12.4(1) 椭圆的性质
- 格式:doc
- 大小:64.50 KB
- 文档页数:2
椭圆的定义与性质椭圆是在平面上的一个几何图形,它的形状类似于一个椭圆形的椭圆。
椭圆由两个焦点和一条连接这两个焦点的线段组成。
椭圆的定义可以通过以下方式来描述:给定两个不重合的点F1和F2,以及一个正常数a,椭圆是平面上到这两个点F1和F2的距离之和等于2a的所有点P的集合。
椭圆有许多有趣的性质。
首先,椭圆是一个闭合图形,它的形状在两个焦点F1和F2之间变化。
其次,椭圆的中点O是焦点F1和F2之间的中点,并且椭圆的长轴是连接这两个焦点的线段。
长轴的长度为2a,其中a为椭圆的半长径。
椭圆的短轴是与长轴垂直且通过中点O的线段,其长度为2b,其中b为椭圆的半短径。
椭圆的长轴和短轴之间的关系可以通过以下公式表示:长轴的长度的平方等于短轴的长度的平方加上焦距的长度的平方。
椭圆的形状也可以由离心率来描述。
离心率是一个衡量椭圆形状的参数,表示焦点之间的距离与半长径之间的比值。
离心率小于1的椭圆形状更加圆形,而离心率等于1的椭圆是一个特殊的圆,离心率大于1的椭圆形状更加扁平。
除了这些基本的定义和性质之外,椭圆还有许多其他的性质。
例如,椭圆上的任意一点到焦点F1和F2的距离之和等于2a,这被称为椭圆的焦点性质。
椭圆还具有对称性,即关于长轴和短轴都有对称性。
椭圆还可以通过旋转的方式来得到新的椭圆,这被称为椭圆的旋转性质。
总结起来,椭圆是平面上的一个几何图形,由两个焦点和一条连接这两个焦点的线段组成。
椭圆具有闭合性、中点、长轴和短轴、离心率等基本性质。
此外,椭圆还有焦点性质、对称性和旋转性质等其他有趣的性质。
通过研究椭圆的定义和性质,我们可以更深入地理解和应用椭圆在数学和物理等领域中的重要性。
课题:12.4椭圆的基本性质(二课时)教学目标:1、掌握椭圆的对称性,顶点,范围等几何性质.2、能根据椭圆的几何性质对椭圆方程进行讨论,在此基础上会画椭圆的图形.3、学会判断直线与椭圆的位置,能够解决直线与椭圆相交时的弦长问题,中点问题等.4、在对椭圆几何性质的讨论中,注意数与形的结合与转化,学会分类讨论、数形结合等数学思想和探究能力的培养;培养探究新事物的欲望,获得成功的体验,树立学好数学的信心. 教学重点:椭圆的几何性质及初步运用教学难点:直线与椭圆相交时的弦长问题和中点问题 教学过程: 一.课前准备: 1、 知识回忆(1) 椭圆和圆的概念 (2) 椭圆的标准方程 2、课前练习1) 圆的定义: 到一定点的距离等于______的图形的轨迹。
椭圆的定义: _______________________________的图形的轨迹。
2) 椭圆的标准方程: 1。
焦点在x 轴上____________( )2。
焦点在y 轴上____________( )若1251622=+y x ,则椭圆的长轴长________短半轴长__________,焦点为____________,顶点坐标为__________,焦距为______________二.教学过程设计 一、引入课题“曲线与方程”是解析几何中最重要最基本的内容其中有两类基本问题:一是由曲线求方程,二是由方程画曲线.前面由椭圆定义推导出椭圆的标准方程属于第一类问题,本节课将研究第二类问题,由椭圆方程画椭圆图形,为使列表描点更准确,避免盲目性,有必要先对椭圆的范围、对称性、顶点进行讨论. 二、讲授新课 (一) 对称性问题1:观察椭圆标准方程的特点,利用方程研究椭圆曲线的对称性?x -代x 后方程不变,说明椭圆关于y 轴对称;y -代y 后方程不变,说明椭圆曲线关于x 轴对称;x -、y -代x ,y 后方程不变,说明椭圆曲线关于原点对称;问题2:从对称性的本质上入手,如何探究曲线的对称性?以把x 换成-x 为例,如图在曲线的方程中,把x 换成-x 方程不变,相当于点P (x ,y )在曲线上,点P 点关于y 轴的对称点Q (-x ,y )也在曲线上,所以曲线关于y 轴对称.其它同理.相关概念:在标准方程下,坐标轴是对称轴,原点是对称中心,椭圆的对称中心叫做椭圆的中心. (二) 顶点问题1:观察椭圆标准方程的特点,利用方程求出椭圆曲线与对称轴的交点坐标?在椭圆的标准方程中,令0=x ,得b y ±=,0=y ,得a x ±= 顶点概念:椭圆与对称轴的交点叫做椭圆的顶点.顶点坐标;)0,(),0,(21a A a A -,),0(),,0(21b B b B -.相关概念:线段2121,B B A A 分别叫做椭圆的长轴和短轴,它们的长分别等于b a 2,2,a 和b 分别叫做椭圆的长半轴长和短半轴长.在椭圆的定义中,c 2表示焦距,这样,椭圆方程中的c b a ,,就有了明显的几何意义.问题2:在椭圆标准方程的推导过程中令222b c a =-能使方程简单整齐,其几何意义是什么?c 表示半焦距,b 表示短半轴长,因此,联结顶点2B 和焦点2F ,可以构造一个直角三角形,在直角三角形内,2222222OB F B OF -=,即222b c a =-.(三) 范围问题1:结合椭圆标准方程的特点,利用方程研究椭圆曲线的范围?即确定两个变量的允许值范围.12222=+b y a x 变形为:a x a a x a x a x b y ≤≤-⇒≤⇒≤≥-=22222201, 这就得到了椭圆在标准方程下x 的范围:a x a ≤≤-同理,我们也可以得到y 的范围:b y b ≤≤- 问题2:思考是否还有其他方法? 方法一:可以把12222=+b y a x 看成1cos sin 22=+αα,利用三角函数的有界性来考虑b ya x ,的范围;方法二:椭圆的标准方程表示两个非负数的和为1,那么这两个数都不大于1,所以122≤ax ,同理可以得到y 的范围由椭圆方程中y x ,的范围得到椭圆位于直线a x ±=和b y ±=所围成的矩形里.三、例题解析例1 已知椭圆的方程为364922=+y x .(1) 求它的长轴长、短轴长、焦点坐标和顶点坐标;(2) 写出与椭圆364922=+y x 有相同焦点的至少两个不同的椭圆方程. 解:解答见书本P48[说明] 这是本节课重点安排的基础性例题,是椭圆的几何性质的简单应用.例2(1)求以原点为中心,一个焦点为),1,0(-且长轴长是短轴长的2倍的椭圆方程; (2)过点(2,0),且长轴长是短轴长的2倍的椭圆方程.解:(1)由题意可知:b ac 2,1==,由222c b a =-,有1222=-b b ,1=b ,2=a ; ∴椭圆的标准方程为:1222=+y x . (2)1422=+y x 或141622=+x y . [说明] 此题利用椭圆标准方程中c b a ,,的关系来解题,要注意焦点在x 轴上或y 轴上的椭圆标准方程.例3已知直线03=+-y kx 与椭圆141622=+y x ,当k 在何范围取值时, (1) 直线与椭圆有两个公共点;(2) 直线与椭圆有一个公共点; (3) 直线与椭圆无公共点.解:由⎪⎩⎪⎨⎧=++=1416322y x kx y 可得02024)14(22=+++kx x k )516(162-=∆∴k ; (1)当45450)516(162-<>>-=∆k k k 或即时,直线03=+-y kx 与椭圆141622=+y x 有两个公共点; (2)当45450)516(162-===-=∆k k k 或即时,直线03=+-y kx 与椭圆141622=+y x 有一个公共点;(3)当45450)516(162<<-<-=∆k k 即时,直线03=+-y kx 与椭圆141622=+y x 无公共点. [说明] 由直线方程与椭圆方程联立的方程组解的情况直接说明两曲线的交点状况,而方程解的情况由判别式来决定,直线与椭圆有相交、相切、相离三种关系,直线方程与椭圆方程联立,消去y 或x 得到关于x 或y 的一元二次方程,则(1)直线与椭圆相交0>∆⇔(2)直线与椭圆相切0=∆⇔(3)直线与椭圆相离0<∆⇔,所以判定直线与椭圆的位置关系,运用方程及其判别式是最基本的方法.例4若直线)(1R k kx y ∈+=与椭圆1522=+my x 恒有公共点,求实数m 的取值范围. 解法一:由⎪⎩⎪⎨⎧=++=15122m y x kx y 可得05510)5(22=-+++m kx x m k ,0152≥--=∆∴k m 即1152≥+≥k m51≠≥∴m m 且.解法二:直线恒过一定点)1,0(当5<m 时,椭圆焦点在x 轴上,短半轴长m b =,要使直线与椭圆恒有交点则1≥m 即51<≤m当5>m 时,椭圆焦点在y 轴上,长半轴长5=a 可保证直线与椭圆恒有交点即5>m综述:51≠≥m m 且 解法三:直线恒过一定点)1,0(要使直线与椭圆恒有交点,即要保证定点)1,0(在椭圆内部115022≤+m即1≥m 51≠≥∴m m 且[说明]法一转化为k 的恒成立问题;法二是根据两曲线的特征观察所至;法三则紧抓定点在椭圆内部这一特征:点),(o o y x M 在椭圆内部或在椭圆上则12222≤+bya x o o .例5 椭圆中心在原点,长轴长为103,一个焦点1F 的坐标)5,0(,求经过此椭圆内的一点)21,21(-M ,且被点M 平分的弦所在的直线方程.解:由已知,5,35==c a ,且焦点在y 轴上,50222=-=c a b ,椭圆方程为1507522=+x y .设过点M 的直线交椭圆于点),(21y x A 、),(22y x B . M 是弦AB 的中点,则1,12121-=+=+y y x x ,将B A ,两点的坐标代入椭圆方程,⎪⎪⎩⎪⎪⎨⎧=+=+150751507522222121x y x y ,两式相减整理得:232321212121=++⋅-=--y y x x x x y y ,即23=k .所求的直线方程为)21(2321-=+x y ,即0546=--y x . [说明]此题因为涉及椭圆的弦中点问题,除通法外,可以优先考虑“点差法”.但需注意两点:1)斜率是否存在?2)应检验直线和椭圆是否相交?即联立直线和椭圆方程,得到关于x 或y 的一元二次方程,检验其根的判别式是否大于0?例6求椭圆1422=+y x 中斜率为1的平行弦的中点的轨迹. 解:见书本P50[说明] 此题因为涉及椭圆的弦中点问题,本题也可使用“点差法”.例7 已知椭圆11222=+y x 的左右焦点分别为F 1,F 2,若过点P (0,-2)及F 1的直线交椭圆于A,B 两点,求⊿ABF 2的面积解法一:由题可知:直线AB l 方程为022=++y x由⎪⎩⎪⎨⎧=+--=1122222y x x y ,可得04492=-+y y , 91044)(2122121=-+=-y y y y y y, 1212129S F F y y ∆∴=-=解法二:2F 到直线AB 的距离554=h , 由⎪⎩⎪⎨⎧=+--=1122222y x x y 可得061692=++x x ,又92101212=-+=x x k AB , 910421==∴∆h AB S . [说明] 在利用弦长公式212212111y y kx x k AB -+=-+=(k 为直线斜率)应结合韦达定理解决问题.例8 已知直线1+=x y 交椭圆12222=+by a x 于Q P ,两点,210=PQ ,OQ OP ⊥,求椭圆方程.解:为简便运算,设椭圆为122=+ny mx ,),0,0(n m n m ≠>>⎩⎨⎧+==+1122x y ny mx ,1)12(22=+++∴x x n mx ,整理得: 012)(2=-+++n nx x n m (1)n m nx x +-=+221,nm n x x +-=⋅121,设),(11y x P 、),(22y x Q , OQ OP ⊥ ,02121=+∴y y x x ,即0)1)(1(2121=+++x x x x ,有2=+n m .方程(1)变形为:01222=-++n nx x .21,2121-=⋅-=+n x x n x x . 210=PQ ,2521=-∴x x ,有03842=+-n n ,得:⎪⎪⎩⎪⎪⎨⎧==2123m n ,⎪⎪⎩⎪⎪⎨⎧==2321m n ∴椭圆的方程为123222=+y x 或123222=+x y . [说明] 应注意Q P ,两点设而不求,善于使用韦达定理. 四、巩固练习练习12.4(1);练习12.4(2)五、课堂小结1.椭圆的几何性质2.直线与椭圆位置关系如何判断3.弦长问题和弦中点问题 4.有关弦中点问题,“点差法”的应用 六、课后作业练习册、补充作业:1.椭圆221ax by +=与直线1y x =-交于A 、B 两点,过原点与线段AB 中点的直线的斜率为2,求 ab 值.2.椭圆B A O F F y x 、作直线交椭圆于,过、的焦点为212212045=+两点,若2ABF ∆的面积为20,求直线AB 方程.3.已知椭圆()012222>>=+b a by a x 上一点()8,6P ,21F F 、为椭圆的焦点,且21PF PF ⊥,求椭圆的方程.4.中心在原点,焦点坐标为(0, ±52)的椭圆被直线3x-y-2=0截得的弦的中点的横坐标为21,求椭圆方程.5.已知椭圆1222=+y x .(1) 过椭圆的左焦点F 引椭圆的割线,求截得的弦的中点P 的轨迹方程; (2) 求斜率为2的平行弦中点Q 的轨迹方程.6.P 为直线09=+-y x 上的点,过P 且以椭圆131222=+y x 的焦点为焦点作椭圆,问P 在何处时所作椭圆的长轴最短?并求出相应椭圆的方程.7.已知椭圆C :)0(235222>=+m m y x ,经过其右焦点F 且以()1,1=a 为方向向量的直线l交椭圆C 于A 、B 两点,M 为线段AB 的中点,设O 为椭圆的中心,射线OM 交椭圆C 于N 点.(1)证明:ON OB OA =+(2)求OB OA ⋅的值.8.已知A (-2,0)、B(2,0),点C 、点D 满足21,2||AD AC == (1)求点D 的轨迹方程;(2)过点A 作直线l 交以A 、B 为焦点的椭圆于M 、N 两点,线段MN 的中点到y 轴的距离为54,且直线l 与点D 的轨迹相切,求该椭圆的方程. 9.设A ,B 分别是直线5y x =和5y x =-20=,动点P 满足OB OA OP +=.记动点P 的轨迹为C .(1) 求轨迹C 的方程;(2)若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DN DM λ=,求实数λ的取值范围.10.如图所示,已知A 、B 、C 是长轴长为4的椭圆上的三点,点A 是长轴的一个端点,BC 过椭圆中心O ,且0=⋅BC AC =.(1)建立适当的坐标系,求椭圆方程;(2)如果椭圆上有两点P 、Q ,使∠PCQ 的平分线垂直于AO ,证明:存在实数λ,使AB PQ λ=.。
椭圆的性质椭圆(Ellipse)是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。
其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。
椭圆是圆锥曲线的一种,即圆锥与平面的截线。
椭圆的周长等于特定的正弦曲线在一个周期内的长度。
1、椭圆简介在数学中,椭圆是围绕两个焦点的平面中的曲线,使得对于曲线上的每个点,到两个焦点的距离之和是恒定的。
因此,它是圆的概括,其是具有两个焦点在相同位置处的特殊类型的椭圆。
椭圆的形状(如何“伸长”)由其偏心度表示,对于椭圆可以是从0(圆的极限情况)到任意接近但小于1的任何数字。
椭圆是封闭式圆锥截面:由锥体与平面相交的平面曲线。
椭圆与其他两种形式的圆锥截面有很多相似之处:抛物线和双曲线,两者都是开放的和无界的。
圆柱体的横截面为椭圆形,除非该截面垂直于圆柱体轴线。
椭圆也可以被定义为一组点,使得曲线上的每个点的距离与给定点(称为焦点)的距离与曲线上的相同点的距离的比值给定行(称为directrix)是一个常数。
该比率称为椭圆的偏心率。
也可以这样定义椭圆,椭圆是点的集合,点其到两个焦点的距离的和是固定数。
椭圆在物理,天文和工程方面很常见。
2、基本性质2.1、范围:焦点在x轴上-a<=x<=a,-b<=y<=b;焦点在y轴上-b<=x<=b,-a<=y<=a。
2.2、对称性:关于X轴对称,Y轴对称,关于原点中心对称。
2.3、顶点:(a,0)(-a,0)(0,b)(0,-b)。
2.4、离心率:e=c/a或 e=√(1-b^2/a²)。
2.5、离心率范围:0<e<1。
2.6、离心率越小越接近于圆,越大则椭圆就越扁。
2.7、焦点(当中心为原点时):(-c,0),(c,0)或(0,c),(0,-c)。
2.8、P为椭圆上的一点,a-c≤PF1(或PF2)≤a+c。
椭圆的简单几何性质1、范围:-a≤x≤a,-b≤y≤b,即椭圆位于直线x=±a,y=±b 所围成的矩形里.2、对称性:椭圆关于x 轴、y 轴及原点都是对称的,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫椭圆的中心.3、顶点:在椭圆的标准方程里,令x =0得y =±b ,所以得到:(0,b )、(0,-b )是椭圆与y 轴的两个交点,同理令y =0,得x =±a ,可得(a ,0)、(-a ,0)是椭圆与x 轴的两个交点.因为x 轴、y 轴是椭圆的对称轴,所以,椭圆与它的对称轴有四个交点,这四个交点叫做椭圆的顶点,即椭圆与它的对称轴的交点叫做椭圆的顶点.线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴.它们的长分别是2a 和2b ,其中a 和b 分别叫椭圆的长半轴长和短半轴长.4、离心率:椭圆的焦距与长轴长的比aca c =22=e ,叫做椭圆的离心率.0<e <1,e 越接近于1,则c 就越接近于a ,从而b =22c a -越小,椭圆就越扁,反之,e 越接近于0,则c 就越接近于0,从而b 就越接近于a ,椭圆就越接近于圆. 5、列表整理椭圆的简单几何性质曲线 椭圆定义平面内与两个定点F 1、F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹标准方程)0(12222>>=+b a by a x )0(12222>>=+b a bx a y 图形顶点坐标 (±a ,0)(0,±b )(±b ,0),(0,±a )对称轴x 轴长轴长2a y 轴短轴长2bx 轴短轴长2b y 轴长轴长2a6、椭圆草图的画法①以椭圆的长轴长、短轴长为邻边画矩形.②由矩形的四边中点即可得椭圆的四个顶点.③用光滑曲线将四个顶点连成一个椭圆.在画图时应注意图形的对称性及顶点附近的平滑性。
椭圆的简单几何性质知识点总结椭圆是一种重要的几何图形,具有一些特殊的性质。
在本篇文档中,我们将总结椭圆的一些简单几何性质。
1. 椭圆的定义椭圆可以通过以下定义来描述:对于给定的两个焦点F1和F2,及其到两个焦点的总距离的一半定为常量2a(长轴),椭圆上每一点到两个焦点的距离之和等于常量2a。
椭圆的另一个参数e(离心率)定义为焦点之间的距离与长轴的比值:e = c/a,其中c是焦点之间的距离。
2. 椭圆的焦点和准线椭圆的焦点F1和F2对称分布在长轴上,并且与椭圆的中心O相等。
准线是通过焦点F1和F2垂直于长轴的直线,交于椭圆的中心O。
准线的长度定为2b(短轴)。
椭圆的离心率e= c/a = √(a^2 - b^2)/a。
3. 椭圆的主轴和副轴椭圆的主轴是长轴,长度为2a。
副轴是短轴,长度为2b。
长轴和短轴是椭圆上的两个对称轴。
4. 椭圆的焦准距椭圆上的任意一点P到两个焦点F1和F2的距离之和等于2a,即PF1+PF2=2a。
我们把这个距离之和称为焦准距。
对于同一条主轴上的两个点P1和P2,它们到焦点的距离之和相等。
5. 椭圆的离心率椭圆的离心率是一个反映椭圆形状的重要参数。
离心率e定义为焦点之间的距离与长轴的比值:e = c/a。
当离心率小于1时,椭圆是真椭圆;当离心率等于1时,椭圆是半圆;当离心率大于1时,椭圆是伪椭圆。
离心率越接近于0,椭圆形状越扁。
6. 椭圆的方程椭圆的方程可以通过不同的形式来表示,其中最常用的是标准形式和一般形式。
标准形式的椭圆方程为:x2/a2 + y2/b2 = 1,其中a和b分别为椭圆的长轴和短轴的长度。
一般形式的椭圆方程为:Ax^2 + By^2 + Cx + Dy + E = 0,其中A、B、C、D和E为常数。
7. 椭圆的焦距定理椭圆的焦距定理说明了椭圆上的任意一点P到两个焦点F1和F2的距离之和等于椭圆的主轴长度。
即PF1+PF2=2a。
8. 椭圆的切线椭圆上任意一点P的切线是通过点P且与椭圆仅相交于点P的直线。
椭圆的定义与性质椭圆是我们在数学中经常遇到的一个几何形状,它与圆形有着密切的关系。
本文将从椭圆的定义、特点与性质等角度进行阐述。
一、定义椭圆可以被定义为平面上满足一定条件的点的集合。
具体而言,对于一个给定的点F(焦点)和一条给定的长度2a(长轴),满足到该点F到椭圆上任意一点P到两条焦点的距离之和等于2a的性质(即FP1 + FP2 = 2a)的所有点的集合就是椭圆。
二、性质1. 椭圆的长短轴在定义中提到了长轴,那么自然会有短轴的概念。
椭圆的长轴是连接两个焦点的线段,而短轴则是与长轴垂直,并且通过椭圆中心O的线段。
长轴的长度2a通常被称为椭圆的主轴,短轴的长度2b则被称为椭圆的副轴。
2. 椭圆的离心率椭圆的离心率是一个重要的性质,它可以帮助我们了解椭圆的形状。
离心率e定义为焦点到中心距离与长轴长度的比值,即e = c/a,其中c是焦距。
当离心率小于1时,我们可以得到一个完整的椭圆。
当离心率接近于1时,椭圆的形状趋近于一个圆。
当离心率等于1时,我们则可以得到一个特殊的椭圆,也称之为扁平椭圆或者简称为抛物线。
3. 椭圆的焦点性质椭圆有一个独特的性质:对于椭圆上的任意一点P,其到两个焦点的距离之和等于椭圆的长轴长度,即FP1 + FP2 = 2a。
这一性质也可以用来定义椭圆。
4. 椭圆的几何形状在平面上,椭圆呈现出一种特殊的形状。
与圆相比,椭圆的形状更加扁平。
椭圆的形状还与长轴和短轴的长度之间的比例有关。
5. 椭圆的焦平面性质椭圆与焦平面有着特殊的关系。
如果我们在椭圆上选择任意两个不同的点P和Q,并且做出焦点F1和F2到这两个点的连线,那么这两条连线所组成的平面与椭圆的法线相交于同一点。
这个点就是椭圆的焦点平面上的点。
6. 椭圆的参数方程椭圆的参数方程也是我们在研究椭圆性质时常用的一种表示方法。
一般而言,我们可以使用参数t或θ来表示椭圆上的点的坐标。
通过参数方程,可以更加方便地描述椭圆上的点的位置。
结语:椭圆作为几何学中的一种重要形状,具有独特的定义和性质。
椭圆的基本概念与性质椭圆是一种常见的几何图形,具有一些独特的性质和应用。
本文将介绍椭圆的基本概念以及一些相关的性质。
一、椭圆的定义与特点椭圆可以由一个固定点F(焦点)和到该点距离的总和等于常数2a (长轴)的点P的轨迹组成。
根据定义,椭圆上的任意点到焦点F和焦点到点到点P的距离之和等于常数2a。
椭圆还有一个参数b,称为短轴。
这两个参数构成了椭圆的两个辅助直径。
椭圆的中心是离焦点F和点P等距离的点O。
长轴和短轴的长度分别为2a和2b,其中2a>2b。
两个焦点F与F'关于中心O对称。
椭圆有一些特殊的性质:1. 椭圆上的任意点P到焦点的距离之和等于2a。
2. 椭圆的离心率e是一个介于0和1之间的数,定义为焦点到椭圆的中心的距离与长轴的一半的比值。
离心率决定了椭圆形状的“瘦胖程度”。
当e=0时,椭圆退化成一个点;当e=1时,椭圆退化成一个线段。
3. 椭圆的面积等于πab,其中π是圆周率。
二、椭圆的方程与坐标表示椭圆的方程可以通过焦点和离心率进行表示。
一般形式的椭圆方程为:(x^2/a^2) + (y^2/b^2) = 1其中,a和b分别表示长轴和短轴的长度。
椭圆的中心位于原点(0,0)处。
椭圆还可以通过参数方程进行表示:x = a * cosθy = b * sinθ其中,θ为参数,0 ≤ θ ≤ 2π。
三、椭圆的性质1. 焦点定理:椭圆上的任意点P到焦点F1和F2的距离之和等于2a。
2. 切线性质:椭圆上的任意点P处的切线斜率等于y/x的导数值,即m = (dy/dx) = -b^2 / a^2 * (x / y)。
3. 点到椭圆的距离:点(x1, y1)到椭圆(x^2/a^2) + (y^2/b^2) = 1的距离为d = sqrt[(x1^2/a^2) + (y1^2/b^2) - 1]。
4. 对称性:椭圆关于x轴和y轴对称。
5. 垂直角性质:椭圆上的任意点P处,直线PF1和PF2的夹角相等于直线PL1和PL2的夹角。
第二讲 椭圆的简单几何性质一 椭圆的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a :是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。
(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。
③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。
a 和b 分别叫做椭圆的长半轴长和短半轴长。
(4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e ==22。
②因为)0(>>c a ,所以e 的取值范围是)10(<<e 。
e 越接近1,则c 就越接近a ,从而22c a b -=越小,因此椭圆越扁;反之,e 越接近于0,c 就越接近0,从而b 越接近于a ,这时椭圆就越接近于圆。
当且仅当b a =时,0=c ,这时两个焦点重合,图形变为圆,方程为a y x =+22。
例1 求椭圆192522=+y x 的长轴长,短轴长,离心率,焦点和顶点坐标例2 已知椭圆的对称轴为坐标轴,O 为坐标原点,F 是一个焦点,A 是一个顶点,若椭圆的长轴长是6,且cos ∠OFA=32,求椭圆方程(5)椭圆的第二定义:椭圆上的点到某焦点的距离与该点到该点对应的准线的距离的比为椭圆的离心率。
即下图中有e PM PF PM PF ==2211准线方程:ca x 2±=二 求椭圆的离心率 椭圆的离心率2211e a b a b a c e -=⇒⎪⎭⎫ ⎝⎛-== 例3 (1)已知椭圆的一个焦点将长轴分成长为3:6的两段,求其离心率;(2)已知椭圆的一个焦点到长轴两端点的距离分别为10和4,求其离心率例4已知椭圆12222=+by a x (0,0>>b a )的左焦点为F ,右顶点为A ,,上顶点为B ,若BA BF ⊥,则称其位“优美椭圆”,那么“优美椭圆”的离心率是例5设椭圆上存在一点P ,它到椭圆中心和长轴一个端点的连线互相垂直,求椭圆离心率的取值范围例6 设M 为椭圆12222=+by a x ()0>>b a 上一点,21,F F 为椭圆焦点,若21F MF ∠=75°,12F MF ∠=15°,求椭圆的离心率三 直线与椭圆的位置关系(1)平面内点与椭圆的位置关系椭圆将平面分成三部分:椭圆上,椭圆内,椭圆外,任给一点),(y x M ,若点),(y x M 在椭圆上,则有12222=+by a x ()0>>b a 若点),(y x M 在椭圆内,则有12222<+by a x ()0>>b a 若点),(y x M 在椭圆外,则有12222>+by a x ()0>>b a(2)直线与椭圆的位置关系 把椭圆方程12222=+by a x ()0>>b a 与直线方程b kx y +=联立消去y ,消元后得到一元二次方程,然后通过判别式∆来判断直线和椭圆是否相交、相切或相离。
椭圆几何性质椭圆是数学上的一个重要曲线,具有许多独特的几何性质。
通过了解椭圆的定义和特征,我们可以深入了解椭圆的性质和应用。
本文将介绍椭圆的几何性质,包括焦点、直径、离心率和切线等内容。
1. 椭圆的定义椭圆可以通过以下的数学定义表示:对于给定的两个焦点F1和F2,椭圆是所有到这两个焦点的距离之和等于常数2a的点的轨迹。
椭圆的数学表示可以用标准方程来表示:(x/a)^2 + (y/b)^2 = 1其中,a和b分别是椭圆的半长轴和半短轴的长度,半长轴为椭圆离中心最远的点到椭圆中心的距离。
2. 椭圆的焦点椭圆有两个焦点F1和F2。
根据定义,任意点到这两个焦点的距离之和是一个常数。
对于椭圆,焦距的长度等于2a。
焦点在椭圆的长轴上,且与椭圆中心相距c 的位置,满足关系式c^2 = a^2 - b^2。
因此,我们可以通过椭圆的半长轴和半短轴的长度来计算焦点的位置。
3. 椭圆的直径椭圆的直径是通过椭圆中心的两个相对焦点的连线。
直径的长度等于椭圆的半长轴的两倍,即直径的长度为2a。
4. 椭圆的离心率椭圆的离心率是表示椭圆形状的一个重要参数。
离心率定义为焦距与半长轴之间的比值。
离心率的取值范围为0到1之间,且离心率为0时表示圆形,离心率为1时表示扁平的线段。
椭圆的离心率可以通过以下公式计算得到:e = c / a其中,e是离心率,c是焦距的长度,a是半长轴的长度。
5. 椭圆的切线切线是椭圆的另一个重要性质。
在椭圆上的任意一点P,通过该点的切线与半长轴和半短轴的连线构成的夹角相等。
这个夹角可以用以下公式计算:tan θ = |(b/a) * x|其中,θ为切线与半长轴的夹角,x为点P到椭圆中心的水平距离。
6. 椭圆的对称性椭圆具有两种类型的对称性:轴对称和中心对称。
轴对称是指椭圆关于长轴和短轴分别对称。
这意味着椭圆上的任意一点关于长轴或短轴的投影对称。
中心对称是指椭圆关于椭圆中心对称。
这意味着椭圆上的任意一点关于椭圆中心的对称点也在椭圆上。
椭圆的性质1、定义:(1) 性质一:椭圆上任意一点P 到两焦点1F 、2F 的距离之和为定值a 2,即a PF PF 221=+.(2) 性质二:椭圆12222=+b y a x 上任意一点P 到右焦点)0,(c F 的距离与它到右准线ca x l 2:=的距离之比为定值ac e =;椭圆12222=+b y a x 上任意一点P 到左焦点)0,(c F -的距离与它到左准线c a x l 2:-=的距离之比为定值ac e =. (3) 性质三:已知A 、B 为椭圆12222=+by a x 的左右顶点,P 是椭圆上异于A 、B 的任意一点,则1222-=-=⋅e ab k k PB PA . 2、焦点三角形:(1) 定义:以椭圆上一点P 和焦点21,F F 为顶点的三角形叫做椭圆的焦点三角形.(2) 周长:椭圆的焦点三角形的周长为c a 22+.(3) 面积:2tan sin 2122121θθb PF PF S F PF ==∆(21PF F ∠=θ). 3、弦长公式: 已知椭圆)0(12222>>=+b a by a x 与直线b kx y +=相交于),(),,(2211y x B y x A 两点,则弦长212212)()(y y x x AB -+-=2122124)(1x x x x k -+⋅+=2122124)(11y y y y k-+⋅+=. 4、焦半径、焦点弦长公式:(1)椭圆)0(12222>>=+b a by a x 上任意一点),(00y x P 到左焦点1F 的距离01ex a PF +=,到右焦点2F 的距离02ex a PF -=(左加右减).过左焦点1F 的焦点弦长)(2B A x x e a AB ++=,过右焦点2F 的焦点弦长)(2B A x x e a AB +-=.椭圆)0(12222>>=+b a bx a y 上任意一点),(00y x P 到下焦点1F 的距离01ex a PF +=,到上焦点2F 的距离02ex a PF -=(下加上减).过下焦点1F 的焦点弦长)(2B A x x e a AB ++=,过上焦点2F 的焦点弦长)(2B A x x e a AB +-=.(2) 已知过椭圆)0(1:2222>>=+b a by a x C 的左焦点1F ,且倾斜角为θ的直线l 与椭圆C 交于B A ,两点(A 在x 轴上方),则① θcos 21c a b AF -=,θcos 21c a b BF +=, ② 焦点弦长θ2222cos 2c a ab AB -=, ③ 211211ba BF AF =+. (3)设P 是椭圆)0(1:2222>>=+b a by a x C 上任意一点,F 为一个焦点,θ=∠PFO ,则.cos 2θc a b PF -= 5、通径长公式:过椭圆的焦点且垂直于长轴的弦叫做通经.椭圆的通经长为ab 22. 6、斜率积问题:① 已知椭圆)0(12222>>=+b a by a x ,B A ,为左右顶点,P 是椭圆上异于B A ,的任意一点,则1222-=-=⋅e ab k k PB PA . ② 已知椭圆)0(12222>>=+b a by a x ,AB 为椭圆经过原点的一条弦,P 是椭圆上异于B A ,的任意一点,若PA k 和PB k 都存在,则1222-=-=⋅e ab k k PB PA .③ 中点弦性质:已知椭圆)0(12222>>=+b a b y a x ,AB 为椭圆的一条不经过原点且不与坐标轴平行的弦,P 是弦AB 的中点,则1222-=-=⋅e ab k k OP AB . ④ 已知椭圆)0(12222>>=+b a b y a x ,l 为椭圆的一条切线,P 为切点,若l k 和OP k 都存在,则1222-=-=⋅e ab k k OP l . 7、切线方程:(1)过椭圆12222=+b y a x 上任意一点),(00y x P 的切线方程为12020=+by y a x x . (2)过椭圆12222=+b y a x 外一点),(00y x P 做椭圆的两条切线,则切点弦所在直线方程为12020=+b y y a x x .。
椭圆是平面上的一个几何图形,具有一些特殊的性质。
以下是一些椭圆的几何性质:
1.定义性质:椭圆是一个点到两个焦点距离之和等于常数的点
集合。
这个常数称为椭圆的长轴长度,长轴的中点称为椭圆
的中心。
2.对称性质:椭圆具有两个对称轴,即横轴和纵轴。
横轴和纵
轴互相垂直,并交于椭圆的中心。
3.焦点性质:椭圆的焦点是椭圆的两个特殊点,对于椭圆上的
每一个点,它到两个焦点的距离之和是恒定的,等于椭圆的
长轴长度。
4.直径性质:椭圆的任意一条直径的长度等于椭圆的长轴长度。
5.切线性质:椭圆上的每一条切线与椭圆的两个焦点之间的线
段的长度是相等的。
6.圆锥截面性质:椭圆是一个旋转椭圆曲线,可以通过将一个
圆沿一个不在圆心处的直线截成椭圆来得到。
这些性质为椭圆的研究和应用提供了基础,例如在数学、物理、工程等领域中,椭圆的性质被广泛应用于解决实际问题。
椭圆定理知识点总结椭圆是一种常见的几何形状,而椭圆定理则是围绕椭圆的特性和属性展开的一系列数学定理。
椭圆定理在数学研究和应用中起到了重要作用,其应用涉及到物理学、工程学、计算机图形学等多个领域。
因此,对椭圆定理的理解和掌握具有重要的意义。
在本文中,我们将系统地总结椭圆定理的相关知识点,包括椭圆的定义、性质、方程、焦点、直径、切线等内容,并阐述其在实际应用中的重要性。
一、椭圆的定义和性质1.1 椭圆的定义椭圆定义为平面上到两个定点的距离之和等于常数的点的集合。
这两个定点称为焦点,两个焦点之间的距离则是椭圆的长轴,而椭圆的短轴则是长轴的一半。
因此,我们可以用数学形式描述椭圆的定义:对于给定的两个焦点F1和F2,以及一个常数2a,所有满足条件PF1+PF2=2a的点P构成的集合就是一个椭圆。
1.2 椭圆的性质椭圆有多个重要的性质,其中一些是几何性质,而另一些则是数学性质。
在此,我们简要总结一些重要的椭圆性质:(1)椭圆关于长轴和短轴对称。
具体而言,如果一个点P在椭圆上,那么P关于长轴和短轴的对称点也一定在椭圆上。
(2)椭圆内的任意点P到焦点的距离之和等于常数2a,即PF1+PF2=2a。
(3)椭圆的离心率定义为焦点间距离与长轴长度的比值,它的取值范围是0<e<1,其中e=0表示椭圆为圆。
(4)椭圆的方程可以用标准形式表示为(x^2/a^2)+(y^2/b^2)=1,其中a和b分别为椭圆的长轴和短轴长度。
二、椭圆方程及参数2.1 椭圆的标准方程椭圆的标准方程是一种简化形式的表示方式,它可以直观地描述椭圆的形状和大小。
通常情况下,椭圆的标准方程可以表示为(x^2/a^2)+(y^2/b^2)=1,其中a和b分别为椭圆的长轴和短轴长度。
在这个方程中,a和b是椭圆的两个重要参数。
2.2 椭圆方程的一般形式除了标准方程外,椭圆还可以使用一般形式的方程进行描述。
一般形式的椭圆方程具有更广泛的适用性,它可以表示任意位置和方向的椭圆。
课题:12.4椭圆的基本性质〔二课时〕教学目标:1、掌握椭圆的对称性,顶点,范围等几何性质.2、能根据椭圆的几何性质对椭圆方程进行讨论,在此基础上会画椭圆的图形.3、学会判断直线与椭圆的位置,能够解决直线与椭圆相交时的弦长问题,中点问题等.4、在对椭圆几何性质的讨论中,注意数与形的结合与转化,学会分类讨论、数形结合等数学思想和探究能力的培养;培养探究新事物的欲望,获得成功的体验,树立学好数学的信心. 教学重点:椭圆的几何性质及初步运用教学难点:直线与椭圆相交时的弦长问题和中点问题 教学过程: 一.课前准备: 1、 知识回忆(1) 椭圆和圆的概念 (2) 椭圆的标准方程 2、课前练习1) 圆的定义: 到一定点的距离等于______的图形的轨迹。
椭圆的定义: _______________________________的图形的轨迹。
2) 椭圆的标准方程: 1。
焦点在x 轴上____________〔 〕2。
焦点在y 轴上____________〔 〕假设1251622=+y x ,则椭圆的长轴长________短半轴长__________,焦点为____________,顶点坐标为__________,焦距为______________二.教学过程设计 一、引入课题“曲线与方程”是解析几何中最重要最基本的内容其中有两类基本问题:一是由曲线求方程,二是由方程画曲线.前面由椭圆定义推导出椭圆的标准方程属于第一类问题,本节课将研究第二类问题,由椭圆方程画椭圆图形,为使列表描点更准确,防止盲目性,有必要先对椭圆的范围、对称性、顶点进行讨论. 二、讲授新课 (一) 对称性问题1:观察椭圆标准方程的特点,利用方程研究椭圆曲线的对称性?x -代x 后方程不变,说明椭圆关于y 轴对称;y -代y 后方程不变,说明椭圆曲线关于x 轴对称;x -、y -代x ,y 后方程不变,说明椭圆曲线关于原点对称;问题2:从对称性的本质上入手,如何探究曲线的对称性?以把x 换成-x 为例,如图在曲线的方程中,把x 换成-x 方程不变,相当于点P 〔x ,y 〕在曲线上,点P 点关于y 轴的对称点Q 〔-x ,y 〕也在曲线上,所以曲线关于y 轴对称.其它同理.相关概念:在标准方程下,坐标轴是对称轴,原点是对称中心,椭圆的对称中心叫做椭圆的中心. (二) 顶点问题1:观察椭圆标准方程的特点,利用方程求出椭圆曲线与对称轴的交点坐标?在椭圆的标准方程中,令0=x ,得b y ±=,0=y ,得a x ±= 顶点概念:椭圆与对称轴的交点叫做椭圆的顶点.顶点坐标;)0,(),0,(21a A a A -,),0(),,0(21b B b B -.相关概念:线段2121,B B A A 分别叫做椭圆的长轴和短轴,它们的长分别等于b a 2,2,a 和b 分别叫做椭圆的长半轴长和短半轴长.在椭圆的定义中,c 2表示焦距,这样,椭圆方程中的c b a ,,就有了明显的几何意义.问题2:在椭圆标准方程的推导过程中令222b c a =-能使方程简单整齐,其几何意义是什么?c 表示半焦距,b 表示短半轴长,因此,联结顶点2B 和焦点2F ,可以构造一个直角三角形,在直角三角形内,2222222OB F B OF -=,即222b c a =-.(三) 范围问题1:结合椭圆标准方程的特点,利用方程研究椭圆曲线的范围?即确定两个变量的允许值范围.12222=+b y a x 变形为:a x a a x a x a x b y ≤≤-⇒≤⇒≤≥-=22222201, 这就得到了椭圆在标准方程下x 的范围:a x a ≤≤-同理,我们也可以得到y 的范围:b y b ≤≤- 问题2:思考是否还有其他方法? 方法一:可以把12222=+b y a x 看成1cos sin 22=+αα,利用三角函数的有界性来考虑b ya x ,的范围;方法二:椭圆的标准方程表示两个非负数的和为1,那么这两个数都不大于1,所以122≤ax ,同理可以得到y 的范围由椭圆方程中y x ,的范围得到椭圆位于直线a x ±=和b y ±=所围成的矩形里.三、例题解析例1 已知椭圆的方程为364922=+y x .(1) 求它的长轴长、短轴长、焦点坐标和顶点坐标;(2) 写出与椭圆364922=+y x 有相同焦点的至少两个不同的椭圆方程. 解:解答见书本P48[说明] 这是本节课重点安排的基础性例题,是椭圆的几何性质的简单应用.例2〔1〕求以原点为中心,一个焦点为),1,0(-且长轴长是短轴长的2倍的椭圆方程; 〔2〕过点〔2,0〕,且长轴长是短轴长的2倍的椭圆方程.解:〔1〕由题意可知:b ac 2,1==,由222c b a =-,有1222=-b b ,1=b ,2=a ; ∴椭圆的标准方程为:1222=+y x . 〔2〕1422=+y x 或141622=+x y . [说明] 此题利用椭圆标准方程中c b a ,,的关系来解题,要注意焦点在x 轴上或y 轴上的椭圆标准方程.例3已知直线03=+-y kx 与椭圆141622=+y x ,当k 在何范围取值时, (1) 直线与椭圆有两个公共点;(2) 直线与椭圆有一个公共点; (3) 直线与椭圆无公共点.解:由⎪⎩⎪⎨⎧=++=1416322y x kx y 可得02024)14(22=+++kx x k )516(162-=∆∴k ; 〔1〕当45450)516(162-<>>-=∆k k k 或即时,直线03=+-y kx 与椭圆141622=+y x 有两个公共点; 〔2〕当45450)516(162-===-=∆k k k 或即时,直线03=+-y kx 与椭圆141622=+y x 有一个公共点;〔3〕当45450)516(162<<-<-=∆k k 即时,直线03=+-y kx 与椭圆141622=+y x 无公共点. [说明] 由直线方程与椭圆方程联立的方程组解的情况直接说明两曲线的交点状况,而方程解的情况由判别式来决定,直线与椭圆有相交、相切、相离三种关系,直线方程与椭圆方程联立,消去y 或x 得到关于x 或y 的一元二次方程,则〔1〕直线与椭圆相交0>∆⇔〔2〕直线与椭圆相切0=∆⇔〔3〕直线与椭圆相离0<∆⇔,所以判定直线与椭圆的位置关系,运用方程及其判别式是最基本的方法.例4假设直线)(1R k kx y ∈+=与椭圆1522=+my x 恒有公共点,求实数m 的取值范围. 解法一:由⎪⎩⎪⎨⎧=++=15122m y x kx y 可得05510)5(22=-+++m kx x m k ,0152≥--=∆∴k m 即1152≥+≥k m51≠≥∴m m 且.解法二:直线恒过一定点)1,0(当5<m 时,椭圆焦点在x 轴上,短半轴长m b =,要使直线与椭圆恒有交点则1≥m 即51<≤m当5>m 时,椭圆焦点在y 轴上,长半轴长5=a 可保证直线与椭圆恒有交点即5>m综述:51≠≥m m 且 解法三:直线恒过一定点)1,0(要使直线与椭圆恒有交点,即要保证定点)1,0(在椭圆内部115022≤+m即1≥m 51≠≥∴m m 且[说明]法一转化为k 的恒成立问题;法二是根据两曲线的特征观察所至;法三则紧抓定点在椭圆内部这一特征:点),(o o y x M 在椭圆内部或在椭圆上则12222≤+bya x o o .例5 椭圆中心在原点,长轴长为103,一个焦点1F 的坐标)5,0(,求经过此椭圆内的一点)21,21(-M ,且被点M 平分的弦所在的直线方程.解:由已知,5,35==c a ,且焦点在y 轴上,50222=-=c a b ,椭圆方程为1507522=+x y .设过点M 的直线交椭圆于点),(21y x A 、),(22y x B . M 是弦AB 的中点,则1,12121-=+=+y y x x ,将B A ,两点的坐标代入椭圆方程,⎪⎪⎩⎪⎪⎨⎧=+=+150751507522222121x y x y ,两式相减整理得:232321212121=++⋅-=--y y x x x x y y ,即23=k .所求的直线方程为)21(2321-=+x y ,即0546=--y x . [说明]此题因为涉及椭圆的弦中点问题,除通法外,可以优先考虑“点差法”.但需注意两点:1〕斜率是否存在?2〕应检验直线和椭圆是否相交?即联立直线和椭圆方程,得到关于x 或y 的一元二次方程,检验其根的判别式是否大于0?例6求椭圆1422=+y x 中斜率为1的平行弦的中点的轨迹. 解:见书本P50[说明] 此题因为涉及椭圆的弦中点问题,此题也可使用“点差法”.例7 已知椭圆11222=+y x 的左右焦点分别为F 1,F 2,假设过点P 〔0,-2〕及F 1的直线交椭圆于A,B 两点,求⊿ABF 2的面积解法一:由题可知:直线AB l 方程为022=++y x由⎪⎩⎪⎨⎧=+--=1122222y x x y ,可得04492=-+y y , 91044)(2122121=-+=-y y y y y y, 1212129S F F y y ∆∴=-=解法二:2F 到直线AB 的距离554=h , 由⎪⎩⎪⎨⎧=+--=1122222y x x y 可得061692=++x x ,又92101212=-+=x x k AB , 910421==∴∆h AB S . [说明] 在利用弦长公式212212111y y kx x k AB -+=-+=〔k 为直线斜率〕应结合韦达定理解决问题.例8 已知直线1+=x y 交椭圆12222=+by a x 于Q P ,两点,210=PQ ,OQ OP ⊥,求椭圆方程.解:为简便运算,设椭圆为122=+ny mx ,),0,0(n m n m ≠>>⎩⎨⎧+==+1122x y ny mx ,1)12(22=+++∴x x n mx ,整理得: 012)(2=-+++n nx x n m 〔1〕n m nx x +-=+221,nm n x x +-=⋅121,设),(11y x P 、),(22y x Q , OQ OP ⊥ ,02121=+∴y y x x ,即0)1)(1(2121=+++x x x x ,有2=+n m .方程〔1〕变形为:01222=-++n nx x .21,2121-=⋅-=+n x x n x x . 210=PQ ,2521=-∴x x ,有03842=+-n n ,得:⎪⎪⎩⎪⎪⎨⎧==2123m n ,⎪⎪⎩⎪⎪⎨⎧==2321m n ∴椭圆的方程为123222=+y x 或123222=+x y . [说明] 应注意Q P ,两点设而不求,善于使用韦达定理. 四、稳固练习练习12.4〔1〕;练习12.4〔2〕五、课堂小结1.椭圆的几何性质2.直线与椭圆位置关系如何判断3.弦长问题和弦中点问题 4.有关弦中点问题,“点差法”的应用 六、课后作业练习册、补充作业:1.椭圆221ax by +=与直线1y x =-交于A 、B 两点,过原点与线段AB 中点的直线的斜率为2,求 ab 值.2.椭圆B A O F F y x 、作直线交椭圆于,过、的焦点为212212045=+两点,假设2ABF ∆的面积为20,求直线AB 方程.3.已知椭圆()012222>>=+b a by a x 上一点()8,6P ,21F F 、为椭圆的焦点,且21PF PF ⊥,求椭圆的方程.4.中心在原点,焦点坐标为(0, ±52)的椭圆被直线3x-y-2=0截得的弦的中点的横坐标为21,求椭圆方程.5.已知椭圆1222=+y x .(1) 过椭圆的左焦点F 引椭圆的割线,求截得的弦的中点P 的轨迹方程; (2) 求斜率为2的平行弦中点Q 的轨迹方程.6.P 为直线09=+-y x 上的点,过P 且以椭圆131222=+y x 的焦点为焦点作椭圆,问P 在何处时所作椭圆的长轴最短?并求出相应椭圆的方程.7.已知椭圆C :)0(235222>=+m m y x ,经过其右焦点F 且以()1,1=a 为方向向量的直线l交椭圆C 于A 、B 两点,M 为线段AB 的中点,设O 为椭圆的中心,射线OM 交椭圆C 于N 点.〔1〕证明:ON OB OA =+〔2〕求OB OA ⋅的值.8.已知A 〔-2,0〕、B 〔2,0〕,点C 、点D 满足21,2||AD AC == 〔1〕求点D 的轨迹方程;〔2〕过点A 作直线l 交以A 、B 为焦点的椭圆于M 、N 两点,线段MN 的中点到y 轴的距离为54,且直线l 与点D 的轨迹相切,求该椭圆的方程. 9.设A ,B 分别是直线5y x =和5y x =-20=,动点P 满足OB OA OP +=.记动点P 的轨迹为C .〔1〕 求轨迹C 的方程;〔2〕假设点D 的坐标为〔0,16〕,M 、N 是曲线C 上的两个动点,且DN DM λ=,求实数λ的取值范围.10.如下图,已知A 、B 、C 是长轴长为4的椭圆上的三点,点A是长轴的一个端点,BC 过椭圆中心O ,且0=⋅BC AC =.〔1〕建立适当的坐标系,求椭圆方程;〔2〕如果椭圆上有两点P 、Q ,使∠PCQ 的平分线垂直于AO ,证明:存在实数λ,使AB PQ λ=.。
课题:12.4椭圆的基本性质(二课时)教学目标:1、掌握椭圆的对称性,顶点,范围等几何性质.2、能根据椭圆的几何性质对椭圆方程进行讨论,在此基础上会画椭圆的图形.3、学会判断直线与椭圆的位置,能够解决直线与椭圆相交时的弦长问题,中点问题等.4、在对椭圆几何性质的讨论中,注意数与形的结合与转化,学会分类讨论、数形结合等数学思想和探究能力的培养;培养探究新事物的欲望,获得成功的体验,树立学好数学的信心. 教学重点:椭圆的几何性质及初步运用教学难点:直线与椭圆相交时的弦长问题和中点问题 教学过程: 一.课前准备: 1、 知识回忆(1) 椭圆和圆的概念 (2) 椭圆的标准方程 2、课前练习1) 圆的定义: 到一定点的距离等于______的图形的轨迹。
椭圆的定义: _______________________________的图形的轨迹。
2) 椭圆的标准方程: 1。
焦点在x 轴上____________( )2。
焦点在y 轴上____________( )若1251622=+y x ,则椭圆的长轴长________短半轴长__________,焦点为____________,顶点坐标为__________,焦距为______________二.教学过程设计 一、引入课题“曲线与方程”是解析几何中最重要最基本的内容其中有两类基本问题:一是由曲线求方程,二是由方程画曲线.前面由椭圆定义推导出椭圆的标准方程属于第一类问题,本节课将研究第二类问题,由椭圆方程画椭圆图形,为使列表描点更准确,避免盲目性,有必要先对椭圆的范围、对称性、顶点进行讨论. 二、讲授新课 (一) 对称性问题1:观察椭圆标准方程的特点,利用方程研究椭圆曲线的对称性?x -代x 后方程不变,说明椭圆关于y 轴对称;y -代y 后方程不变,说明椭圆曲线关于x 轴对称;x -、y -代x ,y 后方程不变,说明椭圆曲线关于原点对称;问题2:从对称性的本质上入手,如何探究曲线的对称性?以把x 换成-x 为例,如图在曲线的方程中,把x 换成-x 方程不变,相当于点P (x ,y )在曲线上,点P 点关于y 轴的对称点Q (-x ,y )也在曲线上,所以曲线关于y 轴对称.其它同理.相关概念:在标准方程下,坐标轴是对称轴,原点是对称中心,椭圆的对称中心叫做椭圆的中心.(二) 顶点问题1:观察椭圆标准方程的特点,利用方程求出椭圆曲线与对称轴的交点坐标?在椭圆的标准方程中,令0=x ,得b y ±=,0=y ,得a x ±= 顶点概念:椭圆与对称轴的交点叫做椭圆的顶点.顶点坐标;)0,(),0,(21a A a A -,),0(),,0(21b B b B -.相关概念:线段2121,B B A A 分别叫做椭圆的长轴和短轴,它们的长分别等于b a 2,2,a 和b 分别叫做椭圆的长半轴长和短半轴长.在椭圆的定义中,c 2表示焦距,这样,椭圆方程中的c b a ,,就有了明显的几何意义.问题2:在椭圆标准方程的推导过程中令222b c a =-能使方程简单整齐,其几何意义是什么?c 表示半焦距,b 表示短半轴长,因此,联结顶点2B 和焦点2F ,可以构造一个直角三角形,在直角三角形内,2222222OB F B OF -=,即222b c a =-.(三) 范围问题1:结合椭圆标准方程的特点,利用方程研究椭圆曲线的范围?即确定两个变量的允许值范围.12222=+b y a x 变形为:a x a a x a x ax b y ≤≤-⇒≤⇒≤≥-=22222201, 这就得到了椭圆在标准方程下x 的范围:a x a ≤≤-同理,我们也可以得到y 的范围:b y b ≤≤- 问题2:思考是否还有其他方法? 方法一:可以把12222=+b y a x 看成1cos sin 22=+αα,利用三角函数的有界性来考虑b ya x ,的范围;方法二:椭圆的标准方程表示两个非负数的和为1,那么这两个数都不大于1,所以122≤ax ,同理可以得到y 的范围由椭圆方程中y x ,的范围得到椭圆位于直线a x ±=和b y ±=所围成的矩形里. 三、例题解析例1 已知椭圆的方程为364922=+y x .(1) 求它的长轴长、短轴长、焦点坐标和顶点坐标;(2) 写出与椭圆364922=+y x 有相同焦点的至少两个不同的椭圆方程. 解:解答见书本P48[说明] 这是本节课重点安排的基础性例题,是椭圆的几何性质的简单应用.例2(1)求以原点为中心,一个焦点为),1,0(-且长轴长是短轴长的2倍的椭圆方程; (2)过点(2,0),且长轴长是短轴长的2倍的椭圆方程.解:(1)由题意可知:b ac 2,1==,由222c b a =-,有1222=-b b ,1=b ,2=a ; ∴椭圆的标准方程为:1222=+y x . (2)1422=+y x 或141622=+x y . [说明] 此题利用椭圆标准方程中c b a ,,的关系来解题,要注意焦点在x 轴上或y 轴上的椭圆标准方程.例3已知直线03=+-y kx 与椭圆141622=+y x ,当k 在何范围取值时, (1) 直线与椭圆有两个公共点;(2) 直线与椭圆有一个公共点; (3) 直线与椭圆无公共点.解:由⎪⎩⎪⎨⎧=++=1416322y x kx y 可得02024)14(22=+++kx x k )516(162-=∆∴k ; (1)当45450)516(162-<>>-=∆k k k 或即时,直线03=+-y kx 与椭圆141622=+y x 有两个公共点; (2)当45450)516(162-===-=∆k k k 或即时,直线03=+-y kx 与椭圆141622=+y x 有一个公共点;(3)当45450)516(162<<-<-=∆k k 即时,直线03=+-y kx 与椭圆141622=+y x 无公共点. [说明] 由直线方程与椭圆方程联立的方程组解的情况直接说明两曲线的交点状况,而方程解的情况由判别式来决定,直线与椭圆有相交、相切、相离三种关系,直线方程与椭圆方程联立,消去y 或x 得到关于x 或y 的一元二次方程,则(1)直线与椭圆相交0>∆⇔(2)直线与椭圆相切0=∆⇔(3)直线与椭圆相离0<∆⇔,所以判定直线与椭圆的位置关系,运用方程及其判别式是最基本的方法.例4若直线)(1R k kx y ∈+=与椭圆1522=+my x 恒有公共点,求实数m 的取值范围. 解法一:由⎪⎩⎪⎨⎧=++=15122m yx kx y 可得05510)5(22=-+++m kx x m k ,0152≥--=∆∴k m 即1152≥+≥k m51≠≥∴m m 且.解法二:直线恒过一定点)1,0(当5<m 时,椭圆焦点在x 轴上,短半轴长m b =,要使直线与椭圆恒有交点则1≥m 即51<≤m当5>m 时,椭圆焦点在y 轴上,长半轴长5=a 可保证直线与椭圆恒有交点即5>m综述:51≠≥m m 且 解法三:直线恒过一定点)1,0(要使直线与椭圆恒有交点,即要保证定点)1,0(在椭圆内部115022≤+m即1≥m 51≠≥∴m m 且[说明]法一转化为k 的恒成立问题;法二是根据两曲线的特征观察所至;法三则紧抓定点在椭圆内部这一特征:点),(o o y x M 在椭圆内部或在椭圆上则12222≤+bya x o o .例5 椭圆中心在原点,长轴长为103,一个焦点1F 的坐标)5,0(,求经过此椭圆内的一点)21,21(-M ,且被点M 平分的弦所在的直线方程.解:由已知,5,35==c a ,且焦点在y 轴上,50222=-=c a b ,椭圆方程为1507522=+x y .设过点M 的直线交椭圆于点),(21y x A 、),(22y x B . M 是弦AB 的中点,则1,12121-=+=+y y x x ,将B A ,两点的坐标代入椭圆方程,⎪⎪⎩⎪⎪⎨⎧=+=+150751507522222121x y x y ,两式相减整理得:232321212121=++⋅-=--y y x x x x y y ,即23=k .所求的直线方程为)21(2321-=+x y ,即0546=--y x . [说明]此题因为涉及椭圆的弦中点问题,除通法外,可以优先考虑“点差法”.但需注意两点:1)斜率是否存在?2)应检验直线和椭圆是否相交?即联立直线和椭圆方程,得到关于x 或y 的一元二次方程,检验其根的判别式是否大于0?例6求椭圆1422=+y x 中斜率为1的平行弦的中点的轨迹. 解:见书本P50[说明] 此题因为涉及椭圆的弦中点问题,本题也可使用“点差法”.例7 已知椭圆11222=+y x 的左右焦点分别为F 1,F 2,若过点P (0,-2)及F 1的直线交椭圆于A,B 两点,求⊿ABF 2的面积解法一:由题可知:直线AB l 方程为022=++y x由⎪⎩⎪⎨⎧=+--=1122222y x x y ,可得04492=-+y y , 91044)(2122121=-+=-y y y y y y ,1212129S F F y y ∆∴=-= 解法二:2F 到直线AB 的距离554=h , 由⎪⎩⎪⎨⎧=+--=1122222yx x y 可得061692=++x x ,又92101212=-+=x x k AB , 910421==∴∆h AB S . [说明] 在利用弦长公式212212111y y k x x k AB -+=-+=(k 为直线斜率)应结合韦达定理解决问题.例8 已知直线1+=x y 交椭圆12222=+by a x 于Q P ,两点,210=PQ ,OQ OP ⊥,求椭圆方程.解:为简便运算,设椭圆为122=+ny mx ,),0,0(n m n m ≠>>⎩⎨⎧+==+1122x y ny mx ,1)12(22=+++∴x x n mx ,整理得: 012)(2=-+++n nx x n m (1)n m nx x +-=+221,nm n x x +-=⋅121,设),(11y x P 、),(22y x Q , OQ OP ⊥ ,02121=+∴y y x x ,即0)1)(1(2121=+++x x x x ,有2=+n m .方程(1)变形为:01222=-++n nx x .21,2121-=⋅-=+n x x n x x . 210=PQ ,2521=-∴x x ,有03842=+-n n ,得:⎪⎪⎩⎪⎪⎨⎧==2123m n ,⎪⎪⎩⎪⎪⎨⎧==2321m n ∴椭圆的方程为123222=+y x 或123222=+x y . [说明] 应注意Q P ,两点设而不求,善于使用韦达定理.四、巩固练习练习12.4(1);练习12.4(2) 五、课堂小结1.椭圆的几何性质3.弦长问题和弦中点问题 4.有关弦中点问题,“点差法”的应用 六、课后作业练习册、补充作业:1.椭圆221ax by +=与直线1y x =-交于A 、B 两点,过原点与线段AB 中点的直线的斜率为2,求 a b 值.2.椭圆B A O F F y x 、作直线交椭圆于,过、的焦点为212212045=+两点,若2ABF ∆的面积为20,求直线AB 方程.3.已知椭圆()012222>>=+b a by a x 上一点()8,6P ,21F F 、为椭圆的焦点,且21PF PF ⊥,求椭圆的方程.4.中心在原点,焦点坐标为(0, ±52)的椭圆被直线3x-y-2=0截得的弦的中点的横坐标为21,求椭圆方程. 5.已知椭圆1222=+y x .(1) 过椭圆的左焦点F 引椭圆的割线,求截得的弦的中点P 的轨迹方程; (2) 求斜率为2的平行弦中点Q 的轨迹方程.6.P 为直线09=+-y x 上的点,过P 且以椭圆131222=+y x 的焦点为焦点作椭圆,问P 在何处时所作椭圆的长轴最短?并求出相应椭圆的方程.7.已知椭圆C :)0(235222>=+m m y x ,经过其右焦点F且以()1,1=a 为方向向量的直线l 交椭圆C 于A 、B 两点,M 为线段AB 的中点,设O 为椭圆的中心,射线OM 交椭圆C 于N 点.(1)证明:ON OB OA =+(2)求OB OA ⋅的值.8.已知A (-2,0)、B (2,0),点C 、点D 满足21,2||== (1)求点D 的轨迹方程;(2)过点A 作直线l 交以A 、B 为焦点的椭圆于M 、N 两点,线段MN 的中点到y 轴的距离为54,且直线l 与点D 的轨迹相切,求该椭圆的方程. 9.设A ,B 分别是直线5y x =和5y x =-20=,动点P 满足OB OA OP +=.记动点P 的轨迹为C .(1) 求轨迹C 的方程;(2)若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DN DM λ=,求实数λ的取值范围.10.如图所示,已知A 、B 、C 是长轴长为4的椭圆上的三点,点A 是长轴的一个端点,BC 过椭圆中心O ,且0=⋅BC AC =.(1)建立适当的坐标系,求椭圆方程;(2)如果椭圆上有两点P 、Q ,使∠PCQ 的平分线垂直于AO ,证明:存在实数λ,使AB PQ λ=.。
数学知识点:椭圆的性质(顶点、范围、对
称性、离心率)
椭圆的焦距与长轴长之比叫做椭圆的离心率。
椭圆的性质:
1、顶点:A(a,0),B(-a,0),C(0,b)和D(0,-b)。
2、轴:对称轴:x轴,y轴;长轴长|AB|=2a,短轴长|CD|=2b,a为长半轴长,b为短半轴长。
3、焦点:F1(-c,0),F2(c,0)。
4、焦距:。
5、离心率:;
离心率对椭圆形状的影响:e越接近1,c就越接近a,从而b就越小,椭圆就越扁;e越接近0,c就越接近0,从而b就越大,椭圆就越圆;
6、椭圆的范围和对称性:(a>b>0)中-a≤x≤a,-b≤y≤b,对称中心是原点,对称轴是坐标轴。
利用椭圆的几何性质解题:
利用椭圆的几何性质可以求离心率及椭圆的标准方程.要熟练掌握将椭圆中的某些线段长用a,b,c表示出来,例如焦点与各顶点所连线段的长,过焦点与长轴垂直的弦长等,这将有利于提高解题能力。
椭圆中求最值的方法:
求最值有两种方法:
(1)利用函数最值的探求方法利用函数最值的探求方法,将其转化为函数的最值问题来处理.此时应充分注意椭圆中x,y的范围,常常是化为闭区间上的二次函数的最值来求解。
(2)数形结合的方法求最值解决解析几何问题要注意数学式子的几何意义,寻找图形中的几何元素、几何量之间的关系.
椭圆中离心率的求法:
在求离心率时关键是从题目条件中找到关于a,b,c的两个方程或从题目中得到的图形中找到a,b,c的关系式,高考物理,从而求离心率或离心率的取值范围.。