黑龙江省鹤岗市第一中学高中复数知识点和相关练习试题doc
- 格式:doc
- 大小:1.34 MB
- 文档页数:21
一、复数选择题
1.复数()1z i i =⋅+在复平面上对应的点位于( ) A .第一象限 B .第二象限
C .第三象限
D .第四象限
2.已知复数()2m m m i
z i
--=为纯虚数,则实数m =( )
A .-1
B .0
C .1
D .0或1
3.已知复数()123z i i +=- (其中i 是虚数单位),则z 在复平面内对应点在( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
4.已知i 为虚数单位,则复数23i
i -+的虚部是( ) A .
35
B .35i -
C .15
-
D .1
5
i -
5.设()2
211z i i
=+++,则||z =( )
A B .1
C .2
D
6.若复数2i
1i
a -+(a ∈R )为纯虚数,则1i a -=( )
A B C .3
D .5
7.已知复数1z i =+,z 为z 的共轭复数,则()1z z ⋅+=( )
A B .2
C .10
D
8.在复平面内,复数z 对应的点为(,)x y ,若2
2
(2)4x y ++=,则( ) A .22z +=
B .22z i +=
C .24z +=
D .24z i +=
9.复数11z =,2z 由向量1OZ 绕原点O 逆时针方向旋转3
π而得到.则21
arg()2z z -的值为( ) A .
6
π B .
3
π
C .
23
π D .
43
π 10.复数2i
i -的实部与虚部之和为( ) A .
35 B .15- C .15
D .
3
5
11.若(
)()3
24z i i =+-,则在复平面内,复数z 所对应的点位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
12.在复平面内,已知平行四边形OABC 顶点O ,A ,C 分别表示25-+i ,32i +,则
点B 对应的复数的共轭复数为( ) A .17i -
B .16i -
C .16i --
D .17i --
13.已知复数z 满足()1+243i z i =+,则z 的虚部是( ) A .-1
B .1
C .i -
D .i
14.复数()()212z i i =-+在复平面内对应的点位于( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
15.设复数2020
11i z i
+=-(其中i 为虚数单位),则z 在复平面内对应的点所在象限为
( ) A .第四象限
B .第三象限
C .第二象限
D .第一象限
二、多选题
16.已知复数z 满足2
20z z +=,则z 可能为( ). A .0
B .2-
C .2i
D .2i+1-
17.下面是关于复数2
1i
z =-+的四个命题,其中真命题是( )
A .||z =
B .22z i =
C .z 的共轭复数为1i -+
D .z 的虚部为1-
18.已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足
|1|||z z i -=-,下列结论正确的是( )
A .0P 点的坐标为(1,2)
B .复数0z 的共轭复数对应的点与点0P 关于
虚轴对称
C .复数z 对应的点Z 在一条直线上
D .0P 与z 对应的点Z 间的距离的最小值为
2
19.已知复数12z =-+(其中i 为虚数单位,,则以下结论正确的是( ). A .2
0z
B .2z z =
C .31z =
D .1z =
20.下面是关于复数2
1i
z =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z =
B .22z i =
C .z 的共轭复数为1i +
D .z 的虚部为1-
21.已知i 为虚数单位,复数322i
z i
+=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为
75
i C .3z =
D .z 在复平面内对应的点在第一象限
22.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数z
w z
=
,则下列结
论正确的有( )
A .w 在复平面内对应的点位于第二象限
B .1w =
C .w 的实部为12
-
D .w 的虚部为
2
i 23.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )
A .复数z 的虚部为i
B .
z =
C .复数z 的共轭复数1z i =-
D .复数z 在复平面内对应的点在第一象限
24.已知i 为虚数单位,则下列选项中正确的是( )
A .复数34z i =+的模5z =
B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限
C .若复数(
)(
)
2
2
34224m m m m +-+--i 是纯虚数,则1m =或4m =- D .对任意的复数z ,都有2
0z
25.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( )
A .若z 为纯虚数,则实数a 的值为2
B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)1
22
-
C .实数1
2
a =-
是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为2
26.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:
()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:
()()()n cos sin co i s s n
n n
z i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦
+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( ) A .2
2
z z = B .当1r =,3
π
θ=时,31z =
C .当1r =,3
π
θ=时,12z =
D .当1r =,4
π
θ=
时,若n 为偶数,则复数n z 为纯虚数
27.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )
A .||z =
B .复数z 的共轭复数为z =﹣1﹣i
C .复平面内表示复数z 的点位于第二象限