2019年中考数学复习专题类型突破专题二探索规律问题训练
- 格式:doc
- 大小:2.90 MB
- 文档页数:11
2019年中考数学二轮复习考点解密 规律探索性问题第一部分 讲解部分一.专题诠释规律探索型题是根据已知条件或题干所提供的若干特例,通过观察、类比、归纳,发现题目所蕴含的数字或图形的本质规律与特征的一类探索性问题。
这类问题在素材的选取、文字的表述、题型的设计等方面都比较新颖新。
其目的是考查学生收集、分析数据,处理信息的能力。
所以规律探索型问题备受命题专家的青睐,逐渐成为中考数学的热门考题。
二.解题策略和解法精讲规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.题型可涉及填空、选择或解答.。
三.考点精讲考点一:数与式变化规律通常根据给定一列数字、代数式、等式或者不等式,然后写出其中蕴含的一般规律,一般解法是先写出数式的基本结构,然后通过比较各式子中相同的部分和不同的部分,找出各部分的特征,改写成要求的规律的形式。
例1. 有一组数:13,25579,,101726,请观察它们的构成规律,用你发现的规律写出第n (n 为正整数)个数为 .分析:观察式子发现分子变化是奇数,分母是数的平方加1.根据规律求解即可.解答:解:21211211⨯-=+; 23221521⨯-=+; 252311031⨯-=+;272411741⨯-=+; 219251265+⨯-=;…; ∴第n (n 为正整数)个数为2211n n -+. 点评:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.此题的规律为:分子变化是奇数,分母是数的平方加1.例2(2010广东汕头)阅读下列材料:1×2 =31(1×2×3-0×1×2), 2×3 = 31(2×3×4-1×2×3), 3×4 = 31(3×4×5-2×3×4), 由以上三个等式相加,可得1×2+2×3+3×4=31×3×4×5 = 20. 读完以上材料,请你计算下列各题:(1) 1×2+2×3+3×4+···+10×11(写出过程);(2) 1×2+2×3+3×4+···+n ×(n +1) = ______________;(3) 1×2×3+2×3×4+3×4×5+···+7×8×9 = ______________.分析:仔细阅读提供的材料,可以发现求连续两个正整数积的和可以转化为裂项相消法进行简化计算,从而得到公式)1(433221+⨯++⨯+⨯+⨯n n [])1()1()2)(1()321432()210321(31+--++++⨯⨯-⨯⨯+⨯⨯-⨯⨯⨯=n n n n n n )2)(1(31++=n n n ;照此方法,同样有公式: )2()1(543432321+⨯+⨯++⨯⨯+⨯⨯+⨯⨯n n n[])2()1()1()3()2()1()43215432()32104321(41+⨯+⨯⨯--+⨯+⨯+⨯++⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯=n n n n n n n n )3)(2)(1(41+++=n n n n . 解:(1)∵1×2 =31(1×2×3-0×1×2), 2×3 = 31(2×3×4-1×2×3), 3×4 = 31(3×4×5-2×3×4),…10×11 =31(10×11×12-9×10×11), ∴1×2+2×3+3×4+···+10×11=31×10×11×12=440. (2))2)(1(31++n n n .(3)1260.点评:本题通过材料来探索有规律的数列求和公式,并应用此公式进行相关计算.本题系初、高中知识衔接的过渡题,对考查学生的探究学习、创新能力及综合运用知识的能力都有较高的要求.如果学生不掌握这些数列求和的公式,直接硬做,既耽误了考试时间,又容易出错.而这些数列的求和公式的探索,需要认真阅读材料,寻找材料中提供的解题方法与技巧,从而较为轻松地解决问题.例3(2010山东日照,19,8分)我们知道不等式的两边加(或减)同一个数(或式子)不等号的方向不变.不等式组是否也具有类似的性质?完成下列填空:一般地,如果⎩⎨⎧>>dc b a , 那么a +c b +d .(用“>”或“<”填空) 你能应用不等式的性质证明上述关系式吗?分析:可以用不等式的基本性质和不等式的传递性进行证明。
专题训练(一)[规律探索题]1.[2018·烟台] 如图ZT1-1所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为()图ZT1-1A.28B.29C.30D.312.观察下列等式:71=7,72=49,73=343,74=2401,75=16807,76=117649,…,那么计算71+72+73+…+72020的结果的个位数字是()A.9B.7C.6D.03.[2017·自贡] 填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值为()图ZT1-2A.180B.182C.184D.1864.[2017·重庆A卷] 下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()图ZT1-3A.73B.81C.91D.1095.请你计算:(1-x)(1+x),(1-x)(1+x+x2),(1-x)(1+x+x2+x3),…,猜想(1-x)(1+x+x2+…+x n)的结果是()A.1-x n+1B.1+x n+1C.1-x nD.1+x n6.图ZT1-4中的图形都是由同样大小的棋子按一定的规律组成的,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑥个图形中棋子的颗数为()图ZT1-4A.51B.70C.76D.817.[2018·贺州] 如图ZT1-5,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,依此下去,第n个正方形的面积为()图ZT1-5A.()n-1B.2n-1C.()nD.2n8.[2017·遵义] 按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.9.[2017·郴州] 已知a1=-,a2=,a3=-,a4=,a5=-,…,则a8=.10.[2017·潍坊] 如图ZT1-6,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…;按照此规律,第n个图中正方形和等边三角形的个数之和为个.图Z T1-611.观察下面的单项式:a,-2a2,4a3,-8a4,…,根据你发现的规律,第8个式子是.12.[2017·巴中] 观察下列各式:=2,=3,=4,…,请你将所发现的规律用含自然数n(n≥1)的代数式表达出来:.13.图ZT1-7是将正三角形按一定规律排列的,则第五个图形中正三角形的个数是.图ZT1-714.观察下列等式:42-12=3×5;52-22=3×7;62-32=3×9;72-42=3×11;…,则第n(n是正整数)个等式为.15.[2017·天门] 如图ZT1-8,在平面直角坐标系中,△ABC的顶点坐标为A(-1,1),B(0,-2),C(1,0).点P(0,2)绕点A旋转180°得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2017的坐标为.图ZT1-816.[2018·贵港] 如图ZT1-9,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此作法进行下去,则点A n的坐标为.图ZT1-917.[2018·安顺] 正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图ZT1-10所示的方式放置.点A1,A2,A3…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B n的坐标是.(n为正整数)图ZT1-10参考答案1.C[解析] 第1个图形有(4×1)朵,第2个图形有(4×2)朵,第3个图形有(4×3)朵, …,第n个图形有4n朵,所以由4n=120得n=30.2.D3.C[解析] 观察各正方形中的4个数可知,1+14=3×5,3+32=5×7,5+58=7×9,故11+m=(11+2)×(11+4),解得m=184.4.C[解析] 整个图形可以看作是由两部分组成,各自的变化规律我们可以用一个表格来呈现:第个由此推断出这组图形中菱形个数的变化规律为:n2+n+1.当n=9时,有n2+n+1=92+9+1=91,∴第⑨个图形中菱形的个数为91.5.A[解析] 利用多项式乘多项式法则计算,归纳总结得到一般性规律,即可得到结果.观察可知,第一个式子的结果是:1-x2,第二个式子的结果是:1-x3,第三个式子的结果是:1-x4,…,第n个式子的结果是:1-x n+1.6.C[解析] 通过观察图形得到第①个图形中棋子的颗数为1=1+5×0;第②个图形中棋子的颗数为1+5×1=6;第③个图形中棋子的颗数为1+5+10=1+5×3=16;…所以第个图形中棋子的颗数为1+-),然后把n=6代入计算即可.7.B8.[解析] 分别寻找分子、分母蕴含的规律,第n个数可以表示为-,当n=100时,第100个数是.9.[解析] 由前5项可得a n=(-1)n·,当n=8时,a8=(-1)8·=.10.(9n+3)[解析] 由图形及数字规律可知,第n个图中正方形的个数为5n+1,等边三角形的个数为4n+2,所以其和为5n+1+4n+2=9n+3.11.-128a8[解析] 根据单项式可知n为双数时a的前面要加上负号,而a的系数为2n-1,a的指数为n.第8个式子为-27a8=-128a8.12.=(n+1)[解析] 观察所给出的二次根式,确定变化规律:左边被开方数由两项组成,第一项为序号,第二项为序号加2的倒数;右边也为两部分,根号外为序号加1,根号内为序号加2的倒数的算术平方根,即=(n+1).13.485[解析] 由图可以看出:第一个图形中有5个正三角形,第二个图形中有5×3+2=17(个)正三角形,第三个图形中有17×3+2=53(个)正三角形,由此得出第四个图形中有53×3+2=161(个)正三角形,第五个图形中有161×3+2=485(个)正三角形.14.(n+3)2-n2=3×(2n+3)[解析] 确定规律,写出一般式.∵42-12=3×5;52-22=3×7;62-32=3×9;72-42=3×11;∴第n个式子为:(n+3)2-n2=3×(2n+3).15.(-2,0)[解析] 根据旋转可得:P1(-2,0),P2(2,-4),P3(0,4),P4(-2,-2),P5(2,-2),P6(0,2),故6次旋转为一个循环,2017÷6=336……1,故P2017(-2,0).16.(2n-1,0)[解析] 由点A1坐标为(1,0),过点A1作x轴的垂线交直线y=x于点B1,可知B1点的坐标为(1,).以原点O 为圆心,OB1长为半径画弧与x轴交于点A2,所以OA2=OB1,所以OA2=)=2,因此点A2的坐标为(2,0),同理,可求得B2的坐标为(2,2),点A3的坐标为(4,0),B3(4,4)……所以点A n的坐标为(2n-1,0).17.(2n-1,2n-1)[解析] 当x=0时,y=x+1=1,∴点A1的坐标为(0,1).∵四边形A1B1C1O为正方形,∴点B1的坐标为(1,1).当x=1时,y=x+1=2,∴点A2的坐标为(1,2).∵四边形A2B2C2C1为正方形,∴点B2的坐标为(3,2).同理,可得点A3的坐标为(3,4),点B3的坐标为 7,4),…,点A n的坐标为(2n-1-1,2n-1),点B n的坐标为(2n-1,2n-1).故答案为(2n-1,2n-1).。
2019届中考数学第二轮复习专题突破二【探索规律问题】考题精练类型一数式规律命题角度❶数字规律探索(2018·泰安中考)观察“田”字中各数之间的关系:【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【自主解答】解数式规律型问题的一般方法(1)当所给的一组数是整数时,先观察这组数字是自然数列、正数列、奇数列、偶数列还是正整数列经过平方、平方加1或减1等运算后的数列,然后再看这组数字的符号,判断数字符号的正负是交替出现还是只出现一种符号,最后把数字规律和符号规律结合起来从而得到结果;(2)当数字是分数和整数结合时,先把这组数据的所有整数写成分数,然后分别推断出分子和分母的规律,最后得到该组第n 项的规律;(3)当所给的代数式含有系数时,先观察其每一项的系数之间是否有自然数列、正整数列、奇数列、偶数列或交替存在一定的对称性,然后观察其指数是否存在相似的规律,最后将系数和指数的规律结合起来求得结果.1.(2017·百色中考)观察以下一列数的特点:0,1,-4,9,-16,25,…,则第11个数是()A.-121B.-100C.100D.1212.(2017·十堰中考)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a 1=a 2+a 3,则a 1的最小值为()A.32B.36C.38D.403.(2018·枣庄中考)将从1开始的连续自然数按如下规律排列:则2018在第行.命题角度❷数字循环类规律探索(2018·成都中考)已知a>0,S1=1a,S2=-S1-1,S3=1S2,S4=-S3-1,S5=1S4,…(即当n为大于1的奇数时,Sn =1Sn-1;当n为大于1的偶数时,Sn=-Sn-1-1),按此规律,S2018=.【分析】根据Sn 数的变化找出Sn的值每6个一循环,结合2018=336×6+2,此题得解.【自主解答】数字循环类规律题就是几个数循环出现,解决此类问题时,一般是先求出前几个数,再观察其中隐含的规律,若和序号有关,则第n个数用含n的式子表示,用n除以循环出现的数的个数,找出余数即可找到对应的结果.4.(2017·岳阳中考)观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,…,根据这个规律,则21+22+23+24+…+22017的末位数字是()A.0B.2C.4D.65.(2016·枣庄中考改编)一列数a 1,a 2,a 3,…满足条件:a 1=12,a n =11-a n-1(n≥2,且n 为整数),则a 2019=.命题角度❸等式规律探索(2018·滨州中考)观察下列各式:1+112+122=1+11×2,1+122+132=1+12×3,1+132+142=1+13×4…请利用你所发现的规律,计算1+112+122+1+122+132+1+132+142+…+1+192+1102,其结果为.【分析】直接根据已知数据变化规律进而将原式变形求出答案.【自主解答】探索等式规律的一般步骤(1)标序数;(2)对比式子与序号,即分别比较等式中各部分与序数(1,2,3,4,…,n)之间的关系,把其隐含的规律用含序数的式子表示出来,通常方法是将式子进行拆分,观察式子中数字与序号是否存在倍数或者次方的关系;(3)根据找出的规律得出第n 个等式,并进行检验.6.(2018·黔南州中考)根据下列各式的规律,在横线处填空:11+12-1=12,13+14-12=112,15+16-13=130,17+18-14=156…,12017+12018-_________=12017×2018.7.(2018·安徽中考)观察以下等式:第1个等式:11+02+11×02=1,第2个等式:12+13+12×13=1,第3个等式:13+24+13×24=1,第4个等式:14+35+14×35=1,第5个等式:15+46+15×46=1,…按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n 个等式:(用含n 的等式表示),并证明.类型二点的坐标规律(2018·东营中考)如图,在平面直角坐标系中,点A 1,A 2,A 3,…和点B 1,B 2,B 3,…分别在直线y=15x+b 和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形,如果点A 1(1,1),那么点A 2018的纵坐标是.【分析】因为每个A 点为等腰直角三角形的直角顶点,则延长直线交x 轴、y 轴于点N,M,构造直角三角形MNO,作出各点A 垂直于x 轴,利用三角函数值求出各点A 的纵坐标,找出规律可求解.【自主解答】根据图形寻找点的坐标的变换特点,这类题目一般有两种考查形式:一类是点的坐标变换在直角坐标系中递推变化;另一类是点的坐标变换在坐标轴上或象限内循环递推变化.解决这类问题可按如下步骤进行:(1)根据图形点坐标的变换特点确定属于哪一类;(2)根据图形的变换规律分别求出第1个点,第2个点,第3个点的坐标,找出点的坐标与序号之间的关系,归纳得出第M 个点的坐标与变换次数之间的关系;(3)确定第一类点的坐标的方法:根据(2)中得到的倍分关系,得到第M 个点的坐标;确定第二类点坐标的方法:先找出循环一周的变换次数,记为n,用M÷n=ω……q(0≤q<n),则第M 次变换与每个循环中第q 次变换相同,再根据(2)中得到的第M 个点的坐标与变换次数的关系,得到第M 个点的坐标.8.(2018·广州中考)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到A n .则△OA 2A 2018的面积是()A.504m 2B.10092m2C.10112m2D.1009m 29.(2018·威海中考)如图,在平面直角坐标系中,点A 1的坐标为(1,2),以点O 为圆心,以OA 1长为半径画弧,交直线y=12x 于点B 1.过B 1点作B 1A 2∥y 轴,交直线y=2x 于点A 2,以点O 为圆心,以OA 2长为半径画弧,交直线y=12x 于点B 2;过点B 2作B 2A 3∥y 轴,交直线y=2x 于点A 3,以点O 为圆心,以OA 3长为半径画弧,交直线y=12x 于点B 3;过B 3点作B 3A 4∥y 轴,交直线y=2x 于点A 4,以点O 为圆心,以OA 4长为半径画弧,交直线y=12x 于点B 4,…,按照如此规律进行下去,点B 2018的坐标为__________.类型三图形累加型变化规律(2017·潍坊中考)如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n 个图中正方形和等边三角形的个数之和为个.【分析】根据题中正方形和等边三角形的个数找出规律,进而可得出结论.【自主解答】找图形累加型变化规律的一般步骤(1)写序号,记每组图形的序数为“1,2,3,…n”;(2)数图形个数,在图形数量变化时,要数出每组图形表示的个数;(3)寻找图形数量与序数n 的关系,若当图形变化规律不明显时,可利用图示法,即针对寻找第n 个图形表示的数量时,先将后一个图形的个数与前一个图形的个数进行比对,通常作差(商)来观察是否有恒等量的变化,然后按照定量变化推导出第n 个图形的个数.10.(2018·重庆中考)下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为()A.11B.13C.15D.1711.(2018·自贡中考)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有个○.类型四图形成倍递变型变化规律(2017·绥化中考)如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n 个小三角形的面积为.【分析】记原来三角形的面积为S,第一个小三角形的面积为S 1,第二个小三角形的面积为S 2,…,求出S 1,S 2,S 3,探究规律后即可解决问题.【自主解答】对于求面积规律探索问题的一般步骤:(1)根据题意可得出第一次变换前图形的面积S;(2)通过计算得到第一次变换后图形的面积,第二次变换后图形的面积,第三次变换后图形的面积,归纳出后一个图形的面积与前一个图形的面积之间存在的倍分关系;(3)根据找出的规律,即可求出第M 次变换后图形的面积.12.(2017·内江中考)如图,过点A 0(2,0)作直线l:y=33x 的垂线,垂足为点A 1,过点A 1作A 1A 2⊥x 轴,垂足为点A 2,过点A 2作A 2A 3⊥l,垂足为点A 3,…,这样依次下去,得到一组线段:A 0A 1,A 1A 2,A 2A 3,…,则线段A 2016A 2017的长为()A.(32)2015B.(32)2016C.(32)2017D.(32)201813.(2018·潍坊中考)如图,点A 1的坐标为(2,0),过点A 1作x 轴的垂线交直线l:y=3x 于点B 1,以原点O 为圆心,OB 1的长为半径画弧交x 轴正半轴于点A 2;再过点A 2作x 轴的垂线交直线l 于点B 2,以原点O 为圆心,以OB 2的长为半径画弧交x 轴正半轴于点A 3;….按此作法进行下去,则A 2019B 2018的长是.参考答案类型一【例1】观察“田”字中各数之间的关系得:左上角数字为连续的正奇数;左下角数字为2的整数指数幂;右下角数字则为左上角与左下角两数字的和;右上角的数字为右下角数字与1的差.故此,可知a=28=256,b=15+256=271,c=271-1=270.故答案为270.变式训练1.B 2.D 3.45【例2】∵S 1=1a ,S 2=-S 1-1=-1a -1=-a+1a ,S 3=1S 2=-a a+1,S 4=-S 3-1=a a+1-1=-1a+1,S 5=1S 4=-(a+1),S 6=-S 5-1=(a+1)-1=a,S 7=1S 6=1a ,…,∴S n 的值每6个一循环.∵2018=336×6+2,∴S 2018=S 2=-a+1a .故答案为-a+1a .变式训练4.B 5.-1【例3】1+112+122+1+122+132+1+132+142+…+1+192+1102=1+11×2+1+12×3+1+13×4+…+1+19×10=1×9+1-12+12-13+13-14+…+19-110=9+1-110=9910.故答案为9910.变式训练6.110097.解:(1)16+57+16×57(2)根据题意,第n 个分式分母分别为n 和n+1,分子分别为1和n-1,故答案为1n +n-1n+1+1n ×n-1n+1=1.证明:1n +n-1n+1+1n ×n-1n+1=n+1+n(n-1)+(n-1)n(n+1)=n 2+n n(n+1)=1,∴等式成立.类型二【例4】∵A 1(1,1)在直线y=15x+b 上,∴b=45,∴直线解析式为y=15x+45.设直线与x 轴、y 轴的交点坐标分别为点N,M.当x=0时,y=45;当y=0时,15x+45=0,解得x=-4,∴点M,N 的坐标分别为M(0,45),N(-4,0),∴t a n ∠MNO=MO NO =454=15.如图,作A 1C 1⊥x 轴于点C 1,A 2C 2⊥x 轴于点C 2,A 3C 3⊥x 轴于点C 3.∵A 1(1,1),OB 1=2A 1C 1=2,∴t a n ∠MNO=A 2C 2NC 2=A 2C 2NO+OB 1+A 2C 2=A 2C 24+2+A 2C 2=15,∴A 2C 2=32.同理,A 3C 3=94=(32)2,A 4C 4=278=(32)3,…依此类推,点A 2018的纵坐标是(32)2017.故答案为(32)2017.变式训练8.A 9.(22018,22017)类型三【例5】∵第1个图由6个正方形和6个等边三角形组成,∴正方形和等边三角形的个数之和为6+6=12=9+3;∵第2个图由11个正方形和10个等边三角形组成,∴正方形和等边三角形的个数之和为11+10=21=9×2+3;∵第3个图由16个正方形和14个等边三角形组成,∴正方形和等边三角形的个数之和为16+14=30=9×3+3;…∴第n 个图中正方形和等边三角形的个数之和为9n+3.故答案为9n+3.变式训练10.B 11.6055类型四【例6】记原来三角形的面积为S,第一个小三角形的面积为S 1,第二个小三角形的面积为S 2,….∵S 1=14·S=122·S,S 2=14·14S=124·S,S 3=126·S,∴S n =122n ·S=122n ·12·2·2=122n-1.故答案为122n-1.变式训练22019π12.B13.3。
第二篇专题能力突破 专题一规律探索问题—年创新导向一、选择题1. (原创题)观察下列图形,它们是按一定的规律排列的,依照此规律,第20个图形中的“★”有()★★ ★ ★★★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★★ ★★ ★ ★★ ★ ★ ★★ ★ ★ ★ ★第1个图形 第2个图形第3个图形 第4个图形A. 57 个B. 60 个C.63个 D. 85 个解析 第1个图形有3个“★”,第2个图形有6=2X3个“★” ,第3个图形有9=3X3个“★” , 第4个图形有12=4X3个“★ ”,…,第20个图形有20X3=60个.故选B.答案B2. (原创题)如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2, 4, 6,…,2n,…, 请你探究出前n行的点数和所满足的规律.若前n 行点数和为930,则n=()• • • • A 2• • • • • «A 3A. 29B. 30C. 31D. 32解析 前n 行的点数和可以表示成2+4+6+・・・+2n=2(l+2+3 + ・・・+n) =2X —=n(n+1), 从而得到一元二次方程n(n+1) =930,可以求出n=30・故选B.答案B3. (原创题)符号“f”表示一种运算,它对一些数的运算结果如下:(l)f(l)=2, f ⑵=4, f ⑶=6,…;(2)f 閤=2, -(為)等于()A. 2 013B. 2 014c -----2 013答案B4. (原创题)观察下列一组图形中点的个数,其中第一个图形中共有4个点,第2个图形中共有10个点,f(J)=3, f(f|=4,…利用以上规律计算:f(2 014) 解析根据题意,得f (2 014)—=2 014X2-2 014=2 014.故选B.第3个图形中共有19个点,…按此规律第6个图形中共有点的个数是解析第1个图形中共有4个点,第2个图形中共有10个点,比第1个图形中多了6个点;第3个图形中共有19个点,比第2个图形中多了9个点;…,按此规律可知,第4个图形比第3个图形中多12个点,所以第4个图形中共有12+19=31个点,第5个图形比第4个图形中多15个点,所以第5个图形中共有31 + 15=46个点,第6个图形比第5个图形中多18个点,所以第6个图形中共有46+18=64个点,故选D. 答案D二、填空题5.(原创题)图中各正三角形中的四个数之间都有相同的规律,据此规律,第n个正三角形中,四个数的解析观察图形发现:1><2—3 = — 1, 2X3-4=2, 3X4—5 = 7,故第n个正三角形中的外围的三个数分别是n, n+1, n+2,中间的数为n(n+l) — (n+2) =n2—2,所以这四个数的和为n+n+l+n+2 +n2—2=n2+3n+l.答案n+3n+l6.(原创题)如图,ZA0B=45° ,过射线0A上到点03,5, 7, 9, 11,…的点作OA的垂线与OB相交,黑色梯形,它们的面积分别为S“ S2, S3, S4…….律,则第2 015个黑色梯形的面积S2O15= __________ •(1 -LOA X 9 解析根据题意可得:S尸一=4=1X8的距离分别为h 得到并描出一组观察图中的规—4 , S2 —空严=12=2X8-42 (9+11)><2=20=3X8-4,2 S2 015=2 015X8-4=16 116.答案16 116 (13 + 15)=28=4X8-4,…,2019-2020学年数学中考模拟试卷一、选择题1.小明总结了以下结论:①a(b+c) =ab+ac ;②a(b - c) =ab - ac ; (3)(b - c) -ra=b4-a - c4-a(a^0);④ a4- (b+c) =a-rb+a4-c(a^0);其中一定成立的个数是() A. 1B ・2C ・3D ・424.如图,在反比例函数y=-—的图象上有一动点A,连结A0并延长交图象的另一支于点B,在第一象限x内有一点C,满足AC=BC,当点A 运动时,点C 始终在函数y=£的图象上运动,若tanZCAB=3,则kA. -B. 6C. 8D. 1835.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km.他们前进的路程为s (km), 甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确 的是()A. x< - 3B. x> - 33.下列运算正确的是( )A. a 6 -a 2 =a 4B. (a 2)3 = a 5C. x< - 6 C. a 2-a 3=a 5D. x> - 6D. a 6 4-a 2 = a 3A.甲的速度是4km/h C.乙比甲晚出发lhB. 乙的速度是10km/h D.甲比乙晚到B 地3h6.如图,AB/7CD,直线L 交AB 于点E,交CD 于点F,若Z2=75° ,则Z1等于( )7.如图,幼儿园计划用30m 的围栏靠墙围成一个面积为lOfW 的矩形小花园(墙长为15m ),则与墙垂直的边x 为()A. 10m 或 5m B ・ 5m 或 8m C ・ 10m D ・ 5m8. 下列运算正确的是() A. J (-5)2 = - 5 B. (x 3)2=x 5 C. X 64-X 3=X 2D. (- -)_2=1649. 如图,一个游戏转盘分成红、黄、蓝三个扇形,其中红、黄两个扇形的圆心角度数分别为90° , 120° •让转盘自由转动,停止后,指针落在蓝色区域的概率是()10. 某企业2018年初获利润300万元,到2020年初计划利润达到507万元,求这两年的年利润的平均增长率,设企业这两年的年利润平均增长率为X,则可列方程为()A. 300 (1+x ) 2=507B. 300 (1 -x ) 2=507x+5 > 211•不等式组4_心的最小整数解是()、填空题C. 125°D. 75°a5J11 5A ・ 一氏一 c.— 43 12 D.无法确定 C. 300 (l+2x) =507D. 300 (1+x 2) =507B.115°A. -3B. - 2C. 0D. 1A. AABC^ADCBB. AAOD^ACOBC. AABO^ADCOD. AADB^ADAC13.问题背景:如图,将AABC绕点A逆时针旋转60°得到AADE, DE与BC交于点P,可推出结论: PA+PC = PE问题解决:如图,在AM2VG中,MN = 6, ZM=75°, MG = 4近.点O是AWG内一点,则点O到AMNG三个顶点的距离和的最小值是_________________16.如果(2 +血)2=a+b逅(a, b为有理数),那么a+b等于 ________________ .3 1 1 3 17.如图,点A (1, a)是反比例函数y= 的图象上一点,直线y= ------------------------- x+ —与反比例函数y= ---------- 的x 2 2 x图象在第四象限的交点为点B,动点P (x, 0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,则点P的坐标是 _________________________ .18.若矩形两条对角线的夹角是60° ,且较短的边长为3,则这个矩形的面积为—•三、解答题19.在箱子中有10张卡片,分别写有1到10的十个整数,从箱子中任取一张卡片,记下它的读数x,然后再放回箱子中,第二次再从箱子中任取一张卡片,记下它的读数y,试求x+y是10的倍数的概率.有意义的x的取值范围是___________20. 如图,在平面直角坐标系xOy 中,将直线y=x 向右平移2个单位后与双曲线y=3 (x>0)有唯一 公共点A,交另一双曲线y=' (x>0)于B.x(1) 求直线AB 的解析式和a 的值; (2) 若x 轴平分AAOB 的面积,求k 的值.x-1 > 01 1(3) 已知x“ X2是方程x 2- 3x - 1 =0的两不等实数根,求一+ —的值 X] x 223. 观察下列等式:©32-31=2X31;②3—32=2X3〈③3"-33=2XT ;④36 - 34=2X34…根据等式所反映的规律,解答下列问题:(1) 直接写出:第⑤个等式为 __________ ;(2) 猜想:第n 个等式为 _________ (用含n 的代数式表示),并证明. 24. 已知二次函数y=x2—2(m+l)x+加+1 (m 为常数),函数图像的顶点为C. (1) 若该函数的图像恰好经过坐标原点,求点C 的坐标;(2)该函数的图像与x 轴分别交于点A 、B,若以A 、B 、C 为顶点的三角形是直角三角形,求m 的值.25. 如图,AP 平分ZBAC, ZADP 和ZAEP 互补.⑴作P 到角两边AB, AC 的垂线段PM, PN.(2)求证:PD=PE.【参考答案】*** 一、选择题13. 2A /29 14. xH_315.22. (1)计算:| 2—舲 |+(血+ 1)°—3 tan 30°+(—1)258(2)解不等式组:1 x221.计算:15.1016.(4, 0)17.运.三、解答题18. 1【解析】【分析】本题是一个等可能事件的概率,试验发生包含的事件是先后取两次卡片,每次都有1〜10这10个结果,满足条件的事件x+y是10的倍数的数对可以列举出结果数,根据等可能事件的概率公式得到结果.【详解】解:由题意知本题是一个等可能事件的概率,试验发生包含的事件是先后取两次卡片,每次都有1~10这10个结果,故形成的数对(x, y)共有100个.满足条件的事件x+y是10的倍数的数对包括以下10个:(1, 9), (9, 1), (2, 8), (8, 2), (3, 7), (7,3), (4, 6), (6, 4), (5, 5), (10, 10).故“x+y是10的倍数”的概率为£ =卷=0.1 •【点睛】本题考查等可能事件的概率,是一个关于数字的题目,数字问题是概率中经常出现的题目,一般可以列举出要求的事件,然后根据概率公式计算.19.(1) y=x - 2, a= - 1; (2) k=3.【解析】【分析】(1)根据平移的性质求出一次函数的解析式,根据无交点求出a的值,1y ——(2)解方程组.x 可求出A的坐标是(1, -1),由x轴平分AAOB的面积,可知B的纵坐标是1, j = x —2代入一次函数解析式可求出B的坐标是(3, 1),即可求出答案.【详解】(1)直线y=x向右平移2个单位后的解析式是y=x - 2,即直线AB的解析式为y=x-2,得:x - 2=—,则x2 - 2x - a=0,x△=4+4a=0,解得:a= - 1,一1(2)由(1)可得方程组丿x ,y = x-2\ x — \解得:\ ,A的坐标是(1, - 1),Tx轴平分AAOB的面积,.°.B的纵坐标是1,在y=x-2中,令y=l,解得:x=3,则B的坐标是(3, 1), 代入y=±可得:k=3.x【点睛】本题考查了一次函数和反比例函数的交点问题,根的判别式,平移的性质,三角形的面积的应用,及待定系数法求反比例函数解析式,题目是一道比较好的题目,难度适中.20.3-3^6【解析】【分析】直接利用负指数幕的性质以及绝对值的性质和二次根式的性质分别化简得出答案.【详解】解:原式=9-2辰2血-(6-茜),=9-4A/6 -6 + A/6,=3-3A/6【点睛】此题主要考查了二次根式的混合运算,正确化简各数是解题关键.21.(1) 2-2A/3 : (2) l<x<3;(3) - 3.【解析】【分析】(1)根据实数的运算法则进行计算(2)根据不等式组的解法解答,注意去分母(3)先根据一元二次方程的根与系数之间的关系求未知数,再化简求值.【详解】解:(1) |2 —的|+(血+ 1)°—3tan30°+(—I)""* = 2-V3+l-3x —+ 1-23= 2-73+1-73+1-2=2-2 也2x—1 > 0—1 —X解不等式1 —x> ---------- ,得:x<3,2解不等式x-l>0,得:x>l, x<3 x-1 >0故不等式组的解集为l<x<3;(3)由根与系数的关系得:Xi+X2=3, X I X2= - 1,1 1 x. +则一+ —= ~ =-3 .【点睛】此题重点考察学生对实数的运算,不等式组的解,一元二次方程根与系数之间的关系的理解,掌握实数的运算法则,不等式组和一元二次方程的解法是解题的关键.22.(1) 36 - 35=2X35; (2) 3n+1 - 3n=2X3n.【解析】【分析】由®32- 31=2X31;②3彳-3J2X32;③34 - 33=2X33;④35 - 34=2X34-得出第⑤个等式,以及第n个等式的底数不变,指数依次分别是n+1、n、n.【详解】解:(1)由®32- 31=2X31;②3彳-32=2x32;③34-3S=2X33;④35 - 34=2X34…得出第⑤个等式36 - 35 =2X35;故答案为:36 - 35=2X36;(2)由©32-31=2X31;②33-32=2x32; (3)34 - 33=2X33;④35 - 34=2X34…得出第n 个等式的底数不变,指数依次分别是n+1、n、n,即3n+1 - 3n=2X3n.证明:左边=3说-3"=3X3°-3"=3°X (3-1) =2X3n=右边,所以结论得证.故答案为:3n+1-3n=2X3n.【点睛】此题考查数字的变化规律,找出数字之间的运算规律,得出规律,利用规律,解决问题.【解析】【分析】—1 —X(2) l-x> -------------- \2,(2) m的值为1或一1(1)把(0, 0)代入y=+—2(m+l)x+2m+l可求出m的值,可得二次函数解析式,配方即可得出C点坐标;(2)令y=0,可用m 表示出&和X2,即可表示出AB的距离,根据二次函数解析式可用含m的代数式表示顶点C的坐标,根据以A、B、C为顶点的三角形是直角三角形可得关于m的方程,解方程求出m的值即可.【详解】(1)解:Vy=x2—2(m+l)x+2m+l 的图像经过点(0, 0).•.2m+l=0,12当m=—丄时,y=x2—x= (x —丄)2——,2 2 4•••顶点C的坐标(丄,2 4(2)解:当y=0 时X2—2(m+l)x+2m+l=0.°.xi=2m+l, X2=l,•*.AB= |2m|,Vy=x2—2(m+l)x+2m+l= (x—m—l)2—m2,顶点C的坐标(m+1, —m2),•.•以A、B、C为顶点的三角形是直角三角形,/. 2m2 = |2m|,当2m2=2m 时,mi=0, m2=l,当21^=—2m 时,mi=0, m2= —1,当m=0 时,AB=0 (舍)答:m的值为1或一1.【点睛】本题考查二次函数的图象及二次函数与一元二次方程,根据二次函数的解析式表示出顶点C的坐标和AB 的长是解题关键.25. (1)画图见解析;(2)证明见解析.【解析】【分析】(1)根据题意作图即可;⑵由PM丄AB, PN丄AC, PA平分ZBAC,可得PM=PN,再求出ZDPM=ZEPN,证明△ PMD^APNE,即可求【详解】解:⑴线段PM, PN如图所示.・・・PM=PN・・・ZPMA=ZPNA=90° ,・・・ZMPN+ZMAN=180° ,V ZADP+ZAEP=180° ,A ZDAE+ZDPE=180° ,・•・ ZMPN=ZDPE,・•・ ZDPM=ZEPN,•••△PMD 竺△PNE(ASA),・・・PD=PE・【点睛】本题考查的是全等三角形,熟练掌握全等三角形的性质是解题的关键.2019-2020学年数学中考模拟试卷一、选择题1. 函数y = yj2-x+—^—中自变量x 的取值范围是()x-1 A. x<2B ・C ・ xV2 且兀工1D ・2. 如图,点B 、C 、E 在同一条直线上,AABC 与ACDE 都是等边三角形,则下列结论不一定成立的是()A. AACE^ABCD B ・△BGC^AAFC C ・△DCG9/\ECF D ・△ADB^ZkCEA 3.如图,将面积为S 的矩形ABCD 的四边BA 、CB 、DC 、AD 分别延长至E 、F 、G 、H,使得AE=CG, BF=BC, FB 2DH 二AD,连接EF, FG, GH, HE, AF, CH.若四边形EFGH 为菱形,——=—,则菱形EFGH 的面积是()AB 3A. 2SB. -52 7C. 3S D ・一S24.若关于x 的方程3x 2 - 2x+m=0的一个根是- 1,则m 的值为()26.如图,在反比例函数y=-—的图象上有一动点A,连结A0并延长交图象的另一支于点B,在第一象限兀内有一点C,满足AC=BC,当点A 运动时,点C 始终在函数y='的图象上运动,若tanZCAB=3,则kX的值为()A. -5 B ・-1 C ・ 1D. 5如图,直线AD 〃BC,若Zl=40°,ZBAC=80° ,则Z2的度数为(C. 50°D. 40°5.2 A. -B ・ 6C ・ 8D ・ 1837. 函数y=2x'-4x ・4的顶点坐标是( )A. (1, -6)B ・(1, -4)C ・(・ 3, -6)D ・(-3,-4)8. 一个两位数,十位数字比个位数字的2倍大1,若将这个两位数减去36恰好等于个位数字与十位数字对调后所得的两位数,则这个两位数是( )10. 如图是某几何体的三视图,则该几何体的表面积为11. 在-3, -1, 1, 3四个数中,比-2小的数是( )二、填空题13. 如图,AB 是00的直径,点D 、E 是半圆的三等分点,AE 、BD 的延长线交于点C,若CE=2,则图中 阴」影部分的面积为_•A. 86 氏68 C. 97 D. 739. 在一个不透明的口袋中装有2个绿球和若干个红球, 摸出-个球,摸到绿球的概率为?则红球的个数是(这些球除颜色外无其它差别,从这个口袋中随机A.2B.4C.6D.8C. 24+6^3D. 16+6^3A. 1B. - 1C. -3D.12. 如图,这是健健同学的小测试卷, 判断题:每小题20分(D 2是分式 (2) (-2^ )3=-6/他应该得到的分数是(⑷ J9=±3(x )(5) 65啲补角是125。
2019年中考数学二轮复习规律探索型问题综合练习一.选择题1. 观察下列等式:71=7,72=49,73=343,74=2401,75=16807,76=117649,…,那么:71+72+73+…+72016的末位数字是( )A. 9B. 7C. 6D. 02. “数学是将科学现象升华到科学本质认识的重要工具”.比如在化学中,甲烷的化学式是CH 4,乙烷的化学式是C 2H 6,丙烷的化学式是C 3H 8,…,设碳原子的数目为n(n 为正整数),则它们的化学式都可用下列哪个式子来表示( )A. C n H 2n +2B. C n H 2nC. C n H 2n -2D. C n H n +33. 如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…,按照此规律继续下去,则S 9的值为( ) A. (12)6 B. (12)7 C. (22)6 D. (22)74. 如图,在矩形ABCD 中,已知AB =4,BC =3,矩形在直线l 上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,依次类推,这样连续旋转2015次后,顶点A 在整个旋转过程中所经过的路程之和是( )A. 2015πB. 3019.5πC. 3018πD. 3024π5.如图,已知菱形OABC 的顶点O(0,0),B(2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D 的坐标为( )A. (1,-1)B. (-1,-1)C. (2,0)D. (0,-2)6. 如图,在平面直角坐标系中,将△ABO 绕点B 顺时针旋转到△A 1BO 1的位置,使点A 的对应点A 1落在直线y =33x 上,再将△A 1BO 1绕点A 1顺时针旋转到△A 1B 1O 2的位置,使点O 1的对应点O 2落在直线y =33x 上,依次进行下去…. 若点A 的坐标是(0,1),点B 的坐标是(3,1),则点A 8的横坐标是( ).A. 33+3B. 33-3C. 63+6D. 63-6二.填空题7. 按一定规律排列的一列数:12,1,1, ,911,1113,1317,…,请你仔细观察,按照此规律方框内的数字应为________.8.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,….试猜想,32016的个位数字是________.9. 观察下列等式:1+2+3+4+…+n =12n(n +1);1+3+6+10+…+12n(n +1)=16n(n +1)(n +2);1+4+10+20+…+16n(n +1)(n +2)=124n(n +1)(n +2)(n +3); 则有:1+5+15+35+…+124n(n +1)(n +2)(n +3)=________.10. 如图,△ABC 的面积为1,第一次操作:分别延长AB ,BC ,CA 至点A 1,B 1,C 1,使A 1B =AB ,B 1C =BC ,C 1A =CA ,顺次连接A 1,B 1,C 1,得到△A 1B 1C 1,第二次操作,分别延长A 1B 1,B 1C 1,C 1A 1至点A 2,B 2,C 2,使A 2B 1=A 1B 1,B 2C 1=B 1C 1,C 2A 1=C 1A 1,顺次连接A 2,B 2,C 2,得到△A 2B 2C 2,…,按此规律,要使得到的三角形的面积超过2016,最少经过________次操作.11. 如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P 1,P 2,P 3,…,均在格点上,其顺序按图中“→”方向排列.如:P 1(0,0),P 2(0,1),P 3(1,1),P 4(1,-1),P 5(-1,-1),P 6(-1,2)…,根据这个规律,点P 2016的坐标为________.12. 如图,在平面直角坐标系中,边长为1的正方形OA 1B 1C 1的两边在坐标轴上,以它的对角线OB 1为边作正方形OB 1B 2C 2,再以正方形OB 1B 2C 2的对角线OB 2为边作正方形OB 2B 3C 3,依次类推…,则正方形OB 2015B 2016C 2016的顶点B 2016的坐标是________.13. 如图,在平面直角坐标系中,矩形AOCB 的两边OA 、OC 分别在x 轴和y 轴上,且OA =2,OC =1.在第二象限内,将矩形AOCB 以原点O 为位似中心放大为原来的32倍,得到矩形A 1OC 1B 1,再将矩形A 1OC 1B 1以原点O 为位似中心放大32倍,得到矩形A 2OC 2B 2…,依此规律,得到的矩形A n OC n B n 的对角线交点的坐标为________.三.解答题14. 古希腊数学家把数1,3,6,10,15,21,……叫做三角形数,它有一定的规律性.若把第一个三角形数记为x 1,第二个三角形数记为x 2,…,第n 个三角形数记为x n ,求x n +x n +1的值.15. 观察下列等式:第1个等式: a 1=11+2=2-1,第2个等式:a 2=12+3=3-2, 第3个等式:a 3=13+2=2-3,第4个等式:a 4=12+5=5-2, 按上述规律,回答以下问题:(1)请写出第n 个等式:a n =________;(2)a 1+a 2+a 3+…+a n =________.16. 将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中“○”的个数,若第n 个“龟图”中有245个“○”,则n 的值是多少?17. 如图,∠MON=60°,作边长为1的正六边形A1B1C1D1E1F1,边A1B1、F1E1分别在射线OM、ON上,边C1D1所在的直线分别交OM、ON于点A2、F2,以A2F2为边作正六边形A2B2C2D2E2F2,边C2D2所在的直线分别交OM、ON于点A3、F3,再以A3F3为边作正六边形A3B3C3D3E3F3,…,依此规律,求经第n 次作图后,点B n到ON的距离.18. 如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6,…,按此规律进行下去,则点A2016的纵坐标为____________.19. 如图,在平面直角坐标系中,△A1A2A3,△A3A4A5,△A5A6A7,△A7A8A9,…,都是等边三角形,且点A1,A3,A5,A7,A9的坐标分别为A1(3,0),A3(1,0),A5(4,0),A7(0,0),A9(5,0),依据图形所反映的规律,求A100的坐标.20. 如图,在坐标轴上取点A1(2,0),作x轴的垂线与直线y=2x交于点B1,作等腰直角三角形A1B1A2;又过点A2作x轴的垂线与直线y=2x交于点B2,作等腰直角三角形A2B2A3;…,如此反复作等腰直角三角形,当作到A n(n为正整数)点时,求A n的坐标.参考答案1-6 DAADBC7. 18. 19. 1120n(n +1)(n +2)(n +3)(n +4) 10. 四11. (504,-504)12. (21008,0)13. (-3n 2n ,3n2n +1) 14. 解:∵x 1+x 2=1+3=4=22,x 2+x 3=3+6=9=32,x 3+x 4=6+10=16=42,x 4+x 5=10+15=25=52,x 5+x 6=15+21=36=62,∴x n +x n +1=(n +1)2=n 2+2n +1.15. 解:∵a 1=11+2=2-1,a 2=12+3=3-2,a 3=13+4=4-3,…, ∴a n =1n +n +1=n +1-n ,将上面n 个式子左右相加得:a 1+a 2+a 3+…+a n =n +1-1.16. 解:根据题意得:第1个图形中小圆的个数为5,第2个图形中小圆的个数为7,第3个图形中小圆的个数为17,得出第n 个图形中小圆的个数为n(n -1)+5.据此可以求出“龟图”中有245个“○”时n 的值. 方法①:第1个图形有:5个○,第2个图形有:2×(2-1)+5=7个○,第3个图形有:3×(3-1)+5=11个○,第4个图形有:4×(4-1)+5=17个○,…,据此得出:第n 个图形有:n(n -1)+5个○,则可得方程n(n -1)+5=245,解得n 1=16,n 2=-15(不合题意,舍去).故答案为:n=16.方法②:设y =an 2+bn +c ,根据题意得⎩⎪⎨⎪⎧a +b +c =54a +2b +c =79a +3b +c =11,解得⎩⎪⎨⎪⎧a =1b =-1c =5,∴y =n 2-n +5.当y =245时,可得:n 2-n +5=245.解得n 1=16,n 2=-15(不合题意,舍去).故答案为:n=16.17. 解:由题可知,∠MON =60°,不妨设B n 到ON 的距离为h n , ∵正六边形A 1B 1C 1D 1E 1F 1的边长为1,则A 1B 1=1,易知△A 1OF 1为等边三角形, ∴A 1B 1=OA 1=1,∴OB 1=2,则h 1=2×32=3,又OA 2=A 2F 2=A 2B 2=3, ∴OB 2=6,则h 2=6×32=33, 同理可求:OB 3=18,则h 3=18×32=93,…, 依此可求:OB n =2×3n -1, 则h n =2×3n -1×32=3n -13, ∴B n 到ON 的距离h n =3n -1 3.18. 解:∵A 1(1,0),∠A 1A 2O =30°,∴A 2(0,3),∵A 3A 2⊥A 1A 2 ,∴∠A 3A 2O =60°,∴∠A 2A 3O =30°,∴A 3(-3,0),同理:A 4(0,-33),A 5(9,0),A 6(0,93),A 7(-27,0),A 8(0,-273),…, 即:A 2(0,3),A 4(0,-33),A 6(0,93),A 8(0,-273), 列表如下:∴n =1007,∴A 2016的纵坐标是-31007 3.19. 解:如图,继续排列图形如下,观察发现,A 1、A 5、A 9、…、A 4n -3在点(2,0)的右侧,A 3、A 7、A 11、…、A 4n -1在点(2,0)的左侧,A 2、A 6、A 10、…、A 4n -2在第一象限,A 4、A 8、A 12、…、A 4n 在第四象限, ∴A 100在第四象限,进一步观察发现:② A 4、A 8、A 12、A4n 的横坐标都为52,②A 4n 所在等边三角形边长为2n +1,可求得A 100所在等边三角形边长为2×25+1=51, 进一步可求点A 100的纵坐标为-(32×51)=-5132, 从而解得A 100的坐标为(52,-5132).20. 解:∵A 1(2,0)=(2×30,0),且A 1B 1⊥x 轴,与直线y =2x 交于点B 1, ∴B 1(2,4),∵作等腰直角三角形△A 1B 1A 2是等腰直角三角形, ∴A 2(6,0)=(2×31,0),∵A 2B 2⊥x 轴,且与直线y =2x 交于点B 2,∴B 2(6,12),∴A 3(18,0)=(2×32,0),如此反复作等腰直角三角形,A n (2×3n -1,0).。
中考规律探索1一.选择题1.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187… 解答下列问题:3+32+33+34…+32013的末位数字是( ) A .0 B .1 C .3 D .72. 把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式A M =(i ,j )表示正奇数M 是第i 组第j 个数(从左往右数),如A 7=(2,3),则A 2013=( ) A .(45,77) B .(45,39) C .(32,46) D .(32,23)3.下表中的数字是按一定规律填写的,表中a 的值应是 .1 2 3 5 8 13 a (2)358132134…4.下列图形都是由同样大小的矩形按一定的规律组成,其中第(1)个图形的面积为2cm 2,第(2)个图形的面积为8 cm 2,第(3)个图形的面积为18 cm 2,……,第(10)个图形的面积为( )A .196 cm 2B .200 cm 2C .216 cm 2D . 256 cm 25.如图,动点P 从(0,3)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2013次碰到矩形的边时,点P 的坐标为( )A 、(1,4)B 、(5,0)C 、(6,4)D 、(8,3)6.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m 、n 的关系是A . M=mnB . M=n(m+1)C .M=mn+1D .M=m(n+1)7.我们知道,一元二次方程12-=x 没有实数根,即不存在一个实数的平方等于-1,若我们规定一个新数“”,使其满足12-=i (即方程12-=x 有一个根为),并且进一步规定: 一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有,1i i =12-=i ,,).1(23i i i i i -=-=⋅=.1)1()(2224=-==i i 从而对任意正整数n ,我们可得到,.)(.4414i i i i i i n n n ===+同理可得,1,,143424=-=-=++n n n i i i i 那么,20132012432i i i i i i +⋅⋅⋅++++的值为A .0B .1C .-1D .8.下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑥个图形中棋子的颗数为( )A .51B .70C .76D .81二.填空题1.观察下列图形中点的个数,若按其规律再画下去,可以得到第n 个图形中所有的个数为 (用含n 的代数式表示).2.如图,在直角坐标系中,已知点A (﹣3,0)、B (0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为 .3.如图,正方形ABCD 的边长为1,顺次连接正方形ABCD 四边的中点得到第一个正方形A 1B 1C 1D 1,由顺次连接正方形A 1B 1C 1D 1四边的中点得到第二个正方形A 2B 2C 2D 2…,以此类推,则第六个正方形A 6B 6C 6D 6周长是 .图① 图② 图③···(第8题图)4.直线上有2013个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有个点.5.如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是.6 .如图,是用火柴棒拼成的图形,则第n个图形需根火柴棒.7.观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,则1+3+5+…+2013的值是.8.如图12,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;……如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m =_________.9.直线上有2013个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有个点. 10.观察下列各式的计算过程:5×5=0×1×100+25,15×15=1×2×100+25,25×25=2×3×100+25,35×35=3×4×100+25,…………请猜测,第n个算式(n为正整数)应表示为____________________________.11.将连续的正整数按以下规律排列,则位于第7行、第7列的数x是__ __.12、如下图,每一幅图中均含有若干个正方形,第①幅图中含有1个正方形;第②幅图中含有5个正方形;……按这样的规律下去,则第(6)幅图中含有 个正方形;13.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆, 第2个图形有10个小圆, 第3个图形有16个小圆, 第4个图形有24个小圆, ……,依次规律,第6个图形有 个小圆.14.已知一组数2,4,8,16,32,…,按此规律,则第n 个数是 . 15、我们知道,经过原点的抛物线的解析式可以是y =ax 2+bx (a ≠0) (1)对于这样的抛物线:当顶点坐标为(1,1)时,a =__________;当顶点坐标为(m ,m ),m ≠0时,a 与m 之间的关系式是__________;(2)继续探究,如果b ≠0,且过原点的抛物线顶点在直线y =kx (k ≠0)上,请用含k 的代数式表示b ;(3)现有一组过原点的抛物线,顶点A 1,A 2,…,A n 在直线y =x 上,横坐标依次为1,2,…,n (为正整数,且n ≤12),分别过每个顶点作x 轴的垂线,垂足记为B 1,B 2,…,B n ,以线段A n B n 为边向右作正方形A n B n C n D n ,若这组抛物线中有一条经过D n ,求所有满足条件的正方形边长.16.如图,所有正三角形的一边平行于x 轴,一顶点在y 轴上,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用1A 、2A 、3A 、4A 、…表示,其中12A A 与x 轴、底边12A A 与45A A 、45A A 与78A A 、…均相距一个单位,则顶点3A 的坐标是 ,22A 的坐标是 .xy A 9A 6A 3A 8A 7A 5A 4A 2A 1O第16题图••••••①② ③17.如图,已知直线l :y=33x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;……按此作法继续下去,则点A 2013的坐标为 .18、如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…那么点A 4n +1(n 为自然数)的坐标为 (用n 表示)19.当白色小正方形个数n 等于1,2,3…时,由白色小正方形和和黑色小正方形组成的图形分别如图所示.则第n 个图形中白色小正方形和黑色小正方形的个数总和等于_____________.(用n 表示,n 是正整数)20. (2013•衢州4分)如图,在菱形ABCD 中,边长为10,∠A=60°.顺次连结菱形ABCD 各边中点,可得四边形A 1B 1C 1D 1;顺次连结四边形A 1B 1C 1D 1各边中点,可得四边形A 2B 2C 2D 2;顺次连结四边形A 2B 2C 2D 2各边中点,可得四边形A 3B 3C 3D 3;按此规律继续下去….则四边形A 2B 2C 2D 2的周长是 ;四边形A 2013B 2013C 2013D 2013的周长是 .21.一组按规律排列的式子:a2,43a ,65a ,87a ,….则第n 个式子是________ 22.观察下面的单项式:a ,﹣2a 2,4a 3,﹣8a 4,…根据你发现的规律,第8个式子是 .23.如图,已知直线l:y=x,过点M(2,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,…;按此作法继续下去,则点M10的坐标为.24.为庆祝“六•一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆第(n)图,需用火柴棒的根数为.答案:选择题:1、C 2、C 3、21 4、B 5、D 6、D 7、D 8、 C填空题:1、(n+1)2 2、(8052,0) 3、0.5 4、16097 5、51 6、2n+1 7、1014049 8、 2 9、16097 10、[10(n-1)+5]2=100n(n-1)+25 11、85 12、91 13、46 14、2n 15、(1)-1;a =-1m(或am +1=0); (2)解:∵a ≠0 ∴y =ax 2+bx =a (x +2b a)2-24b a∴顶点坐标为(-2ba ,-24b a )∵顶点在直线y =kx 上∴k (-2ba )=-24b a∵b ≠0∴b =2k(3)解:∵顶点A n 在直线y =x 上 ∴可设A n 的坐标为(n ,n ),点D n 所在的抛物线顶点坐标为(t ,t )由(1)(2)可得,点D n 所在的抛物线解析式为y =-1tx 2+2x∵四边形A n B n C n D n 是正方形∴点D n 的坐标为(2n ,n ) ∴-1t(2n )2+2×2n =n∴4n =3t∵t 、n 是正整数,且t ≤12,n ≤12∴n =3,6或9∴满足条件的正方形边长为3,6或916、(0,31-),(-8,-8). 17、()()201340260,40,2或(注:以上两答案任选一个都对)18、(2n ,1) 19、n 2+4n 20、20;21、221na n (n 为正整数)22、-128a 8 23、(884736,0) 24、6n+2规律探索21、 我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。
2019年中考数学探索规律题型专题复习一、选择题1.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2019个单项式是()A.2019x2019B.4037x2018C.4037x2019D.4039x20192.如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,-1)B.(-1,1)C.(-1,-2)D.(1,-2)3.如图,将n个边长都为2的正方形按如图所示摆放,点A,A2,…A n分别是正方形的中心,则这n个正方1形重叠部分的面积之和是()A.nB.n﹣1C.()n﹣1D.n4.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是 ( )A.y=2n+1B.y=2n+nC.y=2n+1+nD.y=2n+n+15.如图,半径为2的正六边形ABCDEF的中心在坐标原点0,点P从点B出发,沿正六边形的边按顺时针方向以每秒2个单位长度的速度运动,则第2018秒时,点P的坐标是( )A.(1,)B.(-1,-)C.(1,-)D. (-1,)6.在平面直角坐标系中,对于点P(x,y),我们把点P/(-y+1,x+1)叫做点P伴随点.已知点A的伴随点为A2,1点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(2,4),点A2017的坐标为( )A.(-3,3)B.(-2,-2)C.(3,-1)D.(2,4)7.如图,动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2 018次运动后,动点的坐标是()A.(2018,0)B.(2018,1)C.(2018,2)D.(2017,0)8.如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形AB1C1D1;把正方形A1B1C1D1边1长按原法延长一倍得到正方形A2B2C2D2;以此进行下去…,则正方形A n B n C n D n的面积为()A.()nB.5nC.5n﹣1D.5n+19.如图,点O(0,0),A(0,1)是正方形OAAB的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正1方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A2017的坐标是()A.(0,21008)B.(21008,21008)C.(21009,0)D.(21009,-21009)10.已知一列数:1,-2,3,-4,5,-6,7,…将这列数排成下列形式:按照上述规律排下去,那么第100行从左边数第5个数是( )A.-4955B.4955C.-4950D.495011.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A.36B.45C.55D.6612.根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第n个图中平行四边形的个数是( )A.3n B.3n(n+1) C.6n D.6n(n+1)13.如图所示的运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为()A.3 B.6 C.4 D.214.观察算式,探究规律:当n=1时,S1=13=1=12;当n=2时,;当n=3时,;当n=4时,;…那么S n与n的关系为()A. B. C. D.15.如图,矩形ABCD中,AB=6,AD=8,顺次连结各边中点得到四边形AB1C1D1,再顺次连结四边形A1B1C1D11各边中点得到四边形A2B2C2D2…,依此类推,则四边形A7B7C7D7的周长为( )A.14B.10C.5D.2.5二、填空题16.将图1的正方形作如下操作:第1次分别连接对边中点如图2,得到5个正方形;第2次将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,第n次操作后,得到正方形的个数是______.17.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为 .18.用长度相等的小棒按一定规律摆成如图所示的图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n个图案中有根小棒.(用含n的代数式表示)19.如图,动点P在坐标系中按图中所示箭头方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2018次运动后,动点P的坐标是.20.如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形四边中点为顶点作四边形,…依次作下去,图中所作的第n个四边形的周长为.21.如图,将△ABC第一次操作:分别延长AB,BC,CA至点A,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连1结A1、B1、C1,得到△A1B1C1,第二次操作:分别延长A1B1、B1C1、C1A1至点A2、B2、C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连结A2、B2、C2,得到△A2B2C2…按此规律,若△A3B3C3的面积是686,则△ABC的面积为______.22.如图,设四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以第二个正方形的对角线AE为边作第三个正方形AEGH,如此下去…,记正方形ABCD的边长a1=1,依上述方法所作的正方形的边长依次为a2,a3,a4,…,则a n=______.23.如图,在直角坐标系中,第一次将△OAB变换成△OAB1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B21变换成△OA3B3,已知A(1,3),A1(2,3),A2(3,3),A3(4,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)仔细观察每次变换前后的三角形有何变化,找出规律,按此变换规律将△OA3B3变换成△OA4B4,则A4的坐标是_________,B4的坐标是_________.(2)若按第(1)题的规律将△OAB进行了n次变换,得到△OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,请推测:A n的坐标是_________,B n的坐标是_________ .24.如图,在平面直角坐标系中,点A,A2,A3,…,A n在x轴的正半轴上,且OA1=2,OA2=2OA1,OA3=2OA2,…,1OA n=2OA n﹣1,点B1,B2,B3,…,B n在第一象限的角平分线l上,且A1B1,A2B2,…,A n B n都与射线l垂直,则B1的坐标是,B3的坐标是,B n的坐标是.25.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=4,以AC为斜边作Rt△ACC1,使∠CAC1=30°,Rt△ACC1的面积为S1;再以AC1为斜边作△AC1C2,使∠C1AC2=30°,Rt△AC1C2的面积记为S2,…,以此类推,则S n= (用含n的式子表示)26.观察下列算式,你发现了什么规律?12=;12+22=;12+22+32=;12+22+32+42=;…①根据你发现的规律,计算下面算式的值;12+22+32+42+52= ;②请用一个含n的算式表示这个规律:12+22+32…+n2= ;③根据你发现的规律,计算下面算式的值:512+522+…+992+1002= .27.正整数按如图的规律排列.请写出第20行,第21列的数字.28.已知,如图,∠MON=45°,OA=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记1作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第n个正方形的周长C n= .29.设,,,…,设,则S=_________ (用含n的代数式表示,n为正整数).30.即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为个.答案1.C.2.B3.B;4.B;解析:∵观察可知:左边三角形的数字规律为1,2,…,n,右边三角形的数字规律为21,22…,2n,下边三角形的数字规律为1+2,2+22,…,n+2n,∴最后一个三角形中y与n之间的关系为y=2n+n.5.D;6.D7.A8.B;9.B;10.B11.B;解:(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(a+b)10的展开式第三项的系数为45.故选B.12.B13.D14.C15.D.16.答案为:4n+1.17.答案为:9n+3.18.答案为:5n+1;19.答案为:(2018,0);20.答案为:4()n.21.答案为:2.22.答案为:()n﹣1.23.答案为:⑴(5,3);(32,0);⑵(n+1,0);24.答案为:(1,1), (4,4). (2n﹣1,2n﹣1)25.解:∵∠ACB=90°,∠BAC=30°,AB=4,∴BC=0.5AB=2,∴AC=BC=2,∴S△ABC=0.5•BC•AC=2,在△ABC1中,∵∠CAC1=30°,∴CC1═0.5AC=,∵∠BAC=∠CAC1,∠ACB=∠AC1C=90°,∴△ACB∽△AC1C,∴=()2=()2=,∴S1=•S△ABC,同理可得,S2=•S1=()2•S△ABC,S3=()3•S△ABC,…根据此规律可得,S n=()n•S△ABC=,故答案为.26.答案为:(1);(2);(3)295425;27.答案为:420;28.答案为:2n+1.29.答案为:.30.答案为:1946.解析:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1946.第11 页共11 页。
2019年中考数学专题拓展讲练专题二规律探索题一、专题概述1.规律探索型问题是指由给出的几个具体的结论来探求与它相关的一般性结论的问题,在中考中主要包括“数字规律探索”、“代数式规律探索”、“图形规律探索”及“坐标规律探索”四种类型.2.解决规律探索型问题的策略是:通过对所给的一组(或一串)式子及结论,进行全面细致地观察、分析、比较,从中发现其变化规律,并由此猜想出一般性的结论,然后再给出合理的证明或加以应用.二、考点分析考点一、数字规律1=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,【例1】观察下列算式的规律2204 根据上述的规律,你认为2的末位数字应该为A.2B.4C.6D.8【答案】C【解析】2n的个位数字是2,4,8,6四个为一个循环,所以204÷4=51,则2204的末位数字与24的相同是6,故选C.考点二、代数式规律【例2】已知下列等式:①22318;②225316;③227524;⋯⋯(1)请仔细观察,写出第④个式子;(2)根据以上式子的规律,写出第n个式子,并用所学知识说明第n个等式成立;(3)利用(2)中发现的规律计算:8+16+24+⋯+792+800.【解析】(1)229732.(2)22(2n1)(2n1)8n,证明如下:左边22224n4n1(4n4n1)4n4n14n4n18n右边,所以该等式成立.(8分)(3)原式2222222231537520119922 201140400.考点三、图形规律【例3】下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,⋯⋯,依此规律,第五个图形中三角形的个数是A.22B.24C.26D.28【答案】C【解析】根据已知图形的规律可得:第n个图形三角形的个数为2+6(n-1)=6n-4,则第五个图形中三角形的个数为6×5-4=26(个),故选C.考点四、坐标规律【例4】将自然数按以下规律排列:表中数2在第二行,第一列,与有序数对(2,1)对应;数5与(1,3)对应;数14与(3,4)对应;根据这一规律,数2017对应的有序数对为__________.【答案】(45,9)【解析】由已知可得:根据第一列的奇数行的数的规律是第几行就是那个数平方,第一行的偶数列的数的规律,与奇数行规律相同.∵45×45=2025,2025在第45行,第1列,向右依次减小,∴2017所在的位置是第45行,第9列,其坐标为(45,9),故答案为:(45,9).【例5】如图,所有正方形的中心均在坐标原点,且每条边与x轴或y轴平行,从内到外,2,4,6,8,⋯,顶点依次用A它们的边长依次为1,A2,A3,A4,⋯表示,则顶点A55的坐标是_______________.【答案】(14,14)【解析】∵55=4×13+3,∴A55与A3在同一象限,即都在第一象限,得:根据题中图形中的规律可3=4×0+3,A3的坐标为(0+1,0+1),即A3(1,1),7=4×1+3,A7的坐标为(1+1,1+1),A7(2,2),11=4×2+3,A11的坐标为(2+1,2+1),A11(3,3);⋯55=4×13+3,A55的坐标为(13+1,13+1),A55(14,14);故填(14,14).三、考点集训式:,,,,,,1.(2018·张家界市)观察下列算,⋯,则⋯的未位数字是A.8B.6C.4D.0方规律,2.(2018·宜昌市)1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘为“杨辉三角”,请观察图中的数比欧洲的相同发现要早三百多年,我们把这个三角形称为字排列规律,则a,b,c的值分别A.a=1,b=6,c=15B.a=6,b=15,c=20C.a=15,b=20,c=15D.a=20,b=15,c=63.(2018·武汉市)将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是A.2019B.2018C.2016D.20134.(2018·贵州省(黔东南,黔南,黔西南))根据下列各式的规律,在横线处填空:,,,⋯,﹣__________=.2 5.(2018·临安)已知:2+=2×,3+=3 2222×,4+=4×,5+=5×,⋯,若10+=10×符合前面式子的规律,则a+b=__________.6.(2018·淄博)将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.7.(2018·桂林)将从1开始的连续自然数按如图规律排列:规定位于第m行,第n列的自然数10记为(3,2),自然数15记为(4,2)......按此规__________律,自然数2018记为8.(2018·贵州省(黔东南,黔南,黔西南))“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,⋯⋯,按此规律,求图10、图n有多少个点?1中黑点个我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;⋯⋯所以容易求出图10、图n中黑点的个数分别是、.),再完成以下问请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上题:(1)第5个点阵中有个圆圈;第n个点阵中有个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.参考答案1.【答案】B【解析】∵2n的个位数字是2,4,8,6四个一循环,2018÷4=504⋯2,∴22018的个位数字与22的个位数字相同是4,2+23+24+25+⋯+21018的末位数字是2+4+8+6+⋯+2+4的尾数,故2+223451018的末位数字是:2+4=6.则2+2+2+2+2+⋯+2故选:B.题的关键.【点睛】本题考查的是尾数特征,根据题意找出数字循环的规律是解答此2.【答案】B【解析】根据图形得:每个数字等于上一行的左右两个数字之和,∴a=1+5=6,b=5+10=15,c=10+10=20,故选:B..对于找规律的题目首【点睛】本题是一道找规律的题目,这类题型在中考中经常出现先应找出哪些部分发生了变化,是按照什么规律变化的.3.【答案】D1、x+1,【解析】设中间数为x,则另外两个数分别为x﹣∴三个数之和为(x﹣1)+x+(x+1)=3x,根据题意得:3x=2019或3x=2018或3x=2016或3x=2013,解得:x=673或x=672(舍去)或x=672或x=671,∵673=84×8+1,∴中间数x在第1列,不合题意,故2019不合题意,舍去;∵672=84×8,∴中间数x在最后一列,不合题意,故2016不合题意,舍去;∵671=83×7+7,∴中间数x在第7列,符合题意,故三个数之和为2013,故选D.,【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系正确列出一元一次方程是解题的关键.4.【答案】【解析】∵,,,⋯,∴(n为正整数).∵2018=2×1009,∴.故答案为:.【点睛】本题考查了规律型中数字的变化类,根据等式的变化,找出变化规律“(n为正整数)”是解题的关键.5.【答案】109【解析】∵2+=2 22222×,3+=3×,4+=4×,5+=5×,⋯,10+=10×,2-1=99,∴b=10,a=10∴a+b=10+99=109,故答案为109.【点睛】本题考查了规律型——数字的变化类,观察出整数与分数的分子分母的关系是解题的关键.6.【答案】2018【解析】观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.用规律解【点睛】本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利决问题.7.【答案】(505,2)4列,但每行数字的排列顺序是【点睛】本题是对数字变化规律的考查,观察出实际有.相反解题的关键,还要注意奇数行与偶数行的排列顺序正好8.【解析】图10中黑点个数是6×10=60个;图n中黑点个数是6n个,故答案为:60个,6n个;(1)如图所示:第1个点阵中有:1个,第2个点阵中有:2×3+1=7个,第3个点阵中有:3×6+1=19个,第4个点阵中有:4×9+1=37个,第5个点阵中有:5×12+1=61个,⋯1)+1=3n第n个点阵中有:n×3(n﹣2﹣3n+1,故答案为:61,3n2﹣3n+1;(2)3n2﹣3n+1=271,2﹣n﹣90=0,n(n﹣10)(n+9)=0,n1=10,n2=﹣9(舍),∴小圆圈的个数会等于271,它是第10个点阵.数”的方法解决问题,仔细观察图形,根据图【点睛】本题是图形类的规律题,采用“分块计.形中圆圈的个数恰当地分块是关键对爸爸的印象,从记事的时候,就有了,他留给我的印象就是沉默少言的,但是脸上却始终有微笑,不管家里遇到了什么样的困难,只要有爸爸在,一切都能够雨过天晴的,小时候,家里很穷,可是作为孩子的我们(我和哥哥),却很幸福。
2019年中考数学二轮专题复习探索规律题一、选择题1.如图,点O(0,0),A(0,1)是正方形OAAB的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正1方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A2017的坐标是()A.(0,21008)B.(21008,21008)C.(21009,0)D.(21009,-21009)2.如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形AB1C1D1;把正方形A1B1C1D1边1长按原法延长一倍得到正方形A2B2C2D2;以此进行下去…,则正方形A n B n C n D n的面积为()A.()nB.5nC.5n﹣1D.5n+13.如图,半径为2的正六边形ABCDEF的中心在坐标原点0,点P从点B出发,沿正六边形的边按顺时针方向以每秒2个单位长度的速度运动,则第2018秒时,点P的坐标是( )A.(1,)B.(-1,-)C.(1,-)D. (-1,)4.已知一列数:1,-2,3,-4,5,-6,7,…将这列数排成下列形式:按照上述规律排下去,那么第100行从左边数第5个数是( )A.-4955B.4955C.-4950D.49505.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0).根据这个规律探索可得,第100个点的坐标为( )A.(14,8)B.(13,0)C.(100,99)D.(15,14)6.如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,-1)B.(-1,1)C.(-1,-2)D.(1,-2)7.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A.36B.45C.55D.668.如图所示的运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为()A.3 B.6 C.4 D.29.如图,在一单位长度为1cm的方格纸上,依如图所示的规律,设定点A、A2、A3、A4、A5、A6、A7、…、A n,1连接点O、A1、A2组成三角形,记为△1,连接O、A2、A3组成三角形,记为△2…,连O、A n、A n+1组成三角形,记为△n(n为正整数),请你推断,当n为50时,△n的面积=()cm2.A.1275B.2500C.1225D.125010.如图,在第1个△ABC中,∠B=30°,A1B=CB,在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第12个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是( )11.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是103,则m的值是()A.9B.12C.11D.1012.观察算式,探究规律:当n=1时,S1=13=1=12;当n=2时,;当n=3时,;当n=4时,;…那么S n与n的关系为()A. B. C. D.二、填空题13.如图,动点P在坐标系中按图中所示箭头方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2018次运动后,动点P的坐标是.14.如图所示一个质点在第一象限内及x轴、y轴上运动,在第一秒内它由原点移动到(0,1)点,而后接着按图所示在x轴,y轴平行的方向运动,且每秒移动一个单位长度,那么质点运动到点(n,n)(n为正整数)的位置时,用代数式表示所用的时间为秒.15.如图,在平面直角坐标系中,点A(1,2),A2(2,0),A3(3,-2),A4(4,0)……根据这个规律,探究可1得点A2017的坐标是________.16.如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C,它与x轴交于两点O,A1;将C1绕A1旋转180°得到1C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m= .17.正整数按如图的规律排列.请写出第20行,第21列的数字.18.有一列式子,按一定规律排列成﹣3a2,9a5,﹣27a10,81a17,﹣243a26,….(1)当a=1时,其中三个相邻数的和是63,则位于这三个数中间的数是;(2)上列式子中第n个式子为 (n为正整数).19.如图,已知∠MON=30°,点A,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,1△A3B3A4,…均为等边三角形,若OA2=4,则△A n B n A n+1的边长为.20.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②可得到点P2,此时AP2=+1;将位置②的三角形绕点P2顺时针旋转到位置③可得到点P3时,AP3=+2…按此规律继续旋转,直至得到点P2026为止,则AP2016= .21.设,,,…,设,则S=_________ (用含n的代数式表示,n为正整数).22.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为8的正方形内部的整点的个数为____________.23.即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为个.24.如图,将△ABC第一次操作:分别延长AB,BC,CA至点A,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连1结A1、B1、C1,得到△A1B1C1,第二次操作:分别延长A1B1、B1C1、C1A1至点A2、B2、C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连结A2、B2、C2,得到△A2B2C2…按此规律,若△A3B3C3的面积是686,则△ABC的面积为______.答案1.B;2.B;3.D;4.B5. B;解:(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(a+b)10的展开式第三项的系数为45.故选B.6.D7.A.8.D.9.D;10.答案为:C11.C.12.C.13.答案为:(2018,0);14.答案为:n(n+1);15.答案为:(2017,2);16.解:∵y=﹣x(x﹣2)(0≤x≤2),∴配方可得y=﹣(x﹣1)2+1(0≤x≤2),∴顶点坐标为(1,1),∴A1坐标为(2,0)∵C2由C1旋转得到,∴OA1=A1A2,即C2顶点坐标为(3,﹣1),A2(4,0);照此类推可得,C3顶点坐标为(5,1),A3(6,0);C4顶点坐标为(7,﹣1),A4(8,0);C5顶点坐标为(9,1),A5(10,0);C6顶点坐标为(11,﹣1),A6(12,0);∴m=﹣1.故答案为:﹣1.17.答案为:420;18.答案为:(1) ﹣27 ;(2)19.答案为:2n﹣1.20.答案为:1344+672.21.答案为:.22.答案为:49;23.答案为:1946.解析:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1946.24.答案为:2.。
规律探索型问题1.按一定规律排列的单项式:,,,,,,65432a a a a a a ---… ,第n 个单项式是( )A.n aB.n a -C.()n n a 11+-D.()n n a 1-C 【解析】观察所给单项式的规律发现,第奇数个单项式的系数为1,第偶数个单项式的系数为-1,则系数可用(-1)n +1表示, 第n 个单项式的指数为n ,故第n 个单项式为(-1)n +1a n .2.将全体正奇数排成一个三角形数阵:13 57 9 1113 15 17 1921 23 25 27 29…按照以上排列的规律,第25行第20个数是( )A.639B.637C.635D.633A 【解析】由排列的规律问题可得,前24行共排了+++32130024=+个奇数,所以第25行从左至右的第20个数为第320个正奇数,它为63912320=-⨯,故选A.3.观察如图所示的一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…, 按此规律,图形⑧中星星的颗数是( )第3题图A.43B.45C.51D.53C 【解析】设图形n 中星星的颗数是a n (n 为正整数),∵a 1=2=1+1,a 2=6=(1+2)+3,a 3=11=(1+2+3)+5,a 4=17=(1+2+3+4)+7,∴a n =1+2+…+n +(2n -1)=()()1252112212-+=-++n n n n n , ∴.51182582128=-⨯+⨯=a 4.在平面直角坐标系中,正方形ABCD 的顶点分别为A (1 ,1)、B (1 ,-1)、C (-1, -1)、D (-1, 1),y 轴上有一点P (0 ,2),作点P 关于点A 的对称点P 1,作点P 1关于点B 的对称点P 2,作点P 2关于点C 的对称点P 3,作点P 3关于点D 的对称点P 4,作点P 4关于点A 的对称点P 5,作点P 5关于点B 的对称点P 6,…,按如此操作下去,则点P 2018的坐标为( )A.(0, 2)B.(2, 0)C.(0 ,-2)D.(-2, 0)第4题图C 【解析】如解图,作点P 关于点A 的对称点P 1,作点P 1关于点B 的对称点P 2,作点P 2关于点C 的对称点P 3,作点P 3关于点D 的对称点P 4,作点P 4关于点A 的对称点P 5,作点P 5关于点B 的对称点P 6,…, 如此操作下去,每变换4次为一循环,∵50442018=÷……2,∴点P 2018的坐标与P 2的坐标相同,∴点P 2018的坐标为(0,-2).第4题解图5.按一定规律排列的一列数为1925,2,,8,,18,,222---则第n 个数为.()212n n ⨯- 【解析】原式可化为149162536,,,,,,...,222222---奇数项为负,则用(-1)n 表示,观察分子、分母:列表如下∴第n 个数为()212n n ⨯-.6.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,按此规律,第8个图形有个小圆.第6题图76 【解析】图形序号 小圆个数第1个图形 2146⨯+=第2个图形 32410⨯+=第3个图形 43416⨯+=第4个图形 54424⨯+=第n 个图形 ()14++n n当8=n 时,小圆个数为76984=⨯+.……7.如图,下列图案是由火柴棒按某种规律搭成的,第(1)个图案中有2个正方形,第(2)个图案中有5个正方形,第(3)个图案中有8个正方形,…,则第(5)个图案中有个正方形,第n个图案中有个正方形.第7题图14 ;1n【解析】第(5)个图案中正方形的个数是3×5-1=14,所以第n 3个图案中正方形的个数是3n-1.8.下列图案是用长度相同的火柴棒按一定规律拼搭而成,第①个图案需4根火柴棒,第②个图案需10根火柴棒,第③个图案需16根火柴棒,…,按此规律,第n个图案需根火柴棒.第8题图(6n-2) 【解析】观察题中所给图案可知,第①个图案由4根火柴棒拼搭,4=1+3×1;第②个图案由10根火柴棒拼搭10=1+3×3 ;第③个图案由16根火柴棒拼搭16=1+3×5 按此规律,第n个图案中,火柴棒的根数是1+3(2n-1)=69.如图,图形①,②,③均是以点P0为圆心,1个单位长度为半径的扇形,将图形①,②,③分别沿东北、正南、西北方向同时移动,每次移动1个单位长度,第一次移动后图形①,②,③的圆心依次为P 1,P 2,P 3 第二次移动后图形①,②,③的圆心依次为P 4P 5,P 6 ,…,依此规律,P 0P 2018= 个单位长度.第9题图673【解析】由题意可知,扇形的圆心每3次一个循环 ∵236722018+⨯=,∴P 2018在正南方向上,∵每个扇形的半径为1个单位长度,每次移动1个单位长度,∴P 0P 2018=672+1=673个单位长度.10.等腰三角形ABC 在平面直角坐标系中的位置如图所示,已知点A (-6, 0),点B 在原点,CB CA =5=,把等腰三角形ABC 沿x 轴正半轴作无滑动顺时针连续翻转,第一次翻转到位置①, 第二次翻转到位置②,…, 依此规律,第15次翻转后点C 的横坐标是 .第10题图77 【解析】根据题意,过点C 作CD ⊥AB 于点D ,如解图 ∵CB CA =,∴BD =12BA =3,根据勾股定理得43522=-=CD , 即点C 坐标为(-3,4),根据题意知,每3次翻转为1个循环,横坐标增加5+5+6=16,∴翻转15次后,C 点横坐标为.775163=⨯+-第10 题解图。
解题策略此专题多用数形结合法,通过题目中给出的图形总结规律,用代数量化出结果.此专题有一定的难度.,重难点突破)数式规律【例1】(安徽中考)按一定规律排列的一列数:21,22,23,25,28,213,…,若x ,y ,z 表示这列数中的连续三个数,猜想x ,y ,z 满足的关系式是________.【解析】首项判断出这列数中,2的指数各项依次为 1,2,3,5,8,13,…,从第三个数起,每个数都是前两数之和;然后根据同底数的幂相乘,底数不变,指数相加,可得这列数中的连续三个数满足的规律.【答案】xy =z1.(临沂中考)观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…,按照上述规律,第2 016个单项式是( D )A .2 015x 2 015B .4 029x 2 014C .4 029x 2 015D .4 031x 2 0162.(张家口一模)任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1,现对72进行如下操作:72→[72]=8→[8]=2→[2]=1,这样对72只需要进行3次操作后变为1,类似地,对数字900进行了n 次操作后变为1,那么n 的值为( B )A .3B .4C .5D .63.(廊坊一模)一组数1,1,2,x ,5,y ,…,满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y 表示的数是( A )A .8B .9C .13D .154.(邵阳中考)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( B )A .y =2n +1B .y =2n+nC .y =2n +1+nD .y =2n+n +1 【方法指导】对于数式规律问题,应先将已知的几个数,分别写成与序号有关的式子,再观察所得式子,找出规律,最后应用规律解决问题.图形规律【例2】(2019石家庄四十三中二模)如图,已知∠AOB=80°,在射线OA ,OB 上分别取点A 1,B 1,使得OA 1=OB 1,连接A 1B 1,在A 1B 1,B 1B 上分别取点A 2,B 2,使得B 1A 2=B 1B 2,连接A 2B 2,……,按此规律下去,设∠B 1A 2B 2=θ1,∠B 2A 3B 3=θ2,……,∠B n A n +1B n +1=θn ,则θ10=________.【解析】先用含n 的代数式表示∠B n A n +1B n +1,再将n =10代入求解,注意等腰三角形性质的应用.【答案】50°2105.用大小相等的小正方形按一定规律拼成下列图形,则第n 个图形中小正方形的个数是( C )A .(2n +1)个B .(n 2-1)个C .(n 2+2n)个 D .(5n -2)个6.(重庆中考)观察下列一组图形,其中图①中共有2颗星,图②中共有6颗星,图③中共有11颗星,图④中共有17颗星,……,按此规律,图⑧中星星的颗数是( C )A .43颗B .45颗C .51颗D .53颗 【方法指导】对于图形递变规律,应先分析已知图形,分别得到n =1,2,3,4时,所求量(角度、线段长、图形个数)与n 的关系,再列出关于n 的代数式.坐标规律【例3】(内江中考)一组正方形按如图所示的方式放置,其中顶点B 1在y 轴上,顶点C 1,E 1,E 2,C 2,E 3,E 4,C 3……在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3……,则正方形A 2 016B 2 016C 2 016D 2 016的边长是( D )A.⎝ ⎛⎭⎪⎫122 015B.⎝ ⎛⎭⎪⎫122 016C.⎝ ⎛⎭⎪⎫33 2 016D.⎝ ⎛⎭⎪⎫33 2 015 【解析】易知△B 2C 2E 2∽△C 1D 1E 1,∴B 2C 2C 1D 1=B 2E 2C 1E 1=D 1E 1C 1E 1=tan30°,∴B 2C 2=C 1D 1·tan30°=33,∴C 2D 2=33.同理,B 3C 3=C 2D 2·tan30°=⎝ ⎛⎭⎪⎫332;由此猜想B n C n =⎝ ⎛⎭⎪⎫33n -1.当n =2 016时,B 2 016C 2 016=⎝ ⎛⎭⎪⎫33 2 015. 【答案】D7.(河南中考)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,……,组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第 2015秒时,点P 的坐标是( B )A .(2 014,0)B .(2 015,-1)C.(2 015,1) D.(2 016,0)【方法指导】求几何图形的边长(周长):①求出第一次变化前图形的边长(或周长);②计算第一次、第二次、第三次、第四次(所给出的图形)变化后的边长(或周长),归纳出第n次变化后的边长(或周长)与变化次数n的关系式;③代入所给图形中的某一个变化次数验证所归纳的关系式.教后反思_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2019-2020学年数学中考模拟试卷一、选择题1.下列计算中,正确的是( ) A .a 6÷a 2=a 3 B .(a+1)2=a 2+1 C .(﹣a )3=﹣a 3D .(ab 3)2=a 2b 52.下列选项中,可以用来证明命题“若a 2>b 2,则a >b“是假命题的反例是( ) A .a =﹣2,b =1B .a =3,b =﹣2C .a =0,b =1D .a =2,b =13.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,第一季度共获利42万元,已知二月份和三月份利润的月增长率相同.设二、三月份利润的月增长率x ,那么x 满足的方程为( ) A .10(1+x )2=42 B .10+10(1+x )2=42C .10+10(1+x )+10(1+2x )=42D .10+10(1+x )+10(1+x )2=42 4.下列代数运算正确的是( ) A .x 3•x 2=x 5 B .(x 3)2=x 5 C .(3x )2=3x 2D .(x ﹣1)2=x 2﹣15.把一个足球垂直于水平地面向上踢,该足球距离地面的高度h (米)与所经过的时间t (秒)之间的关系为2110(014)2h t t t =-≤≤. 若存在两个不同的t 的值,使足球离地面的高度均为a (米),则a 的取值范围( ) A .042a ≤≤B .050a ≤<C .4250a ≤<D .4250a ≤≤6.已知x ,y 满足方程组24342x y x y +=⎧⎨-=⎩,则2x y -的值为A .3B .4C .7-D .17-7.设函数ky x=(0k ≠,0x >)的图象如图所示,若1z y =,则z 关于x 的函数图象可能为( )A .B .C .D .8.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )A. B. C. D.9.据统计,2018年中国粮食总产量达到657900 000吨,数657900 000用科学记数法表示为( ) A .6.579×107B .6.579×108C .6.579×109D .6.579×101010.如图,在数轴上,点A 表示的数是2,△OAB 是Rt △,∠OAB =90°,AB =1,现以点O 为圆心,线段OB 长为半径画弧,交数轴负半轴于点C ,则点C 表示的实数是( )A B C .﹣3D .﹣11.如表是小明同学参加“一分钟汉字听写”训练近6次的成绩:则这组数据的平均数和中位数分别是( ) A .245个、244个 B .244个、244个 C .244个、241.5个D .243个、244个12.一个直角三角形两边长分别为3和4,则它的面积为( )A .6B .12C .6或10D .6或2二、填空题13.二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是_____.14.如果一个多边形的内角和是1080°,则这个多边形是________边形.15.如图,在△ABC 中,AB =AC ,D 、E 、F 分别为AB 、BC 、AC 的中点,则下列结论:①△ADF ≌△FEC ;②四边形ADEF 为菱形;③:1:4ADF ABC S S ∆∆=。
专题类型突破
专题二探索规律问题
类型一数式规律
命题角度❶数字规律探索
(2018·泰安中考)观察“田”字中各数之间的关系:
【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.
【自主解答】
解数式规律型问题的一般方法
(1)当所给的一组数是整数时,先观察这组数字是自然数列、正数列、奇数列、偶数列还是正整数列经过平方、平方加1或减1等运算后的数列,然后再看这组数字的符号,判断数字符号的正负是交替出现还是只出现一种符号,最后把数字规律和符号规律结合起来从而得到结果;(2)当数字是分数和整数结合时,先把这组数据的所有整数写成分数,然后分别推断出分子和分母的规律,最后得到该组第n项的规律;(3)当所给的代数式含有系数时,先观察其每一项的系数之间是否有自然数列、正整数列、奇数列、偶数列或交替存在一定的对称性,然后观察其指数是否存在相似的规律,最后将系数和指数的规律结合起来求得结果.
1.(2017·百色中考)观察以下一列数的特点:0,1,-4,9,-16,25,…,则第11个数是( )
A.-121 B.-100 C.100 D.121
2.(2017·十堰中考)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如
,表示a1=a2+a3,则a1的最小值为( )
A .32
B .36
C .38
D .40
3.(2018·枣庄中考)将从1开始的连续自然数按如下规律排列:
…
则2 018在第________行.
命题角度❷ 数字循环类规律探索
(2018·成都中考)已知a >0,S 1=1a ,S 2=-S 1-1,S 3=1S2,S 4=-S 3-1,S 5=1S4
,…(即当n 为大于1的奇数时,S n =1Sn -1
;当n 为大于1的偶数时,S n =-S n -1-1),按此规律,S 2 018=__________. 【分析】 根据S n 数的变化找出S n 的值每6个一循环,结合2 018=336×6+2,此题得解.
【自主解答】
数字循环类规律题就是几个数循环出现,解决此类问题时,一般是先求出前几个数,再观察其中隐含的规律,若和序号有关,则第n 个数用含n 的式子表示,用n 除以循环出现的数的个数,找出余数即可找到对应的结果.
4.(2017·岳阳中考)观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,…,根据这个规律,则21+22+23+24+…+22 017的末位数字是( )
A .0
B .2
C .4
D .6
5.(2016·枣庄中考改编)一列数a 1,a 2,a 3,…满足条件:a 1=12,a n =11-an -1
(n≥2,且n 为整数),则a 2 019=________.
命题角度❸ 等式规律探索
(2018·滨州中考)观察下列各式: 1+112+122=1+11×2
, 1+122+132=1+12×3
, 1+132+142=1+13×4
, …
请利用你所发现的规律,
计算1+112+122+1+122+132+1+132+142+…+1+192+1102
,其结果为________. 【分析】 直接根据已知数据变化规律进而将原式变形求出答案.
【自主解答】
探索等式规律的一般步骤
(1)标序数;(2)对比式子与序号,即分别比较等式中各部分与序数(1,2,3,4,…,n)之间的关系,把其隐含的规律用含序数的式子表示出来,通常方法是将式子进行拆分,观察式子中数字与序号是否存在倍数或者次方的关系;(3)根据找出的规律得出第n 个等式,并进行检验.
6.(2018·黔南州中考)根据下列各式的规律,在横线处填空:
11+12-1=12,13+14-12=112,15+16-13=130,17+18-14=156…,12 017+12 018-________=12 017×2 018
. 7.(2018·安徽中考)观察以下等式:
第1个等式:11+02+11×02
=1, 第2个等式:12+13+12×13
=1, 第3个等式:13+24+13×24
=1, 第4个等式:14+35+14×35
=1, 第5个等式:15+46+15×46
=1, …
按照以上规律,解决下列问题:
(1)写出第6个等式:________;
(2)写出你猜想的第n 个等式:________(用含n 的等式表示),并证明.
类型二 点的坐标规律
(2018·东营中考)如图,在平面直角坐标系中,点A 1,A 2,A 3,…和点B 1,B 2,B 3,…分别在直线y =15
x +b 和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形,如果点A 1(1,1),那么点A 2 018的纵坐标是 ________.
【分析】 因为每个A 点为等腰直角三角形的直角顶点,则延长直线交x 轴、y 轴于点N ,M ,构造直角三角形MNO ,作出各点A 垂直于x 轴,利用三角函数值求出各点A 的纵坐标,找出规律可求解.
【自主解答】
根据图形寻找点的坐标的变换特点,这类题目一般有两种考查形式:一类是点的坐标变换在直角坐标系中递推变化;另一类是点的坐标变换在坐标轴上或象限内循环递推变化.解决这类问题可按如下步骤进行:(1)根据图形点坐标的变换特点确定属于哪一类;(2)根据图形的变换规律分别求出第1个点,第2个点,第3个点的坐标,找出点的坐标与序号之间的关系,归纳得出第M 个点的坐标与变换次数之间的关系;(3)确定第一类点的坐标的方法:根据(2)中得到的倍分关系,得到第M 个点的坐标;确定第二类点坐标的方法:先找出循环一周的变换次数,记为n ,用M÷n=ω……q(0≤q<n),则第M 次变换与每个循环中第q 次变换相同,再根据(2)中得到的第M 个点的坐标与变换次数的关系,得到第M 个点的坐标.
8.(2018·广州中考)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1 m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到A n .则△OA 2A 2 018的面积是( A )
A .504 m 2B.1 0092
m 2 C.1 0112
m 2D .1 009 m 2 9.(2018·威海中考)如图,在平面直角坐标系中,点A 1的坐标为(1,2),以点O 为圆心,以OA 1长为半径画
弧,交直线y =12
x 于点B 1.过B 1点作B 1A 2∥y 轴,交直线y =2x 于点A 2,以点O 为圆心,以OA 2长为半径画弧,交直线y =12
x 于点B 2;过点B 2作B 2A 3∥y 轴,交直线y =2x 于点A 3,以点O 为圆心,以OA 3长为半径画弧,交直线y =12x 于点B 3;过B 3点作B 3A 4∥y 轴,交直线y =2x 于点A 4,以点O 为圆心,以OA 4长为半径画弧,交直线y =12x 于点B 4,…,按照如此规律进行下去,点B 2 018的坐标为______________。