湘教版数学七年级上册3.3 一元一次方程的解法
- 格式:docx
- 大小:71.65 KB
- 文档页数:3
3.3.1 一元一次方程的解法(第1课时导学案)【学习目标】1.会找实际问题中的等量关系并列出一元一次方程。
2.掌握移项变号的基本法则。
3.会用移项法解一元一次方程。
【重点难点】1.重点:会用移项法解一元一次方程。
2.难点:理解“移项法则”的依据,以及找出实际问题中的等量关系。
【学习过程】一、新课导入〈一〉复习引入1、只含有未知数,并且未知数的次数是的整式方程叫做一元一次方程。
2、判断x=1是下列方程()的解=2 =4-3x (x-1)=4 =5x-23、请同学们叙述等式的性质:①。
②。
4、说明下列等式变形的根据①若x+2=1 ,则x=1-2 ()②若2x-3=5,则2x=5+3; ( )即2x=8,则x=4 ()〈二〉导读目标学习目标:重点难点:二、预习探究预习课本P90-91页,解答下列问题:1.解方程:。
(与方程的解区别)2.移项:把方程中的某一项后,从方程的一边移到,这种变形叫做移项。
必须牢记:。
3.移项的目的是:。
三、合作探究〈一〉找相等关系列一元一次方程例1.某探险家在2023年乘热气球在24h内连续飞行5129km,已知热气球在前12h 飞行了2345km,求热气球在后12h飞行的平均速度?本题涉及的等量关系:根据这一相等关系,列方程:利用等式的性质解方程(并与原方程比较,归纳移项的基本法则):〈二〉掌握移项变号的基本原则例2.下列移项是否正确?若不正确,请改正。
①若x-4=8,则x=8-4②若x-9=-8,则x=8+9③若3x+8=5x,则5x-3x=8④若-7x-5=-2x,则-7x+2x=-5〈三〉用移项法解一元一次方程例3.解下列方程并检验1(1)4x+3=2x-7 (2)-x-1=3-x2四、堂上练习1.某汽车队运送一批货物,如果每辆汽车装4t,就还剩下8t未装;如果每辆汽车装,就恰好装完,该车队运送货物的汽车共有多少辆?2.下面的移项对吗?如不对,请改正。
①若x-5=9,则x=9-5②若3s=2s+5,则-3s-2s=5③若5w-2=4w+1,则5w-4w=1+2④若8+x=2x,则8-2x=2x-x3.解下列方程并检验:(1)13y+8=12y (2)-5+2x=-4(3)9-3y=5y+7 (4)253231+=-x x五、课堂小结谈谈你的收获和疑惑?六、课后作业1. 把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?2. 2.下列各选项中,变形错误的是( )A、由x+7=5,得x=5-7B 、由3x-2=2x+1,得3x-2x=1+2C 、由4-3x=4x-3,得4+3=4x+3xD 、由-2x=3,得x=233.解下列方程并检验(1)+318=1068 (2)7u-3=6u-4(3)-5x=8-4x (4)221212+-=-x x4.已知x=2是关于x 的方程x a x a +=+21)1(的解,求a 的值?。
湘教版数学七年级上册3.3《一元一次方程的解法》教学设计4一. 教材分析《一元一次方程的解法》是湘教版数学七年级上册3.3节的内容,本节课主要让学生掌握一元一次方程的解法,包括代入法、加减法、移项法等。
通过本节课的学习,使学生能够熟练运用这些方法解决实际问题,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在之前的学习中已经掌握了整数、分数、有理数的基本运算,对解方程有一定的认识。
但部分学生在解方程时对移项、合并同类项的操作还不够熟练,需要老师在教学中加以引导和练习。
此外,学生对于将实际问题转化为方程的能力还有待提高。
三. 教学目标1.知识与技能:掌握一元一次方程的解法,能运用代入法、加减法、移项法等解决实际问题。
2.过程与方法:通过自主探究、合作交流,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和克服困难的勇气。
四. 教学重难点1.重点:一元一次方程的解法。
2.难点:将实际问题转化为方程,并运用适当的解法求解。
五. 教学方法采用启发式教学法、案例教学法、合作学习法等。
通过创设情境、设置问题,引导学生自主探究、合作交流,从而达到掌握知识、提高能力的目的。
六. 教学准备1.教学PPT:制作包含教学内容、例题、练习的PPT。
2.教学素材:准备一些实际问题,用于引导学生将问题转化为方程。
3.学习任务单:为学生准备学习任务单,以便于学生记录所学内容和解题过程。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,引导学生思考如何将这些问题转化为方程。
通过提问,激发学生的学习兴趣,明确本节课的学习目标。
2.呈现(10分钟)介绍一元一次方程的解法,包括代入法、加减法、移项法等。
通过PPT展示解题步骤,让学生清晰地了解解题过程。
3.操练(10分钟)让学生在课堂上独立完成学习任务单上的练习题。
教师巡回指导,解答学生的疑问。
此环节可以帮助学生巩固所学知识,提高解题能力。
初中数学试卷 鼎尚图文**整理制作3.3 一元一次方程的解法第1课时 移项、合并同类项要点感知1 求方程的解的过程叫做_________.把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做_________.必须牢记:移项要_________.在解方程时,通过_________,把方程中含有未知数的项移到等号的一边,把不含未知数的项移到等号的另一边.预习练习1-1 下列变形中属于移项的是( )A.由2x=2,得x=1B.由2x =-1,得x=-2C.由3x-27=0,得3x=27 D.由2x-1=3得2x=3-1 1-2 解方程6x+90=-10x+26的步骤是:①移项,得_________;②合并同类项,得_________;③两边都除以_________,得_________.要点感知2 从方程解得未知数的值以后,要代入原方程_________,看这个值是不是原方程的解,检验过程除特别要求外,一般不写.预习练习2-1 方程3x-1=5的解是( ) A.x=34 B.x=35 C.x=18 D.x=2 2-2 解方程,并检验:5x+2=3x-8.知识点1 移项1.下列变形中属于移项的是( )A.由5x-7y=2,得7y-5x=2B.由6x-3=x+4,得6x-3=-4+xC.由8-x=x-5,得-x-x=-5-8D.由x+9=3x-1,得3x-1=x+92.下列移项变形正确的是( )A.由2+x=3,得x=2+3B.由5x+1=2x 得5x-2x=1C.由3x-3=2x+6得3x-2x=6-3D.由-3+5x=2x 得5x=2x+33.方程5a-2=2a-6可以变形为5a-2a=-6+2,依据是_______________.4.判断下列是否正确,如不正确,指出错误的原因:(1)从x=3-3x 得到x-3x=3;(2)从6x-1=3-2x 得到6x+2x=3-1;(3)从6x-3=1-5x 得到6x+5x=1+3.知识点2 利用移项解一元一次方程5.方程5x=1+4x 的解是( )A.x=-5B.x=-1C.x=1D.x=26.已知a=-a ,则数a 等于( )A.0B.-1C.1D.不确定7.下列方程中,解为-2的方程是( )A.3x-2=2xB.4x-1=2x+3C.3x+1=2x-1D.2x-3=3x+28.解下列方程,并检验:(1)3x-4=5-6x ;(2)3x-2=5x-6.9.下列方程中,移项正确的是( )A.由x-3=4得x=4-3B.由2=3+x 得2-3=xC.由3-2x=5+6得2x-3=5+6D.由-4x+7=5x+2得5x-4x=7+210.对于方程9x+3x-15x=12,合并同类项正确的是( )A.3x=-12B.3x=12C.27x=12D.-3x=1211.解方程4x-2=3-x 时,正确的解答过程顺序是( )①合并同类项,得5x=5;②移项,得4x+x=3+2;③两边都除以5,得x=1.A.①②③B.③②①C.②①③D.③①②12.下列方程中,以x=0为解的方程是( )A.9x-5=11x-9B.8x+3=3-5xC.5x-1=5+7xD.3x-1=5x-713.如果5m+41与m+41互为相反数,那么m 的值为_______. 14.已知-2x m+2y n 与41xy 3是同类项,则-mn=_______. 15.解下列方程:(1)3x+9=6;(2)7x-19=2x-4;(3)x-3=5x+2;(4)3.5x+3=6x+5;(5)9-3y=5y+5;(6)5x+40-3x=10x+8;16.已知关于x 的方程3m-x=2x +3的解为6,求m 的值.挑战自我17.如果方程4x-2=-6的解与关于x 的方程3x+a=x-1的解相同,求a 2-1的值.18.智轩在做作业时,不小心将方程中的一个常数污染了,被污染的方程是2x-21=21x- ,怎么办呢?聪明的智轩 想了想,便翻开了书后边的答案,此方程的解是x=-35,于是他便很快补好了这个常数,并迅速地完成了作业,同学们,你能求出这个常数吗?参考答案课前预习要点感知1 解方程 移项 变号 移项预习练习1-1 C 1-2 6x+10x=26-90 16x=-64 16 x=-4要点感知2 检验预习练习2-1 D2-2 移项,得5x-3x=-8-2,合并同类项,得2x=-10,两边同时除以2,得x=-5.检验:把x=-5.分别代入原方程的左、右两边,左边=5×(-5)+2=-23,右边=3×(-5)-8=-23,左边=右边. 因此,x=-5是原方程的解.当堂训练1.C2.D3.等式性质1(或移项)4.(1)错误,因为把-3x 移项时没有变号.(2)错误,因为把-1移项时没有变号.(3)正确.5.C6.A7.C8.(1)移项,得3x+6x=5+4,合并同类项,得9x=9,两边都除以9,得x=1,检验:把x=1.分别代入原方程的左、右两边,左边=3×1-4=-1,右边=5-6×1=-1,左边=右边.因此,x=1是原方程的解.(2)移项,得3x-5x=-6+2,合并同类项,得-2x=-4,两边都除以-2,得x=2,检验:把x=2.分别代入原方程的左、右两边,左边=3×2-2=4,右边=5×2-6=4,左边=右边.因此,x=2是原方程的解.课后作业9.B 10.D 11.C 12.B 13.-21 14.3 15.(1)移项,得3x=6-9,合并同类项,得3x=-3,两边都除以3,得x=-1.(2)移项,得7x-2x=-4+19,合并同类项,得5x=15,两边都除以5,得x=3.(3)移项,得x-5x=2+3,合并同类项,得-4x=5,两边都除以-4,得x=-45. (4)移项,得3.5x-6x=5-3,合并同类项,得-2.5x=2,两边都除以-2.5,得x=-45. (5)移项,得-3y-5y=5-9,合并同类项,得-8y=-4,两边都除以-8,得y=21. (6)移项,得5x-3x-10x=8-40,合并同类项,得-8x=-32,两边都除以-8,得x=4.16.因为x=6是方程3m-x=2x +3的解,所以3m-6=3+3.解得m=4. 17.解方程4x-2=-6得x=-1.把x=-1代入3x+a=x-1,得-3+a=-1-1. 解得a=1.所以a 2-1=12-1=0.18.设这个常数为a ,原方程即为:2x-21=21x-a. 整理得:a=-23x+21. 把x=-35代入,得a=-23×(-35)+21=3.。