人教版六年级下册数学 比和比例
- 格式:ppt
- 大小:3.16 MB
- 文档页数:11
次火车自北京西站开往安庆西站,行驶至全程的511再向前56千米处所用时间比提速前减少了60分钟,而到达安庆西站比提速前早了2小时.问北京西站、安庆西站两地相距多少千米两地相距多少千米? ?【分析与解】设北京西站、安庆西站相距多少千米?设北京西站、安庆西站相距多少千米?(511x+56)x+56)::x=60x=60::120120,即,即,即((511x+56)x+56)::x=1x=1::2,即x=1011x+112x+112,解得,解得x=1232x=1232.. 即北京西站、安庆西站两地相距即北京西站、安庆西站两地相距1232千米,千米,3.两座房屋A 和B 各被分成两个单元.若干只猫和狗住在其中.已知:各被分成两个单元.若干只猫和狗住在其中.已知:A A 房第一单元内猫的比率房第一单元内猫的比率((即住在该单元内猫的数目与住在该单元内猫狗总数之比在该单元内猫的数目与住在该单元内猫狗总数之比))大于B 房第一单元内猫的比率;并且A 房第二单元内猫的比率也大于B 房第二单元内猫的比率.试问是否整座房屋A 内猫的比率必定大于整座房屋B 内猫的比率的比率? ?【分析与解】 如下表给出的反例指出:如下表给出的反例指出:如下表给出的反例指出:对所提出问题的回答应该是否定的.对所提出问题的回答应该是否定的.对所提出问题的回答应该是否定的.表中具体写出了各个表中具体写出了各个单元及整座房屋中的宠物情况和猫占宠物总数的比率.单元及整座房屋中的宠物情况和猫占宠物总数的比率. 小升初数学知识点解析:比和比例两个数相除又叫做两个数的比.两个数相除又叫做两个数的比.一、比和比例的性质性质1:若a: b=c a: b=c::d ,则,则(a + c)(a + c)(a + c)::(b + d)= a (b + d)= a::b=c b=c::d ;性质2:若a: b=c a: b=c::d ,则,则(a - c)(a - c)(a - c)::(b - d)= a (b - d)= a::b=c b=c::d ;性质3:若a: b=c a: b=c::d ,则,则(a +x c)(a +x c)(a +x c)::(b +x d)=a (b +x d)=a::b=c b=c::d ;(x 为常数)性质4:若a: b=c a: b=c::d ,则a ×d ×d = = = b×b×b×c c ;(即外项积等于内项积即外项积等于内项积) )正比例:如果a ÷b=k(k 为常数为常数)),则称a 、b 成正比;成正比;反比例:如果a ×b=k(k 为常数为常数)),则称a 、b 成反比.成反比.二、比和比例在行程问题中的体现在行程问题中,因为有在行程问题中,因为有速度速度=路程时间,所以:,所以: 当一组物体行走速度相等,那么行走的路程比等于对应时间的反比;当一组物体行走速度相等,那么行走的路程比等于对应时间的反比;当一组物体行走路程相等,那么行走的速度比等于对应时间的反比;当一组物体行走路程相等,那么行走的速度比等于对应时间的反比;当一组物体行走时间相等,那么行走的速度比等于对应路程的正比.当一组物体行走时间相等,那么行走的速度比等于对应路程的正比.1.A 和B 两个数的比是8:5,每一数都减少34后,后,A A 是B 的2倍,试求这两个数.倍,试求这两个数.【分析与解】方法一:设A 为8x 8x,则,则B 为5x 5x,于是有,于是有,于是有(8x-34):(5x-34)=2(8x-34):(5x-34)=2(8x-34):(5x-34)=2::1,x=17x=17,所以,所以A 为136136,,B 为8585.. 方法二:因为减少的数相同,所以前后A A 、、B 的差不变,开始时差占3份,后来差占1份且与B 一样多,也就是说减少的3434,占开始的,占开始的3-1=2份,所以开始的1份为34÷2=17,所以A 为17×8=136,B 为17×5=85.17×5=85.2.近年来.近年来火车火车大提速,大提速,142714274.家禽场里鸡、鸭、鹅三种家禽中公篱与母篱数量之比是2:3,已知鸡、鸭、鹅数量之比是8:7:5,公鸡、母鸡数量之比是1:3,公鸭、母鸭数量之比是3:4.试求公鹅、母鹅的数量比..试求公鹅、母鹅的数量比.【分析与解】 公鸡占家禽场家禽总数的公鸡占家禽场家禽总数的公鸡占家禽场家禽总数的 =21124615:(3544)45:46:(3544)46:47.333345´´+´´=´´+´´=8118751310´=+++,母鸡占总数的310; 公鸭占总数的8338753420´=+++,母鸭占总数的420; 公鹅占总数的213332102020-+=+(),母鹅占总数的234232102020-+=+(),公鹅、母鹅数量之比【分析与解】70cm 的杆子产生影子的长度为175cm;所以影子的长度与杆子的长度比为:所以影子的长度与杆子的长度比为:175175175::70=2.5倍.为322020::3:2.5.在古巴比伦的在古巴比伦的金字塔金字塔旁,旁,其朝西下降的阶梯旁其朝西下降的阶梯旁6m 的地方树立有1根走子,其影子的其影子的前端前端正好到达阶梯的第3阶(箭头箭头)).另外,此时树立l 根长70cm 自杆子,其影子的长度为175cm 175cm,设阶梯各阶的高度,设阶梯各阶的高度与深度都是50cm 50cm,求柱子的高度为多少?,求柱子的高度为多少? 于是,影子的长度为6+1.5+1.6+1.5+1.5×25×25×2.5=11.25.5=11.25.5=11.25,所以杆子的长度为,所以杆子的长度为11.11.25÷225÷225÷2.5=4.5m .5=4.5m .5=4.5m..6.已知三种.已知三种混合物混合物由三种成分A 、B 、C 组成,第一种仅含成分A 和B ,重量比为3:5;第二种只含成分B 和C ,重量比为I :2;第三种只含成分A 和C ,重量之比为2:3.以什么.以什么比例比例取这些混合物,才能使所得的混合物中A ,B 和C ,这三种成分的重量比为3:5:2 ?【分析与解】注意到第一种混合物种A 、B 重量比与最终混合物的A 、B 重量比相同,均为3:5.5.所以,所以,k=65. 标准的时钟每隔56511分钟重合一次.分钟重合一次. 假设经历了假设经历了x 分钟.分钟. 于是,甲钟每隔于是,甲钟每隔52460651124605´´´-分钟重合一次,甲钟重合了246052460´-´×x 次;次; 同理,乙钟重合了同理,乙钟重合了246052460´+´×x 次;次; 于是,需要乙钟比甲钟多重合于是,需要乙钟比甲钟多重合于是,需要乙钟比甲钟多重合 246052460´+´×x-246052460´-´×x=102460´×x=10; 所以,所以,x=24x=24x=24×60;×60;×60; 所以要经历24×60×65511分钟,则为5246065 51165246011´´=´天.于是为65天510(24)10()1111´=天.后来,由一队工人23与二队工人13组成新一队,其余的工人组成新二队.其余的工人组成新二队.两支新队又同时分别接受两项工作量与条件完全相同的工程,两支新队又同时分别接受两项工作量与条件完全相同的工程,两支新队又同时分别接受两项工作量与条件完全相同的工程,结果新二队结果新二队先将第二种、第三种先将第二种、第三种混合物混合物的A 、B 重量比调整到重量比调整到 3 3 3::5,再将第二种、第三种混合物中A 、B 与第一种混合物中A 、B 视为单一物质视为单一物质. .第二种混合物不含第二种混合物不含A ,第三种混合物不含B ,所以1.5倍第三种混合物含A 为3,5倍第二种混合物含B 为5,即第二种、第三种混合物的重量比为5:1.51.5..于是此时含有于是此时含有C 为5×2+15×2+1..5×3=145×3=14.5.5.5,在最终混合物中,在最终混合物中C 的含量为3A 3A//5B 含量的2倍.有14.14.5÷25÷25÷2-1=6.25-1=6.25-1=6.25,所以含有第一种混合物,所以含有第一种混合物6.256.25..即第一、二、三这三种混合物的即第一、二、三这三种混合物的比例比例为6.256.25::5:1.5=251.5=25::2020::6.7.现有男、女职工共1100人,其中全体男工和全体女工可用同样人,其中全体男工和全体女工可用同样天数天数完成同样的工作;若将男工人数和女工人数对调一下,则全体男25天完成的工作,全体女工需36天才能完成,问:男、女工各多少人女工各多少人? ?【分析与解】 直接设出男、女工人数,然后在通过直接设出男、女工人数,然后在通过直接设出男、女工人数,然后在通过方程方程求解,过程会比较繁琐.求解,过程会比较繁琐.设开始男工为“1”,此时女工为“设开始男工为“1”,此时女工为“k k ”,有1名男工相当k 名女工.男工、女工人数对调以后,则男工为“男工为“k k ”,相当于女工“,相当于女工“k k 2”,女工为“I”.,女工为“I”.有k 2:1=361=36::2525,所以,所以于是,开始有男工数为11k+×1100=500人,女工600人.人.8.有甲乙两个钟,甲每天比.有甲乙两个钟,甲每天比标准时间标准时间慢5分钟,而乙每天比标准时间快5分钟,在3月15日的日的零点零点零分的时候两钟正好对准.若已知在某一时刻,乙钟和甲钟时针与分针都分别重合,且在从3月15日开始到这个时候,乙钟时针与分针重合的次数比甲钟多10次,那么这个时候的标准时间是多少次,那么这个时候的标准时间是多少? ?【分析与解】 小时106(60)541111´=分钟.分钟.9.一队和二队两个.一队和二队两个施工施工队的人数之比为3:4,每人工作效率之比为5:4,两队同时分别接受两项工作量与条件完全相同的工程,结果二队比一队早完工96÷147=282´´´´282×4645天.天.144:(282×:(282×4645)=(144×45):(282×46))=(144×45):(282×46)=540。
六年级数学下册教案:比和比例(人教版)一、教学目标1. 知识与技能:让学生掌握比和比例的概念,能够运用比和比例解决实际问题。
2. 过程与方法:通过实例分析,让学生理解比和比例的基本性质,提高解决问题的能力。
3. 情感态度与价值观:培养学生对数学的兴趣,激发学生主动探索和合作交流的精神。
二、教学内容1. 比的意义:让学生理解比的概念,知道比是用来表示两个数量之间的关系的。
2. 比例的意义:让学生掌握比例的概念,明白比例是表示两个比相等的式子。
3. 比和比例的应用:通过实际问题的解决,让学生掌握比和比例的应用方法。
三、教学重点与难点1. 重点:比和比例的概念及其应用。
2. 难点:比和比例在实际问题中的应用。
四、教学方法1. 实例分析法:通过具体的实例,让学生理解比和比例的概念。
2. 问题驱动法:通过问题的提出和解决,激发学生的学习兴趣。
3. 合作学习法:鼓励学生进行小组讨论,培养学生的合作能力。
五、教学过程1. 导入:通过生活中的实例,引出比和比例的概念。
2. 新授:详细讲解比和比例的意义,通过实例分析,让学生理解比和比例的基本性质。
3. 练习:布置相关的练习题,让学生在实际操作中掌握比和比例的应用。
4. 小结:总结本节课的内容,强调比和比例在实际生活中的重要性。
5. 作业:布置适量的作业,巩固学生的学习成果。
六、教学评价1. 过程评价:观察学生在课堂上的表现,了解学生对比和比例的理解程度。
2. 作业评价:通过作业的批改,了解学生对比和比例的应用能力。
3. 期末考试:通过期末考试,全面评价学生对本节课内容的掌握程度。
七、教学资源1. 教材:人教版六年级数学下册。
2. 教具:黑板、粉笔、尺子等。
3. 学具:练习本、铅笔等。
八、教学建议1. 注重实例教学:通过生活中的实例,让学生更好地理解比和比例的概念。
2. 鼓励学生提问:鼓励学生在课堂上提出问题,培养学生的思考能力。
3. 注重学生的实际操作:通过实际操作,让学生更好地掌握比和比例的应用。
知识点一:认识比1、两个数相除又叫两个数的比,任何两个相关数量的比都可以抽象为两个数的比。
知识点二:比、除法、分数的关系2、比、除法、分数之间的联系:知识点三:比值的计算方法3、计算方法:求两个数的比的比值,就是用比的前项除以后项。
4、比和比值的区别:(1)比表示的是两个数的一种关系;比值是一个数值; (2)比可以写成bab a 或:的形式;比值可以是分数、小数或整数。
知识点四:比的基本性质5、比的前项、后项同时乘或除以相同的数(0除外),比值不变。
这叫做比的基本性质。
知识点五:化简比6、如果比的前项和后项都是整数,化简时可直接把比的前项和后项同时除以它们的最大公因数。
比 前项 比号 后项 比值 除法 被除数 除号 除数 商 分数 分子分数线分母分数值比和比例知识归纳提示:在以后解决问题或计算时,求两个数或几个数的比,如果没有特殊要求,一般要求出最简单的整数比。
知识点六:比例的意义7、比例的意义:表示两个比相等的式子叫做比例。
比例中有两个内项和两个外项。
拓展:比和比例的联系:比例是由比组成的。
比和比例的区别:(1)意义不同,比表示两个数相除的关系;比例表示两个比相等的关系 (2)形式不同,比由两项组成,比例由四项组成。
知识点七:比例的基本性质8、在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。
如果用字母表示比例的四个项,d c b a ::=,那么比例的基本性质可以表示成c b d a ⨯=⨯。
拓展:(1)根据比例的基本性质,可以判断两个比能否组成比例。
(2)组成比例的4个数最多可以组成8个不同的比例。
(3)根据比例的基本性质,已知比例中的任意三项,就可以求出第四项。
知识点八:解比例9、根据比例的基本性质,把两个外项和两个内项分别相乘,将比例式改写成c b d a ⨯=⨯的形式,再解方程求出x 的值。
【例1】 比的意义:一辆汽车3小时行驶了150千米,这辆汽车行驶的路程和时间的比是多少?比值是多少?比值表示什么?【练习】甲3小时走15千米,乙4小时走24千米。
人教版数学六年级下册《比和比例》教案一. 教材分析人教版数学六年级下册《比和比例》是学生在掌握了分数、小数、百分数等基础知识的基础上,进一步学习比和比例的知识。
这部分内容不仅为学生进一步学习几何、代数等知识奠定基础,而且也使学生在解决实际问题时能更好地运用数学知识。
本节课的内容包括比的定义、比的应用、比例的定义、比例的应用等。
二. 学情分析六年级的学生已经具备了一定的数学基础,对分数、小数、百分数等知识有了一定的了解。
但是,学生在学习比和比例时,还需要进一步理解比的含义、比的应用、比例的含义和比例的应用。
此外,学生还需要掌握比和比例在实际问题中的应用,提高解决问题的能力。
三. 教学目标1.知识与技能:理解比的含义,掌握比的应用;理解比例的含义,掌握比例的应用。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的动手能力、逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识,使学生感受到数学与生活的联系。
四. 教学重难点1.教学重点:比的含义,比的应用,比例的含义,比例的应用。
2.教学难点:比的化简,比例的求解,比例在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活情境,引导学生理解比的含义和比的应用。
2.案例教学法:通过典型例子,讲解比例的含义和比例的应用。
3.小组合作学习:培养学生合作意识,提高学生解决问题的能力。
4.引导发现法:引导学生发现比的化简和比例的求解方法,培养学生的逻辑思维能力。
六. 教学准备1.教具:多媒体课件、黑板、粉笔、教学卡片。
2.学具:练习本、笔、橡皮。
3.教学资源:相关的生活情境图片、例子。
七. 教学过程1.导入(5分钟)利用多媒体课件展示生活情境图片,引导学生发现其中的数学信息,提出问题,引发学生对比的思考。
例如,展示一幅水果图片,提出问题:“苹果和香蕉的比是多少?”2.呈现(10分钟)讲解比的定义,通过具体例子,让学生理解比的意义。
六年级下比和比例整理与复习在六年级下册的数学学习中,比和比例是非常重要的知识点。
它们不仅在数学学科中有着广泛的应用,还与我们的日常生活息息相关。
现在,让我们一起来对这部分知识进行整理和复习,加深对它们的理解和掌握。
一、比的认识比,表示两个数相除的关系。
例如,3∶5 可以读作“三比五”,其中3 是前项,5 是后项,“∶”是比号。
比的基本性质:比的前项和后项同时乘或除以相同的数(0 除外),比值不变。
利用比的基本性质,可以将比化简为最简整数比。
例如,将 12∶18 化简,先找出 12 和 18 的最大公因数是 6,然后将前项和后项同时除以 6,得到 2∶3。
二、比例的认识比例,表示两个比相等的式子。
例如,3∶4 = 9∶12 就是一个比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做比例的外项,中间的两项叫做比例的内项。
在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。
利用比例的基本性质,可以解比例。
比如,解比例 2∶x = 4∶8,根据比例的基本性质可得 4x = 2×8,4x = 16,x = 4。
三、比和比例的联系与区别联系:比例是由两个比值相等的比组成的。
区别:1、意义不同:比表示两个数相除,比例表示两个比相等。
2、项数不同:比有两项,前项和后项;比例有四项,两个内项和两个外项。
3、基本性质不同:比的基本性质是比的前项和后项同时乘或除以相同的数(0 除外),比值不变;比例的基本性质是在比例里,两个外项的积等于两个内项的积。
四、正比例和反比例1、正比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
例如,汽车行驶的速度一定,行驶的路程和时间成正比例关系。
因为路程÷时间=速度(一定)。
2、反比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
六年级数学下册概念公式(新人教版)(比和比例)姓名:学号:一.比 1.两个数的比表示两个数相除·2.在两个数的比中.比号前面的数叫做比的前项.比号后面的数叫做比的后项.比的前项除以后项的商.叫做比值·例: 12 ∶ 20 = = 12÷20 = = 0.612∶20读作:12比20区分比和比值:比值是一个数.通常用分数表示.也可以用小数或整数表示·比是一个式子.表示两个数的关系.可以写成比.也可以写成分数的形式·3.两个数的比也可以写成分数形式·例如:15:10也可以写成.仍读作“15比10”·4.比的前项和后项同时乘或除以相同的数(0除外).比值不变·这叫做比的基本性质·5.化简比:化简之后结果还是一个比.不是一个数·(最简单的整数比:前项和后项是互质关系)(1)整数比:前项和后项同时除以它们的最大公因数·(2)分数比:前项后项同时乘分母的最小公倍数.再按化简整数比的方法来化简·也可以求出比值.再写成比的形式·(3)小数比:向右移动小数点的位置.也就是先化成整数比·4.求比值的方法:前项÷后项·结果是一个数(整数.小数或分数)·5.比和除法.分数的区别:除法被除数除号(÷)除数(不能为0)商不变性质除法是一种运算分数分子分数线(—)分母(不能为0)分数的基本性质分数是一个数比前项比号(∶)后项(不能为0)比的基本性质比表示两个数的关系附:商不变的性质:被除数和除数同时乘或除以相同的数(0除外).商不变·分数的基本性质:分子和分母同时乘或除以相同的数(0除外).分数的大小不变·二.比例1.① 比:两个数相除又叫做两个数的比·② 比值:比的前项除以后项所得的商叫做比值·③比例:表示两个比相等的式子叫做比例·④组成比例的四个数.叫做比例的项.两端的两项叫做比例的外项.中间的两项叫做比例的内项·⑤在比例里.两个外项的积等于两个内项的积·这叫做比例的基本性质·⑥根据比例的基本性质.如果已知比例中的任何三项.就可以求出这个比例中的另外一个未知项·求比例中的未知项.叫做解比例·2. 正比例和反比例① 两种相关联的量.一种量变化.另一种量也随着变化.如果这两种量中相对应的两个数的比值(也就是商)一定.这两种量就叫做成正比例的量.它们的关系叫做正比例关系·用字母表示=k(一定)② 两种相关联的量.一种量变化.另一种量也随着变化.如果这两种量中相对应的两个数的乘积一定.这两种量就叫做成反比例的量.它们的关系叫做反比例关系·用字母表示x×y=k(一定)3.① 一幅图的图上距离和实际距离的比.叫做这幅图的比例尺·图上距离图上距离:实际距离=比例尺或 =比例尺实际距离②比例尺分为:数值比例尺和线段比例尺·③比例尺应用题的解答方法:(注意:单位要一致.一般用“厘米”单位计算)④比例尺 = 图上距离:实际距离实际距离 = 图上距离÷比例尺图上距离 = 实际距离×比例尺新人教版六年级数学下总复习概念——(式与方程)(1)方程:含有未知数的等式叫做方程·(如:是方程.而3+25不是方程.5+36>100也不是方程·)(2)解方程的方法:(等式性质和四则运算各部分间关系)①加数+加数=和加数=和-另一个加数②被减数-减数=差被减数=差+减数减数=被减数-差③因 数×因数=积 因 数=积÷另一个因数④被除数÷除数=商 被除数=商×除数除 数=被除数÷商(3)运算顺序:加减乘除混合的算式要(先乘除后加减);只有加减法或只有乘除法就要(从左到右)·(4)用字母表示数可以简明地表达数量.数量关系.运算定律和计算公式等.为研究和解决问题带来很多方便·(V=st V=sh )(5)a3 表示:3个a 相乘 a ×a ×a3a 表示:3个a 相加 a +a +a 即a ×33a表示:a 除以3 a ÷3(6)等式表示相等关系的式子·(7)等式的性质:等式两边加上或减去同一个数.左右两边仍然相等·等式两边乘同一个数.或除以同一个不为0的数.左右两边仍然相等·(8)运算定律加法交换律: a + b = b + a加法结合律:(a + b)+c = a +(b + c)乘法交换律:a ×b=b ×a乘法结合律:(a ×b)×c= a ×(b ×c)乘法分配律:(a + b )×c=a × c + b × c减法的性质:a -b -c= a -c -ba -b -c=a -(b + c)除法的简算:a ÷ b ÷ c= a ÷ c ÷ ba ÷b ÷ c= a÷(b × c)(9)常用单位换算单位换算的方法: 个数×进率大单位 小单位个数÷进率1000 10 10 101.长度单位: 千米 —→ 米—→ 分米—→ 厘米—→ 毫米km m dm cm mm100 10000 100 100 1002.面积单位:平方千米—→公顷—→平方米—→平方分米—→平方厘米—→平方毫米 km2 hm2 m2 dm2 cm2 mm21000升 ———→ 毫 升 L ml∣ ∣ 1000 ↓ 1000 ↓ 3.体积(容积)单位:立方米 —→ 立方分米 —→ 立方厘米 m3 dm3 cm31000 10004.重量单位:吨—→千克—→克t kg g10 105.人民币单位:元—→角—→分100 12 ? 24 60 60 6.时间单位:世纪—→年—→月—→日—→时—→分—→秒【大月(31天)有:1.3.5.7.8.10.12月】【小月(30天)有:4.6.9.11月】【闰年:2月有29天;全年有366天】【平年:2月有28天;全年有365天】;。