2016创新设计高考物理浙江专用二轮专题复习专题三 电场和磁场课时训练 第7讲.doc
- 格式:doc
- 大小:235.66 KB
- 文档页数:7
专题三综合检测一、单项选择题 1.(2015·宁波高三十校联考)如图,弹簧测力计下挂有一单匝正方形金属线框,线框边长为L ,质量为M ,线框上边水平且处于垂直纸面向里的匀强磁场中,线框通有如图所示方向的电流,且线框处于静止状态,若此时弹簧测力计示数大小为F ,已知该线框单位长度自由电子个数为n ,重力加速度为g ,则电子定向移动对应的洛伦兹力大小为( )A .F -MgB .Mg -F C.F -Mg 4nLD.Mg -F nL解析:选D.由左手定则可以判断出安培力方向向上,由F A =Mg -F =nLF 洛,解得F 洛=Mg -F nL,选项D 正确.2.(2015·高考安徽卷)已知均匀带电的无穷大平面在真空中激发电场的场强大小为σ2ε0,其中σ为平面上单位面积所带的电荷量,ε0为常量.如图所示的平行板电容器,极板正对面积为S ,其间为真空,带电荷量为Q .不计边缘效应时,极板可看做无穷大导体板,则极板间的电场强度大小和两极板间相互的静电引力大小分别为( )A.Qε0S 和Q 2ε0SB.Q 2ε0S 和Q 2ε0SC.Q 2ε0S 和Q 22ε0SD.Qε0S 和Q 22ε0S解析:选D.每块极板上单位面积所带的电荷量为σ=QS ,每块极板产生的电场强度为E=σ2ε0,所以两极板间的电场强度为2E =Q ε0S.一块极板在另一块极板处产生的电场强度E ′=Q2ε0S ,故另一块极板所受的电场力F =qE ′=Q ·Q2ε0S =Q 22ε0S,选项D 正确. 3.(2015·杭州调研)如图所示,现有四条完全相同的垂直于纸面放置的长直导线,横截面分别位于一正方形abcd 的四个顶点上,直导线分别通有方向垂直于纸面向里、大小分别为I a =I 、I b =2I 、I c =3I 、I d =4I 的恒定电流.已知通电长直导线周围距离为r 处磁场的磁感应强度大小为B =k Ir ,式中常量k >0,I 为电流强度.忽略电流间的相互作用,若电流I a 在正方形的几何中心O 点处产生的磁感应强度大小为B ,则O 点处实际的磁感应强度的大小及方向为( )A.22B,方向由O点指向ad中点B.22B,方向由O点指向ab中点C.10B,方向垂直于纸面向里D.10B,方向垂直于纸面向外解析:选A.由题意,直导线周围某点的磁感应强度与电流强度成正比,与距直导线距离成反比.应用安培定则并结合平行四边形定则,可知A选项正确.4.如图所示,由abcd组成的一闭合线框,其中a、b、c三点的坐标分别为(0,L,0),(L,L,0),(L,0,0),整个空间处于沿y轴正方向的匀强磁场中,通入电流I,方向如图所示,关于各边所受的安培力的大小,下列说法中正确的是()A.ab边与bc边受到的安培力大小相等,方向相互垂直B.cd边受到的安培力最大,方向平行于xOz平面C.cd边与ad边受到的安培力大小相等,方向平行于yOz平面D.ad边不受安培力作用解析:选B.因为ab垂直放置于磁场中,故其受的安培力F ab=BIL ab,而bc平行于磁场,故其受的安培力为零,A错;cd边垂直于磁场,且长度最长,所以其受到的安培力最大,由左手定则知其安培力的方向平行于xOz平面,B对;又F ad=BIL Od,又Od<cd,故cd边与ad边受到的安培力大小不等,C错;ad边受安培力作用,D错.5.(2015·台州一模)如图所示,在MN、PQ间同时存在匀强磁场和匀强电场,磁场方向垂直纸面水平向外,电场在图中没有标出.一带电小球从a点射入场区,并在竖直面内沿直线运动至b点,则小球()A.一定带正电B.受到电场力的方向一定水平向右C.从a到b过程,克服电场力做功D.从a到b过程中可能做匀加速运动解析:选C.无论电场方向沿什么方向,小球带正电还是负电,电场力与重力的合力是一定的,且与洛伦兹力等大反向,故要使小球做直线运动,洛伦兹力恒定不变,其速度大小也恒定不变,故D错误;只要保证三个力的合力为零,因电场方向没确定,故小球电性也不确定,A、B均错误;由W G+W电=0可知,重力做功W G>0,故W电<0,小球一定克服电场力做功,C正确.6.如图所示,边长为L的等边三角形ABC为两有界匀强磁场的理想边界,三角形内的磁场方向垂直纸面向外,磁感应强度大小为B,三角形外的磁场(足够大)方向垂直纸面向里,磁感应强度大小也为B .把粒子源放在顶点A 处,它将沿∠A 的角平分线发射质量为m 、电荷量为q 、初速度为v 0的带电粒子(粒子重力不计).若从A 射出的粒子①带负电,v 0=qBLm ,第一次到达C 点所用时间为t 1②带负电,v 0=qBL2m ,第一次到达C 点所用时间为t 2③带正电,v 0=qBLm ,第一次到达C 点所用时间为t 3④带正电,v 0=qBL2m,第一次到达C 点所用时间为t 4则下列判断正确的是( ) A .t 1=t 3<t 2=t 4 B .t 1<t 2<t 4<t 3 C .t 1<t 2<t 3<t 4 D .t 1<t 3<t 2<t 4解析:选B.粒子在磁场中做匀速圆周运动,洛伦兹力提供圆周运动的向心力. (1)当v 0=qBLm 时,则由牛顿第二定律可得q v B =m v 2r ,T =2πmqB根据几何关系作出运动轨迹,r =L ,如图1.由轨迹知,当电荷带正电,粒子经过一个周期到达C 点,即为t 3=T ;当粒子带负电,粒子经过16T 第一次到达C 点,即为t 1=16T ;(2)当v 0=qBL 2m ,r =12L ,如图2.由运动轨迹可知,当电荷带正电,粒子经过56T 到达C 点,即为t 4=56T ,当粒子带负电,粒子经过T 3第一次到达C 点,即为t 2=T3,综上所述,有t 1<t 2<t 4<t 3,故B 正确.二、不定项选择题 7.(2015·山东临沂一模)如图所示,两根长直导线竖直插入光滑绝缘水平桌面上的M 、N 两小孔中,O 为M 、N 连线中点,连线上a 、b 两点关于O 点对称.导线通有大小相等、方向相反的电流I.已知通电长直导线在周围产生的磁场的磁感应强度B=k Ir,式中k是常数,I是导线中的电流,r为点到导线的距离.一带正电的小球(图中未画出)以初速度v0从a点出发沿连线运动到b点.关于上述过程,下列说法正确的是()A.小球先做加速运动后做减速运动B.小球一直做匀速直线运动C.小球对桌面的压力先增大后减小D.小球对桌面的压力一直在增大解析:选BC.由安培定则和磁场叠加原理可以判断出在MN连线上的磁场方向平行桌面向里,所以小球所受洛伦兹力的方向垂直桌面向上.对小球受力分析,受重力、桌面支持力、洛伦兹力3个力作用,小球在水平方向不受力,故从a点到b点,小球一直做匀速直线运动,A错误,B正确;由于从a至b合磁感应强度先减小后增大,则小球所受洛伦兹力先减小后增大,桌面对小球的支持力先增大后减小,由作用力与反作用力的关系知小球对桌面的压力先增大后减小,C正确,D错误.8.无限长通电直导线在其周围某一点产生磁场的磁感应强度大小与电流成正比,与导线到这一点的距离成反比,即B=k Ir(式中k为常数).如图甲所示,光滑绝缘水平面上平行放置两根无限长直导线M和N,导线N中通有方向如图的恒定电流I N,导线M中的电流I M 大小随时间变化的图象如图乙所示,方向与N中电流方向相同.绝缘闭合导线框ABCD放在同一水平面上,AB边平行于两直导线,且位于两者正中间.则以下说法正确的是()A.0~t0时间内,流过R的电流方向由C→DB.t0~2t0时间内,流过R的电流方向由D→CC.0~t0时间内,不计CD边电流影响,则AB边所受安培力的方向向左D.t0~2t0时间内,不计CD边电流影响,则AB边所受安培力的方向向右解析:选ACD.0~t0时间内,M中电流由0逐渐增加到I N,则线框中合磁场向里且逐渐增大,则感应电流的磁场应向外,线框中电流方向为A→B→C→D→A,故A对.t0~2t0时间内,M中电流由I N增大到2I N,线框中磁场向里且逐渐增大,则感应电流的磁场仍向外,线框中电流方向为A→B→C→D→A,B错.0~t0时间内,AB中电流由A→B,AB处磁场向外,则其所受安培力的方向向左,C对.t0~2t0时间内,AB中电流仍为A→B,但AB处磁场方向向里,则其所受安培力的方向向右,D对.9.(2015·新余一模)如图,两个初速度大小相同的同种离子a和b,从O点沿垂直磁场方向进入匀强磁场,最后打到屏P上.不计重力.下列说法正确的有()A .a 、b 均带正电B .a 在磁场中飞行的时间比b 的短C .a 在磁场中飞行的路程比b 的短D .a 在P 上的落点与O 点的距离比b 的近 解析:选AD.两离子在磁场中的运动情况如图所示,根据左手定则,a 、b 均带正电,A 正确;由T =2πmqB 可知,两离子在磁场中运动周期相同,由运动轨迹可知离子a 转过的圆心角大于离子b 转过的圆心角,即θa >θb ,由t =θ2πT ,可以判断a 在磁场中飞行的时间比b 的长,B 错误;由q v B =m v 2R得R=m vqB ,故两离子在磁场中运动半径相同,所以a 在磁场中飞行的路程比b 的长,a 在P 上的落点与O 点的距离比b 的近,C 错误、D 正确.10.如图所示,在第二象限中有水平向右的匀强电场,电场强度为E ,在第一象限内存在垂直纸面向外的匀强磁场,磁感应强度大小为B .有一重力不计的带电粒子以垂直于x 轴的速度v 0=10 m/s 从x 轴上的P 点进入匀强电场,恰好与y 轴成45°角射出电场,再经过一段时间又恰好垂直于x 轴进入第四象限.已知O 、P 之间的距离为d =0.5 m ,则带电粒子( )A .带正电荷B .在电场中运动的时间为0.1 sC .在磁场中做圆周运动的半径为22m D .在磁场中运动的时间为3π40s 解析:选ABD.根据带电粒子在电场中的偏转方向可知带电粒子带正电荷,选项A 正确;由恰好与y轴成45°角射出电场可知,离开电场时v x =v y =v 0,则v =2v 0=10 2 m/s ,在电场中沿x轴方向做匀加速运动,d =v 02t ,解得粒子在电场中运动的时间为t =2dv 0=0.1 s ,选项B 正确;沿y 轴方向上的位移为l =v 0t =1 m ,在磁场中的偏转圆心角为135°(如图所示),由几何关系可得圆周运动的半径为R =2l = 2 m ,故选项C 错误;在磁场中运动的时间为t =135°360°·T =38·2πR v =3π40 s ,故选项D 正确.三、非选择题11.(2015·昆明三中、玉溪一中联考)如图所示,在xOy 平面的第一、四象限,有水平向右匀强电场,在第二、三象限中存在磁感应强度为B ,方向垂直纸面向里的匀强磁场和场强大小与第一象限的场强大小相等,方向竖直向上的匀强电场.第一象限中P 点的坐标是⎝⎛⎭⎫R 2,32R ,在P 点拴一根绝缘细线,长为R ,细线另一端系一个质量为m ,带电荷量为q 的小球,现将细线拉至与水平方向成45°角由静止释放.小球摆至O 点位置时,细线恰好脱开,小球跨过y 轴,恰好做匀速圆周运动.求:(1)电场强度的大小;(2)小球到达O 点时的速度;(3)小球在y 轴左侧做匀速圆周运动的旋转半径.解析:(1)小球跨过y 轴,恰好做匀速圆周运动,可知小球受到的电场力等于重力大小,Eq =mg所以场强E =mgq.(2)小球从初始状态释放,摆动到O 点,根据动能定理: mg ⎝⎛⎭⎫22+32R -Eq ⎝⎛⎭⎫22+12R =12m v 2 得小球的速度 v =(3-1)gR速度的方向与y 轴正方向成60°角斜向上.(3)如图,小球在y 轴左侧做匀速圆周运动,小球受到的电场力大小等于重力大小,洛伦兹力提供向心力F 洛=m v 2r即q v B =m v 2r得旋转半径为r =m (3-1)gRqB.答案:(1)mgq (2)见解析 (3)m (3-1)gR qB12.(2015·浙江宁波高三二模)实验室常用电场和磁场来控制带电粒子的运动.如图所示,在真空中A 、C 两板之间加上电压U ,粒子从A 板附近由静止被加速后从D 点进入圆形有界磁场;匀强磁场区域以O 为圆心,半径R =310m ,磁感应强度B 方向垂直纸面向外;磁场右侧有一个范围足够大的匀强电场,方向竖直向下,左边界与圆形磁场边界相切;现在电场区域放置一块足够长挡板GH ,它与水平线FD 夹角为60°(F 点在挡板上,圆心O 在FD 上),且OF =3R .一比荷q m =13×106 C/kg 的带正电粒子,从A 板附近由静止释放,经U =150V 的电压加速后,从D 点沿与水平线成60°角的方向射入磁场,粒子离开圆形磁场时其速度方向水平,最后恰好打在挡板上的F 点.不计粒子重力.(1)求粒子进入磁场时的速度大小v D ; (2)求磁感应强度B 的大小;(3)求粒子到达F 点时的速度大小v F ;(4)不改变其他条件,逐渐增大匀强电场的电场强度,要使粒子仍能打到挡板上,求所加电场场强的最大值.解析:(1)粒子被加速过程,由动能定理有qU =12m v 2D解得v D =1×104 m/s.(2)由几何关系可知,粒子在有界磁场中做圆周运动的圆心N 恰好在磁场边界上,粒子从M 点水平射出磁场,运动轨迹如图甲所示.由此得做匀速圆周运动的半径r =3R =0.3 m根据Bq v D =m v 2Dr,解得B =0.1 T.甲(3)粒子进入电场后做类平抛运动,有 水平位移x =2R =35m竖直位移y =R sin 60°=0.15 m 又x =v D t ,y =v y 2t ,v =v 2D +v 2y 解得v =72×104 m/s =1.3×104 m/s. (4)电场强度取到最大值E 的临界条件是粒子在电场中的运动轨迹恰好与挡板相切,如图乙所示.由类平抛运动的规律,粒子速度的反向延长线过水平位移的中点Q ,有水平位移x ′=4R -2R sin 60°tan 30°=0.3 3 m根据x ′=v D t ′ v ′y =at ′又v ′y =v D tan 60°,a =Eqm联立解得E =1 000 V/m.乙答案:(1)1×104 m/s (2)0.1 T (3)1.3×104 m/s (4)1 000 V/m。
一、单项选择题1.(2015·辽师大附中二模)如图所示,一重力不计的带电粒子以某一速度进入负点电荷形成的电场中,且只在电场力作用下依次通过M、N、P三点,其中N点是轨迹上距离负点电荷最近的点.若粒子在M点和P点的速率相等,则()A.粒子在N点时的速率最大B.U MN=U NPC.粒子在N点时的加速度最大D.粒子在M点时的电势能大于其在N点时的电势能解析:选C.据带电粒子所受电场力指向运动轨迹的凹侧,再根据题图可知该粒子从M 点到N点电场力做负功,从N点到P点电场力做正功,所以带电粒子的动能先减少后增加,则在N点的动能最小,速度也最小,A错误;电势能先增加后减少,D错误;据题意知,粒子在M点和P点速率相等,据动能定理有qU MN=m v2N2-m v2M2和qU NP=m v2P2-m v2N2,所以U MN=-U NP,B错误;在N点的电场线密集,即粒子在N点所受的电场力较大,加速度也较大,C正确.2.如图,直线a、b和c、d是处于匀强电场中的两组平行线,M、N、P、Q是它们的交点,四点处的电势分别为φM、φN、φP、φQ.一电子由M点分别运动到N点和P点的过程中,电场力所做的负功相等.则()A.直线a位于某一等势面内,φM>φQB.直线c位于某一等势面内,φM>φNC.若电子由M点运动到Q点,电场力做正功D.若电子由P点运动到Q点,电场力做负功解析:选B.由电子从M点分别运动到N点和P点的过程中电场力所做的负功相等可知,N、P两点在同一等势面上,且电场线方向为M→N,故选项B正确,选项A错误.M点与Q点在同一等势面上,电子由M点运动到Q点,电场力不做功,故选项C错误.电子由P 点运动到Q点,电场力做正功,故选项D错误.3.(2015·河北石家庄一轮质检)M、N是某电场中一条电场线上的两点,若在M点释放一个初速度为零的电子,电子仅受电场力作用,并沿电场线由M点运动到N点,其电势能E p 随位移x变化的关系如图所示,其中电子在M点时的电势能为E p M,电子在N点时的电势能为E p N,则下列说法正确的是()A.电子在N点时的动能小于在M点时的动能B.该电场有可能是匀强电场C.该电子运动的加速度越来越小D.电子运动的轨迹为曲线解析:选C.电子仅受电场力的作用,电势能与动能之和恒定,由题图可知电子由M点运动到N点,电势能减小,故动能增加,A选项错误;分析题图可得电子的电势能随运动距离的增大,减小得越来越慢,即经过相等距离电场力做功越来越少,由W=q EΔx可得电场强度越来越小,B选项错误;由于电子从M点运动到N点电场力逐渐减小,所以加速度逐渐减小,C选项正确;电子从静止开始沿电场线运动,可得M、N点所在电场线为直线,则电子的运动轨迹必为直线,D选项错误.4.如图所示,a、b、c、d是某匀强电场中的四个点,它们是一个四边形的四个顶点,ab ∥cd,ab⊥bc,2ab=cd=bc=2l,电场线与四边形所在平面平行.已知a点电势为24 V,b 点电势为28 V,d点电势为12 V.一个质子(不计重力)经过b点的速度大小为v0,方向与bc成45°,一段时间后经过c点,则下列说法错误的是()A.c点电势为20 VB.质子从b运动到c所用的时间为2l v0C.场强的方向由a指向cD.质子从b运动到c电场力做功为8电子伏解析:选C.如图,由匀强电场中电场分布与电势差间的关系有:φb-φa=φa-φe得φe=20 V又φb-φe=φc-φd得φc=20 V,A正确.ec连线为等势线,则电场方向由b指向d,C错误.质子做类平抛运动,则有:2l sin 45°=v0t得t=2lv0,B正确.质子从b运动到c电场力做功W=qU bc=8 eV,D正确.二、不定项选择题5.(2015·高考江苏卷)两个相同的负电荷和一个正电荷附近的电场线分布如图所示.c是两负电荷连线的中点,d点在正电荷的正上方,c、d到正电荷的距离相等,则()A.a点的电场强度比b点的大B.a点的电势比b点的高C.c点的电场强度比d点的大D.c点的电势比d点的低解析:选ACD.根据电场线的分布图,a、b两点中,a点的电场线较密,则a点的电场强度较大,选项A正确.沿电场线的方向电势降低,a点的电势低于b点的电势,选项B 错误.由于c、d关于正电荷对称,正电荷在c、d两点产生的电场强度大小相等、方向相反,两负电荷在c点产生的电场强度为0,在d点产生的电场强度方向向下,根据电场的叠加原理,c点的电场强度比d点的大,选项C正确.c、d两点中c点离负电荷的距离更小,c点电势比d点低,选项D正确.6.(2015·高考四川卷)如图所示,半圆槽光滑、绝缘、固定,圆心是O,最低点是P,直径MN水平,a、b是两个完全相同的带正电小球(视为点电荷),b固定在M点,a从N点静止释放,沿半圆槽运动经过P点到达某点Q(图中未画出)时速度为零,则小球a()A.从N到Q的过程中,重力与库仑力的合力先增大后减小B .从N 到P 的过程中,速率先增大后减小C .从N 到Q 的过程中,电势能一直增加D .从P 到Q 的过程中,动能减少量小于电势能增加量解析:选BC.小球a 从N 点释放一直到达Q 点的过程中,a 、b 两球的距离一直减小,库仑力变大,a 受重力不变,重力和库仑力的夹角从90°一直减小,故合力变大,选项A 错误;小球a 从N 到P 的过程中,速度方向与重力和库仑力的合力方向的夹角由小于90°到大于90°,故库仑力与重力的合力先做正功后做负功,a 球速率先增大后减小,选项B 正确;小球a 由N 到Q 的过程中库仑力一直做负功,电势能一直增加,选项C 正确;小球a 从P 到Q 的过程中,减少的动能转化为重力势能和电势能之和,故动能的减少量大于电势能的增加量,选项D 错误.7.(2015·浙江宁波高三二模)如图所示,同一竖直平面内固定着水平绝缘细杆AB 、CD ,细杆长均为l ,两细杆间竖直距离为h ,B 、D 两端与光滑绝缘、半径为h2的半圆形细杆相连,半圆形细杆与AB 、CD 在同一竖直平面内,O 为AD 、BC 连线的交点.在O 点固定一电荷量为+Q 的点电荷,一质量为m 、电荷量为-q 的小球穿在细杆上,从A 点以一定的初速度出发,沿细杆滑动且恰能到达C 点.已知小球与两水平细杆间的动摩擦因数为μ,小球所受库仑力始终小于小球所受重力,不计带电小球对点电荷电场的影响,静电力常量为k .则小球从A 点到C 点的运动过程中,下列说法正确的是( )A .点电荷产生的电场在A 、C 两点的电场强度相同B .小球运动到O 点正下方时,受到的摩擦力最小,其值为μ⎝⎛⎭⎫mg -4kqQ h 2C .从B 点到D 点的运动过程中电场力对小球先做正功后做负功D .小球的初速度大小为2gh +4μgl解析:选BD.点电荷产生的电场在A 、C 两点的电场强度大小相等、方向不同,选项A 错误;小球运动到O 点正下方时,细杆对小球的支持力最小,支持力大小为mg -4kqQh 2,所以摩擦力大小为F f =μF N =μ⎝⎛⎭⎫mg -4kqQh 2,选项B 正确;从B 点到D 点的运动过程中,小球到O 点的距离先变大,后变小,电场力先做负功,后做正功,选项C 错误;从A 点到C 点,根据对称性,小球克服摩擦力做功为2μmgl ,克服重力做功为mgh ,由动能定理,-mgh -2μmgl =0-12m v 2,可解得小球的初速度为v =2gh +4μgl ,选项D 正确.8.(2015·高考广东卷)如图所示的水平匀强电场中,将两个带电小球M 和N 分别沿图示路径移动到同一水平线上的不同位置,释放后,M 、N 保持静止,不计重力,则( )A .M 的带电量比N 的大B .M 带负电荷,N 带正电荷C .静止时M 受到的合力比N 的大D .移动过程中匀强电场对M 做负功 解析:选BD.两带电小球分别在两球间的库仑力和水平匀强电场的电场力作用下处于平衡状态,因为两小球间的库仑力等大反向,则匀强电场对两带电小球的电场力也等大反向,所以两带电小球的带电量相等,电性相反,静止时,两球所受合力均为零,选项A 、C 错误;M 、N 两带电小球受到的匀强电场的电场力分别水平向左和水平向右,即M 带负电,N 带正电,M 、N 两球在移动的过程中匀强电场对M 、N 均做负功,选项B 、D 正确.9.(2015·高考天津卷)如图所示,氕核、氘核、氚核三种粒子从同一位置无初速地飘入电场线水平向右的加速电场E 1,之后进入电场线竖直向下的匀强电场E 2发生偏转,最后打在屏上.整个装置处于真空中,不计粒子重力及其相互作用,那么( )A .偏转电场E 2对三种粒子做功一样多B .三种粒子打到屏上时的速度一样大C .三种粒子运动到屏上所用时间相同D .三种粒子一定打到屏上的同一位置解析:选AD.根据动能定理有qE 1d =12m v 21,得三种粒子经加速电场加速后获得的速度v 1=2qE 1d m .在偏转电场中,由l =v 1t 2 及y =12qE 2m t 22得,带电粒子经偏转电场的侧位移y =E 2l 24E 1d,则三种粒子在偏转电场中的侧位移大小相等,又三种粒子带电荷量相同,根据W =qE 2y 得,偏转电场E 2对三种粒子做功一样多,选项A 正确.根据动能定理,qE 1d +qE 2y =12m v 22,得到粒子离开偏转电场E 2打到屏上时的速度v 2= 2(qE 1d +qE 2y )m,由于三种粒子的质量不相等,故v 2不一样大,选项B 错误.粒子打在屏上所用的时间t =d v 12+L ′v 1=2dv 1+L ′v 1(L ′为偏转电场左端到屏的水平距离),由于v 1不一样大,所以三种粒子打在屏上的时间不相同,选项C 错误.根据v y =qE 2m t 2及tan θ=v y v 1得,带电粒子的偏转角的正切值tan θ=E 2l2E 1d,即三种带电粒子的偏转角相等,又由于它们的侧位移相等,故三种粒子打到屏上的同一位置,选项D 正确.10.(2015·河北百校联考)如图所示,在绝缘水平面上固定着一光滑绝缘的圆形槽,在某一过直径的直线上有O 、A 、B 三点,其中O 为圆心,A 点固定电荷量为Q 的正电荷,B 点固定一个未知电荷,且圆周上各点电势相等,AB =L .有一个可视为质点的质量为m ,电荷量为-q 的带电小球正在槽中运动,在C 点受到的电场力指向圆心,C 点所处的位置如图所示,根据题干和图示信息可知( )A .B 点的电荷带正电B .B 点的电荷的电荷量为3QC .B 点的电荷的电荷量为3QD .小球在槽内做的是匀速圆周运动 解析:选CD.如图,由小球在C 点时受到的电场力指向圆心,对小球受力分析可知B 点的电荷对小球有排斥力,因小球带负电,则B 点的电荷带负电.由∠ABC =∠ACB =30°,知:∠ACO =30°,AB =AC =L ,BC =2AB cos 30°=3L 由几何关系可得:F 1=3F 2即:kQq L 2=3kQ B q (3L )2得Q B =3Q ,故A 、B 错误,C 正确.圆周上各点电势相等,小球在运动过程中电势能不变,根据能量守恒得知,小球的动能不变,小球做匀速圆周运动,故D 正确.三、非选择题 11.(2015·福建厦门质检)如图所示,光滑、绝缘的水平轨道AB 与四分之一圆弧轨道BC 平滑连接,并均处于水平向右的匀强电场中,已知匀强电场的场强E =5×103 V/m ,圆弧轨道半径R =0.4 m .现有一带电荷量q =+2×10-5 C 、质量m =5×10-2 kg 的物块(可视为质点)从距B 端x =1 m 处的P 点由静止释放,加速运动到B 端,再平滑进入圆弧轨道BC ,重力加速度g =10 m/s 2,求:(1)物块在水平轨道上加速运动的时间和到达B 点的速度v B 的大小; (2)物块刚进入圆弧轨道时受到的支持力F N B 的大小.解析:(1)在物块从开始至运动到B 点的过程中,由牛顿第二定律可知: qE =ma又由运动学公式有:x =12at 2解得:t =1 s 又因:v B =at 得:v B =2 m/s.(2)物块刚进入圆弧轨道时,在沿半径方向由牛顿第二定律,有: F N B -mg =m v 2BR解得:F N B =1 N.答案:(1)1 s 2 m/s (2)1 N12.(2015·台州模拟)如图所示,质量m =2.0×10-4 kg 、电荷量q =1.0×10-6 C 的带正电微粒静止在空间范围足够大的电场强度为E 的匀强电场中.取g =10 m/s 2.(1)求匀强电场的电场强度E 的大小和方向;(2)在t =0时刻,电场强度大小突然变为E 0=4.0×103 N/C ,方向不变.求在t =0.20 s 时间内电场力做的功;(3)若(2)中条件不变,在t =0.20 s 时刻突然撤掉电场,求带电微粒回到出发点时的动能. 解析:(1)因微粒静止,知其受力平衡,对其受力分析有 Eq =mgE =mg q =2.0×10-4×101.0×10-6N/C =2.0×103 N/C , 方向竖直向上.(2)在t =0时刻,电场强度大小突然变为E 0=4.0×103 N/C ,设微粒的加速度为a ,在t =0.20 s 时间内上升高度为h ,电场力做功为W ,则qE 0-mg =ma 解得:a =10 m/s 2h =12at 2 解得:h =0.20 mW =qE 0h解得:W =8.0×10-4 J.(3)设在t =0.20 s 时刻突然撤掉电场时微粒的速度大小为v ,回到出发点时的动能为E k ,则v =atE k =mgh +12m v 2解得:E k =8.0×10-4 J.答案:(1)2.0×103 N/C 方向竖直向上(2)8.0×10-4 J (3)8.0×10-4 J。
电场与磁场的理解一、选择题1.某平面区域内一静电场的等势线分布如图中虚线所示,相邻的等势线电势差相等,一负电荷仅在静电力作用下由a 运动至b ,设粒子在a 、b 两点的加速度分别为a a 、b a ,电势分别为a ϕ、b ϕ,该电荷在a 、b 两点的速度分别为a v 、b v ,电势能分别为p a E 、p b E ,则( )A .a b a a >B .b a v v >C .p p a b E E >D .a b ϕϕ>2.某静电场方向平行于x 轴,x 轴上各点电场强度随位置的变化关系如图所示,规定x 轴正方向为电场强度正方向。
若取x 0处为电势零点,则x 轴上各点电势随位置的变化关系可能为( )A .B .C .D .3.一匀强电场的方向平行于xOy 平面,平面内a 、b 、c 三点的位置如图所示,三点的电势分别为10V 、17V 、26V 。
下列说法正确的是( ) A .电场强度的大小为2.5V/cmB .坐标原点处的电势为2VC .电子在a 点的电势能比在b 点的小7eVD .电子从b 点运动到O 点,电场力做功为16eV4.如图,空间中存在着水平向右的匀强电场,现将一个质量为m ,带电量为q +的小球在A 点以一定的初动能k E 竖直向上抛出,小球运动到竖直方向最高点C 时的沿场强方向位移是0x ,动能变为原来的一半(重力加速度为g ),下列说法正确的是( )A .场强大小为22mgqB .A 、C 竖直方向的距离为0x 的2倍C .小球从C 点再次落回到与A 点等高的B 点时,水平位移是02xD .小球从C 点落回到与A 点等高的B 点时,电场力做功大小为2k E5.如图,圆心为O 的圆处于匀强电场中,电场方向与圆平面平行,ab 和cd 为圆的两条直径,60aOc ∠=︒。
将一电荷量为q 的正点电荷从a 点移到b 点,电场力做功为W (0W >);若将该电荷从d 点移到c 点,电场力做功也为W 。
第6讲 功能关系在电磁学中的应用专题提升训练一、单项选择题1.(2015·石家庄市高中毕业班质检)如图1所示,平行金属板A 、B 水平正对放置,分别带等量异号电荷。
一带电微粒水平射入板间,在重力和电场力共同作用下运动,轨迹如图中虚线所示,那么( )图1A.若微粒带正电荷,则A 板一定带正电荷B.微粒从M 点运动到N 点电势能一定增加C.微粒从M 点运动到N 点动能一定增加D.微粒从M 点运动到N 点机械能一定增加解析 由于两极板的带电正负不知,粒子的电性不确定,则粒子所受电场力方向不确定,所受电场力做功正负不确定,但根据粒子运动轨迹,粒子所受合力一定向下,则合力一定做正功,所以电势能变化情况、机械能变化情况不确定,但粒子动能一定增加,所以只有C 正确。
答案 C2.(2015·河北邯郸二模)如图2所示,光滑平行金属轨道平面与水平面成θ角,两轨道上端用一电阻R 相连,该装置处于匀强磁场中,磁场方向垂直轨道平面向上,质量为m 的金属杆ab ,以初速度v 0从轨道底端向上滑行,滑行到某一高度h 后又返回到底端。
若运动过程中,金属杆始终保持与导轨垂直且接触良好,且轨道与金属杆的电阻均忽略不计,则不正确的是( )图2A.整个过程电路中产生的电能等于始、末状态动能的减少量B.上滑到最高点的过程中克服安培力与重力所做功之和等于12m v 20C.上滑到最高点的过程中电阻R上产生的焦耳热等于12m v2-mghD.金属杆两次通过斜面上的同一位置时电阻R的热功率相同解析金属杆从轨道底端滑上斜面又返回到出发点,由能量的转化和守恒知选项A正确;上滑到最高点时动能转化为重力势能和电阻R上产生的焦耳热(即克服安培力所做的功),选项B、C正确;金属杆两次通过斜面上同一位置时的速度不同,电路的电流不同,故电阻R的热功率不同,选项D错误。
答案 D3.(2015·北京市西城区高三考试)空间存在竖直向上的匀强电场,质量为m的带正电的微粒水平射入电场中,微粒的运动轨迹如图3所示,在相等的时间间隔内()图3A.重力做的功相等B.电场力做的功相等C.电场力做的功大于重力做的功D.电场力做的功小于重力做的功解析对微粒受力分析,受重力和向上的电场力,并且电场力大于重力。
5.专题三电场与磁场专题综合训练(二)1.如图所示,某区域电场线左右对称分布 ,M N 为对称线上两点。
下列说法正确的是( )N 点电势A. M 点电势— ,定咼B. M 点电场强度一定大于 N 点电场强度C. 正电荷在M 点的电势能小于在 N 点的电势能D. 将电子从M 点移动到N 点,静电力做正功 2.如图所示,菱形ABCD 勺对角线相交于 点,且 0M=QNU ( AABAC. B 、D. B 、 3.)C 两处电势、电场强度均相同C 两处电势、电场强度均不相同 D 两处电势、电场强度均相同 0点,两个等量异种点电荷分别固定在 AC 连线上的M 点与N如图所示,正方形线框由边长为 L 的粗细均匀的绝缘棒组成,0是线框的中心,线框上均匀地分布着 正电荷,现在线框上边框中点 A 处取下足够短的带电量为 q 的一小段,将其沿0A 连线延长线向上移 动'的距离到B 点处,若线框的其他部分的带电量与电荷分布保持不变 为()q4.3*73g277B.k2 乙C.k LD”,则此时0点的电场强度大小如图,在竖直方向的匀强电场中有一带负电荷的小球 (初速度不为零 内,截取一段轨迹发现其相对于过轨迹最高点 0的竖直虚线对称,A 、阻力,下列说法不正确的是()A. B 点的电势比A 点高B. 小球在A 点的动能比它在 B 点的大C. 小球在最高点的加速度不可能为零 ),其运动轨迹在竖直平面(纸面)B 为运动轨迹上的点,忽略空气 nV+Q点电荷为圆心,半径为画圆,a、b、c、d是圆周上四点,其中a、b在MN直线上,c、d两点连线垂直于MN —电荷量为q的负点电荷在圆周上运动,比较a、b、c、d四点,则下列说法错误的是()A. a点电场强度最大B. 负点电荷q在b点的电势能最大C. c、d两点的电势相等D. 移动负点电荷q从a点到c点过程中静电力做正功6.真空中,两个固定点电荷A、B所带电荷量分别为Q和Q,在它们共同形成的电场中,有一条电场线如图实线所示,实线上的箭头表示电场线的方向,电场线上标出了C D两点,其中D点的切线与AB 连线平行,0点为AB连线的中点,则()A. B带正电,A带负电,且|Q I|>|Q2|B. O点电势比D点电势高C. 负检验电荷在C点的电势能大于在D点的电势能D. 在C点静止释放一带正电的检验电荷,只在电场力作用下将沿电场线运动到D点7.“厂.......... …片於J r:如图所示,矩形虚线框的真空区域内存在着沿纸面方向的匀强电场(具体方向未画出),一粒子从bc 边上的M点以速度v o垂直于bc边射入电场,从cd边上的Q点飞出电场,不计粒子重力。
浙江省新高考物理卷压轴题(“磁场”题)解析江苏省特级教师 戴儒京2016年开始,浙江省与上海市一起作为教育部新一轮高考改革的试点,全国的教师,都在关注,全国的物理教师,都在关注其物理试题。
在物理试题中,有一类试题特别受关注,那就是关于“带电粒子在电磁场中的圆周运动”的题目,为什么呢?因为它难,往往成为全国及各省市高考物理试卷的压轴题。
对于浙江新高考物理试卷,就是第23题(试卷的最后一题)或22题(试卷的倒数第2题)。
本文就把浙江省新高考物理卷压轴题解析下来,以供广大物理教师特别是高三物理教师参考。
本文包括浙江省新高考以来4年7题,除2016年4月卷22题,其余各卷均为23题。
除2019年外(2019年10月还未到),每年2卷,分别在4月和10月或11月。
所以本文包括4年7题。
1.2019年第23题 23.(10分【加试题】有一种质谱仪由静电分析器和磁分析器组成,其简化原理如图所示。
左侧静电分析器中有方向指向圆心O 、与O 点等距离各点的场强大小相同的径向电场,右侧的磁分析器中分布着方向垂直于纸面向外的匀强磁场,其左边界与静电分析器的右边界平行,两者间距近似为零。
离子源发出两种速度均为v 0、电荷量均为q 、质量分别为m 和0.5m 的正离子束,从M 点垂直该点电场方向进入静电分析器。
在静电分析器中,质量为m 的离子沿半径为r 0的四分之一圆弧轨道做匀速圆周运动,从N 点水平射出,而质量为0.5m 的离子恰好从ON 连线的中点P 与水平方向成θ角射出,从静电分析器射出的这两束离子垂直磁场方向射入磁分析器中,最后打在放置于磁分析器左边界的探测板上,其中质量为m 的离子打在O 点正下方的Q 点。
已知OP=0.5r 0,OQ= r 0,N 、P 两点间的电势差,54cos =θ,不计重力和离子间相互作用。
(1)求静电分析器中半径为r 0处的电场强度E 0和磁分析器中的磁感应强度B 的大小;(2)求质量为0.5m 的离子到达探测板上的位置与O 点的距离l (用r 0表示); (3)若磁感应强度在(B —△B )到(B +△B )之间波动,要在探测板上完全分辨出质量为m 和0.5m 的两束离子,求的最大值【解析】(1) 径向电场力提供向心力0200r mv q E =20qr mv E =,00qr mv B = (2) 动能定理25.021mv ⨯-205.021mv ⨯=NP qUm qU v v NP 420+==50v ,0255.0r qB mv r == 05.0cos 2r r l -=θ 05.1r l =(3) 恰好能分辨的条件:-∆-B B r 120=∆+BB r 1cos 2θ20r %12417≈-=∆BB2. 2018年11月第23题23.(10分)【加试题】小明受回旋加速器的启发,设计了如图1所示的“回旋变速装置”。
通过场的类比(电场与重力场类比、电场与磁场的类比),形象理解电场的性质,掌握电场力和洛伦兹力的特性;围绕两大性质,理顺电场中基本概念的相互联系;熟知两大定则(安培定则和左手定则),准确判定磁场及磁场力的方向;认识两类偏转模型(类平抛和圆周运动),掌握带电粒子在场中的运动性质、规律和分析处理方法.第6讲带电粒子在电场中的运动1.[2015·全国卷Ⅰ] 如图61所示,直线a、b和c、d是处于匀强电场中的两组平行线,M、N、P、Q是它们的交点,四点处的电势分别为φM、φN、φP、φQ.一电子由M点分别运动到N点和P点的过程中,电场力所做的负功相等,则( )A.直线a位于某一等势面内,φM>φQB.直线c位于某一等势面内,φM>φNC.若电子由M点运动到Q点,电场力做正功D.若电子由P点运动到Q点,电场力做负功【考题定位】难度等级:容易出题角度:本题考查了考生对电场能的性质的理解,要求考生掌握匀强电场的电场强度与电势差的关系.2.[2015·全国卷Ⅱ] 如图62所示,两平行的带电金属板水平放置.若在两板中间a点从静止释放一带电微粒,微粒恰好保持静止状态.现将两板绕过a点的轴(垂直于纸面)逆时针旋转45°,再由a点从静止释放一同样的微粒,该微粒将( )A.保持静止状态B.向左上方做匀加速运动C.向正下方做匀加速运动D.向左下方做匀加速运动【考题定位】难度等级:容易出题角度:本题考查了力电综合的力与运动关系问题,涉及平行板电容中电场特点、牛顿运动定律的应用等考点.考点一电场的性质1 如图64所示,半径为R的水平绝缘圆盘可绕竖直轴OO′转动,水平虚线AB、CD互相垂直,一电荷量为+q的可视为质点的小物块置于距转轴r处,空间有方向由A指向B的匀强电场.当圆盘匀速转动时,小物块相对圆盘始终静止.小物块转动到位置Ⅰ(虚线AB上)时受到的摩擦力为零,转动到位置Ⅱ(虚线CD上)时受到的摩擦力为f.求:(1)圆盘边缘两点间电势差的最大值;(2)小物块由位置Ⅰ转动到位置Ⅱ克服摩擦力做的功.导思①小物块分别转动到位置Ⅰ、位置Ⅱ时由哪些力提供向心力?②小物块由位置Ⅰ转动到位置Ⅱ电场力做了多少功?克服摩擦力做了多少功?归纳1.电场力:电场对放入其中的电荷有力的作用,电场力的大小和方向由电场强度和电荷共同决定,大小为F=qE,正电荷所受的电场力方向与电场方向相同.2.电势能:电势能是标量,电场中电荷的电势能与电势的高低及电荷所带的电荷量及电性有关,即E p=qφ,而电场力做的功等于电势能变化的相反数,即W=qU=-ΔE p.变式1 (多选)图65是某空间部分电场线分布图,在电场中取一点O,以O为圆心的圆周上有M、Q、N三个点,连线MON与直电场线重合,连线OQ垂直于MON.下列说法正确的是( )A.M点的场强大于N点的场强B.O点的电势等于Q点的电势C.将一负点电荷由M点移到Q点,电荷的电势能增加D.一静止的正点电荷只受电场力作用能从Q点沿圆周运动至N点变式2 (多选)如图66所示,图中五点均在匀强电场中,它们刚好是一个半径为R=m 的圆的四个等分点和圆心.b、c、d三点的电势如图所示.已知电场线与圆所在的平面平行,关于等分点a处和圆心O处的电势及电场强度,下列描述正确的是( )A.a点的电势为4 VB.O点的电势为5 VC.电场强度方向由O点指向b点D.电场强度的大小为10 5 V/m考点二带电粒子在电场中的加速和偏转2 图67为两组平行金属板,一组竖直放置,一组水平放置,今有一质量为m、电荷量为e的电子静止在竖直放置的平行金属板的A点,经电压U0加速后通过B点进入两板间距为d、电压为U的水平放置的平行金属板间,若电子从两块水平平行板的正中间射入,且最后电子刚好能从右侧的两块平行金属板间穿出,求:(1)电子通过B点时的速度大小;(2)右侧平行金属板的长度;(3)电子穿出右侧平行金属板时的动能.导思①电子通过A、B做什么运动?怎样计算电子在B点的速度?②电子在两块水平平行金属板间做什么运动?水平位移和竖直位移分别满足什么关系?③电子在运动过程中,电场力一共做了多少功?归纳1.带电粒子在电场中的加速可以应用牛顿运动定律结合匀变速直线运动的公式求解,也可应用动能定理qU =12mv 22-12mv 21求解,其中U 为带电粒子初、末位置之间的电势差.2.带电粒子在电场中的偏转带电粒子在匀强电场中做匀变速曲线运动,属类平抛运动,要应用运动的合成与分解的方法求解,同时要注意:(1)明确电场力的方向,确定带电粒子到底向哪个方向偏转;(2)借助画出的运动示意图寻找几何关系或题目中的隐含关系.带电粒子在电场中的运动可从动力学、能量等多个角度来分析和求解.考点三 带电体在电场中的运动3 [2015·四川卷] 如图68所示,粗糙、绝缘的直轨道OB 固定在水平桌面上,B 端与桌面边缘对齐,A 是轨道上一点,过A 点并垂直于轨道的竖直面右侧有大小E =×106N /C 、方向水平向右的匀强电场.带负电的小物体P 电荷量是×10-6C ,质量m = kg ,与轨道间动摩擦因数μ=,P 从O 点由静止开始向右运动,经过 s 到达A 点,到达B 点时速度是5 m /s ,到达空间D 点时速度与竖直方向的夹角为α,且tan α=,P 在整个运动过程中始终受到水平向右的某外力F 作用,F 大小与P 的速率v 的关系如下表所示.P 视为质点,电荷量保持不变,忽略空气阻力,g 取10 m /s 2.求:(1)小物体P 从开始运动至速率为2 m /s 所用的时间; (2)小物体P 从A 运动至D 的过程,电场力做的功.归纳带电体通常是指需要考虑重力的物体,如带电小球、带电液滴、带电尘埃等.带电体在电v/(m ·s -1)0≤v≤22<v<5 v≥5 F/N263场中运动的研究方法与力学综合题的分析方法相近,一般应用牛顿运动定律、运动学规律、动能定理和能量守恒定律求解.当带电体同时受重力和电场力时,可以应用等效场的观点处理.变式1 如图69所示,CD左侧存在场强大小 E=mgq、方向水平向左的匀强电场,一个质量为m、电荷量为+q的光滑绝缘小球从底边BC长为L、倾角为53°的直角三角形斜面顶端A 点由静止开始下滑,运动到斜面底端C点后进入一竖直半圆形细圆管内(C处为一小段长度可忽略的光滑圆弧,圆管内径略大于小球直径,半圆直径CD在竖直线上),恰能到达细圆管最高点D点,随后从D点离开后落回斜面上某点P.(重力加速度为g , sin 53°=, cos 53°=求:(1)小球到达C点时的速度;(2)小球从D点运动到P点的时间t.变式2 如图610所示,空间有一水平向右的匀强电场,半径为r的绝缘光滑圆环固定在竖直平面内,O是圆心,AB是竖直方向的直径.一质量为m、电荷量为+q的小球套在圆环上,并静止在P点,且OP与竖直方向的夹角θ=37°.不计空气阻力.已知重力加速度为g,sin37°=,cos 37°=.(1)求电场强度E的大小;(2)要使小球从P点出发能做完整的圆周运动,求小球初速度v应满足的条件.4 如图611甲所示,一对平行金属板M、N长为L,相距为d,O1O为中轴线.当两板间加电压U MN=U0时,两板间为匀强电场,忽略两极板外的电场,某种带负电的粒子从O1点以速度v0沿O1O方向射入电场,粒子恰好打在上极板M的中点,粒子重力忽略不计.(1)求带电粒子的比荷q m ;(2)若MN间加如图乙所示的交变电压,其周期T=Lv0,从t=0开始,前T3内U MN=2U,后2T3内U MN=-U,大量的上述粒子仍然以速度v0沿O1O方向持续射入电场,最终所有粒子恰好能全部离开电场而不打在极板上,求U的值.图611导思①MN间加交变电压后,粒子在水平方向做什么运动?运动时间是多少?②MN间加交变电压后,粒子在竖直方向做什么运动?可以分成几个阶段?每阶段的加速度是多少?归纳交变电场中粒子的运动往往属于运动的多过程问题,关键是搞清楚电场力或加速度随时间变化的规律,进而分析速度的变化规律,通过绘制vt图像来分析运动过程比较直观简便.【真题模型再现】平行板电容器中带电粒子的运动2011 ·安徽卷交变电场中粒子的运动2012·新课标全国卷带电粒子在电容器中的匀速直线运动2013·广东卷加速偏转模型应用2014·安徽卷带电粒子在电容器中运动的功能关系2014·天津卷带电体在复合场中的功能转化2015·海南卷带电粒子在电场中加速(续表)【真题模型再现】平行板电容器中带电粒子的运动2015·山东卷带电体在变化电场中运动2015·北京卷带电粒子在电场中的功能转化2015·全国卷Ⅱ带电粒子在电场中的动力学问题【模型核心归纳】带电体在平行板电容器间的运动,实际上就是在电场力作用下的力电综合问题,依然需要根据力学解题思路求解,解题过程要遵从以下基本步骤:(1)确定研究对象(是单个研究对象还是物体组);(2)进行受力分析(分析研究对象所受的全部外力,包括电场力.其中电子、质子、正负离子等基本微观粒子在没有明确指出或暗示时一般不计重力,而带电油滴、带电小球、带电尘埃等宏观带电体一般要考虑其重力);(3)进行运动分析(分析研究对象所处的运动环境是否存在束缚条件,并根据研究对象的受力情况确定其运动性质和运动过程);(4)建立物理等式(由平衡条件或牛顿第二定律结合运动学规律求解,对于涉及能量的问题,一般用动能定理或能量守恒定律列方程求解.例在真空中水平放置平行板电容器,两极板间有一个带电油滴,电容器两极板间距为d,当平行板电容器的电压为U0时,油滴保持静止状态,如图612所示.当给电容器突然充电使其电压增加ΔU1,油滴开始向上运动;经时间Δt后,电容器突然放电使其电压减少ΔU2,又经过时间Δt,油滴恰好回到原来位置.假设油滴在运动过程中没有失去电荷,充电和放电的过程均很短暂,这段时间内油滴的位移可忽略不计,重力加速度为g.试求:(1)带电油滴所带电荷量与质量之比;(2)第一个Δt与第二个Δt时间内油滴运动的加速度大小之比;(3)ΔU1与ΔU2之比.展如图613所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板的中央各有一小孔M和N.今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N 在同一竖直线上),空气阻力忽略不计,到达N孔时速度恰好为零,然后沿原路返回.若保持两极板间的电压不变,则不正确的是( )图613A.把A板向上平移一小段距离,质点自P点自由下落后仍能返回B.把A板向下平移一小段距离,质点自P点自由下落后将穿过N孔继续下落C.把B板向上平移一小段距离,质点自P点自由下落后仍能返回D.把B板向下平移一小段距离,质点自P点自由下落后将穿过N孔继续下落第7讲带电粒子在磁场及复合场中的运动1.(多选)[2014·新课标全国卷Ⅱ] 图71为某磁谱仪部分构件的示意图.图中,永磁铁提供匀强磁场,硅微条径迹探测器可以探测粒子在其中运动的轨迹.宇宙射线中有大量的电子、正电子和质子.当这些粒子从上部垂直进入磁场时,下列说法正确的是( )图71A.电子与正电子的偏转方向一定不同B.电子与正电子在磁场中运动轨迹的半径一定相同C.仅依据粒子运动轨迹无法判断该粒子是质子还是正电子D.粒子的动能越大,它在磁场中运动轨迹的半径越小【考题定位】难度等级:中等出题角度:本题主要考查学生对左手定则、带电粒子在匀强磁场中运动规律的掌握情况.2.[2015·全国卷Ⅰ] 两相邻匀强磁场区域的磁感应强度大小不同、方向平行.一速度方向与磁感应强度方向垂直的带电粒子(不计重力),从较强磁场区域进入到较弱磁场区域后,粒子的( )A.轨道半径减小,角速度增大B.轨道半径减小,角速度减小C.轨道半径增大,角速度增大D.轨道半径增大,角速度减小【考题定位】难度等级:容易出题角度:本题主要考查学生对带电粒子在匀强磁场中运动结论的掌握情况,属于较简单题目.3.(多选)[2015·全国卷Ⅱ] 两个匀强磁场区域Ⅰ和Ⅱ,Ⅰ的磁感应强度是Ⅱ的k倍,两个速率相同的电子分别在两磁场区域做圆周运动.与Ⅰ中运动的电子相比,Ⅱ中的电子( )A.运动轨迹的半径是Ⅰ中的k倍B.加速度的大小是Ⅰ中的k倍C.做圆周运动的周期是Ⅰ中的k倍D.做圆周运动的角速度与Ⅰ中的相等【考题定位】难度等级:容易出题角度:本题主要考查学生对带电粒子在匀强磁场中运动规律的掌握情况,考查了应用牛顿运动定律、圆周运动的规律解决物理问题的能力.考点一通电导体在磁场中的安培力问题1 [2015·重庆卷] 音圈电机是一种应用于硬盘、光驱等系统的特殊电动机.图72是某音圈电机的原理示意图,它由一对正对的磁极和一个正方形刚性线圈构成,线圈边长为L,匝数为n,磁极正对区域内的磁感应强度方向垂直于线圈平面竖直向下,大小为B,区域外的磁场忽略不计.线圈左边始终在磁场外,右边始终在磁场内,前后两边在磁场内的长度始终相等.某时刻线圈中电流从P流向Q,大小为I.(1)求此时线圈所受安培力的大小和方向.(2)若此时线圈水平向右运动的速度大小为v,求安培力的功率.导思①单根通电直导线垂直磁场放置,安培力的大小、方向如何?n根呢?②安培力的功率与哪些因素有关?归纳安培力与动力学综合问题已成为高考的热点,解决这类问题的关键是把电磁学问题力学化,把立体图转化为平面图,即画出平面受力分析图,其中安培力的方向切忌跟着感觉走,要用左手定则来判断,注意F安⊥B、F安⊥I.其次是选用牛顿第二定律或平衡条件建立方程解题.变式如图73所示,一劲度系数为k的轻质弹簧下面挂有匝数为n的矩形线框边长为l,线框的下半部分处在匀强磁场中,磁感应强度大小为B,方向垂直线框平面向里.线框中通以电流I,方向如图所示,开始时线框处于平衡状态,弹簧处于伸长状态.令磁场反向,磁感应强度的大小仍为B,线框达到新的平衡.则在此过程中线框位移的大小Δx及方向是( )A.Δx=2nIlBk,方向向上B.Δx=2nIlBk,方向向下C.Δx=nIlBk,方向向上D.Δx=nIlBk,方向向下考点二带电粒子在有界磁场中的运动2 如图74所示,在xOy平面内以O为圆心、R0为半径的圆形区域Ⅰ内有垂直于纸面向外、磁感应强度为B1的匀强磁场.一质量为m、带电荷量为+q的粒子以速度v0从A(R0,0)点沿x轴负方向射入区域Ⅰ,经过P(0,R0)点,沿y轴正方向进入同心环形区域Ⅱ,为使粒子经过区域Ⅱ后能从Q点回到区域Ⅰ,需在区域Ⅱ内加一垂直于纸面向里、磁感应强度为B2的匀强磁场.已知OQ与x轴负方向成30°角,不计粒子重力.求:(1)区域Ⅰ中磁感应强度B1的大小;(2)环形区域Ⅱ的外圆半径R的最小值;(3)粒子从A点出发到再次经过A点所用的最短时间.导思①粒子以速度v0从A到P,经过P点的速度方向如何?②粒子在区域Ⅱ从P到Q,圆心角是多少?③粒子从A点出发到再次经过A点,经过哪些圆弧?圆心角分别为多少?归纳解答带电粒子在匀强磁场中运动的关键是画粒子运动轨迹的示意图,确定圆心、半径及圆心角.此类问题的解题思路是:(1)画轨迹:即确定圆心,用几何方法求半径并画出运动轨迹.(2)找联系:轨道半径与磁感应强度、运动速度相联系,偏转角度与圆心角、入射方向、出射方向相联系,在磁场中运动的时间与周期相联系.(3)用规律:即牛顿第二定律和圆周运动的规律,特别是周期公式和半径公式.变式1 如图75所示,横截面为正方形abcd的有界匀强磁场的磁场方向垂直纸面向里.一束电子以大小不同、方向垂直ad边界的速度飞入该磁场.对于从不同边界射出的电子,下列判断不正确的是( )图75A.从ad边射出的电子在磁场中运动的时间都相等B.从c点离开的电子在磁场中运动时间最长C.电子在磁场中运动的速度偏转角最大为πD.从bc边射出的电子的速度一定大于从ad边射出的电子的速度变式2 (多选)如图76所示,ab是匀强磁场的边界,质子(11H)和α粒子(42He)先后从c点射入磁场,初速度方向与ab边界的夹角均为45°,并都到达d点.不计空气阻力和粒子间的作用.关于两粒子在磁场中的运动,下列说法正确的是( )图76A.质子和α粒子运动轨迹相同B.质子和α粒子运动动能相同C.质子和α粒子运动速率相同D.质子和α粒子运动时间相同考点三带电粒子在复合场中的运动3 [2015·福建卷] 如图77所示,绝缘粗糙的竖直平面MN左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E,磁场方向垂直纸面向外,磁感应强度大小为B.一质量为m、电荷量为q的带正电的小滑块从A点由静止开始沿MN下滑,到达C 点时离开MN做曲线运动.A、C两点间距离为h,重力加速度为g.(1)求小滑块运动到C点时的速度大小v C;(2)求小滑块从A点运动到C点过程中克服摩擦力做的功W f;(3)若D点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D点时撤去磁场,此后小滑块继续运动到水平地面上的P点.已知小滑块在D点时的速度大小为v D,从D点运动到P点的时间为t,求小滑块运动到P点时速度的大小v P.【规范步骤】[解析] (1)小滑块沿MN运动过程,水平方向受力满足qvB +N=qE小滑块在C点离开MN时,有N=0解得v C=E B .(2)由动能定理,有___________________________________________解得______________________________________.(3)如图78所示,小滑块速度最大时,速度方向与电场力、重力的合力方向垂直.撤去磁场后小滑块将做类平抛运动,等效加速度为g′g ′=⎝⎛⎭⎫qE m 2+g 2 且v 2P =v 2D +g′2t 2解得_______________________________.归纳带电粒子在复合场中常见的运动形式:①当带电粒子在复合场中所受的合力为零时,粒子处于静止或匀速直线运动状态;②当带电粒子所受的合力大小恒定且提供向心力时,粒子做匀速圆周运动;③当带电粒子所受的合力变化且与速度方向不在一条直线上时,粒子做非匀变速曲线运动.如果带电粒子做曲线运动,则需要根据功能关系求解,需要注意的是洛伦兹力始终不做功.4 如图79所示,直线MN 上方有平行于纸面且与MN 成45°角的有界匀强电场,电场强度大小未知;MN 下方为方向垂直于纸面向里的有界匀强磁场,磁感应强度大小为B.今从MN 上的O 点向磁场中射入一个速度大小为v 、方向与MN 成45°角的带正电粒子,该粒子在磁场中运动时的轨道半径为R.若该粒子从O 点出发记为第一次经过直线MN ,而第五次经过直线MN 时恰好又通过O 点.不计粒子的重力.求:(1)电场强度的大小;(2)该粒子再次从O 点进入磁场后,运动轨道的半径; (3)该粒子从O 点出发到再次回到O 点所需的时间. 导思①粒子从O 点出发到第五次经过直线MN ,经过哪些运动过程,分别做什么运动?②粒子第四次经过直线MN ,进入电场,沿电场线和垂直电场线方向分别做什么运动?其位移分别是多少?③粒子再次从O 点进入磁场后,运动的速度是多少?归纳电场(或磁场)与磁场各位于一定的区域内并不重叠,或在同一区域电场与磁场交替出现,这种情景就是组合场.粒子在某一场中运动时,通常只受该场对粒子的作用力.其处理方法一般为:①分析带电粒子在各场中的受力情况和运动情况,一般在电场中做直线运动或类平抛运动,在磁场中做匀速圆周运动;②正确地画出粒子的运动轨迹图,在画图的基础上注意运用几何知识寻找关系;③注意确定粒子在组合场交界位置处的速度大小与方向,该速度是联系两种运动的桥梁.【真题模型再现】带电粒子在电磁场中运动的科技应用2013·重庆卷霍尔效应原理2014·浙江卷离子推进器2014·福建卷电磁驱动原理2015·浙江卷回旋加速器引出离子问题2015·重庆卷回旋加速器原理2015·江苏卷质谱仪(续表)【模型核心归纳】带电粒子在电场、磁场中的运动与现代科技密切相关,应重视以科学技术的具体问题为背景的考题.涉及带电粒子在复合场中运动的科技应用主要是速度选择器、磁流体发电机、电磁流量计、质谱仪等,对应原理如下:装置名称装置图示原理及结论速度选择器粒子经加速电场加速后得到一定的速度v0,进入正交的电场和磁场,受到的电场力与洛伦兹力方向相反,若使粒子沿直线从右边孔中射出,则有qv0B=qE,即v0=EB,故若v=v0=EB,粒子必做匀速直线运动,与粒子电荷量、电性、质量均无关.若v<EB,电场力大,粒子向电场力方向偏,电场力做正功,动能增加.若v>EB,洛伦兹力大,粒子向洛伦兹力方向偏,电场力做负功,动能减少磁流体发电机正、负离子(等离子体)高速喷入偏转磁场中,在洛伦兹力作用下,正、负离子分别向上、下极板偏转、积累,从而在板间形成一个场强向下的电场,两板间形成一定的电势差.当qvB=qUd时,电势差达到稳定,U=dvB,这就相当于一个可以对外供电的电源电磁流量计一圆形导管直径为d,用非磁性材料制成,其中有可以导电的液体向左流动.导电液体中的自由电荷(正、负离子)在洛伦兹力作用下纵向偏转,a、b间出现电势差.当自由电荷所受电场力和洛伦兹力平衡时,由Bqv=Eq=Uqd,可得v=UBd,则流量Q=Sv=πUd4B质谱仪选择器中v=EB1;偏转场中d=2r,qvB2=mv2r,解得比荷qm=2EB1B2d,质量m=B1B2dq2E.作用:主要用于测量粒子的质量、比荷,研究同位素霍尔效应在匀强磁场中放置一个矩形截面的载流导体,当磁场方向与电流方向垂直时,导体在与磁场、电流方向都垂直的方向上出现了电势差,这种现象称为霍尔效应例[2015·浙江卷] 使用回旋加速器的实验需要把离子束从加速器中引出,离子束引出的方法有磁屏蔽通道法和静电偏转法等.质量为m,速度为v的离子在回旋加速器内旋转,旋转轨道是半径为r的圆,圆心在O点,轨道在垂直纸面向外的匀强磁场中,磁感应强度为B.为引出离子束,使用磁屏蔽通道法设计引出器.引出器原理如图710所示,一对圆弧形金属板组成弧形引出通道,通道的圆心位于O′点(O′点图中未画出).引出离子时,令引出通道内磁场的磁感应强度降低,从而使离子从P点进入通道,沿通道中心线从Q点射出.已知OQ 长度为L,OQ与OP的夹角为θ.(1)求离子的电荷量q并判断其正负;(2)离子从P点进入,Q点射出,通道内匀强磁场的磁感应强度应降为B′,求B′;(3)换用静电偏转法引出离子束,维持通道内的原有磁感应强度B不变,在内外金属板间加直流电压,两板间产生径向电场,忽略边缘效应.为使离子仍从P点进入,Q点射出,求通道内引出轨迹处电场强度E的方向和大小.图710。
专题限时集训(六)1.如图Z61所示,用静电计测量已充电的平行板电容器两极板间的电势差,现保持A板不动,图Z61将B板向上移动一段距离,则静电计中指针的张角将()A.变大B.变小C.先变大后变小D.先变小后变大2.英国科学家法拉第最先尝试用“线”描述磁场和电场,有利于形象理解不可直接观察的电场和磁场的强弱分布.图Z62为一对等量异种点电荷,电荷量分别为+Q、-Q.实线为电场线,虚线圆的圆心O在两电荷连线的中点,a、b、c、d为圆上的点,下列说法正确的是()图Z62A.a、b两点的电场强度相同B.b、c两点的电场强度相同C.c点的电势高于d点的电势D.d点的电势等于a点的电势3.如图Z63所示,平行板电容器两极板间的电压恒为U,上极板A接地,一带负电的油滴固定于电容器中的P点,现将平行板电容器的下极板B竖直向下移动一小段距离,则()图Z63A.带电油滴所受静电力不变B.P点的电势将升高C.带电油滴在P点时的电势能增大D.电容器的电容减小,极板带电荷量增大4.对于真空中电荷量为Q的静止点电荷而言,当选取离点电荷无穷远处的电势为零时,离点电荷距离为r处电势为φ=kQr(k为静电力常量).如图Z64所示,一质量为m、电荷量为q的可视为点电荷的带正电小球用绝缘丝线悬挂在天花板上,在小球正下方的绝缘底座上固定一半径为R 的金属球,金属球接地,两球球心间距离为d.由于静电感应,金属球上分布的感应电荷的电荷量为q′.则下列说法正确的是()图Z64A .金属球上的感应电荷的电荷量q ′=-R dq B .金属球上的感应电荷的电荷量q ′=-R d -R q C .绝缘丝线对小球的拉力大小为mg +kqq ′d 2D .绝缘丝线对小球的拉力大小为mg -kqq ′d 2 5.如图Z65所示,电子(不计重力,电荷量为e ,质量为m )由静止经加速电场加速,然后从相互平行的A 、B 两板的正中间射入.已知加速电场两极间电压为U 1,A 、B 两板之间电压为U 2,则下列说法中正确的是( )图Z65A .电子穿过A 、B 板时,其动能一定等于e ⎝⎛⎭⎫U 1+U 22 B .为使电子能飞出A 、B 板,则要求U 1>U 2C .若把电子换成另一种带负电的粒子(忽略重力),它将沿着电子的运动轨迹运动D .在A 、B 板间,沿电子运动轨迹的电势越来越低6.如图Z66甲所示,两水平放置的平行金属板MN 、PQ 的板长和板间距离相等,板间存在如图乙所示的随时间周期性变化的电场,电场方向与两板垂直,在t =0时刻,一不计重力的带电粒子沿板间中线垂直电场方向射入电场,粒子射入电场时的速度为v 0,t =T 时刻粒子刚好沿MN 板右边缘射出电场.则( )甲 乙图Z66A .该粒子射出电场时的速度方向一定是沿垂直电场方向的B .在t =T 2时刻,该粒子的速度大小为2v 0C .若该粒子在T 2时刻以速度v 0进入电场,则粒子会打在板上 D .若该粒子的入射速度变为2v 0,则该粒子仍在t =T 时刻射出电场7.(多选)某空间区域的竖直平面内存在电场,其中竖直的一条电场线如图Z67甲中虚线所示.一个质量为m 、电荷量为q 的带正电小球在电场中从O 点由静止开始沿电场线竖直向下运动.以O 为坐标原点,取竖直向下为x 轴的正方向,小球的机械能E 与位移x 的关系如图乙所示,则(不考虑空气阻力)( )甲 乙图Z67 A .电场强度大小恒定,方向沿x 轴负方向B .从O 到x 1的过程中,小球的速率越来越大,加速度越来越大C .从O 到x 1的过程中,相等的位移内,小球克服电场力做的功越来越大D .到达x 1位置时,小球速度的大小为2(E 1-E 0+mgx 1)m8.如图Z68所示,在竖直平面内,两个14圆弧与直轨道组合成光滑绝缘轨道,在高度h =2R 以下存在E =mg q、方向水平向右的匀强电场,其他几何尺寸如图所示,一带电荷量为q 、质量为m 的带正电的小球从A 处以初速度v 0向右运动.(1)若小球始终沿轨道内侧运动而不脱离,则v 0的大小应满足什么条件?(2)在v 0取(1)中的临界值时,求轨道对小球的最大弹力.(3)若小球运动到最高点B 时对轨道的压力等于mg ,试求小球从B 点落回水平轨道过程中电场力所做的功.图Z689.真空室中有如图Z69甲所示的装置,电极K 持续发出的电子(初速度不计)经过电场加速后,从小孔O 沿水平放置的偏转极板M 、N 的中心轴线OO ′射入.M 、N 板长均为L ,间距为d ,偏转极板右边缘到荧光屏P (足够大)的距离为s .M 、N 两板间的电压U MN 随时间t 变化的图线如图乙所示.调节加速电场的电压,使得每个电子通过偏转极板M 、N 间的时间等于图乙中电压U MN 的变化周期T .已知电子的质量、电荷量分别为m 、e ,不计电子重力.(1)求加速电场的电压U 1.(2)欲使不同时刻进入偏转电场的电子都能打到荧光屏P 上,求图乙中电压U 2的范围.(3)证明在(2)问条件下电子打在荧光屏上形成亮线的长度与距离s 无关.图Z69专题限时集训(七)1.如图Z71所示,完全相同的甲、乙两个环形电流同轴平行放置,甲的圆心为O 1,乙的圆心为O 2,在两环圆心的连线上有a 、b 、c 三点,其中aO 1=O 1b =bO 2=O 2c ,此时a 点的磁感应强度大小为B 1,b 点的磁感应强度大小为B 2.当把环形电流乙撤去后,c 点的磁感应强度大小为( )图Z71A .B 2-B 1 B .B 1-B 22C .B 2-B 12 D.B 132.(多选)如图Z72所示,台秤上放一光滑平板,其左边固定一挡板,一轻质弹簧将挡板和一条形磁铁连接起来,此时台秤有一定的读数.现在磁铁上方中心偏右位置固定一通电导线,当通以一定的电流后,台秤的示数增加,同时弹簧缩短(弹簧始终处于弹性限度内),则下列说法正确的是( )图Z72A .磁铁右端为N 极,左端为S 极,导线中的电流方向垂直纸面向里B .磁铁右端为N 极,左端为S 极,导线中的电流方向垂直纸面向外C .磁铁右端为S 极,左端为N 极,导线中的电流方向垂直纸面向里D .磁铁右端为S 极,左端为N 极,导线中的电流方向垂直纸面向外3.如图Z73所示,MN 、PQ 是圆的两条相互垂直的直径,圆内有垂直纸面向里的匀强磁场,比荷相等的正、负离图Z73子分别从M 、N 以等大速率射向O .若正离子从P 出射,则( )A .负离子会从Q 出射B .负离子也从P 出射C .两离子在磁场中运动时间不相等D .两离子在磁场中运动路程不相等图Z744.(多选)图Z74是某种质谱仪工作原理的示意图.带电粒子a 、b 从容器中的A 点飘出(在A 点初速度为零),经电压U 加速后,从x 轴坐标原点处进入磁感应强度为B 的匀强磁场,最后分别打在感光板S 上,坐标分别为x 1、x 2.图中半圆形虚线分别表示带电粒子a 、b 所通过的路径,则( )A .b 进入磁场的速度一定大于a 进入磁场的速度B .a 的比荷一定大于b 的比荷C .若a 、b 电荷量相等,则它们的质量之比m a ∶m b =x 21 ∶x 22D .若a 、b 质量相等,则它们在磁场中运动时间之比t a ∶t b =x 1∶x 2图Z7-55.一根中空的绝缘圆管放在光滑的水平桌面上.圆管底端有一个带正电的光滑小球.小球的直径恰好等于圆管的内径.空间存在一个竖直向下的匀强磁场,如图Z75所示.现用一拉力F 拉圆管并维持圆管以某速度水平向右匀速运动,则在圆管水平向右运动的过程中( )A .小球也随圆管做匀速运动B .小球做类平抛运动,且洛伦兹力做正功C .小球做类平抛运动,且洛伦兹力不做功D .小球所受洛伦兹力一直沿圆管向管口方向图Z766.(多选)如图Z76所示,在直角三角形ABC 内分布着磁感应强度B =4×10-4 T 的匀强磁场,磁场方向垂直三角形所在平面向外.在AB 边上的D 点有一粒子源向磁场区域内以不同的速率发射比荷q m=2.5×105 C/kg 的带正电的粒子,粒子的发射速度均垂直于AB 边,已知AB =3 3 cm ,AD = 3 cm ,∠A =π6,下列说法正确的是( ) A .速率v > 3 m/s 的粒子一定从AC 边射出B .速率v < 3 m/s 的粒子可能从AD 之间射出C .速率v < 3 m/s 的粒子可能从BC 边射出D .速率v < 3 m/s 的粒子一定从DB 之间射出7.如图Z77所示,P 、Q 为相距较近的一对平行金属板,间距为2d ,OO ′为两板间的中线.一束相同的带电粒子以初速度v 0从O 点射入P 、Q 间,v 0的方向与两板平行.如果在P 、Q间加上方向竖直向上、场强大小为E 的匀强电场,则粒子束恰好从P 板右端的a 点射出;如果在P 、Q 间加上方向垂直纸面向外、磁感应强度大小为B 的匀强磁场,则粒子束将恰好从Q 板右端的b 点射出.不计粒子的重力及粒子间的相互作用力,如果同时加上上述的电场和磁场,则( )图Z77A. 粒子束将沿直线OO ′运动B. 粒子束将沿曲线运动,射出点位于O ′点上方C. 粒子束将沿曲线运动,射出点位于O ′点下方D. 粒子束可能沿曲线运动,但射出点一定位于O ′点8.如图Z78所示,宽度为d 、厚度为h 的导体放在垂直于它的磁感应强度为B 的匀强磁场中,当电流通过该导体时,在导体的上、下表面之间会产生电势差,这种现象称为霍尔效应.实验表明:当磁场不太强时,电势差U 、电流I 和磁感应强度B 的关系为:U =K IB d,式中的比例系数K 称为霍尔系数.设载流子的电荷量为q ,下列说法正确的是( )图Z78A .载流子所受静电力的大小F =q U dB .导体上表面的电势一定高于下表面的电势C .霍尔系数为K =1nq,其中n 为导体单位长度上的载流子数 D .载流子所受洛伦兹力的大小F 洛=BI nhd ,其中n 为导体单位体积内的载流子数 9.如图Z79甲所示,倾角为α=37°的足够长的固定斜面处于垂直于纸面向里的匀强磁场中,一带正电小物块从斜面顶端由静止开始沿斜面向下滑动,速度—时间图像如图乙所示.(已知sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2)则下列说法正确的是( )图Z79A .小物块下滑的加速度为16m/s 2 B .小物块最终将飞离斜面做曲线运动C .小物块下滑过程中机械能守恒D .若小物块质量为0.1 kg ,则t =0.25 s 时,重力的功率为1.5 W10.(多选)如图Z710甲所示,带电小球以一定的初速度v 0竖直向上抛出,能够达到的最大高度为h 1;若加上水平方向的匀强磁场(图乙),且保持初速度仍为v 0,小球上升的最大高度为h 2;若加上水平方向的匀强电场(图丙),且保持初速度仍为v 0,小球上升的最大高度为h 3,若加上竖直向上的匀强电场(图丁),且保持初速度仍为v 0,小球上升的最大高度为h 4.不计空气阻力影响,则( )图Z710A .h 2=h 1B .h 2<h 1C .h 3=h 1D .h 4<h 111.如图Z711所示,在Oxy 平面(纸面)内有垂直平面向外的匀强磁场,磁感应强度大小为B ,一足够长的挡板MN 与x 轴成30°角倾斜放置且通过原点O ,放射源A 的位置坐标为(0,a ).某时刻,放射源A 沿纸面向第一象限内的各个方向均匀地辐射同种带正电的粒子,粒子的质量为m 、电荷量为q ,速率均为3aqB 2m.不计粒子的重力,不考虑粒子间的相互作用,打到挡板的粒子均被接地的挡板吸收.(1)求在同一时刻,放射源A 发出的能够到达挡板的粒子中,最后到达挡板的粒子和最先到达挡板的粒子的时间差;(2)保持挡板与x 轴正方向的夹角30°不变,在纸面内沿y 轴负方向将挡板MN 平移至某一位置,发现从放射源A 发出的所有粒子中总有13的粒子能击中挡板,求挡板与y 轴交点的纵坐标.甲 乙图Z7-11专题限时集训(八)1.(多选)在如图Z81所示的电路图中,I为电流表示数,U为电压表示数,P为定值电阻R2消耗的功率,Q为电容器C所带的电荷量,W为通过电源电荷量为q时电源做的功.当滑动变阻器触头向右缓慢滑动过程中,下列图像能正确反映各物理量关系的是()图Z81图Z822.利用金属导体的电阻随温度变化的特点可以制成电阻温度计.图Z83甲为某种金属导体的电阻R随温度t变化的图线.如果用这种金属导体做成测温探头,再将它连入如图乙所示的电路中,随着测温探头处待测温度的变化,电流表示数也会发生变化.则在t1~t2温度范围内()图Z83A.待测温度越高,电流表的示数越大B.待测温度越高,电流表的示数越小C.待测温度升高,电流表的示数均匀增大D.待测温度升高,电流表的示数均匀减小3.(多选)如图Z84所示,E为电源,其内阻不可忽略,R T为热敏电阻,其阻值随温度的升高而减小,L为指示灯泡,C为平行板电容器,G为灵敏电流计.闭合开关S,当环境温度明显升高时,下列说法正确的是()图Z84A.L变亮B.R T两端电压变大C.C所带的电荷量减少D.G中出现由a到b的电流4.(多选)某兴趣小组自制一小型发电机,使线圈在匀强磁场中绕垂直于磁场方向的固定轴转动,穿过线圈的磁通量Φ随时间t 按正弦规律变化的图像如图Z85所示,线圈转动周期为T ,线圈产生的电动势的最大值为E m .则( )图Z85A .在t =T 4时,磁场方向与线圈平面垂直 B .在t =T 2时,线圈中的磁通量变化率最大 C .线圈中电动势的瞬时值e =E m sin 2πTt D .若线圈转速增大为原来的2倍,则线圈中电动势的峰值变为原来的4倍5.(多选)单组矩形线圈匝数为n ,绕垂直磁场的轴OO ′以角速度ω匀速转动,线圈两端分别始终与两个固定滑环K 、L 接触良好且摩擦很小,两个滑环经电刷E 、F 连接在电阻上,电阻上并联一个理想交流电压表,现把K 滑环接地,如图Z86所示,以下说法正确的是( )图Z86A .线圈转动一周过程中,流经电阻R 的电流方向变化两次B .因为K 环接地,所以线圈转动过程中L 环电势始终高于K 环,故流经电阻R 的电流方向不会变化C .虽然K 环接地,但是线圈转动过程中有时K 环电势仍高于L 环电势,故流经电阻R 的电流方向是变化的D .线圈匀速转动过程中,交流电压表的指针所指示数不变6.(多选)如图Z87所示,一矩形线圈abcd 在匀强磁场中绕垂直于磁场的轴OO ′匀速转动.沿着OO ′从上向下观察,线圈沿逆时针方向转动.已知线圈匝数为n ,总电阻为r ,ab 边长为l 1,ad 边长为l 2,线圈转动的角速度为ω,外电阻阻值为R ,匀强磁场的磁感应强度为B ,则下列判断正确的是( )图Z87A.在图示位置ab边所受的安培力为F=n2B2l21l2ωR+rB.线圈从图示位置转过90°的过程中,流过电阻R的电荷量为q=nBl1l2 R+rC.在图示位置穿过线圈的磁通量为0D.在图示位置穿过线圈的磁通量的变化率为07.如图Z88所示,一理想变压器原线圈匝数n1=500匝,副线圈匝数n2=100匝,原线圈中接一交变电源,交变电源电压u=220 2sin 100πt(V).副线圈中接一电动机,内阻为10 Ω,电流表A2示数为1 A.电表对电路的影响忽略不计,则下列说法正确的是()图Z88A.此交流电的频率为100 HzB.此电动机输出功率为44 WC.电流表A1示数为0.2 AD.电压表示数为220 2 V8.(多选)如图Z89甲所示,理想变压器原、副线圈的匝数比为10∶1,R1=20 Ω,R2=30 Ω,C为电容器.已知通过R1的正弦交流电如图乙所示,则()图Z89A.交流电的频率为0.02 HzB.原线圈输入电压的最大值为200 VC.电阻R2的电功率约为6.67 WD.通过R3的电流始终为零9.(多选)为探究理想变压器原、副线圈电压、电流的关系,将原线圈接到电压有效值不变的正弦交流电源上,副线圈连接相同的灯泡L1、L2,电路中分别接了理想交流电压表V1、V2和理想交流电流表A1、A2,导线电阻不计,如图Z810所示.当开关S闭合后()图Z810A.A1示数变大,A1与A2示数的比值不变B.A1示数变大,A1与A2示数的比值变大C.V2示数变小,V1与V2示数的比值变大D.V2示数不变,V1与V2示数的比值不变10.(多选)如图Z811甲所示,理想变压器与电阻R、交流电压表V、交流电流表A按图示方式连接,已知变压器的原、副线圈的匝数之比为n 1n 2=101,电阻R =10 Ω,图乙是R 两端电压U 随时间变化的图像,U m =10 2 V .下列判断正确的是( )图Z811A .电压表V 的读数为10 VB .电流表A 的读数为210A C .变压器的输入功率为10 WD .通过R 的电流i R 随时间t 变化的规律是i R =cos 100πt (A)11.(多选)如图Z812甲所示,理想变压器原、副线圈的匝数比为4∶1,电压表和电流表均为理想交流电表,原线圈接如图乙所示的正弦交流电,图中R T 为NTC 型热敏电阻(阻值随温度的升高而减小),R 为定值电阻,下列说法正确的是( )图Z812A .原线圈所接交流电电压瞬时值的表达式u =36 2sin 100πt (V)B .R T 处温度升高时,电流表A 的示数变大,电压表V 2示数减小C .变压器原、副线圈中的电流之比随R T 处温度的变化而变化D .R T 处温度升高时,变压器原线圈的输入功率增大12.(多选)如图Z813所示,匝数n =100匝、面积为S =0.448 m 2的导线框ABCD 所在处的磁场的磁感应强度大小B =210πT .线框绕垂直于磁场的轴OO ′以角速度ω=100π rad/s 匀速转动,从中性面开始计时,线框与理想升压变压器相连进行远距离输电,升压变压器的原、副线圈匝数之比为2∶5,理想降压变压器副线圈接入一只“220 V 1100 W ”的灯泡,且灯泡正常发光,输电线总电阻r =20 Ω,导线框及其余导线电阻不计,电表均为理想电表.则下列说法中正确的是( )图Z813A .电压表的读数为448 VB.输电线路的电流为0.98 AC.电流表的读数为2.5 AD.降压变压器的原、副线圈匝数之比为5∶1专题限时集训(九)1.(多选)彼此绝缘、相互交叉的两根通电直导线与闭合线圈共面,图Z91中穿过线圈的磁通量可能为零的是()A B C D图Z91图Z922.(多选)如图Z92所示,Ⅰ和Ⅱ是一对异名磁极,ab为放在其间的金属棒.ab和cd用导线连成一个闭合回路.当ab棒向左运动时,cd导线受到向下的安培力,由此可知() A.d点电势高于c点电势B.Ⅰ是S极C.Ⅰ是N极D.当cd棒向下运动时,ab棒受到向左的安培力3.某同学在“探究感应电流产生的条件”的实验中,将直流电源、滑动变阻器、线圈A(有铁芯)、线圈B、灵敏电流计及开关按图Z93连接成电路.在实验中,该同学发现开关闭合的瞬间,灵敏电流计的指针向左偏.由此可以判断,在保持开关闭合的状态下()图Z93A.当线圈A拔出时,灵敏电流计的指针向左偏B.当线圈A中的铁芯拔出时,灵敏电流计的指针向右偏C.当滑动变阻器的滑片匀速滑动时,灵敏电流计的指针不偏转D.当滑动变阻器的滑片向N端滑动时,灵敏电流计的指针向右偏图Z944.如图Z94所示,质量为m 的金属环用线悬挂起来,金属环有一半处于水平且与环面垂直的匀强磁场中.从某时刻开始,磁感应强度均匀减小,则在磁感应强度均匀减小的过程中,下列关于线对金属环拉力大小的说法中正确的是( )A .大于环重力mg ,并逐渐减小B .始终等于环重力mgC .小于环重力mg ,并保持恒定D .大于环重力mg ,并保持恒定5.(多选)图Z95是圆盘发电机的示意图.铜盘安装在水平的铜轴上,它的边缘正好在两磁极之间,两块铜片C 、D 分别与转动轴和铜盘的边缘接触.若铜盘半径为L ,匀强磁场的磁感应强度为B ,C 、D 之间接有电阻R ,回路的总电阻为R 总,从左往右看,铜盘以角速度ω沿顺时针方向匀速转动.则( )图Z95A .由于穿过铜盘的磁通量不变,故回路中无感应电流B .回路中感应电流大小不变,为BL 2ω2R 总C .回路中感应电流方向不变,为C →D →R →CD .通过电阻R 的感应电流周期性变化6.某校科技小组的同学设计了一个传送带测速仪,测速原理如图Z96所示.在传送带一端的下方固定有间距为L 、长度为d 的平行金属电极.电极间充满磁感应强度为B 、方向垂直传送带平面(纸面)向里、有理想边界的匀强磁场,且电极之间接有理想电压表和电阻R ,传送带背面固定有若干根间距为d 的平行细金属条,其电阻均为r ,传送带运行过程中始终仅有一根金属条处于磁场中,且金属条与电极接触良好.当传送带以一定的速度匀速运动时,电压表的示数为U .则下列说法中正确的是( )图Z96A .传送带匀速运动的速率为U BL B .电阻R 的热功率为U 2R +rC .金属条经过磁场区域受到的安培力大小为BUd R +rD .每根金属条经过磁场区域的全过程中克服安培力做功为BLUd R 7.如图Z97所示,相距均为 d 的三条水平虚线 L 1 与 L 2、L 2 与 L 3 之间分别有垂直纸面向外、向里的匀强磁场,磁感应强度大小均为B.一个边长也为d的正方形导线框从L1上方一定高度处由静止开始自由下落,当ab边刚越过L1进入磁场时,恰好以速度v1做匀速直线运动;当ab边在越过L2运动到L3之前的某个时刻,线框又开始以速度v2做匀速直线运动,在线框从进入磁场到速度变为v2的过程中,设线框的动能变化量为ΔE k,重力对线框做功为W1,线框克服安培力做功为W2,产生的电能为E0,下列说法中正确的是()图Z97A.在导线框下落过程中,有v2>v1B.在导线框下落过程中,有v1>v2C.导线框从ab边进入磁场到速度变为v2的过程中,线框中的电流方向没有发生变化D.导线框从ab边进入磁场到速度变为v2的过程中,线框动能的变化量为ΔE k=W1-W2-E08.如图Z98甲所示,匝数n=2匝的金属线圈(电阻不计)围成的面积为20 cm2,线圈与R=2 Ω的电阻连接,置于竖直向上、均匀分布的磁场中.磁场与线圈平面垂直,磁感应强度为B,B-t 关系如图乙所示,规定感应电流i从a经过R到b的方向为正方向,忽略线圈的自感影响.则下列i-t关系图正确的是()图Z98图Z999.如图Z910所示,在匀强磁场中有两条足够长的光滑平行金属导轨,导轨与水平面间的夹角θ=30°,间距L=0.5 m,上端接有阻值R=0.3 Ω的电阻.匀强磁场的磁感应强度大小B=0.4 T,磁场方向垂直导轨平面向上.一质量m=0.2 kg、电阻r=0.1 Ω的导体棒MN在平行于导轨的外力F作用下,由静止开始向上做匀加速运动,运动过程中导体棒始终与导轨垂直且接触良好.当棒的位移d=9 m时,电阻R消耗的功率为P=2.7 W.其他电阻不计,g取10 m/s2.求:(1)此时通过电阻R的电流;(2)这一过程通过电阻R的电荷量q;(3)此时作用于导体棒上的外力F的大小.图Z91010.如图Z911所示,相距为L的两条足够长的光滑平行金属导轨固定在水平面上,导轨由两种材料组成,PG右侧部分单位长度电阻为r0,且PQ=QH=GH=L,PG左侧导轨电阻不计,整个导轨处于匀强磁场中,磁场方向垂直于导轨平面向下,磁感应强度大小为B.质量为m、电阻不计的导体棒AC在恒力F作用下从静止开始运动,在到达PG之前导体棒AC已经匀速.(1)求当导体棒匀速运动时回路的电流.(2)若导体棒运动到PQ中点时速度大小为v1,试计算此时导体棒的加速度.(3)若导体棒初始位置与PG相距为d,运动到QH位置时速度大小为v2,试计算整个过程回路中产生的热量.图Z911专题滚动训练(三)1.如图G31所示,带有等量异种电荷的平行金属板M 、N 竖直放置,M 、N 两板间的距离d =0.5 m .现将一质量m =1×10-2 kg 、电荷量q =4×10-5 C 的带正电小球从两极板斜上方的A 点以v 0=4 m/s 的初速度水平抛出,A 点距离两板上端的高度h =0.2 m ,之后小球恰好从靠近M 板上端处进入两板间,沿直线运动碰到N 板上的C 点,该直线与平抛运动轨迹曲线的末端相切.设匀强电场只存在于M 、N 之间,不计空气阻力,g 取10 m/s 2.求:(1)小球到达M 极板上边缘B 位置时速度的大小和方向;(2)M 、N 两板间的电场强度的大小和方向;(3)小球到达C 点时的动能.图G312.如图G32所示,在xOy 坐标系第二象限内有一圆形匀强磁场区域,半径为l 0,圆心O ′坐标为(-l 0,l 0),磁场方向垂直于xOy 平面.在x 轴上有坐标为(-l 0,0)的P 点,两个电子a 、b 以相同的速率v 沿不同方向从P 点同时射入磁场,电子a 的入射方向与y 轴正方向平行,b 的入射方向与y 轴正方向夹角为θ=π3.电子a 经过磁场偏转后从y 轴上的Q (0,l 0)点进入第一象限,在第一象限内紧邻y 轴有沿y 轴正方向的匀强电场,场强大小为m v 2el 0,匀强电场宽为2l 0.已知电子质量为m 、电荷量为e ,不计电子重力及电子间的相互作用.求:(1)磁场的磁感应强度的大小;(2)b 电子在磁场中运动的时间;(3)a 、b 两个电子经过电场后到达x 轴的坐标差Δx .图G323.如图G33所示,空间某区域存在宽度为5d =0.4 m 、方向竖直向下的匀强电场,电场强度为0.1 V/m ,在电场中还存在3个磁感应强度方向为水平的匀强磁场区域,磁感应强度为0.1 T .一带负电微粒从离磁场1上边界h =0.2 m 的A 处自由下落.带电微粒在这个有电场和磁场的区域运动.已知磁场宽度为d =0.08 m ,相邻两个磁场相距也为d =0.08 m ,带电微粒质量为m =1×10-5 kg ,微粒带的电荷量为q =-1×10-3 C. (1)求微粒刚进入电磁场区域时的速度;(2)求微粒第一次离开磁场1时的速度大小及在磁场1和磁场2运动所用的总时间;(3)带电微粒能回到与A 同一高度处吗?如不能回到同一高度,请你通过计算加以说明;如能够回到同一高度,请求出从A 处出发开始计时到回到同一高度的时间(假设电磁场区域足够长,g。
专题分层突破练9 带电粒子在复合场中的运动A组1.(多选)如图所示为一磁流体发电机的原理示意图,上、下两块金属板M、N水平放置且浸没在海水里,金属板面积均为S=1×103m2,板间距离d=100 m,海水的电阻率ρ=0.25 Ω·m。
在金属板之间加一匀强磁场,磁感应强度B=0.1 T,方向由南向北,海水从东向西以速度v=5 m/s流过两金属板之间,将在两板之间形成电势差。
下列说法正确的是( )A.达到稳定状态时,金属板M的电势较高B.由金属板和流动海水所构成的电源的电动势E=25 V,内阻r=0.025 ΩC.若用此发电装置给一电阻为20 Ω的航标灯供电,则在8 h内航标灯所消耗的电能约为3.6×106JD.若磁流体发电机对外供电的电流恒为I,则Δt时间内磁流体发电机内部有电荷量为IΔt的正、负离子偏转到极板2.(重庆八中模拟)质谱仪可用于分析同位素,其结构示意图如图所示。
一群质量数分别为40和46的正二价钙离子经电场加速后(初速度忽略不计),接着进入匀强磁场中,最后打在底片上,实际加速电压U通常不是恒定值,而是有一定范围,若加速电压取值范围是(U-ΔU,U+ΔU),两种离子打在底的值约为片上的区域恰好不重叠,不计离子的重力和相互作用,则ΔUU( )A.0.07B.0.10C.0.14D.0.173.在第一象限(含坐标轴)内有垂直xOy平面周期性变化的均匀磁场,规定垂直xOy平面向里的磁场方向为正方向,磁场变化规律如图所示,磁感应强度的大小为B0,变化周期为T0。
某一带正电的粒子质量为m、电荷量为q,在t=0时从O点沿x轴正方向射入磁场中并只在第一象限内运动,若要求粒子在t=T0时距x轴最远,则B0= 。
4.(福建龙岩一模)如图所示,在xOy平面(纸面)内,x>0区域存在方向垂直纸面向外的匀强磁场,第三象限存在方向沿、电荷量为q的带正电粒子(不计重力),以大小为v、方向与y轴正方向夹角θ=60°的速度沿纸面从坐标为(0,√3L)的P1点进入磁场中,然后从坐标为(0,-√3L)的P2点进入电场区域,最后从x轴上的P3点(图中未画出)垂直于x轴射出电场。
提升训练11带电粒子在磁场中的运动1.如图所示,O'PQ是关于y轴对称的四分之一圆,在PQMN区域有均匀辐向电场,PQ与MN间的电压为U。
PQ上均匀分布带正电的粒子,可均匀持续地以初速度为零发射出来,任一位置上的粒子经电场加速后都会从O'进入半径为R、中心位于坐标原点O的圆形匀强磁场区域,磁场方向垂直xOy平面向外,大小为B,其中沿+y轴方向射入的粒子经磁场偏转后恰能沿+x轴方向射出。
在磁场区域右侧有一对平行于x轴且到x轴距离都为R的金属平行板A和K, 金属板长均为4R, 其中K板接地,A 与K两板间加有电压U AK>0, 忽略极板电场的边缘效应。
已知金属平行板左端连线与磁场圆相切,O'在y轴(0,-R)上。
(不考虑粒子之间的相互作用力)(1)求带电粒子的比荷;(2)求带电粒子进入右侧电场时的纵坐标范围;(3)若电压U AK=,求到达K板的粒子数与进入平行板总粒子数的比值。
2.如图为一装放射源氡的盒子,静止的氡核Rn)经过一次α衰变成钋Po,新核Po的速率约为2×105 m/s。
衰变后的α粒子从小孔P进入正交的电磁场区域Ⅰ,且恰好可沿中心线匀速通过,磁感应强度B=0.1 T。
之后经过A孔进入电场加速区域Ⅱ,加速电压U=3×106 V。
从区域Ⅱ射出的α粒子随后又进入半径为r= m的圆形匀强磁场区域Ⅲ,该区域磁感应强度B0=0.4 T、方向垂直纸面向里。
圆形磁场右边有一竖直荧光屏与之相切,荧光屏的中心点M和圆形磁场的圆心O、电磁场区域Ⅰ的中线在同一条直线上,α粒子的比荷为=5×107 C/kg。
(1)请写出衰变方程,并求出α粒子的速率(保留一位有效数字);(2)求电磁场区域Ⅰ的电场强度大小;(3)粒子在圆形磁场区域Ⅲ的运动时间多长?(4)求出粒子打在荧光屏上的位置。
3.(2018年3月新高考研究联盟第二次联考)一台质谱仪的工作原理如图1所示。
5.1.提升训练10带电粒子在电场中的运动(2017浙江杭州一中月考)如图所示,A 、B 为平行金属板,两板相距为d 且分别与电源两极相连,两 板的中央各有一小孔 M 和N 。
今有一带电质点,自A 板上方相距为d 的P 点由静止自由下落(P 、M N 在同一竖直线上),空气阻力忽略不计 间的电压不变,则下列说法不正确的是A. 把A 板向上平移一小段距离B. 把A 板向下平移一小段距离C. 把B 板向上平移一小段距离D. 把B 板向下平移一小段距离 2. (2018年4月浙江选考,11) v -t 图象如图所示。
粒子在 ,质点自 ,质点自 ,质点自 ,质点自 ,到达N 孔时速度恰好为零,然后沿原路返回。
若保持两极板 ( ) P 点自由下落后仍能返回 P 点自由下落后将穿过 P 点自由下落后仍能返回 P 点自由下落后将穿过 N 孔继续下落 A.A 、B 、 BA B 、 C. 粒子从 D. 粒子从 一带电粒子仅在电场力作用下从 N 孔继续下落A 点开始以-V o 的速度做直线运动,其 列判断正确的是( )C 三点的电势关系为 C 三点的电场强度大小关系为 E C >E B >E A A 点经B 点运动到C 点,电势能先增加后减少 A 点经B 点运动到C 点,电场力先做正功后做负功 P 、Q 以相同的初速度沿垂直于电场方向射入两平行板间的匀强电场 ,Q 从下极板边缘处射入。
它们最后打在同一点 (重力不计),则从开始射 ) 3.质量相同的两个带电粒子 中,P 从两极板正中央射入 入到打到上极板的过程中,( A. 它们运动的时间t Q >t P B. 它们所带的电荷量之比 C. 它们的电势能减少量之比 D. 它们的动能增量之比为 q p : q Q =1 : 2 △ E pp :△ E pc =1 : 2 △ E kP : △ E kQ =2 : 1 4.在电场强度大小为 E 的匀强电场中,质量为m 电荷量为+q 的物体以某一初速度沿电场反方向做 匀减速直线运动,其加速度大小为 ,物体运动s 距离时速度变为零。
第7讲 电场和磁场的基本性质专题提升训练一、单项选择题1.如图1所示,是一对不等量异种点电荷的电场线分布图,图中两点电荷连线长度为2r ,左侧点电荷带电荷量为+2q ,右侧点电荷带电荷量为-q ,P 、Q 两点关于两电荷连线对称。
由图可知( )图1A.P 、Q 两点的电场强度相同B.M 点的电场强度大于N 点的电场强度C.把同一试探电荷放在N 点,其所受电场力大于放在M 点所受的电场力D.两点电荷连线的中点处的电场强度为2k q r 2 解析 P 、Q 两点的电场强度大小相等,方向不相同,选项A 错误;根据电场线疏密程度反映电场强度大小可知,M 点的电场强度大于N 点的电场强度,选项B 正确;把同一试探电荷放在N 点,其所受电场力小于放在M 点所受的电场力,选项C 错误;两点电荷连线的中点处的电场强度为E =k 2q r 2+k q r 2=3k q r 2,选项D 错误。
答案 B2.(2015·北京昌平区二模)如图2所示,两根通电的长直导线垂直于纸面平行放置,电流分别为I 1和I 2,且I 1=I 2,电流的方向如图所示,O 点位于两导线连线的中点。
则( )图2A.O 点磁感应强度大小为零B.O 点磁感应强度大小不为零C.I 1和I 2之间为引力D.I 1和I 2之间无作用力解析 根据安培定则可知,两导线在O 点的磁感应强度大小相等、方向相同,都竖直向上,所以选项B正确;I1和I2电流方向相反,两电流之间相互排斥,所以选项C、D均错误。
答案 B3.(2015·深圳市高三调研考试)如图3所示,真空中的正点电荷放在O点,图中画出它产生的电场的六条对称分布的电场线。
以水平电场线上的O′点为圆心画一个圆,与电场线分别相交于a、b、c、d、e,下列说法正确的是()图3A.b、e两点的电场强度相同B.a点电势高于e点电势C.b、c两点间电势差等于e、d两点间电势差D.电子沿圆周由d运动到c,电场力做正功解析b、e两点电场强度的大小相同,方向不同,A错误;在正电荷产生的电场中,离电荷越近,电势越高,e点离电荷近,故电势高,B错误;b、e两点和c、d两点分别到电荷的距离相同,故电势相同,因此b、c两点间的电势差等于e、d两点间的电势差,C正确;电场力做功与初、末位置的电势差有关,c、d两点的电势差为零,故电场力做功为零,D错误。
答案 C4.(2015·山东桓台市模拟)如图4甲所示,AB是电场中的一条电场线。
质子以某一初速度从A点出发,仅在电场力作用下沿直线从A点运动到B点,其v-t图象如图乙所示,则下列说法正确的是()图4A.质子运动的加速度随时间逐渐减小B.电场线的方向由A指向BC.A、B两点电场强度的大小关系满足E A<E BD.A、B两点的电势关系满足φA<φB解析由题图可知,从A→B,速度减小,所以电场力方向向左,电场线方向由B→A,所以φA<φB,选项B错误,选项D正确;运动过程中加速度不变,所以该电场为匀强电场,E A=E B,选项A、C均错误。
答案 D5.(2015·泰州市高三模拟)空间存在着平行于x轴方向的静电场,其电势φ随x的分布如图5所示,A、M、O、N、B为x轴上的点,|OA|<|OB|,|OM|=|ON|。
一带电粒子在电场中仅在电场力作用下从M点由静止开始沿x轴向右运动。
则下列判断中正确的是()图5A.粒子一定带正电B.粒子从M向O运动过程中所受电场力均匀增大C.粒子一定能通过N点D.粒子从M向N运动过程中电势能先增大后减小解析沿场强方向电势降落,可知带电粒子所受电场力方向与场强方向相反,粒子带负电,选项A错误;由于MO间的场强是均匀的,粒子从M向O运动过程中所受电场力保持不变,选项B错误;由于MO间的电势差大于NO间的电势差,所以粒子一定能通过N点选项C正确;粒子从M向N运动过程中,电场力先做正功后做负功,电势能先减小后增大,选项D错误。
答案 C6.(2015·江西名校月考)如图6甲所示,直线AB是某孤立点电荷电场中的一条电场线,一个电子仅在电场力作用下沿该电场线从A点运动到B点,其电势能随位置变化的关系如图乙所示。
设A、B两点的电势分别为φA、φB电子在A、B两点的动能分别为E k A、E k B。
则关于该孤立点电荷的位置及电势、电子动能大小的说法正确的是()图6A.孤立点电荷带负电,位于B点的右侧,φA>φB,E k A>E k BB.孤立点电荷带正电,位于A点的左侧,φA>φB,E k A<E k BC.孤立点电荷带正电,位于B点的右侧,φA<φB,E k A>E k BD.孤立点电荷带负电,位于A点的左侧,φA<φB,E k A<E k B解析电势能E p=qφ,由于电子为负电荷,q<0,根据E p A<E p B可判断φA>φB,电场线从高电势指向低电势,所以电场线从A到B,电子从A到B沿电场线移动,电场力做负功,动能减小,所以E k A >E k B 。
由于电荷量不变,所以电势φ随x 变化的趋势与E p 随x变化趋势相同,而φ-x 的斜率即ΔφΔx =U d=E ,由图象可判断斜率逐渐增大,即从A 到B 电场线逐渐变密集,孤立点电荷在B 点右侧且为负电荷,选项A 对。
答案 A7.如图7所示,垂直纸面向里的匀强磁场足够大,两个不计重力的带电粒子同时从A 点在纸面内沿相反方向垂直虚线MN 运动,经相同时间两粒子又同时穿过MN ,则下列说法正确的是( )图7A.两粒子的电荷量一定相等,电性可能不同B.两粒子的比荷一定相等,电性可能不同C.两粒子的动能一定相等,电性也一定相同D.两粒子的速率、电荷量、比荷均不等,电性相同解析 因两粒子是从垂直MN 开始运动的,当再次穿过MN 时速度方向一定垂直MN ,两粒子均运动了半个周期,即两粒子在磁场中运动周期相等,由T =2πm Bq知两粒子的比荷一定相等,但质量、电荷量不一定相等,选项A 、D 错误;因不知粒子的偏转方向,所以粒子电性无法确定,选项B 正确;因粒子运动的周期与速度无关,所以粒子的动能也不能确定,选项C 错误。
答案 B二、多项选择题8.均匀带电的薄圆盘的右侧,用拉力传感器A 、B 水平悬挂一根通电直导线ab ,电流方向由a 到b ,导线平行于圆盘平面。
圆盘绕过圆心的水平轴沿如图8所示方向匀速转动,与圆盘静止时相比,拉力传感器的示数增大了,悬线仍然竖直,则下列说法正确的是( )图8A.圆盘带正电荷B.圆盘带负电荷C.若增大圆盘转动角速度,则传感器示数减小D.若改变圆盘转动方向,则传感器示数减小解析与圆盘静止时相比,拉力传感器的示数增大,悬线竖直,说明导线所受安培力竖直向下,由左手定则可判断,导线所在位置的磁感应强度方向水平向右;由安培定则可以判断,圆盘转动形成的等效电流与其转动方向相同,故圆盘带正电荷,A正确,B错误;若增大圆盘转动角速度,则等效电流增大,方向不变,产生的磁感应强度增大,所以导线所受安培力增大,传感器示数增大,C选项错误;若改变圆盘转动方向,则导线所在位置的磁场方向水平向左,导线所受安培力方向向上,传感器示数减小,D选项正确。
答案AD9.如图9所示,真空中两等量异种点电荷Q1、Q2固定在x轴上,其中Q1带正电。
三角形acd为等腰三角形,cd边与x轴垂直且与x轴相交于b点,则下列说法正确的是()图9A.a点电势高于b点电势B.a点场强小于b点场强C.将电子从a点移动到b点,电势能减少D.将电子从a点移动到c点,电场力做正功解析根据等量异种点电荷电场的分布特点可知a点场强大于b点场强,a、b在同一条电场线上,且电场线沿x轴负方向,故a点电势低于b点电势,选项A、B错误;将电子从a点移动到b点,电场力方向向右,电场力对电子做正功,电子的电势能减少,选项C正确;根据等量异种点电荷等势面的分布特点可知,a的电势低于c点的电势,将电子从a点移动到c点,电势能减少,则电场力做正功,选项D正确。
答案CD10.如图10所示,水平固定的矩形金属板A带电荷量为Q,电势为零,从金属板中心O处释放一质量为m、带电荷量为+q的小球,由于电场力的作用,小球竖直上升的最大高度可达到金属板中心竖直线上的C点,已知OC=h,重力加速度为g,又知小球过竖直线上B点时的速度最大,由此可确定Q所形成的电场中的物理量是()图10A.B 点的场强B.C 点的场强C.B 点的电势D.C 点的电势解析 由题意知小球通过B 点时的速度最大,则在B 点时小球所受的电场力与重力平衡,有mg =qE B ,解得E B =mg q;小球从O 到C 的过程中,由动能定理得qU OC -mgh =0,解得U OC =mgh q ,又U OC =φO -φC ,φO =0,可得φC =-mgh q;由于B 到O 的距离未知,故不能求出OB 间的电势差,因此不能求出B 点的电势;小球在C 点的加速度无法求出,因此C 点的场强无法求出。
选项A 、D 正确。
答案 AD11.(2015·广东理综,21)如图11所示的水平匀强电场中,将两个带电小球M 和N 分别沿图示路径移动到同一水平线上的不同位置,释放后,M 、N 保持静止,不计重力,则( )图11A.M 的带电量比N 的大B.M 带负电荷,N 带正电荷C.静止时M 受到的合力比N 的大D.移动过程中匀强电场对M 做负功解析 带电小球M 、N 在不计重力条件下平衡,说明M 、N 两球所受电场力的合力为零,即M 、N 所在点合场强为零,所以M 球在N 球处所产生的场强方向向左,大小为E ,故M 球带负电;同理,N 球在M 球处产生的场强方向向右,大小为E ,故N 球带正电,且两球所带电荷量相等。
M 、N 两球在移动的过程中匀强电场对M 、N 均做负功,所以B 、D 正确。
答案 BD三、非选择题12.(2015·江苏常州期末)如图12所示,在矩形区域abcd 内充满垂直纸面向里的匀强磁场,磁感应强度为B ,在ad 边中点的粒子源,在t =0时刻垂直于磁场发射出大量的同种带电粒子,所有粒子的初速度大小相同,方向与Od 的夹角分布在0~180°范围内。
已知沿Od 方向发射的粒子在t =t 0时刻刚好从磁场边界cd 上的P 点离开磁场,ab =1.5L ,bc =3L ,粒子在磁场中做圆周运动的半径R =L ,不计粒子的重力和粒子间的相互作用,求:图12(1)粒子在磁场中的运动周期T 和粒子的比荷q m; (2)粒子在磁场中运动的最长时间;解析 (1)初速度沿Od 方向发射的粒子在磁场中运动的轨迹如图甲,其圆心为O 1,由几何关系有∠OO 1P =π3,T =6t 0;甲 粒子做圆周运动的向心力由洛伦兹力提供,根据牛顿第二定律得qvB =mv 2R ,v =2πR T ,得q m =π3Bt 0。