种饮料均需加入同种甜味剂,其中生产1万瓶A饮料需加入甜味剂20千克,生产1万瓶B饮料需加入甜味剂30千克,已知该加工厂每月生产A、B两种饮料共100万瓶,且刚好需加入2700千克甜味剂.(1)若设每月生产A饮料x万瓶.①用含x的代数式可表示每月生产B饮料万瓶;②求每月生产A、B两种饮料各多少万瓶?(2)已知A饮料的成本价为每瓶3元,B饮料的成本价为每瓶2元,由于冬季天冷影响了A饮料的销售,该加工厂决定按照原价的8折出售,此时A饮料的利润率为20%,那么A饮料的原价是每瓶多少元?B饮料的销售价为每瓶2.4元,该加工厂调价后每月销售完A、B饮料总共获得的利润是多少?【温馨提示:利润率=】6.甲、乙两家单位组织员工开展“携手抗疫,共渡难关”捐款活动,甲单位共捐款100000元,乙单位共捐款140000元,若甲单位员工数比乙单位少30人,乙单位的人均捐款数是甲单位的倍.(1)问甲、乙单位各有多少人?(2)现两家单位共同使用这笔捐款购买A、B两种防疫物资,A种防疫物资每箱15000元,B种防疫物资每箱12000元,若购买B种防疫物资不少于10箱,并恰好将捐款用完,有哪几种购买方案?(两种防疫物资均按整箱配送)7.甲、乙两人从相距28千米的两地同时相向出发,经过3时30分两人相遇,如果乙先走2时,然后甲再出发,这样经过2时45分两人相遇.求甲、乙两人的平均速度分别是多少.8.某电器公司计划装运甲、乙两种家电到农村销售(规定每辆汽车按规定满载,且每辆汽车只能装同一种家电),已知每辆汽车可装运甲种家电20台,乙种家电30台.(1)若用8辆汽车装运甲、乙两种家电共190台到A地销售,问装运甲、乙两种家电的汽车各有多少辆?(2)如果每台甲种家电的利润是180元,每台乙种家电的利润是300元,那么该公司售完这190台家电后的总利润是多少?9.列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.10.为提高学生综合素质,亲近自然,励志青春,某学校组织学生举行“远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时;原路返回时,以每小时5千米的速度下坡,又以每小时4千米的速度走平路,共用了4小时,问平路和坡路各有多远.11.列二元一次方程组解决问题:某校八年级师生共466人准备参加社会实践活动,现已预备了A,B两种型号的客车共10辆,每辆A种型号客车坐师生49人,每辆B种型号客车坐师生37人,10辆客车刚好坐满,求A,B两种型号客车各多少辆?12.某县政府计划拨款34000元为福利院购买彩电和冰箱,已知商场彩电标价为2000元/台,冰箱标价为1800元/台,如按标价购买两种家电,恰好将拨款全部用完.(1)问原计划购买的彩电和冰箱各多少台?(2)购买的时候恰逢商场正在进行促销活动,全场家电均降价15%进行销售,若在不增加县政府实际负担的情况下,能否比原计划多购买3台冰箱?请通过计算回答.13.列二元一次方程组解应用题:某居民小区为了绿化小区环境,建设和谐家园.准备将一块周长为76米的长方形空地,设计成长和宽分别相等的9块小长方形,如图所示.计划在空地上种上各种花卉,经市场预测,绿化每平方米空地造价210元,请计算,要完成这块绿化工程,预计花费多少元?14.深圳市某小区为了以崭新的面貌迎接“创文”工作,决定请甲、乙两个装饰公司对小区外墙进行装饰维护.若由甲、乙两个公司合作,需8天完成,小区需支付费用12.8万元;若由甲公司单独做4天后,剩下的由乙公司来做,还需10天才能完成,小区需支付费用12.4万元.问:甲、乙两个装饰公司平均每天收取的费用分别是多少万元?15.某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶价格下调了5%,已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料调价前每瓶各多少元?参考答案1.解:(1)设使用x张白纸板做盒身,则使用(12﹣x)张白纸板做盒底,依题意,得:2×2x=3(12﹣x),解得:x=.∵不为整数,∴不能使做成的盒身与盒底正好配套.(2)设使用m张白纸板套裁,使用n张白纸板做盒身,则使用(12﹣m﹣n)张白纸板做盒底,依题意,得:2(m+2n)=m+3(12﹣m﹣n),∴m=9﹣n.∵m,n均为非负整数,∴,.当m=9时,可以制作包装盒的个数为m+2n=9(个),当m=2时,可以制作包装盒的个数为m+2n=10(个),∵9<10,∴最多可做10个包装盒.答:能使裁出的盒身与盒底正好配套,最多可做10个包装盒.2.解:设大货车用x辆,小货车用y辆,依题意得:,解得:.答:大货车用8辆,小货车用12辆.3.解:(1)设9月份,该经销商销售的A型和B型汽车分别是x台和y台,根据题意得,,解得:,∴(1+25)%x=360,(1+20)%y=150,答:今年10月份,该经销商销售的A型和B型汽车分别是360台和150台;(2)由题意得,10×360(1+10a%)×a%+12×150(1﹣20a%)×(a+0.2)%=35.568,解得:a=0.6,答a的值为0.6.4.解:由题意得:,解得:,即x=﹣1,y=1.5.解:(1)①由题意可得:B种饮料生产了(100﹣x)万瓶.故答案为:(100﹣x).②A种饮料共需要添加剂为20x千克,B种饮料共需要添加剂为30(100﹣x)千克,由题意得:20x+30(100﹣x)=2700,解得:x=30,100﹣30=70(万瓶).故每月生产A种饮料30万瓶,生产B种饮料70万瓶.(2)设A饮料的原价是每瓶m元,由题意得:0.8m﹣3=20%×3解得:m=4.53×20%×30+(2.4﹣2)×70=46(万元).故A饮料的原价是每瓶4.5元,该加工厂调价后每月销售完A、B饮料总共获得的利润是46万元.6.解:(1)设甲单位有员工数x人,乙单位有员工数y人,由题意可得:,解得:,答:甲单位有员工数150人,乙单位有员工数180人;(2)设A种防疫物资a箱,B种防疫物资b箱,由题意可得15000a+12000b=100000+140000,∴5a+4b=80,又∵购买B种防疫物资不少于10箱,∴b=10,a=8或b=15,a=4,答:有两种方案:A种防疫物资8箱,B种防疫物资10箱,或A种防疫物资4箱,B种防疫物资15箱.7.解:设甲的速度为xkm/h,乙的速度为ykm/h,3时30分=3.5小时,2时45分=2.75小时,由题意得:,解得:,答:甲的速度为5km/h,乙的速度为3km/h.8.解:(1)设装运甲种家电的汽车有x辆,装运乙种家电的汽车有y辆,依题意有,解得.故装运甲种家电的汽车有5辆,装运乙种家电的汽车有3辆;(2)20×5×180+30×3×300=45000(元).答:该公司售完这190台家电后的总利润是45000元.9.解:(1)设学校购进黑色文化衫x件,白色文化衫y件,依题意,得:,解得:.答:学校购进黑色文化衫80件,白色文化衫20件.(2)(45﹣25)×80+(35﹣20)×20=1900(元).答:该校这次义卖活动所获利润为1900元.10.解:设平路有x千米,坡路有y千米,由题意可知,解得,答:平路有千米,坡路有千米.11.解:设A种型号客车x辆,B种型号客车y辆,依题意,得解得答:A种型号客车8辆,B种型号客车2辆.12.解:(1)设原计划购买彩电x台,冰箱y台,根据题意得:2000x+1800y=34000,化简得:10x+9y=170.∵x,y均为正整数,∴x=8,y=10,答:原计划购买彩电8台,冰箱10台;(2)设比原计划多购买z台冰箱,依题意有1800×(1﹣15%)z=34000×15%,解得z=,∵>3,∴能比原计划多购买3台冰箱.答:能比原计划多购买3台冰箱.13.解:设小长方形的长为x米,宽为y米,依题意,得:,解得:,∴210×2x×(x+2y)=75600(元).答:要完成这块绿化工程,预计花费75600元.14.解:设甲装饰公司平均每天收取的费用为x万元,乙装饰公司平均每天收取的费用为y 万元,依题意,得:,解得:.答:甲装饰公司平均每天收取的费用为0.6万元,乙装饰公司平均每天收取的费用为1万元.15.解:设碳酸饮料在调价前每瓶的价格为x元,果汁饮料调价前每瓶的价格为y元,根据题意得:,解得:.答:调价前碳酸饮料每瓶的价格为3元,果汁饮料每瓶的价格为4元.。
第8章生物体有相同的基本结构(一)(生物体的基本结构)班级学号姓名得分第一部分(选择题,共70分)一、选择题(本题共35小题,每小题2分,共70分。
每小题只有一个选项符合题意。
)1. 某同学在制作洋葱鳞片叶表皮细胞临时装片时进行了如下图所示的操作,图中操作不正确的是()A.用手拿载玻片B.用镊子夹取盖玻片C.先滴加水滴再放标本D.盖玻片左侧未接触水滴2.有关“制作人口腔上皮细胞临时装片”的实验操作,错误的是()A. 取洁净的载玻片,在中央滴一滴清水B. 用消毒的牙签在口腔内侧壁轻轻地刮几下C. 盖盖玻片时,应将它的一侧先接触液滴,再缓慢放平D. 染色时,应在盖玻片的一侧滴加碘酒,另一侧用吸水纸吸引3.小明用显微镜观察了洋葱鳞片叶表皮细胞和人的口腔上皮细胞作了如下记录,其中不正确的是( )A.洋葱鳞片叶表皮细胞中央有较大的液泡B.人的口腔上皮细胞呈圆形,没有细胞壁C.洋葱鳞片叶表皮细胞中有叶绿体D.经碘液染色后,两细胞中染色最深的部分是细胞核4.制作洋葱表皮细胞临时装片时,为防止出现如右图所示的物像,下列操作与此无关的是 ( )A. 载玻片上的水应滴在正中央B. 撕取的洋葱内表皮要薄C. 撕取的洋葱内表皮要平展在水滴中D. 先将盖玻片的一边接触水滴,然后慢慢放下盖玻片5. 制作人体口腔上皮细胞的临时装片时,先在载玻片中央滴一滴0.9%的生理盐水,其作用是( )A.为细胞提供营养B.避免细胞死亡C.保持细胞正常形态D.方便细胞染色6. 在低倍镜下观察洋葱鳞片叶表皮细胞的临时装片,不容易观察到的结构是()A.细胞壁B.细胞核C.液泡D.细胞膜7. 制作“洋葱鳞片叶内表皮细胞临时装片”时,染色的正确方法是()A. 先在载玻片上滴碘液,再将洋葱表皮放在碘液中展平B. 将碘液直接滴在洋葱表皮上,然后盖上盖玻片C. 将碘液滴在盖玻片的一侧,用吸水纸在另一侧吸引D. 盖上盖玻片后,将碘液滴在盖玻片上8. 小明在观察洋葱鳞片叶表皮细胞时,在显微镜视野内只看清细胞壁和细胞核,看不清液泡。
专题9.11 平方差公式(基础篇)(专项练习)一、单选题1.计算的结果是()A.B.C.D.2.下列运算正确的是()A.B.C.D.3.下列能使用平方差公式的是()A.B.C.D.4.若,则等于()A.B.C.D.5.如果,那么代数式的值为()A.6B.5C.2D.6.已知,,则mn的值为()A.10B.﹣6C.﹣2D.27.对于任何整数m,多项式都能被()整除.A.8B.m C.D.8.如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“创新数”,如8=32-12,16=52-32,所以8,16都是“创新数”,下列整数是“创新数”的是()A.20B.22C.30D.329.如图①,阴影部分是边长为的大正方形剪去一个边长为b的小正方形后所得到的图形.若将阴影部分通过割、拼,形成新的图形②.则下列等式能够正确表示该图形面积关系的是( )A.B.C.D.10.如图,从边长为的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠,无缝隙),则拼成的长方形的另一边长是()A.B.C.D.二、填空题11.计算:________.12.若,,则______.13.已知,则的值是______.14.已知,则代数式的值为___________.15.若,则m的值为______________.16.从前,有一个狡猾的地主,把一块边长为x米的正方形土地租给张老汉栽种.过了一年,他对张老汉说:“我把你这块地的一边减少3米,另一边增加3米,继续租给你,你也没吃亏,你看如何?”张老汉一听,觉得好像没吃亏,就答应了.其实我们知道张老汉吃亏了.请运用本学期相关知识分析一下张老汉租用的土地面积比之前少了___________平方米.17.若对于任意正整数x均满足y=1.则当x分别取2,3,…,2021时,所对应y值的乘积是_____.18.如图,图为边长为的大正方形中有一个边长为的小正方形,图是由图中阴影部分拼成的一个长方形.(1)以上两个图形反映了等式:______;(2)运用(1)中的等式,计算______.三、解答题19.计算:(1)(x+2y)(2x﹣y)(2)(2a﹣3b)(﹣2a﹣3b)20.简便计算:(1) ;(2) .21.先化简,再求值:,其中,.22.已知,求代数式的值.23.观察下列各式:;;;;……(1)用你发现的规律填空:______×______,______×______;(2)计算:.24.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是________(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是_______,长是________,面积是___________(写成多项式乘法的形式);(3)比较左、右两图的阴影部分面积,可以得到乘法公式__________(用式子表达);(4)运用你所得到的公式,计算下题:参考答案1.A【分析】根据平方差公式进行计算即可.解:,故A正确.故选:A.【点拨】本题主要考查了平方差公式,解题的关键是熟练掌握平方差公式.2.D【分析】根据合并同类项法则,幂的乘方法则,同底数幂的除法法则,平方差公式逐项计算,即可判断.解:和不是同类项,不能合并,故A计算错误,不符合题意;,故B计算错误,不符合题意;,故C计算错误,不符合题意;,故D计算正确,符合题意.故选D.【点拨】本题考查合并同类项,幂的乘方,同底数幂的除法,平方差公式.熟练掌握各运算法则是解题关键.3.D【分析】根据能用平方差公式计算的式子特点:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数进行分析即可.解:A、不能用平方差公式计算,故此选项不符合题意;B、不能用平方差公式计算,故此选项不符合题意;C、不能用平方差公式计算,故此选项不符合题意;D、能用平方差公式计算,故此选项符合题意;故选:D.【点拨】此题主要考查了平方差公式,关键是掌握能用平方差公式计算的式子特点.4.B【分析】根据平方差公式以及积的乘方与幂的乘方解决此题.解:.∵,∴.∴.∴.故选:B.【点拨】本题主要考查平方差公式、积的乘方与幂的乘方,熟练掌握平方差公式、积的乘方与幂的乘方是解决本题的关键.5.A【分析】先将所求式子去括号、合并同类项,将变成,再整体代入计算即可求解.解:,∵,∴,∴原式=2+4=6,故选:A.【点拨】本题考查整式的混合运算-化简求值,解题的关键是把所求式子化简,变形后整体代入.6.C【分析】根据题意通过平方差公式进行化简,即可得到mn的值.解:∵,,∴两式相减得:=10-2,∴(m-n+m+n)( m-n-m-n)=8,∴2m(-2n)=8,∴mn=-2,故选:C.【点拨】本题主要考查了平方差公式的应用,熟练掌握平方差公式的相关计算方法是解决本题的关键.7.A【分析】直接套用平方差公式,整理即可判断.解:因为所以原式能被8整除.故选A.【点拨】本题考查了利用平方差公式进行因式分解,熟练掌握是解答本题的关键.8.D【分析】根据“创新数”的定义,利用平方差公式逐一判断即可.解:设两个连续奇数是2n﹣1和2n+1(其中n取正整数),∵(2n+1)2﹣(2n﹣1)2=(2n+1+2n﹣1)(2n+1﹣2n+1)=4n·2=8n,∴由这两个连续奇数构造的奇特数是8的倍数.∵20、22、30都不是8的倍数,∴它们不是“创新数”,∵32是8的倍数,∴32是“创新数”,且32=92﹣72,故选:D.【点拨】本题考查平方差公式,理清“创新数”的定义是解答本题的关键.9.D【分析】用代数式分别表示图1、图2阴影部分的面积即可.解:图1中,阴影部分的面积是两个正方形的面积差,即,拼成的图2,是底为,高为的平行四边形,因此面积为,所以有,故选:D.【点拨】本题考查平方差公式的几何背景,用代数式表示阴影部分的面积是正确解答的关键.10.B【分析】根据拼成的长方形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.解:拼成的长方形的面积,,,∵拼成的长方形一边长为,∴另一边长是.故选:B.【点拨】本题考查了平方差公式的几何背景,表示出剩余部分的面积是解题的关键.11.-9【分析】利用平方差公式即可求解.解:【点拨】本题考查了平方差公式,掌握是解题关键.12.2022【分析】根据平方差公式,即可求解.解:∵,,∴.故答案为:2022【点拨】本题主要考查了平方差公式,熟练掌握平方差公式是解题的关键.13.4【分析】根据,对化简,再把代入,即可.解:∵∴.故答案为:.【点拨】本题考查平方差的知识,解题的关键是掌握平方差公式:.14.【分析】根据平方差公式,单项式乘以多项式计算方法展开,合并同类项后把已知式子的值代入即可求解.解:,∵,∴原式;故答案为:.【点拨】本题主要考查整式的混合运算,已知代数式的值求整式的值,掌握整式的混合原式是解题的关键.15.±6【分析】先利用平方差公式计算右边,再由相应字母的系数相同求解即可.解:右边(x+my)(x-my)==,∴,∴m=±6,故答案为:±6.【点拨】题目主要考查平方差公式,熟练掌握平方差公式的结构特点是解题关键.16.9【分析】由题意可知道原来正方形土地的面积是平方米,而现在这块地的一边减少3米,另一边增加3米后的面积是平方米,然后用减去算出答案即可.解:原来正方形土地的边长为x米,面积是平方米,现在这块地的一边减少3米,另一边增加3米后的面积是平方米,平方米,张老汉租用的土地面积比之前少了9平方米,故答案为:9.【点拨】本题考查了平方差公式在生活实际中的运用,解题的关键就是读懂题意列出算式,然后熟练的运用平方差公式进行计算.17.【分析】分别将x=2,3,…,2021代入,利用平方差公式因式分解得:解:当x=2时,y=1(1)(1),当x=3时,y=1(1)(1),当x=4时,y=1(1)(1),当x=2021时,y=1(1)(1),∴.故答案为:.【点拨】本题考查了代入求值和平方差公式的运用,数字类规律问题,正确代入并利用平方差公式得到规律是本题的关键.18. 1【分析】根据图和图中阴影部分的面积相等列式进行计算即可得出答案;原式可化为,再根据中的结论进行计算即可得出答案.解:根据题意可得,图中阴影部分的面积为:,图中长方形的长为,宽为,面积为:,则两个图形阴影部分面积相等,;故答案为:;(2).故答案为:.【点拨】本题主要考查了平方差公式的几何背景,熟练掌握平方差公式的几何背景问题的解决方法进行求解是解决本题的关键.19.(1);(2)【分析】(1)根据整式的乘法运算法则即可求解;(2)根据平方差公式即可求解.解:(1)(x+2y)(2x﹣y)=2x2-xy+4xy﹣2y2=2x2+3xy﹣2y2;(2)(2a﹣3b)(﹣2a﹣3b)=(﹣3b)2﹣(2a)2=9b2﹣4a2.【点拨】此题主要考查整式的乘法,解题的关键是熟知平方差公式.20.(1)150(2)【分析】(1)根据平方差公式进行计算即可;(2)根据平方差公式进行计算即可.(1)解:;(2)解:.【点拨】本题主要考查了利用平方差公式进行计算,解题的关键是熟练掌握平方差公式.21.4a2-4ab+b2,49.【分析】先提公因式,再利用平方差公式化简,然后把a,b的值代入化简后的式子进行计算即可解答.解:(a+b)•(2a-b)+(2a-b)(a-2b)=(2a-b)(a+b+a-2b)=(2a-b)(2a-b)=4a2-4ab+b2,当a=-2,b=3时,原式=4×(-2)2-4×(-2)×3+32=4×4+24+9=16+24+9=49.【点拨】本题考查了整式的混合运算-化简求值,准确熟练地进行计算是解题的关键.22.9.【分析】原式利用单项式乘多项式以及平方差公式化简,去括号合并得到最简结果,把已知等式整理后代入计算即可求出值.解:,∵,∴,∴原式=3×3=9.【点拨】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.23.(1),,,;(2)【分析】(1)利用平方差公式把原式转化为两个分数的乘积的形式;(2)利用(1)的方法得到原式=,然后约分即可.解:(1);,故答案为:,,,;(2)===【点拨】本题考查了平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差,即(a+b)(a-b)=a2-b2.也考查了实数的运算.24.(1);(2),,;(3);(4)9991.【分析】(1)利用正方形的面积公式就可求出;(2)仔细观察图形就会知道长,宽,由面积公式就可求出面积;(3)建立等式就可得出;(4)利用平方差公式就可方便简单的计算.解:(1)利用正方形的面积公式可知:阴影部分的面积;故答案为:;(2)由图可知矩形的宽是,长是,所以面积是;故答案为:,,;(3)(等式两边交换位置也可);故答案为:;(4)原式;【点拨】此题主要考查了平方差公式,熟悉相关性质是解题的关键.。
1 6/8/2014 基础练习1一、填空题:1.分解因式x 2+10x+25= .2.以3、6为边的等腰三角形的周长为 .3.据悉,世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 007克,用科学记数法表示此数为 .4.已知一个五边形的4个内角都是100°,则第5个内角的度数是_________.5.把二元一次方程2x+3y -4=0化为y=32-x+m 的形式,则m = . 6.一个正多边形,它的每一个外角等于与它相邻的内角的15,则这个多边形是 边形. 7.将一副三角板摆成如图所示,图中∠1=_________.8.将一张长方形纸片如图所示折叠后,再展开.如果∠1=56°,那么∠2等于______.9.如图,在△ABC 中,BC=AC ,∠C=90°,AD 平分∠CAB ,AB=10 cm ,DE ⊥AB ,垂足为点E .那么△BDE 的周长是____________cm .10.如图,在△ABC 中,AB=AC ,AD 是∠BAC 的平分线,DE ⊥AB ,D F ⊥AC ,垂足分别是E 、F .则下面结论中正确的是 .①DA 平分∠EDF ;②AE=AF ,DE=DF :⑤AD ⊥BC③AD 上的点到B 、C 两点的距离相等;④图中共有3对全等三角形.二、计算 1.()()()2020092009130.2510-⎛⎫-+-+-⨯- ⎪⎝⎭20321()(3)(5)(5)3π--+-+-÷-4(x -1) 2+(2x+5)(5-2x).2.因式分解:-4xy+x 2y+4y 22222()4x y x y +- a 2(x+y)-b 2(x+y). 11233210y x x y +⎧⎪-=⎨⎪+=⎩()()355135x y y x -=⎧⎪⎨-=+⎪⎩。
2021年苏科版七年级下册第十章基础易错题巩固训练一、单选题1.学校的篮球数比排球数的2倍少3个,篮球数与排球数的比是3:2,求两种球各有多少个?若设篮球有x 个,排球有y 个,根据题意得方程组( )A .2332x y x y =-⎧⎨=⎩B .2332x y x y =+⎧⎨=⎩C .2323x y x y =+⎧⎨=⎩D .2323x y x y =-⎧⎨=⎩2.若k 为整数,则使得方程(1999)20012000k x x -=-的解也是整数的k 值为( )A .4个B .8个C .12个D .16个3.《九章算术》中记载:“今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”大意是:甲、乙二人带着钱,不知是多少,若甲得到乙的钱数的12,则甲的钱数为50;若乙得到甲的钱数的23,则乙的钱数也能为50,问甲、乙各有多少钱?设甲持钱为x ,乙持钱为y ,可列方程组为( ) A .25031502x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩B .15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩C .15022503x y y x ⎧-=⎪⎪⎨⎪-=⎪⎩D .25031502x y y x ⎧-=⎪⎪⎨⎪-=⎪⎩4.已知代数式2x bx c ++,当1x =时,它的值为2,当1x =-时,它的值为8;当2x =-时,它的值是( )A .4B .2C .9D .145.如图所示的长方形中,甲、乙、丙、丁四块面积相等,甲的长是宽的3倍,设乙的长和宽分别是a 和b ,则:a b 等于( )A .3:1B .5:2C .5:3D .9:26.用如图①中的长方形和正方形纸板作侧面和底面,做成如图①的竖式和横式的两种无盖纸盒.现有m 张正方形纸板和 n 张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完, 则m n +的值可能是( )A .302B .303C .304D .3057.已知x 和y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则x 和y 的方程组111222345345a x b y c a x b y c +=⎧⎨+=⎩的解是( ) A .34x y =⎧⎨=⎩ B .43x y =⎧⎨=⎩ C .11x y =⎧⎨=⎩ D .55x y =⎧⎨=⎩ 8.如图,数轴上有若干个点,每相邻两点相距1个单位长度.其中点A ,B ,C ,D 对应的数分别是整数a ,b ,c ,d ,且212d a -=,则b c +的值为( )A .3-B .1-C .3D .1二、填空题9.下列方程组中,不是二元一次方程组的是_______. ①10425x y x y +=⎧⎨-=⎩;①35x y =⎧⎨=⎩;①2412x y y x+=⎧⎪⎨+=⎪⎩;①2325x y x y ⎧+=⎨-=⎩ 10.如图,C ,D 是线段AB 上两点,已知图中所有线段的长度都是正整数,且总和为29,则线段AB 的长是_________.11.若解222(1)6x y x k y +=⎧⎨--=⎩得x ,y 的值互为相反数,则k 的值是_______. 12.方程(k 2﹣4)x 2+(k +2)x +(k ﹣6)y =k +8是关于x 、y 的二元一次方程,则k =_____.13.对于x ,y 我们定义一种新运算“①”:x ①y =ax +by ,其中a ,b 为常数.等式的右边是通常的加法和乘法运算.已知:5①2=7,3①(-4)=12,则4①3=________14.某公司向银行申请了甲、乙两种贷款,共计68万元,每年需付出3.2万元利息.已知甲种贷款每年的利率为4.5%,乙种贷款每年的利率为5%,则该公司申请的甲种贷款的数额为_____万元.15.设xyz ≠0,且3x +2y ﹣7z =0,7x +4y ﹣15z =0,则22222245623x y z x y z--++=_____. 16.分别写有数字2,0,2-的卡片若干张,从中随机抽取20张,将这20张卡片上的数字分别记为1231920,,,,,a a a a a ,满足1219208a a a a ++++=且()()()2221219222a a a -+-++-+()2202112a -=,则抽取写有数字2-的卡片有_________张.17.在关于x ,y 的二元一次方程组221x y a x y +=⎧⎨-=⎩中,设()342m a x y =+-+,则m 的取值范围是__________. 三、解答题 18.为了防治“新型冠状病毒”,某市某小区准备用5400元购买医用口罩和洗手液发放给本小区住户.若医用口罩买800个,洗手液买120瓶,则钱还缺200元;若医用口罩买1200个,洗手液买80瓶,则钱恰好用完.(1)求医用口罩和洗手液的单价;(2)由于实际需要,除购买医用口罩和洗手液外,还需增加购买单价为6元的 95N 口罩.若需购买医用口罩,95N 口罩共 1200个,其中95N 口罩不超过150个,钱恰好全部用完, 则有几种购买方案,请列方程计算.19.某生产车间生产A ,B 两种零件,现有55名工人,每人每天生产A 零件12个,每人每天生产B 零件8个,若一个A 需搭配3个B 才能成一套产品.那么应该分配多少人做A 零件,多少人做B 零件,才能使每天做出的产品刚好配套?20.解方程组:(1)2337y x x y =-⎧⎨+=⎩(2)544323x y x y +=⎧⎨+=⎩(3)()()()213464216x y x y x y x y ⎧-+-=-⎪⎨⎪+--=⎩(4)54413273193218x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=⎩21.本地某快递公司规定:寄件不超过1千克的部分按起步价计费:寄件超过1千克的部分按千克计费.小丽分别寄快递到上海和北京,收费标准及实际收费如下表:收费标准实际收费求a,b的值.22.某学校为了改善硬件条件,计划购买一批电脑和空调,已知购买3台电脑比购买2台空调多花费3100元,购买5台电脑和3台空调共需19100元.购买一台电脑和一台空调各需要多少元?23.某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,结账时老板对小明说:“如果你再多买一个,就可以全部打八五折,花费比现在还省14元”,于是小明决定再多买一个.(1)求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次老板给予七五折优惠,合计255元.问小明购买了钢笔和签字笔各多少支?参考答案1.D2.D3.B4.D5.A6.D7.D8.A9.①①10.9或811.4-12.213.7 214.4015.11 6 -16.617.m14≥-18.(1)医用口罩的单价为2.5元,洗手液的单价为30元;(2)有2种购买方案,略.19.应该分配10人做A零件,45人做B零件,才能做出刚好配套的产品.20.(1)21xy=⎧⎨=⎩;(2)21.5xy=⎧⎨=-⎩;(3)22xy=⎧⎨=⎩;(4)53xyz=⎧⎪=⎨⎪=-⎩21.a=9,b=322.购买一台电脑和一台空调分别需要2500元和2200元.23.(1)小明原计划购买文具袋15个;(2)小明购买了钢笔20支,签字笔30支.。
苏科版七年级数学下册第七章认识三角形基础题训练一、选择题1.若一个三角形的两边长分别为3和7,则第三边长可能是()A. 6B. 3C. 2D. 112.如下图,△ABC中,AD⊥BC于点D,BE⊥CA于点E,则AC边上的高是()A. ADB. ABC. DCD. BE3.如图,为了估计校园内池塘岸边两点A、B之间的距离,小明同学在池塘一侧选取了一点P测得P4=5m,PB=4m,那么点A与点B之间的距离不可能是()A. 6mB. 6.5mC. 7mD. 9m4.等腰三角形的两边长分别为4cm和8cm,则它的周长为()A. 16cmB. 17cmC. 20cmD. 16cm或20cm5.下面四个图形中,线段BD是△ABC的高的是()A. B.C. D.6.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A. 两点之间的线段最短B. 长方形的四个角都是直角C. 长方形是轴对称图形D. 三角形具有稳定性7.如图,将△ABC沿射线BC方向移动,使点B移动到点C,得到△DCE,连接AE,若△ABC的面积为2,则△ACE的面积为()A. 2B. 4C. 8D. 168.一个三角形的三内角的度数的比为1:1:2,则此三角形是()A. 锐角三角形B. 钝角三角形C. 等边三角形D. 等腰直角三角形9.如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=60°,∠C=80°,则∠EOD的度数为()A. 20°B. 30°C. 10°D. 15°二、填空题10.一个三角形的两边长分别是2和6,第三边长为偶数,则第三边长为______.11.如图,AD是△ABC的中线,AB=5,AC=3,△ABD的周长和△ACD的周长相差____________.12.如图,△ABC的两条中线AM、BN相交于点O,已知△ABC的面积为12,△BOM的面积为2,则四边形MCNO的面积为______ .13.如图,AD、AE分别是△ABC的角平分线和高,∠B=50°,∠C=70°,则∠EAD=_.14.如图,在△ABC中,D,E分别为BC,AD的中点,且SΔABC=8,则S阴影=.15.如图,在△ABC中,AD⊥BC,CE⊥AB,BC=12,AB=6,AD=4,则CE=____.16.等腰三角形的两边长分别是5cm和10cm,则它的周长是______cm.三、解答题17.如图所示,在正方形方格中,每个小正方形的边长均为1个单位长度,三角形ABC平移后的图形是三角形AˈBˈCˈ,其中C与Cˈ是对应点.(1)请画出平移后的三角形AˈBˈCˈ;(2)请求出三角形AˈBˈCˈ的面积.18.如图,方格纸中每个小正方形的边长都为1,在方格纸中将△ABC经过一次平移后得到△A′B′C′,图中标出来点A,点B′、点C和它的对应点C′.(1)请画出平移前后的△ABC和△A′B′C′;(注意并标注好字母)(2)利用网格画出△ABC中BC边上的中线AD;(注意并标注好字母)(3)利用网格画出△ABC中AB边上的高CE;(注意并标注好字母)(4)△A′B′C′的面积为____.19.如图,ΔABC中,AD是BC边上的中线,AE是BC边上的高.(1)若∠ACB=100°,求∠CAE的度数;(2)若SΔABC=12,CD=4,求高AE的长.20.如图,已知△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.答案和解析1.A解:设第三边为x,则7−3<x<7+3,即4<x<10,所以符合条件的整数为6,2.D解:△ABC中,AD⊥BC于点D,BE⊥CA于点E,则AC边上的高是BE.3.D解:∵PA、PB、AB能构成三角形,∴PA−PB<AB<PA+PB,即1m<AB<9m.4.C解:等腰三角形的两边长分别为4cm和8cm,当腰长是4cm时,则三角形的三边是4cm,4cm,8cm,4cm+4cm=8cm不满足三角形的三边关系;当腰长是8cm时,三角形的三边是8cm,8cm,4cm,三角形的周长是20cm.5.A解:线段BD是△ABC的高,则过点B作对边AC的垂线,则垂线段BD为△ABC的高.6.D解:用木条EF固定长方形门框ABCD,使其不变形的根据是三角形具有稳定性.7.A解:∵将△ABC沿射线BC方向移动,使点B移动到点C,得到△DCE,∴BC=CE,∴S△ACE=S△ABC,又∵△ABC的面积为2,8.D解:设这三个内角度数分别为x、x、2x,则x+x+2x=180°,解得x=45°,∴2x=90°,∴这个三角形是等腰直角三角形.9.A解:∵∠BAC=60°,∠C=80°,∴∠B=40°.又∵AD是∠BAC的角平分线,∴∠BAD=12∠BAC=30°,∴∠ADE=70°,又∵OE⊥BC,∴∠EOD=20°.10.6解:根据三角形的三边关系,得6−2<x<6+2,即4<x<8.又∵第三边长是偶数,则x=6,11.2解:∵AD是△ABC中BC边上的中线,∴BD=DC=12BC,∴△ABD和△ADC的周长的差,=(AB+12BC+AD)−(AC+12BC+AD),=AB−AC,=5−3,=2,12.4解:如图,∵△ABC的两条中线AM、BN相交于点O,已知△ABC 的面积为12,∴S△ABM=S△ABN=12S△ABC=6.又∵S△ABM−S△BOM=S△AOB,△BOM的面积为2,∴S△AOB=4,∴S四边形MCNO=S△ABC−S△ABN−S△OBM=12−6−2=4.13.10°解:∵∠B=50°,∠C=70°,∴∠BAC=180°−∠B−∠C=180°−50°−70°=60°,∵AD是△ABC的角平分线,∴∠BAD=12∠BAC=12×60°=30°,∵AE是△ABC的高线,∴∠BAE=90°−∠B=90°−50°=40°,∴∠EAD=∠BAE−∠BAD=40°−30°=10°.14.2解:∵D是BC的中点,E是AD的中点,∴S△ABD=S△ACD=12S△ABC=4,S△ACD=4,S△DCE=12S△ACD=2,15.8解:∵AD⊥BC,CE⊥AB,∴S△ABC=12BC⋅AD=12AB⋅CE,即12×12×4=12×6⋅CE,解得CE=8.16.25解:当5cm是腰时,5cm+5cm=10cm,不符合三角形三边关系,故舍去;故答案是:25.题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.17.(1).18.解:(1)如图,△ABC和△A′B′C′即为所求;(2)如图,线段AD即为所求;(3)如图,线段CE即为所求;(4)S△A′B′C′=1×3×4=6.219.解:(1)∵AE是BC边上的高,∴∠E=90°,又∵∠ACB=100°,∴∠CAE=100°−90°=10°;(2)∵AD是BC上的中线,DC=4,∴D为BC的中点,∴BC=2DC=8,∵AE是BC边上的高,S△ABC=12,×8×AE=12,即12∴AE=3.20.解:在△ABC中,∵∠BAC=180°−∠B−∠C=70°,∵AE是∠BAC的平分线,∴∠BAE=∠CAE=35°.又∵AD是BC边上的高,∴∠ADB=90°,∵在△ABD中∠BAD=90°−∠B=25°,∴∠DAE=∠BAE−∠BAD=10°.。
专题9.8 多项式乘以多项式(基础篇)(专项练习)一、单选题1.若,则()A.,B.,C.,D.,2.下列运算正确的是()A.B.C.D.3.若,则的值为().A.8B.C.4D.4.若与的乘积中不含的一次项,则实数的值为()A.1B.C.0D.25.若,,则的值是()A.B.1C.5D.6.小羽制作了如图所示的卡片类,类,类各张,其中,两类卡片都是正方形,类卡片是长方形,现要拼一个长为,宽为的大长方形,那么所准备的类卡片的张数()A.够用,剩余4张B.够用,剩余5张C.不够用,还缺4张D.不够用,还缺5张7.三个连续偶数,中间一个为n,这三个连续偶数之积为()A.B.C.D.8.若不管a取何值,多项式与都相等,则m、n的值分别为()A.﹣1,﹣1B.﹣1,1C.1,﹣1D.1,19.从前,一位地主把一块长为a米,宽为b米(a>b>100) 的长方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的长增加10 米,宽减少10 米,继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积将()A.变小了B.变大了C.没有变化D.可能变大也可能变小10.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算法》一书中,用如图的三角形解释二项和的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”设的展开式中各项系数的和为,若,则的值为()A.B.C.D.二、填空题11.已知,,则的值为______.12.已知的展开式中不含x的二次项,则____________.13.已知ab=a+b+2020,则(a﹣1)(b﹣1)的值为____.14.若p、q、r均为整数,且,则r的值为___________.15.定义为二阶行列式,规定它的运算法则为,那么,___________.16.在数学课上,小明计算时,已正确得出结果,但课后不小心将第二个括号中的常数染黑了,若结果中不含有一次项,则被染黑的常数为__________.17.如图(图中长度单位:,阴影部分的面积是___________.18.观察以下等式:,,……根据你所发现规律,计算:__________.三、解答题19.计算(1) ;(2) .20.计算:(1);(2).21.先化简,再求值:,其中.22.已知的结果中不含关于字母的一次项.先化简,再求:的值.23.某学校准备在一块长为米,宽为米的长方形空地上修建一块长为米,宽为米的长方形草坪,四周铺设地砖(阴影部分).(1) 求铺设地砖的面积;(用含a、b的式子表示,结果化为最简)(2) 若,求铺设地砖的面积.24.探究应用:(1)计算:(x﹣1)(x2+x+1)=;(2x﹣y)(4x2+2xy+y2)=.(2)上面的乘法计算结果很简洁,你发现了什么规律(公式)?用含字母a、b的等式表示该公式为:.(3)下列各式能用第(2)题的公式计算的是.A.(m+2)(m2+2m+4)B.(m﹣2n)(m2+2mn+2n2)C.(3﹣n)(9+3n+n2)D.(m﹣n)(m2+2mn+n2)(4)设A=109﹣1,利用上述规律,说明A能被37整除.参考答案1.C【分析】将左边的式子利用多项式乘多项式展开,根据多项式的每一项对应相等进行求解即可.解:,∴,解得:,当时,,符合题意;故选C.【点拨】本题考查多项式乘多项式的恒等问题.熟练掌握多项式乘多项式的运算法则,根据多项式的每一项对应相等进行计算是解题的关键.2.C【分析】根据整式的乘方,乘法法则进行计算,逐一判断即可解答.解:A.,故A不符合题意;B.,故B不符合题意;C.,故C符合题意;D.,故D不符合题意;故选:C.【点拨】本题考查了整式的混合运算,准确熟练地进行计算是解题的关键.3.D【分析】根据多项式乘以多项式运算法则可得,据此解答即可.解:∵,∴,故选:D.【点拨】本题考查了多项式乘以多项式,熟练掌握多项式乘以多项式运算法则是解本题的关键.4.A【分析】根据多项式乘以多项式的法则,可表示为,计算即可.解:根据题意得:,∵与的乘积中不含的一次项,∴,∴,故选:A.【点拨】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.5.D【分析】根据多项式乘多项式进行化简,然后再代值求解即可.解:,∵,,∴原式=;故选D.【点拨】本题主要考查多项式乘多项式的化简求值,熟练掌握多项式乘多项式是解题的关键.6.C【分析】根据大长方形的面积公式求出拼成大长方形的面积,再对比卡片的面积,即可求解.解:大长方形的面积为,类卡片的面积是,∴需要类卡片的张数是,∴不够用,还缺4张,故选:.【点拨】本题主要考查多项式与多项式的乘法与图形的面积,掌握多项式乘以多项式的计算方法是解题的关键.7.A【分析】首先表示出另外两个偶数,分别为n+2,n-2,然后计算出三个连续偶数之积即可.解:三个连续偶数,中间一个为n,另外两个为n+2,n-2,三个连续偶数之积为:故选A.【点拨】本题考查了整式的乘法运算,准确表示出三个连续偶数是本题的关键.8.A【分析】化简后合并同类项,利用相等的概念列式计算即可.解:多项式与都相等,所以,得,,得.或者,得.故选:A.【点拨】本题主要考查多项式乘多项式以及多项式相等的概念,能够化简多项式的乘积并通过相等的概念求解是解题关键.9.A【分析】原面积可列式为,第二年按照庄园主的想法则面积变为,又,通过计算可知租地面积变小了.解:由题意可知:原面积为(平方米),第二年按照庄园主的想法则面积变为平方米,∵,∴,∴面积变小了,故选:A.【点拨】本题考查了多项式乘多项式,关键在于学生认真读题结合所学知识完成计算.10.B【分析】由的展开式中各项系数的和为求出,可知,设,两边都乘2得,由②-①得,由,利用幂的乘方变形后代入即可.解:∵的展开式中各项系数的和为,,,设,∴,∴②-①得,∵,∴.故选择:B.【点拨】本题考查杨辉三角两项和的乘方展开规律,数列求和,幂的乘方法则,同底数幂的乘法法则,掌握杨辉三角两项和的乘方展开规律,数列求和的方法,幂的乘方法则,同底数幂的乘法法则,关键是利用倍乘算式再相减方法化简数列的和.11.【分析】先根据多项式乘以多项式计算,再把,代入,即可求解.解:∵,,∴原式.故答案为:【点拨】本题主要考查了多项式乘以多项式,熟练掌握多项式乘以多项式法则是解题的关键.12.1【分析】根据多项式乘以多项式的计算法则得到,再根据计算结果不含二次项及二次项系数为零进行求解即可.解:,∵的展开式中不含x的二次项,∴,∴,故答案为;1.【点拨】本题主要考查了多项式乘多项式中的无关型问题,熟知多项式乘以多项式的计算法则是解题的关键.13.【分析】将代数式根据多项式乘以多项式化简,再将已知式子代入求解即可.解:又ab=a+b+2020,原式故答案为:【点拨】本题考查了多项式乘以多项式,代数式求值,整体代入是解题的关键.14.2或或14或-14【分析】将展开,根据结果得到,,再结合p,q的范围求出具体值,代入计算可得r值.解:,则,,p、q、r均为整数,,或,,,或,,或,故答案为:2或或14或-14.【点拨】本题考查了多项式乘法,解题的关键是根据要求求出具体的p,q值.15.##【分析】根据,列式计算即可求解.解:.故答案为:.【点拨】本题考查整式的混合运算,解答本题的关键是明确题目中的新规定,会用新规定解答问题.16.2【分析】设被染黑的常数为a,利用乘法公式展开,根据一次项系数为0即可求出a的值.解:设被染黑的常数为a,则,∵结果中不含有一次项,∴,∴,故答案为:2.【点拨】本题考查多项式乘以多项式,解题的关键是掌握多项式乘以多项式的运算法则,本题也可以通过平方差公式快速求解.17.【分析】阴影部分的面积可看作是最大的长方形的面积空白部分长方形的面积,据此求解即可.解:由题意得:.故答案为:.【点拨】本题主要考查列代数式,解答的关键是理解清楚题意找到等量关系.18.【分析】根据题中规律每一个式子的结果等于两项的差,被减数的指数比第二个因式中第一项大1,减数都为1,利用规律来解答.解:根据,,,…的规律,得出:,,.故答案是:.【点拨】本题主要考查了平方差公式、及数字类的规律题,解题的关键是认真阅读,总结规律,并利用规律解决问题.19.(1) (2)【分析】(1)根据多项式乘以单项式的法则即可求解;(2)根据多项式乘以多项式的法则即可求解.解:(1)(2)【点拨】本题考查单项式乘以多项式,多项式乘以多项式,解题的关键是熟练运用法则,准确计算.20.(1);(2)【分析】(1)连续两次应用平方差公式计算即可;(2)先用平方差,再用完全平分公式展开计算即可;解:(1)原式.(2),,,,.【点拨】本题主要考查了整式乘法的公式运用,准确计算是解题的关键.21.,-7.【分析】根据整式乘法先化简整式,再代入求值即可.解:原式===,∵,∴,把代入上式,原式=2×4-15=-7.【点拨】本题是对整式化简求值的考查,熟练掌握整式乘法公式和多项式乘多项式是解决本题的关键.22.9【分析】根据多项式乘多项式的法则计算展开(x+a)(x-2),让关于x的一次项的系数为0,即可求得a的值,然后即可求出答案.解:∵(x+a)(x-2)=x2-2x+ax-2a=x2+(a-2)x-2a不含关于x的一次项,∴a−2=0,即a=2,∴(a+1)2+(2-a)(2+a)=a2+2a+1+4-a2=2a+5=2×2+5=9故答案为:9.【点拨】本题考查了多项式乘以多项式,根据不含关于字母x的一次项,推出一次项系数为0,求出a的值是解题关键.23.(1) 平方米(2) 铺设地砖的面积为225平方米.【分析】(1)利用多项式乘多项式法则化简,去括号合并得到最简结果;(2)将a与b的值代入计算即可求出值.(1)解:由题可知,铺设地砖的面积为:(平方米);(2)解:∵,∴原式(平方米).答:铺设地砖的面积为225平方米.【点拨】此题考查了多项式乘多项式-化简求值,弄清题意列出相应的式子是解本题的关键.24.(1)x3﹣1,8x3﹣y3;(2)a3﹣b3;(3)C;(4)见分析【分析】(1)用多项式乘以多项式的法则计算即可;(2)观察第(1)问的计算,找出规律,用字母表示即可;(3)判断各选项是否符合公式的特点;(4)公式的逆用,求得A中有37的因数即可.解:(1)(x-1)(x2+x+1)=x3+x2+x-x2-x-1=x3-1;(2x-y)(4x2+2xy+y2)=8x3+4x2y+2xy2-4x2y-2xy2-y3=8x3-y3;故答案为:x3-1;8x3-y3;(2)从第(1)问发现的规律是:(a-b)(a2+ab+b2)=a3-b3,故答案为:(a-b)(a2+ab+b2)=a3-b3;(3)A.第一个多项式不是减法,不符合题意;B.最后一项应该是4n2,不符合题意;C.符合题意;D.第二个多项式的第二项应该为mn,不符合题意.故选:C.(4)A=109-1=(103)3-1=(103-1)(106+103+12)=999×1001001=3×3×3×37×1001001,∴A能被37整除.【点晴】本题考查了多项式乘以多项式的法则,考查学生的计算能力,能对公式进行逆用是解题的关键.。
第九章因式分解单元测试(基础题)一、选择题(本大题共10小题,共30.0分)1.多项式12ab3c+8a3b的各项公因式是()A.4ab2B.4abcC.2ab2D.4ab2.下列运算正确的是()A.a2+2a=3a3B.(−2a3)2=4a5C.(a+2)(a−1)=a2+a−2D.(a+b)2=a2+b23.如图,边长为a,b的长方形的周长为14,面积为10,则a2b+ab2的值为()A.140B.70C.35D.244.如果(a−b−3)(a−b+3)=40,那么a−b的值为()A.49B.7C.−7D.7或−75.把多项式(x+1)(x−1)−(1−x)提取公因式(x−1)后,余下的部分是()A.(x+1)B.(x−1)C.xD.(x+2)6.如果9a2−ka+4是完全平方式,那么k的值是()A.−12B.6C.±12D.±67.若a+b=1,则a2−b2+2b的值为()A.4B.3C.1D.08.下列各式由左到右的变形中,属于分解因式的是()A.a(m+n)=am+anB.a2−b2−c2=(a−b)(a+b)−c2C.10x2−5x=5x(2x−1)D.x2−16+6x=(x+4)(x−4)+6x9.已知m2−m−1=0,则计算:m4−m3−m+2的结果为()1A.3B.−3C.5D.−510.如图1,在边长为a的正方形中剪去一个边长为b的小正形(a>b),把剩下部分拼成一个梯形(如图2),利用这两幅图形面积,可以验证的公式是()A.a2+b2=(a+b)(a−b)C.(a+b)2=a2+2ab+b2B.a2−b2=(a+b)(a−b)D.(a−b)2=a2−2ab+b2二、填空题(本大题共10小题,共30.0分)11.分解因式:x2y−xy2=______.12.因式分解:(x+2)x−x−2=______.13.甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),则a+b=______.14.分解因式:a−a3=______.15.若a+b=6,ab=7,则ab2+a2b=______.16.分解因式:x3−2x2+x=______.17.已知x−2y=6,x−3y=4,则x2−5xy+6y2的值为______.18.若a2+a+1=0,那么a2001+a2000+a1999=______.19.因式分解:m2+m+1=______.420.根据(x−1)(x+1)=x2−1,(x−1)(x2+x+1)=x3−1,(x−1)(x3+x2+x+1)=x4−1,…的规律,则可以得出22017+22016+22015+⋯+23+22+2+1的结果可以表示为________。
七年级下册第7章平面图形的认识(二)单元基础练习题1.已知等腰三角形的两边长分别为4、9,则它的周长为()A.22B.17C.17或22D.132.如图,在所标识的角中,同位角是( )A.∠1和∠2B.∠1和∠3C.∠1和∠4D.∠2和∠33.一个多边形的内角和与外角和相等,则这个多边形是()A.四边形B.五边形C.六边形D.八边形4.如图,直线c截二平行直线a、b,则下列式子中一定成立的是()A.∠1=∠2B.∠1=∠3C.∠1=∠4D.∠1=∠55.如图,AD∥BC,点E在BD的延长线上,若∠ADE=155°,则∠DBC的度数为()A.155°B.50°C.45°D.25°6.下列长度的三条线段,能组成三角形的是()A.1,1,2B.2,3,7C.1,4,6D.3,4,57.如图所示是“福娃欢欢”的五幅图案,②,③,④,⑤哪一个图案可以通过平移图案①得到()A.②B.③C.④D.⑤8.两条平行直线被第三条直线所截,下列命题中正确的是()A.同位角相等,但内错角不相等B.同位角不相等,但同旁内角互补C.内错角相等,且同旁内角不互补D.同位角相等,且同旁内角互补9.如果一个正多边形的一个内角等于相邻外角的3倍,则这个正多边形是()A.正八边形B.正九边形C.正七边形D.正十边形10.如图,CM,ON被AO所截,那么()A.∠1和∠3是同位角B.∠2和∠4是同位角C.∠ACD和∠AOB是内错角D.∠1和∠4是同旁内角11.如图.∠1与∠C是一对内错角,∠1与∠3是一对________ 角.12.如图,自行车的三角形支架,这是利用三角形具有________性.13.如图所示,添上一个你认为适当的条件________时,a∥b.14.一个多边形每个外角都是60°,这个多边形是________边形,它的内角和是________度,外角和是________度.15.十边形的外角和等于________ 度.16.一个正多边形的内角是外角的2倍,则这个正多边形是________ 边形.17.若多边形所有内角与它的一个外角的和为600°,求这个多边形的边数及内角和.18.(1)如图,已知△ABC,试画出AB边上的中线和AC边上的高;(2)有没有这样的多边形,它的内角和是它的外角和的3倍?如果有,请求出它的边数,并写出过这个多边形的一个顶点的对角线的条数.19.已知:如图,∠1和∠2是直线a,b被直线c截出的同旁内角,且∠1与∠2互补.求证:a∥b.20.若一个多边形的外角和是内角和的,则这个多边形是几边形?21.在△ABC中,AB=9,AC=2,并且BC的长为偶数,求△ABC的周长.22.已知三角形的三条边为互不相等的整数,且有两边长分别为7和9,另一条边长为偶数.(1)请写出一个三角形,符合上述条件的第三边长.(2)若符合上述条件的三角形共有a个,求a的值.参考答案部分第 1 题:【答案】A【解析】【分析】根据腰为4或9分类求解,注意根据三角形的三边关系进行判断.【解答】当等腰三角形的腰为4时,三边为4,4,9,4+4<9,三边关系不成立,当等腰三角形的腰为9时,三边为4,9,9,三边关系成立,周长为4+9+9=22.故选:A.【点评】本题考查了等腰三角形的性质,三角形三边关系定理.关键是根据已知边那个为腰,分类讨论第 2 题:【答案】C【解析】【分析】同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.【解答】根据同位角、邻补角、对顶角的定义进行判断,A、∠1和∠2是邻补角,故A错误;B、∠1和∠3是邻补角,故B错误;C、∠1和∠4是同位角,故C正确;D、∠2和∠3是对顶角,故D错误.故选:C.【点评】解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.第 3 题:【答案】A【解析】【分析】首先设此多边形是n边形,由多边形的外角和为360°,即可得方程180(n-2)=360,解此方程即可求得答案.【解答】设此多边形是n边形,∵多边形的外角和为360°,∴180(n-2)=360,解得:n=4.∴这个多边形是四边形.故选A.【点评】此题考查了多边形的内角和与外角和的知识.此题难度不大,注意多边形的外角和为360°,n边形的内角和等于180°(n-2).第 4 题:【解析】【分析】两直线平行,同位角相等,据此可进行判断.【解答】由图可知,A、∠1和∠2是邻补角,两直线平行不能推出邻补角相等,故错误;B、∵a∥b,∴∠1=∠3(两直线平行,同位角相等),故正确.C、由B知,∠1=∠3,又∠3+∠4=180°,∴∠1+∠4=180°,故错误;D、由C知,∠1+∠4=180°,又∠4=∠5,∴∠1+∠5=180°,故错误;故选B.【点评】本题重点考查了平行线的性质,是一道较为简单的题目第 5 题:【答案】 D【解析】【分析】先根据邻补角的性质求得∠ADB的度数,再根据平行线的性质求解即可。
七年级数学下册期末复习基础专练《解答题》(一)1.(2020·保定市八年级期末)图1,线段AB 、CD 相交于点O ,连接AD 、CB ,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD 、AB 分别相交于M 、N.试解答下列问题: (1)在图1中,请直接写出∠A 、∠B 、∠C 、∠D 之间的数量关系: ; (2)图2中,当∠D=50度,∠B=40度时,求∠P 的度数.(3)图2中∠D 和∠B 为任意角时,其他条件不变,试问∠P 与∠D 、∠B 之间存在着怎样的数量关系.2.(2020·吉林长春市·八年级期末)已知:53a =,58b =,572c =. (1)求)(25a 的值.(2)求5a b c -+的值.(3)直接写出字母a 、b 、c 之间的数量关系.3.(2020·山东烟台市期末)阅读材料:若m 2﹣2mn+2n 2﹣8n+16=0,求m 、n 的值. 解:∵m 2﹣2mn+2n 2﹣8n+16=0,∴(m 2﹣2mn+n 2)+(n 2﹣8n+16)=0 ∴(m ﹣n )2+(n ﹣4)2=0,∴(m ﹣n )2=0,(n ﹣4)2=0,∴n=4,m=4. 根据你的观察,探究下面的问题:(1)已知x 2+2xy+2y 2+2y+1=0,求2x+y 的值; (2)已知a ﹣b=4,ab+c 2﹣6c+13=0,求a+b+c 的值.4.(2020·江西萍乡市·八年级期末)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨. (1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?5.(2020·贵州毕节市·八年级期末)“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:村庄清理养鱼网箱人数/人清理捕鱼网箱人数/人总支出/元A 15 9 57000B 10 16 68000(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?(二)1.(2020·吉林白山市·八年级期末)Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=____°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间有何关系?(3)若点P在Rt△ABC斜边BA的延长线上运动(CE<CD),则∠α、∠1、∠2之间有何关系?猜想并说明理由.2.(2020·湖北孝感市·八年级期末)(1)计算:()()22x y x xy y-++(2)已知:2m a =,4n a =,()320ka a =≠①求32m n k a +-的值; ②求3k m n --的值.3.(2020·河北石家庄市·八年级期末)先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法. 如:ax +by +bx +ay =(ax +bx )+(ay +by ) =x (a +b )+y (a +b ) =(a +b )(x +y ) 2xy +y 2﹣1+x 2 =x 2+2xy +y 2﹣1 =(x +y )2﹣1 =(x +y +1)(x +y ﹣1)(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如: x 2+2x ﹣3 =x 2+2x +1﹣4 =(x +1)2﹣22 =(x +1+2)(x +1﹣2) =(x +3)(x ﹣1)请你仿照以上方法,探索并解决下列问题: (1)分解因式:a 2﹣b 2+a ﹣b ; (2)分解因式:x 2﹣6x ﹣7; (3)分解因式:a 2+4ab ﹣5b 2.4.(2020·浙江金华市·八年级期末)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A ,B 两种不同款型,其中A 型车单价400元,B 型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A ,B 两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?5.(2020·湖南常德市·八年级期末)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.(三)1.(2020·陕西宝鸡市期末)如图,∠AFD=∠1,AC∥DE,(1)试说明:DF∥BC;(2)若∠1=68°,DF平分∠ADE,求∠B的度数.2.(2020·额尔古纳市八年级期末)(1)计算a-2 b2 ( a2 b-2 )-3(2)1 201701 (1)|7|9(7)5π-⎛⎫---++ ⎪⎝⎭3.(2020·河北石家庄市·八年级期末)先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:ax+by+bx+ay=(ax+bx)+(ay+by)=x(a+b)+y(a+b)=(a+b)(x+y)2xy+y2﹣1+x2=x2+2xy+y2﹣1=(x+y)2﹣1=(x+y+1)(x+y﹣1)(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣22=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a2﹣b2+a﹣b;(2)分解因式:x2﹣6x﹣7;(3)分解因式:a2+4ab﹣5b2.4.(2020·南阳市八年级期末)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.5.(2020·北京昌平区·八年级期末)学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.(一)1.(2020·保定市八年级期末)图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:;(2)图2中,当∠D=50度,∠B=40度时,求∠P的度数.(3)图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.【答案】(1)∠A+∠D=∠C+∠B;(2)∠P=45°;(3)2∠P=∠D+∠B.【分析】(1)根据三角形内角和定理即可得出∠A+∠D=∠C+∠B;(2)由(1)得,∠DAP+∠D=∠P+∠DCP①,∠PCB+∠B=∠PAB+∠P②,再根据角平分线的定义可得∠DAP=∠PAB,∠DCP=∠PCB,将①+②整理可得2∠P=∠D+∠B,进而求得∠P的度数;(3)同(2)根据“8字形”中的角的规律和角平分线的定义,即可得出2∠P=∠D+∠B. 【详解】解(1)∵∠A+∠D+∠AOD=∠C+∠B+∠BOC=180°,∠AOD=∠BOC,∴∠A+∠D=∠C+∠B;(2)由(1)得,∠DAP+∠D=∠P+∠DCP,①∠PCB+∠B=∠PAB+∠P,②∵∠DAB和∠BCD的平分线AP和CP相交于点P,∴∠DAP=∠PAB,∠DCP=∠PCB,①+②得:∠DAP+∠D+∠PCB+∠B=∠P+∠DCP+∠PAB+∠P,即2∠P=∠D+∠B=50°+40°,∴∠P=45°;(3)关系:2∠P=∠D+∠B ;证明过程同(2).2.(2020·吉林长春市·八年级期末)已知:53a =,58b =,572c =. (1)求)(25a 的值.(2)求5a b c -+的值.(3)直接写出字母a 、b 、c 之间的数量关系. 【答案】(1)9;(2)27;(3)2c a b =+ 【分析】(1)直接将53a =代入计算即可;(2)逆运用同底数幂乘法和除法公式变形后代入计算即可; (3)结合(1)中)(259a=,再观察53a =,58b =,572c =易得9×8=72,利用幂的乘方和同底数幂乘法变形即可得出2c a b =+. 【详解】解(1)∵53a =, ∴)(22539a==;(2)∵53a =,58b =,572c =, ∴5537252758a c ab cb-+⨯⨯===; (3)∵22(5)53898725a b c ⨯=⨯=⨯==, ∴255a b c +=, 即2c a b =+. 【点睛】本题考查同底数幂的乘法和除法,幂的乘方.熟练掌握相关公式,并能逆运用公式是解题关键.3.(2020·山东烟台市期末)阅读材料:若m 2﹣2mn+2n 2﹣8n+16=0,求m 、n 的值. 解:∵m 2﹣2mn+2n 2﹣8n+16=0,∴(m 2﹣2mn+n 2)+(n 2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2+2xy+2y2+2y+1=0,求2x+y的值;(2)已知a﹣b=4,ab+c2﹣6c+13=0,求a+b+c的值.【答案】(1)1;(2)3.【分析】(1)根据题意,可以将题目中的式子化为材料中的形式,从而可以得到x、y的值,从而可以得到2x+y的值;(2)根据a-b=4,ab+c2-6c+13=0,可以得到a、b、c的值,从而可以得到a+b+c的值.【详解】解:(1)∵x2+2xy+2y2+2y+1=0,∴(x2+2xy+y2)+(y2+2y+1)=0,∴(x+y)2+(y+1)2=0,∴x+y=0,y+1=0,解得,x=1,y=−1,∴2x+y=2×1+(−1)=1;(2)∵a−b=4,∴a=b+4,∴将a=b+4代入ab+c2−6c+13=0,得b2+4b+c2−6c+13=0,∴(b2+4b+4)+(c2−6c+9)=0,∴(b+2)2+(c−3)2=0,∴b+2=0,c−3=0,解得,b=−2,c=3,∴a=b+4=−2+4=2,∴a+b+c=2−2+3=3.【点睛】此题考查了因式分解方法的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.此题解答的关键是要明确:用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.4.(2020·江西萍乡市·八年级期末)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨. (1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?【答案】(1)1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨;(2)货运公司应安排大货车8辆时,小货车2辆时最节省费用. 【分析】(1)设1辆大货车和1辆小货车一次可以分别运货x 吨和y 吨,根据“3辆大货车与4辆小货车一次可以运货18吨、2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得; (2)因运输33吨且用10辆车一次运完,故10辆车所运货不低于10吨,所以列不等式,大货车运费高于小货车,故用大货车少费用就小进行安排即可. 【详解】(1)解:设1辆大货车一次可以运货x 吨,1辆小货车一次可以运货y 吨,依题可得:34182617x y x y +=⎧⎨+=⎩ , 解得:432x y =⎧⎪⎨=⎪⎩.答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨. (2)解:设大货车有m 辆,则小货车10-m 辆,依题可得: 4m+32(10-m )≥33 m≥0 10-m≥0 解得:365≤m≤10, ∴m=8,9,10;∴当大货车8辆时,则小货车2辆; 当大货车9辆时,则小货车1辆;当大货车10辆时,则小货车0辆;设运费为W=130m+100(10-m)=30m+1000,∵k=30〉0,∴W随x的增大而增大,∴当m=8时,运费最少,∴W=130×8+100×2=1240(元),答:货运公司应安排大货车8辆时,小货车2辆时最节省费用.【点睛】考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案.5.(2020·贵州毕节市·八年级期末)“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?【答案】(1)清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;(2)分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.【分析】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据A、B两村庄总支出列出关于x、y的方程组,解之可得;(2)设m人清理养鱼网箱,则(40﹣m)人清理捕鱼网箱,根据“总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数”列不等式组求解可得.【详解】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据题意,得:15957000 101668000x yx y+=⎧⎨+=⎩,解得:20003000 xy=⎧⎨=⎩,答:清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;(2)设m人清理养鱼网箱,则(40﹣m)人清理捕鱼网箱,根据题意,得:() 200030004010200040m mm m⎧+-≤⎨-⎩<,解得:18≤m<20,∵m为整数,∴m=18或m=19,则分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.【点睛】本题主要考查二元一次方程组和一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程或不等式组.(二)1.(2020·吉林白山市·八年级期末)Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=____°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间有何关系?(3)若点P在Rt△ABC斜边BA的延长线上运动(CE<CD),则∠α、∠1、∠2之间有何关系?猜想并说明理由.【答案】(1)140°;(2)∠1+∠2=90°+∠α;(3)∠1=90°+∠2+α.【分析】(1)根据四边形内角和定理以及邻补角的定义得出∠1+∠2=∠C+∠α,进而得出即可;(2)利用(1)中所求得出答案即可;(3)利用三角外角的性质得出∠1=∠C+∠2+α=90°+∠2+α;【详解】(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°;(2)由(1)得出:∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α(3)∠1=90°+∠2+α,理由:∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+α=90°+∠2+α,考点:1.三角形内角和定理;2.三角形的外角性质.2.(2020·湖北孝感市·八年级期末)(1)计算:()()22x y x xy y -++(2)已知:2m a =,4n a =,()320ka a =≠ ①求32m n k a +-的值;②求3k m n --的值.【答案】(1)()()2233x y x xy y x y -++=-;(2)①4;②0 【分析】(1)根据多项式与多项式相乘的法则进行计算即可得到答案;(2)①首先求出a 3m =23,a 2n =42=24,a k =32=25,然后根据同底数的乘法、除法法则计算即可;②首先求出3k m n a --的值为1,然后根据a 0=1,求出3k m n --的值是多少即可.【详解】(1)()()22x y x xy y -++ =322223x x y xy x y xy y ++---,=33x y -;(2)①∵a 3m =23,a 2n =42=24,a k =32=25,3223m n k n m k a a a a +-=⋅÷,=()()23m n k a a a ⋅÷ =32m n k a a a ⋅÷=345222⨯÷=22=4;②∵33k m n k m n a a a a --÷÷=∴3k m n a a a ÷÷=532222÷÷=02=1=()00a a ≠∴30k m n a a --=∴30k m n --=【点睛】此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握;此题还考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握;此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn (m,n 是正整数);②(ab)n =a n b n (n 是正整数).3.(2020·河北石家庄市·八年级期末)先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法. 如:ax +by +bx +ay =(ax +bx )+(ay +by )=x (a +b )+y (a +b )=(a +b )(x +y )2xy +y 2﹣1+x 2=x 2+2xy +y 2﹣1=(x +y )2﹣1=(x +y +1)(x +y ﹣1)(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如: x 2+2x ﹣3=x 2+2x +1﹣4=(x +1)2﹣22=(x +1+2)(x +1﹣2)=(x +3)(x ﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a 2﹣b 2+a ﹣b ;(2)分解因式:x 2﹣6x ﹣7;(3)分解因式:a 2+4ab ﹣5b 2.【答案】(1)()()1a b a b -++;(2)()()17+-x x ;(3)()()5a b a b +-.【解析】试题分析:(1)仿照例(1)将前两项和后两项分别分作一组,然后前两项利用平方差公式分解,然后提出公因式(a -b )即可;(2)仿照例(2)将-7拆成9-16,然后前三项利用完全平方公式分解后,再用平方差公式分解即可;(3)仿照例(2)将-5b 2拆成4b 2-9b 2,然后前三项利用完全平方公式分解后,再用平方差公式分解即可.试题解析:解:(1)22a b a b -+-=()()()a b a b a b +-+-=()()1a b a b -++;(2)原式=22223337x x -⨯⨯+--=()2316x --=()()3434x x -+--=()()17x x +-; (3)原式=()()222222225a a b b b b +⨯⨯+-- =()2229a b b +-=()()2323a b b a b b +++-=()()5a b a b +-. 点睛:本题考查了因式分解的综合应用,熟悉因式分解的方法和读懂例题是解决此题的关键.4.(2020·浙江金华市·八年级期末)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A ,B 两种不同款型,其中A 型车单价400元,B 型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A ,B 两种款型的单车共100辆,总价值36800元.试问本次试点投放的A 型车与B 型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A ,B 两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A 型车与B 型车各多少辆?【答案】(1)本次试点投放的A 型车60辆、B 型车40辆;(2)3辆;2辆【详解】分析:(1)设本次试点投放的A 型车x 辆、B 型车y 辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a的不等式,解之求得a 的范围,进一步求解可得.详解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:100 40032036800x yx y+=⎧⎨+=⎩,解得:6040 xy=⎧⎨=⎩,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车3000×100100000=3辆、至少享有B型车2000×100100000=2辆.点睛:本题主要考查二元一次方程组和一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的相等(或不等)关系,并据此列出方程组.5.(2020·湖南常德市·八年级期末)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.【答案】(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析【解析】解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:x 2y 3.5{2x y 2.5+=+=,解得:x 0.5{y 1.5==. 答:每台电脑0.5万元,每台电子白板1.5万元.(2)设需购进电脑a 台,则购进电子白板(30-a )台,则0.5a 1.5(30a)28{0.5a 1.5(30a)30+-≥+-≤,解得:15a 17≤≤,即a=15,16,17. 故共有三种方案:方案一:购进电脑15台,电子白板15台.总费用为0.515 1.51530⨯+⨯=万元; 方案二:购进电脑16台,电子白板14台.总费用为0.516 1.51429⨯+⨯=万元; 方案三:购进电脑17台,电子白板13台.总费用为0.517 1.51328⨯+⨯=万元. ∴方案三费用最低.(1)设电脑、电子白板的价格分别为x,y 元,根据等量关系:“1台电脑+2台电子白板=3.5万元”,“2台电脑+1台电子白板=2.5万元”,列方程组求解即可.(2)设计方案题一般是根据题意列出不等式组,求不等式组的整数解.设购进电脑x 台,电子白板有(30-x)台,然后根据题目中的不等关系“总费用不超过30万元,但不低于28万元”列不等式组解答.(三)1.(2020·陕西宝鸡市期末)如图,∠AFD=∠1,AC ∥DE ,(1)试说明:DF ∥BC ;(2)若∠1=68°,DF 平分∠ADE ,求∠B 的度数.【答案】(1)证明见解析;(2)68°. 【解析】试题分析:(1)由AC ∥DE 得∠1=∠C ,而∠AFD=∠1,故∠AFD=∠C ,故可得证; (2)由(1)得∠EDF=68°,又DF 平分∠ADE ,所以∠EDA=68°,结合DF ∥BC 即可求出结果.试题解析:(1)∵AC∥DE,∴∠1=∠C,∵∠AFD=∠1,∴∠AFD=∠C,∴DF∥BC;(2)∵DF∥BC,∴∠EDF=∠1=68°,∵DF平分∠ADE,∴∠EDA=∠EDF=68°,∵∠ADE=∠1+∠B∴∠B=∠ADE-∠1=68°+68°-68°=68°.2.(2020·额尔古纳市八年级期末)(1)计算a-2 b2 ( a2 b-2 )-3(2)1 201701 (1)|7|)5π-⎛⎫---+ ⎪⎝⎭【答案】(1)88ba;(2)0【分析】此题属于运算类,运用幂的运算,根式的化简和乘方等法则运算求解即可.【详解】(1)原式= a-2 b2 a-6b6= a-8b8=88ba,(2)原式=﹣1﹣7+3×1+5=0.【点睛】本题主要考查运算能力,过程中注意负指数幂的计算.3.(2020·河北石家庄市·八年级期末)先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法. 如:ax +by +bx +ay =(ax +bx )+(ay +by )=x (a +b )+y (a +b )=(a +b )(x +y )2xy +y 2﹣1+x 2=x 2+2xy +y 2﹣1=(x +y )2﹣1=(x +y +1)(x +y ﹣1)(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如: x 2+2x ﹣3=x 2+2x +1﹣4=(x +1)2﹣22=(x +1+2)(x +1﹣2)=(x +3)(x ﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a 2﹣b 2+a ﹣b ;(2)分解因式:x 2﹣6x ﹣7;(3)分解因式:a 2+4ab ﹣5b 2.【答案】(1)()()1a b a b -++;(2)()()17+-x x ;(3)()()5a b a b +-.【解析】试题分析:(1)仿照例(1)将前两项和后两项分别分作一组,然后前两项利用平方差公式分解,然后提出公因式(a -b )即可;(2)仿照例(2)将-7拆成9-16,然后前三项利用完全平方公式分解后,再用平方差公式分解即可;(3)仿照例(2)将-5b 2拆成4b 2-9b 2,然后前三项利用完全平方公式分解后,再用平方差公式分解即可.试题解析:解:(1)22a b a b -+-=()()()a b a b a b +-+-=()()1a b a b -++;(2)原式=22223337x x -⨯⨯+--=()2316x --=()()3434x x -+--=()()17x x +-; (3)原式=()()222222225a a b b b b +⨯⨯+-- =()2229a b b +-=()()2323a b b a b b +++-=()()5a b a b +-. 点睛:本题考查了因式分解的综合应用,熟悉因式分解的方法和读懂例题是解决此题的关键.4.(2020·南阳市八年级期末)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.【答案】(1)1辆甲种客车与1辆乙种客车的载客量分别为45人和30人;(2)2160.【分析】(1)根据题意设1辆甲种客车与1辆乙种客车的载客量分别为x 人、y 人,再依据2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人,便可列出方程组.(1)根据题意设租用甲种客车x 辆,故乙种客车有6-x ,因此可得不等式组,计算可得x 的取值,再依据费用最少,可得x 的取值,便可计算出最少费用.【详解】解:(1)设1辆甲种客车与1辆乙种客车的载客量分别为x 人,y 人,231802105x y x y +=⎧⎨+=⎩, 解得:4530x y =⎧⎨=⎩, 答:1辆甲种客车与1辆乙种客车的载客量分别为45人和30人;(2)设租用甲种客车x 辆,依题意有:4530(6)2406x x x +-≥⎧⎨<⎩, 解得:64x >≥,因为x 取整数,所以4x =或5,当4x =时,租车费用最低,为440022802160⨯+⨯=.【点睛】本题主要考查二元一次方程组的应用,再结合考查了不等式组的计算,难度系数较高,关键在于未知数的设.5.(2020·北京昌平区·八年级期末)学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元. (1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【答案】(1)甲种办公桌每张400元,乙种办公桌每张600元;(2)当甲种办公桌购买30张,购买乙种办公桌10张时,y 取得最小值,最小值为26000元.【解析】分析:(1)设甲种办公桌每张x 元,乙种办公桌每张y 元,根据“甲种桌子总钱数+乙种桌子总钱数+所有椅子的钱数=24000、10把甲种桌子钱数-5把乙种桌子钱数+多出5张桌子对应椅子的钱数=2000”列方程组求解可得;(2)设甲种办公桌购买a 张,则购买乙种办公桌(40-a )张,购买的总费用为y ,根据“总费用=甲种桌子总钱数+乙种桌子总钱数+所有椅子的总钱数”得出函数解析式,再由“甲种办公桌数量不多于乙种办公桌数量的3倍”得出自变量a 的取值范围,继而利用一次函数的性质求解可得.详解:(1)设甲种办公桌每张x 元,乙种办公桌每张y 元,根据题意,得:201570002400010510002000x y x y ++⎧⎨-+⎩==, 解得:400600x y ⎧⎨⎩==, 答:甲种办公桌每张400元,乙种办公桌每张600元;(2)设甲种办公桌购买a 张,则购买乙种办公桌(40-a )张,购买的总费用为y ,则y=400a+600(40-a )+2×40×100 =-200a+32000,∵a≤3(40-a),∴a≤30,∵-200<0,∴y随a的增大而减小,∴当a=30时,y取得最小值,最小值为26000元.点睛:本题主要考查二元一次方程组和一元一次不等式及一次函数的应用,解题的关键是理解题意找到题目蕴含的相等关系,并据此列出方程和函数解析式,特别注意不能忽略每张桌子配套的椅子所产生的费用.。
苏科版七年级下基础练习
满分120分 姓名 得分
一、填空题(共13小题,每小题2分,满分26分)
1.将数据0.00032用科学记数法表示为 .
2.已知,如图,∠1=∠2=∠3=55°,则∠4的度数等于 .
3.如图,平面上直线a ,b 分别过线段OK 两端点(数据如图),则a ,b 相交所成的锐角是 .
4. 如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为 .
5.方程2x +3y =17的正整数解为 .
6.由0634=+-y x ,可以得到用y 表示x 的式子为=x . 7.若21-==-ab b a ,,则=+-)2)(2(b a .
8.若一个多边形的内角和等于720°,则这个多边形是 边形.
9. 1083=a 与1442=b 的大小关系是 .
10.已知是方程32=-ay x 的一个解,则a 的值是 .
11.命题 “若b a >,则22b a >”的逆命题是 . 12.如图AB 、BC 、CD 、DE 、EA 是射线,∠1+∠2+∠3+∠4+∠5= . 13.如图,边长为b a 、的矩形,周长为14,面积为10,则=+22ab b a .
第2题
第4题
第3题
二、解答题(共10小题,满分94分)
14.计算(16分):
(1)12022)21()14.3(--⨯--+-π (2))2
1)(22(22ab b ab a --+
(3)|4|)3
1()2017(20-+---π (4))3)(3(7)1)(2(4-+-++a a a a
15. 分解因式(16分):
(1)222xy xy y x +- (2)822-a
(3)2422-+-x x (4)164-x .
16.解方程组(10分):
(1) ⎩⎨⎧-=-=+-111535y x y x (2) ⎩
⎨⎧=+=+20251583y x y x
17.先化简,再求值(10分):
(1) )3)(3()4)(2(2)2(2+---++-x x x x x ,其中1-=x .
(2))2)(2()3(2)(2y x y x y x x y x -+++-+,其中21=-=y x ,.
18.解不等式组 (10分):
(1)解不等式组:
,并写出所有的整数解.
(2)解不等式组
,并把它的解集在数轴上表示出来.
19.(6分)如图,若AE 是△ABC 边上的高,∠EAC 的角平分线AD 交BC 于D , ∠ACB =40°,求∠ADE .
20.(6分)如图,已知在△ABC 中,∠1=∠2,∠3=∠4,∠BAC =84°.求∠DAC 的度数.
–
1–2–3–412340
21.(6分)如图:在正方形网格中有一个格点三角形ABC,(即△ABC的各顶点都在格
点上),按要求进行下列作图:
(1)画出△ABC中AB边上的高CD;(提醒:别忘了标注字母!)
(2)画出将△ABC先向右平移5格,再向上平移3格后的△A′B′C′;
(3)画一个锐角格点三角形MNP,使其面积等于△ABC的面积.
22.(6分)已知:如图:△ABC'中,AD⊥BC于点D,EF⊥BC于点F,EF交AB于点G,
交CA的延长线于点E,AD平分∠BAC.
求证:∠1=∠2
23.(8分)AD为△ABC的高,BE为△ABC的角平分线,若∠EBA=32°,
∠AEB=70°.
(I)求∠CAD的度数;
(2)若点F为线段BC上任意一点,当△EFC为直角三角形时,求∠BEF的度数.。