【拓展提升】 1.处理指数函数图象问题的两个要点 (1)牢记指数函数y=ax的图象恒过定点(0,1),分布在第一和 第二象限. (2)明确影响指数函数图象特征的关键是底数.
2.底数变化对指数函数图象形状的影响 指数函数y=ax的图象如图所示,由指数函数y=ax的图象与 直线x=1相交于点(1,a)可知: (1)在y轴右侧,图象从上到下相应的底数由大变小; (2)在y轴左侧,图象从下到上相应的底数由大变小. 如图中的底数的大小关系为 0<a4<a3<1<a2<a1.
22
答案:3 或 1
22
【类题试解】已知a>0,且a≠1,若函数f(x)=2ax-4在区间
[-1,2]上的最大值为10,则a=______.
【解析】(1)若a>1,则函数y=ax在区间[-1,2]上是递增的,
当x=2时,f(x)取得最大值f(2)=2a2-4=10,
即a2=7,又a>1,∴a= 7.
【解析】>1时,函数y=ax的图象过点(0,1),分布在第一、 二象限,且从左到右是上升的. 直线y=x+a过第一、二、三象 限,与y轴的交点为(0,a),在点(0,1)的上方. A,B,C,D四 项均不符合此要求.当0<a<1时,函数y=ax的图象过点 (0,1),分布在第一、二象限,且从左到右是下降的. 直线 y=x+a过第一、二、三象限, 与y轴的交点为(0,a),在点(0,1) 和点(0,0)项符合此要求.
=af(x)定义域、值域的求法 (1)定义域 函数y=af(x)的定义域与y=f(x)的定义域相同. (2)值域 ①换元,令t=f(x); ②求t=f(x)的定义域x∈D; ③求t=f(x)的值域t∈M; ④利用y=at的单调性求y=at,t∈M的值域.