高考二轮复习 导数及其应用(第1课时)
- 格式:doc
- 大小:47.50 KB
- 文档页数:2
第3讲导数及其应用考情解读(1)导数的意义和运算是导数应用的基础,是高考的一个热点.(2)利用函数的单调性和最值确定函数的解析式或参数的值,突出考查导数的工具性作用.1.导数的几何意义函数y=f(x)在点x=x0处的导数值就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,其切线方程是y-f(x0)=f′(x0)(x-x0).2.导数与函数单调性的关系(1)f′(x)>0是f(x)为增函数的充分不必要条件,如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0.(2)f′(x)≥0是f(x)为增函数的必要不充分条件,当函数在某个区间内恒有f′(x)=0时,则f(x)为常函数,函数不具有单调性.3.函数的极值与最值(1)函数的极值是局部范围内讨论的问题,函数的最值是对整个定义域而言的,是在整个范围内讨论的问题.(2)函数在其定义区间的最大值、最小值最多有一个,而函数的极值可能不止一个,也可能没有.(3)闭区间上连续的函数一定有最值,开区间内的函数不一定有最值,若有唯一的极值,则此极值一定是函数的最值.热点一导数的运算和几何意义例1(1)(2014·广东)曲线y=e-5x+2在点(0,3)处的切线方程为________.(2)在平面直角坐标系xOy中,设A是曲线C1:y=ax3+1(a>0)与曲线C2:x2+y2=52的一个公共点,若C1在A处的切线与C2在A处的切线互相垂直,则实数a的值是________.思维启迪(1)先根据导数的几何意义求出切线的斜率,写出点斜式方程,再化为一般式方程.(2)A点坐标是解题的关键点,列方程求出.答案(1)5x+y-3=0(2)4解析(1)因为y′=e-5x(-5x)′=-5e-5x,所以y ′|x =0=-5,故切线方程为y -3=-5(x -0), 即5x +y -3=0.(2)设A (x 0,y 0),则C 1在A 处的切线的斜率为f ′(x 0)=3ax 20,C 2在A 处的切线的斜率为-1k OA =-x 0y 0,又C 1在A 处的切线与C 2在A 处的切线互相垂直, 所以(-x 0y 0)·3ax 20=-1,即y 0=3ax 30,又ax 30=y 0-1,所以y 0=32,代入C 2:x 2+y 2=52,得x 0=±12,将x 0=±12,y 0=32代入y =ax 3+1(a >0),得a =4.思维升华 (1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.(1)已知函数y =f (x )的导函数为f ′(x )且f (x )=x 2f ′(π3)+sin x ,则f ′(π3)=________.(2)若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a =________.答案 (1)36-4π(2)2 解析 (1)因为f (x )=x 2f ′(π3)+sin x ,所以f ′(x )=2xf ′(π3)+cos x .所以f ′(π3)=2×π3f ′(π3)+cos π3.所以f ′(π3)=36-4π. (2)f ′(x )=sin x +x cos x ,f ′(π2)=1,即函数f (x )=x sin x +1在点x =π2处的切线的斜率是1,直线ax +2y +1=0的斜率是-a2,所以(-a2)×1=-1,解得a =2.热点二 利用导数研究函数的性质例2 已知函数f (x )=(x +a )e x ,其中e 是自然对数的底数,a ∈R . (1)求函数f (x )的单调区间;(2)当x ∈[0,4]时,求函数f (x )的最小值.思维启迪 (1)直接求f ′(x ),利用f ′(x )的符号确定单调区间;(2)讨论区间[0,4]和所得单调区间的关系,一般情况下,f (x )的最值可能在极值点或给定区间的端点处取到. 解 (1)因为f (x )=(x +a )e x ,x ∈R , 所以f ′(x )=(x +a +1)e x . 令f ′(x )=0,得x =-a -1.当x 变化时,f (x )和f ′(x )的变化情况如下:故f (x )单调增区间为(-a -1,+∞).(2)由(1)得,f (x )的单调减区间为(-∞,-a -1); 单调增区间为(-a -1,+∞).所以当-a -1≤0,即a ≥-1时,f (x )在[0,4]上单调递增,故f (x )在[0,4]上的最小值为 f (x )min =f (0)=a ;当0<-a -1<4,即-5<a <-1时, f (x )在(0,-a -1)上单调递减, f (x )在(-a -1,4)上单调递增,故f (x )在[0,4]上的最小值为f (x )min =f (-a -1) =-e-a -1;当-a -1≥4,即a ≤-5时,f (x )在[0,4]上单调递减, 故f (x )在[0,4]上的最小值为f (x )min =f (4) =(a +4)e 4.所以函数f (x )在[0,4]上的最小值为f (x )min =⎩⎪⎨⎪⎧a , a ≥-1,-e-a -1, -5<a <-1,(a +4)e 4, a ≤-5.思维升华 利用导数研究函数性质的一般步骤: (1)确定函数的定义域;(2)求导函数f ′(x );(3)①若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f ′(x )>0或f ′(x )<0.②若已知函数的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题来求解.(4)①若求极值,则先求方程f ′(x )=0的根,再检查f ′(x )在方程根的左右函数值的符号. ②若已知极值大小或存在情况,则转化为已知方程f ′(x )=0根的大小或存在情况来求解. (5)求函数f (x )在闭区间[a ,b ]的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.已知函数f (x )=ln x +2ax,a ∈R .(1)若函数f (x )在[2,+∞)上是增函数,求实数a 的取值范围; (2)若函数f (x )在[1,e]上的最小值为3,求实数a 的值. 解 (1)∵f (x )=ln x +2a x ,∴f ′(x )=1x -2ax 2.∵f (x )在[2,+∞)上是增函数,∴f ′(x )=1x -2ax 2≥0在[2,+∞)上恒成立,即a ≤x2在[2,+∞)上恒成立.令g (x )=x2,则a ≤g (x )min ,x ∈[2,+∞),∵g (x )=x2在[2,+∞)上是增函数,∴g (x )min =g (2)=1.∴a ≤1,即实数a 的取值范围为(-∞,1]. (2)由(1)得f ′(x )=x -2ax2,x ∈[1,e].①若2a <1,则x -2a >0,即f ′(x )>0在[1,e]上恒成立, 此时f (x )在[1,e]上是增函数.所以f (x )min =f (1)=2a =3,解得a =32(舍去).②若1≤2a ≤e ,令f ′(x )=0,得x =2a . 当1<x <2a 时,f ′(x )<0,所以f (x )在(1,2a )上是减函数,当2a <x <e 时,f ′(x )>0,所以f (x )在(2a ,e)上是增函数. 所以f (x )min =f (2a )=ln(2a )+1=3, 解得a =e 22(舍去).③若2a >e ,则x -2a <0,即f ′(x )<0在[1,e]上恒成立,此时f (x )在[1,e]上是减函数. 所以f (x )min =f (e)=1+2ae=3,得a =e ,适合题意. 综上a =e.热点三 导数与方程、不等式例3 已知函数f (x )=ln x ,g (x )=ax (a >0),设F (x )=f (x )+g (x ).(1)求函数F (x )的单调区间;(2)若以函数y =F (x )(x ∈(0,3])图象上任意一点P (x 0,y 0)为切点的切线的斜率k ≤12恒成立,求实数a 的最小值;(3)是否存在实数m ,使得函数y =g (2ax 2+1)+m -1的图象与函数y =f (1+x 2)的图象恰有四个不同交点?若存在,求出实数m 的取值范围;若不存在,说明理由.思维启迪 (1)利用F ′(x )确定单调区间;(2)k =F ′(x 0),F ′(x 0)≤12分离a ,利用函数思想求a的最小值;(3)利用数形结合思想将函数图象的交点个数和方程根的个数相互转化. 解 (1)F (x )=f (x )+g (x )=ln x +ax (x >0),F ′(x )=1x -a x 2=x -ax2.∵a >0,由F ′(x )>0⇒x ∈(a ,+∞), ∴F (x )在(a ,+∞)上是增函数.由F ′(x )<0⇒x ∈(0,a ),∴F (x )在(0,a )上是减函数. ∴F (x )的单调递减区间为(0,a ), 单调递增区间为(a ,+∞). (2)由F ′(x )=x -ax2(0<x ≤3)得k =F ′(x 0)=x 0-a x 20≤12(0<x 0≤3)恒成立⇔a ≥-12x 20+x 0恒成立.∵当x 0=1时,-12x 20+x 0取得最大值12, ∴a ≥12,即a 的最小值为12.(3)若y =g (2a x 2+1)+m -1=12x 2+m -12的图象与y =f (1+x 2)=ln(x 2+1)的图象恰有四个不同交点,即12x 2+m -12=ln(x 2+1)有四个不同的根,亦即m =ln(x 2+1)-12x 2+12有四个不同的根.令G (x )=ln(x 2+1)-12x 2+12.则G ′(x )=2xx 2+1-x =2x -x 3-x x 2+1=-x (x +1)(x -1)x 2+1当x 变化时,G ′(x )和G (x )的变化情况如下表:由表知G (x )极小值=G (0)=12,G (x )极大值=G (-1)=G (1)=ln 2.又由G (2)=G (-2)=ln 5-2+12<12可知,当m ∈(12,ln 2)时,y =G (x )与y =m 恰有四个不同交点.故存在m ∈(12,ln 2),使函数y =g (2ax 2+1)+m -1的图象与y =f (1+x 2)的图象恰有四个不同交点.思维升华 研究方程及不等式问题,都要运用函数性质,而导数是研究函数性质的一种重要工具.基本思路是构造函数,通过导数的方法研究这个函数的单调性、极值和特殊点的函数值,根据函数的性质推断不等式成立的情况以及方程实根的个数,必要时画出函数的草图辅助思考.已知函数f (x )=a (x 2+1)+ln x .(1)讨论函数f (x )的单调性;(2)若对任意a ∈(-4,-2)及x ∈[1,3],恒有ma -f (x )>a 2成立,求实数m 的取值范围.解 (1)由已知,得f ′(x )=2ax +1x =2ax 2+1x(x >0).①当a ≥0时,恒有f ′(x )>0,则f (x )在(0,+∞)上是增函数. ②当a <0时,若0<x < -12a , 则f ′(x )>0,故f (x )在(0, -12a]上是增函数; 若x >-12a,则f ′(x )<0, 故f (x )在[-12a,+∞)上是减函数. 综上,当a ≥0时,f (x )在(0,+∞)上是增函数; 当a <0时,f (x )在(0,-12a]上是增函数,在[ -12a,+∞)上是减函数. (2)由题意,知对任意a ∈(-4,-2)及x ∈[1,3],恒有ma-f(x)>a2成立,等价于ma-a2>f(x)max.因为a∈(-4,-2),所以24< -12a<12<1.由(1),知当a∈(-4,-2)时,f(x)在[1,3]上是减函数,所以f(x)max=f(1)=2a,所以ma-a2>2a,即m<a+2.因为a∈(-4,-2),所以-2<a+2<0.所以实数m的取值范围为m≤-2.1.函数单调性的应用(1)若可导函数f(x)在(a,b)上单调递增,则f′(x)≥0在区间(a,b)上恒成立;(2)若可导函数f(x)在(a,b)上单调递减,则f′(x)≤0在区间(a,b)上恒成立;(3)可导函数f(x)在区间(a,b)上为增函数是f′(x)>0的必要不充分条件.2.可导函数极值的理解(1)函数在定义域上的极大值与极小值的大小关系不确定,也有可能极小值大于极大值;(2)对于可导函数f(x),“f(x)在x=x0处的导数f′(x)=0”是“f(x)在x=x0处取得极值”的必要不充分条件;(3)注意导函数的图象与原函数图象的关系,导函数由正变负的零点是原函数的极大值点,导函数由负变正的零点是原函数的极小值点.3.利用导数解决优化问题的步骤(1)审题设未知数;(2)结合题意列出函数关系式;(3)确定函数的定义域;(4)在定义域内求极值、最值;(5)下结论.真题感悟1.(2014·江西)若曲线y=e-x上点P处的切线平行于直线2x+y+1=0,则点P的坐标是________.答案(-ln 2,2)解析设P(x0,y0),∵y=e-x=1e x,∴y′=-e-x,∴点P处的切线斜率为k=-e-x0=-2,∴-x0=ln 2,∴x0=-ln 2,∴y0=e ln 2=2,∴点P的坐标为(-ln 2,2).2.(2014·浙江)已知函数f (x )=x 3+3|x -a |(a >0),若f (x )在[-1,1]上的最小值记为g (a ). (1)求g (a );(2)证明:当x ∈[-1,1]时,恒有f (x )≤g (a )+4. (1)解 因为a >0,-1≤x ≤1,所以 ①当0<a <1时,若x ∈[-1,a ],则f (x )=x 3-3x +3a , f ′(x )=3x 2-3<0,故f (x )在(-1,a )上是减函数; 若x ∈[a,1],则f (x )=x 3+3x -3a , f ′(x )=3x 2+3>0, 故f (x )在(a,1)上是增函数. 所以g (a )=f (a )=a 3.②当a ≥1时,有x ≤a ,则f (x )=x 3-3x +3a , f ′(x )=3x 2-3<0,故f (x )在(-1,1)上是减函数, 所以g (a )=f (1)=-2+3a .综上,g (a )=⎩⎪⎨⎪⎧a 3,0<a <1,-2+3a ,a ≥1.(2)证明 令h (x )=f (x )-g (a ). ①当0<a <1时,g (a )=a 3.若x ∈[a,1],则h (x )=x 3+3x -3a -a 3, h ′(x )=3x 2+3,所以h (x )在(a,1)上是增函数,所以,h (x )在[a,1]上的最大值是h (1)=4-3a -a 3, 且0<a <1,所以h (1)≤4.故f (x )≤g (a )+4. 若x ∈[-1,a ],则h (x )=x 3-3x +3a -a 3, h ′(x )=3x 2-3,所以h (x )在(-1,a )上是减函数,所以,h (x )在[-1,a ]上的最大值是h (-1)=2+3a -a 3. 令t (a )=2+3a -a 3,则t ′(a )=3-3a 2>0, 知t (a )在(0,1)上是增函数. 所以,t (a )<t (1)=4,即h (-1)<4. 故f (x )≤g (a )+4.②当a ≥1时,g (a )=-2+3a ,故h (x )=x 3-3x +2,h ′(x )=3x 2-3, 此时h (x )在(-1,1)上是减函数,因此h (x )在[-1,1]上的最大值是h (-1)=4. 故f (x )≤g (a )+4.综上,当x ∈[-1,1]时,恒有f (x )≤g (a )+4. 押题精练1.已知函数f (x )=x -1x +1,g (x )=x 2-2ax +4,若任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数a 的取值范围是__________. 答案 ⎣⎡⎭⎫94,+∞ 解析 由于f ′(x )=1+1(x +1)2>0,因此函数f (x )在[0,1]上单调递增,所以x ∈[0,1]时,f (x )min =f (0)=-1.根据题意可知存在x ∈[1,2],使得g (x )=x 2-2ax +4≤-1, 即x 2-2ax +5≤0,即a ≥x 2+52x 能成立,令h (x )=x 2+52x ,则要使a ≥h (x )在x ∈[1,2]能成立,只需使a ≥h (x )min , 又函数h (x )=x 2+52x 在x ∈[1,2]上单调递减,所以h (x )min =h (2)=94,故只需a ≥94.2.已知函数f (x )=x 28-ln x ,x ∈[1,3].(1)求f (x )的最大值与最小值;(2)若f (x )<4-at 对任意的x ∈[1,3],t ∈[0,2]恒成立,求实数a 的取值范围. 解 (1)∵函数f (x )=x 28-ln x ,∴f ′(x )=x 4-1x ,令f ′(x )=0得x =±2,∵x ∈[1,3],当1<x <2时,f ′(x )<0;当2<x <3时,f ′(x )>0; ∴f (x )在(1,2)上是单调减函数,在(2,3)上是单调增函数, ∴f (x )在x =2处取得极小值f (2)=12-ln 2;又f (1)=18,f (3)=98-ln 3,∵ln 3>1,∴18-(98-ln 3)=ln 3-1>0,∴f (1)>f (3),∴x =1时函数f (x )取得最大值为18,x =2时函数f (x )取得最小值为12-ln 2.(2)由(1)知当x ∈[1,3]时,12-ln 2≤f (x )≤18,故对任意x ∈[1,3],f (x )<4-at 恒成立,只要4-at >18对任意t ∈[0,2]恒成立,即at <318恒成立,记g (t )=at ,t ∈[0,2].∴⎩⎨⎧g (0)<318g (2)<318,解得a <3116,∴实数a 的取值范围是(-∞,3116).(推荐时间:60分钟)一、填空题1.曲线y =x 3-2x 在(1,-1)处的切线方程为________. 答案 x -y -2=0解析 由已知,得点(1,-1)在曲线y =x 3-2x 上,所以切线的斜率为y ′|x =1=(3x 2-2)|x =1=1,由直线方程的点斜式得x -y -2=0.2.(2014·课标全国Ⅱ改编)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =________. 答案 3解析 令f (x )=ax -ln(x +1),则f ′(x )=a -1x +1.由导数的几何意义可得在点(0,0)处的切线的斜率为f ′(0)=a -1.又切线方程为y =2x ,则有a -1=2,所以a =3.3.(2014·陕西改编)如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为________.答案 y =1125x 3-35x解析 设所求解析式为y =ax 3+bx 2+cx +d , ∵函数图象过(0,0)点,∴d =0.又图象过(-5,2),(5,-2),∴函数为奇函数 ∴b =0,代入可得-125a -5c =2①又y ′=3ax 2+c ,当x =-5时y ′=75a +c =0②由①②得a =1125,c =35∴函数解析式为y =1125x 3-35x . 4.函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为________________________________________________________________________. 答案 {x |x >0}解析 构造函数g (x )=e x ·f (x )-e x ,因为g ′(x )=e x ·f (x )+e x ·f ′(x )-e x =e x [f (x )+f ′(x )]-e x >e x -e x =0,所以g (x )=e x ·f (x )-e x 为R 上的增函数.又因为g (0)=e 0·f (0)-e 0=1,所以原不等式转化为g (x )>g (0),解得x >0.5.若函数f (x )=log a (x 3-ax )(a >0,a ≠1)在区间(-12,0)内单调递增,则a 的取值范围是________. 答案 [34,1) 解析 由x 3-ax >0得x (x 2-a )>0.则有⎩⎪⎨⎪⎧ x >0,x 2-a >0或⎩⎪⎨⎪⎧x <0,x 2-a <0, 所以x >a 或-a <x <0,即函数f (x )的定义域为(a ,+∞)∪(-a ,0).令g (x )=x 3-ax ,则g ′(x )=3x 2-a .由g ′(x )<0得-3a 3<x <0. 从而g (x )在x ∈(-3a 3,0)上是减函数,又函数f (x )在x ∈(-12,0)内单调递增,则有⎩⎨⎧ 0<a <1,-a ≤-12,-3a 3≤-12,所以34≤a <1. 6.设f (x ),g (x )在[a ,b ]上可导,且f ′(x )>g ′(x ),则当a <x <b 时,下列结论正确的是________. ①f (x )>g (x );②f (x )<g (x );③f (x )+g (a )>g (x )+f (a );④f (x )+g (b )>g (x )+f (b ).答案 ③解析 ∵f ′(x )-g ′(x )>0,∴(f (x )-g (x ))′>0,∴f (x )-g (x )在[a ,b ]上是增函数,∴当a <x <b 时f (x )-g (x )>f (a )-g (a ),∴f (x )+g (a )>g (x )+f (a ).7.若函数f (x )=ax +1x +2在x ∈(2,+∞)上单调递减,则实数a 的取值范围是________. 答案 (-∞,12) 解析 f ′(x )=(ax +1)′(x +2)-(x +2)′(ax +1)(x +2)2=a (x +2)-(ax +1)(x +2)2=2a -1(x +2)2,令f ′(x )<0,即2a -1<0,解得a <12. 8.已知函数f (x )=mx 3+nx 2的图象在点(-1,2)处的切线恰好与直线3x +y =0平行,若f (x )在区间[t ,t +1]上单调递减,则实数t 的取值范围是__________.答案 [-2,-1]解析 由题意知,点(-1,2)在函数f (x )的图象上,故-m +n =2.①又f ′(x )=3mx 2+2nx ,则f ′(-1)=-3,故3m -2n =-3.②联立①②解得:m =1,n =3,即f (x )=x 3+3x 2,令f ′(x )=3x 2+6x ≤0,解得-2≤x ≤0,则[t ,t +1]⊆[-2,0],故t ≥-2且t +1≤0,所以t ∈[-2,-1].9.已知函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值范围是____________. 答案 0<t <1或2<t <3解析 f ′(x )=-x +4-3x =-x 2+4x -3x=-(x -1)(x -3)x,由f ′(x )=0得函数的两个极值点1,3,则只要这两个极值点在区间(t ,t +1)内,函数在区间[t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,解得0<t <1或2<t <3.10.已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是________.答案 (0,12) 解析 f ′(x )=(ln x -ax )+x (1x-a ) =ln x +1-2ax (x >0),令f ′(x )=0得2a =ln x +1x,设φ(x )=ln x +1x, 则φ′(x )=-ln x x 2. 易知φ(x )在(0,1)上递增,在(1,+∞)上递减,大致图象如图.若f (x )有两个极值点,则y =2a 和y =φ(x )图象有两个交点,∴0<2a <1,∴0<a <12. 二、解答题11.(2014·重庆)已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x . (1)求a 的值;(2)求函数f (x )的单调区间与极值.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x, 由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知,f ′(1)=-34-a =-2,解得a =54. (2)由(1)知f (x )=x 4+54x -ln x -32, 则f ′(x )=x 2-4x -54x 2. 令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去.当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数.由此知函数f (x )在x =5时取得极小值f (5)=-ln 5.12.已知f (x )=x 2+3x +1,g (x )=a -1x -1+x . (1)a =2时,求y =f (x )和y =g (x )图象的公共点个数;(2)a 为何值时,y =f (x )和y =g (x )的公共点个数恰为两个.解 (1)当a =2时,联立⎩⎪⎨⎪⎧y =f (x ),y =g (x ), 得x 2+3x +1=1x -1+x , 整理得x 3+x 2-x -2=0(x ≠1),即联立⎩⎪⎨⎪⎧y =0,y =x 3+x 2-x -2(x ≠1), 求导得y ′=3x 2+2x -1=0得x 1=-1,x 2=13, 得到极值点分别在-1和13处, 且极大值、极小值都是负值,图象如图,故交点只有一个.(2)联立⎩⎪⎨⎪⎧y =f (x ),y =g (x ),得x 2+3x +1=a -1x -1+x , 整理得a =x 3+x 2-x (x ≠1),即联立⎩⎪⎨⎪⎧y =a ,y =h (x )=x 3+x 2-x (x ≠1),对h (x )求导可以得到极值点分别在-1和13处,画出草图如图.h (-1)=1,h (13)=-527, 当a =h (-1)=1时,y =a 与y =h (x )仅有一个公共点(因为(1,1)点不在y =h (x )曲线上),故a =-527时恰有两个公共点. 13.设函数f (x )=a e x (x +1)(其中,e =2.718 28…),g (x )=x 2+bx +2,已知它们在x =0处有相同的切线.(1)求函数f (x ),g (x )的解析式;(2)求函数f (x )在[t ,t +1](t >-3)上的最小值;(3)若对∀x ≥-2,kf (x )≥g (x )恒成立,求实数k 的取值范围.解 (1)f ′(x )=a e x (x +2),g ′(x )=2x +b .由题意,得两函数在x =0处有相同的切线.∴f ′(0)=2a ,g ′(0)=b ,∴2a =b ,f (0)=a ,g (0)=2,∴a =2,b =4,∴f (x )=2e x (x +1),g (x )=x 2+4x +2.(2)f ′(x )=2e x (x +2),由f ′(x )>0得x >-2,由f ′(x )<0得x <-2,∴f (x )在(-2,+∞)单调递增,在(-∞,-2)单调递减.∵t >-3,∴t +1>-2.①当-3<t <-2时,f (x )在[t ,-2]上单调递减,在[-2,t +1]上单调递增,∴f (x )min =f (-2)=-2e -2. ②当t ≥-2时,f (x )在[t ,t +1]上单调递增,∴f (x )min =f (t )=2e t (t +1);∴f (x )=⎩⎪⎨⎪⎧-2e -2(-3<t <-2),2e t (t +1)(t ≥-2). (3)令F (x )=kf (x )-g (x )=2k e x (x +1)-x 2-4x -2,由题意当x ≥-2时,F (x )min ≥0.∵∀x ≥-2,kf (x )≥g (x )恒成立,∴F (0)=2k -2≥0,∴k ≥1.F ′(x )=2k e x (x +1)+2k e x -2x -4=2(x +2)(k e x -1),∵x ≥-2,由F ′(x )>0得e x >1k ,∴x >ln 1k; 由F ′(x )<0得x <ln 1k ,∴F (x )在(-∞,ln 1k )内单调递减,在[ln 1k,+∞)内单调递增. ①当ln 1k<-2,即k >e 2时,F (x )在[-2,+∞)单调递增, F (x )min =F (-2)=-2k e -2+2=2e 2(e 2-k )<0, 不满足F (x )min ≥0.当ln 1k =-2,即k =e 2时,由①知,F (x )min =F (-2)=2e 2(e 2-k )=0,满足F (x )min ≥0. ③当ln 1k >-2,即1≤k <e 2时,F (x )在[-2,ln 1k )内单调递减,在[ln 1k,+∞)内单调递增.F(x)min=F(ln 1k)=ln k(2-ln k)>0,满足F(x)min≥0.综上所述,满足题意的k的取值范围为[1,e2].。
第一节函数及其表示[备考方向要明了][归纳·知识整合] 1.函数与映射的概念[探究] 1.函数和映射的区别与联系是什么?提示:二者的区别在于映射定义中的两个集合是非空集合,可以不是数集,而函数中的两个集合必须是非空数集,二者的联系是函数是特殊的映射.2.函数的有关概念 (1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合 {f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系. 3.相等函数如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. [探究] 2.若两个函数的定义域与值域都相同,它们是否是同一个函数?提示:不一定.如函数y =x 与y =x +1,其定义域与值域完全相同,但不是同一个函数;再如y =sin x 与y =cos x ,其定义域都为R ,值域都为[-1,1],显然不是同一个函数.因为定义域和对应关系完全相同的两个函数的值域也相同,所以定义域和对应关系完全相同的两个函数才是同一个函数.4.函数的表示方法表示函数的常用方法有:解析法、列表法和图象法. 5.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数,分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.[自测·牛刀小试]1.(教材习题改编)给出下列四个命题,正确的有( ) ①函数是定义域到值域的对应关系; ②函数f (x )=x -4+1-x ;③f (x )=5,因这个函数的值不随x 的变化而变化,所以f (t 2+1)也等于5; ④y =2x (x ∈N )的图象是一条直线; ⑤f (x )=1与g (x )=x 0表示同一个函数.A .1个B .2个C .3个D .4个解析:选B 由函数的定义知①正确;②错误;由⎩⎪⎨⎪⎧x -4≥0,1-x ≥0,得定义域为∅,所以不是函数;因为函数f (x )=5为常数函数,所以f (t 2+1)=5,故③正确;因为x ∈N ,所以函数y =2x (x ∈N )的图象是一些离散的点,故④错误;由于函数f (x )=1的定义域为R ,函数g (x )=x 0,的定义域为{x |x ≠0},故⑤错误.综上分析,可知正确的个数是2.2.(教材习题改编)以下给出的对应是从集合A 到B 的映射的有( )①集合A ={P |P 是数轴上的点},集合B =R ,对应关系f :数轴上的点与它所代表的实数对应.②集合A ={P |P 是平面直角坐标系中的点},集合B ={(x ,y )|x ∈R ,y ∈R },对应关系f :平面直角坐标系中的点与它的坐标对应;③集合A ={x |x 是三角形},集合B ={x |x 是圆},对应关系f :每一个三角形都对应它的内切圆;④集合A ={x |x 是新华中学的班级},集合B ={x |x 是新华中学的学生},对应关系f :每一个班级都对应班里的学生.A .1个B .2个C .3个D .4个解析:选C 由于新华中学的每一个班级里的学生都不止一个,即一个班级对应的学生不止一个,所以④不是从集合A 到集合B 的映射.3.(文)(2012·江西高考)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))=( )A.15 B .3 C.23 D.139 解析:选D ∵f (3)=23,∴f (f (3))=⎝⎛⎭⎫232+1=139.3.(理)(2012·江西高考)若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .0解析:选B f (10)=lg 10=1,故f (f (10))=f (1)=12+1=2.4.(教材习题改编)已知函数f (x )=x +2x -6,则f (f (4))=________;若f (a )=2,则a =________.解析:∵f (x )=x +2x -6,∴f (4)=4+24-6=-3.∴f (f (4))=f (-3)=-3+2-3-6=19.∵f (a )=2,即a +2a -6=2,解得a =14.答案:19145.(教材习题改编)A ={x |x 是锐角},B =(0,1),从A 到B 的映射是“求余弦”,与A 中元素60°相对应的B 中的元素是________;与B 中元素32相对应的A 中的元素是________. 解析:∵cos 60°=12,∴与A 中元素60°相对应的B 中的元素是12.又∵cos 30°= 32,∴与B 中元素32相对应的A 中的元素是30°. 答案:1230°[例1] 有以下判断:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,(x ≥0)-1,(x <0)表示同一个函数.(2)函数y =f (x )的图象与直线x =1的交点最多有1个. (3)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数.(4)若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f⎝⎛⎭⎫12=0. 其中正确判断的序号是________.[自主解答] 对于(1),函数f (x )=|x |x的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1(x ≠0),-1(x <0)的定义域是R ,所以二者不是同一函数;对于(2),若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,若x =1是y =f (x )定义域内的值,由函数的定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于(3),f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )与g (t )表示同一函数;对于(4),由于f ⎝⎛⎭⎫12=⎪⎪⎪⎪12-1-⎪⎪⎪⎪12=0, 所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (0)=1.综上可知,正确的判断是(2)(3). [答案] (2)(3)———————————————————1.判断两个变量之间是否存在函数关系的方法要检验两个变量之间是否存在函数关系,只需检验:(1)定义域和对应关系是否给出;(2)根据给出的对应关系,自变量x 在其定义域中的每一个值,是否都能找到唯一的函数值y 与之对应.2.判断两个函数是否为同一个函数的方法判断两个函数是否相同,要先看定义域是否一致,若定义域一致,再看对应法则是否一致,由此即可判断.1.(1)以下给出的同组函数中,是否表示同一函数?为什么?①f 1:y =xx;f 2:y =1.②f 1:y =⎩⎪⎨⎪⎧1,x ≤1,2,1<x <2,3,x ≥2;f 2:③f 1:y =2x ;f 2:如图所示.解:①不同函数.f 1(x )的定义域为{x ∈R |x ≠0},f 2(x )的定义域为R .②同一函数.x 与y 的对应关系完全相同且定义域相同,它们是同一函数的不同表示方式.③同一函数.理由同②.(2)已知映射f :A →B .其中A =B =R ,对应关系f :x →y =-x 2+2x ,对于实数k ∈B ,在集合A 中不存在元素与之对应,则k 的取值范围是( )A .k >1B .k ≥1C .k <1D .k ≤1解析:选A 由题意知,方程-x 2+2x =k 无实数根,即x 2-2x +k =0无实数根. 所以Δ=4(1-k )<0,解得k >1时满足题意.[例2] (1)已知f (x +1)=x 2+4x +1,求f (x )的解析式.(2)已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9.求f (x ). [自主解答] (1)法一:(换元法)设x +1=t ,则x =t -1, ∴f (t )=(t -1)2+4(t -1)+1, 即f (t )=t 2+2t -2.∴所求函数为f (x )=x 2+2x -2.法二:(配凑法)∵f (x +1)=x 2+4x +1=(x +1)2+2(x +1)-2, ∴所求函数为f (x )=x 2+2x -2.(2)(待定系数法)由题意,设函数为f (x )=ax +b (a ≠0), ∵3f (x +1)-f (x )=2x +9, ∴3a (x +1)+3b -ax -b =2x +9, 即2ax +3a +2b =2x +9.由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9,解得a =1,b =3.∴所求函数解析式为f (x )=x +3.若将本例(1)中“f (x +1)=x 2+4x +1”改为“f ⎝⎛⎭⎫2x +1=lg x ”,如何求解? 解:令2x 1=t ,∵x >0,∴t >1且x =2t -1.∴f (t )=lg 2t -1,即f (x )=lg 2x -1(x >1).———————————————————求函数解析式的常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法;(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; (4)解方程组法:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).2.给出下列两个条件: (1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试分别求出f (x )的解析式. 解:(1)令t = x +1, ∴t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1, ∴f (x )=x 2-1(x ≥1).(2)设f (x )=ax 2+bx +c ,又∵f (0)=c =3. ∴f (x )=ax 2+bx +3,∴f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.∴⎩⎪⎨⎪⎧ 4a =4,4a +2b =2,解得⎩⎪⎨⎪⎧a =1,b =-1.∴f (x )=x 2-x +3.[例3] (文)(2012·福建高考)设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为( )A .1B .0C .-1D .π(理)已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x ,x ≥4,f (x +1),x <4,则f (2+log 23)的值为( )A.124 B.112 C.16 D.13[解析] (文) ∵g (π)=0,f (g (π))=f (0)=0, ∴f (g (π))=0.(理) ∵2+log 23<4,∴f (2+log 23)=f (3+log 23).∵3+log 23>4,∴f (2+log 23)=f (3+log 23)=⎝⎛⎭⎫123+log 23=18×⎝⎛12log 23=18×13=124.[答案] (文)B (理)A ———————————————————解决分段函数求值问题的方法(1)求分段函数的函数值时,应根据所给自变量的大小选择相应段的解析式求解,有时每段交替使用求值.(2)若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值是否符合相应段的自变量的取值范围,做到分段函数分段解决.3.已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( )A.12 B.45 C .2D .9解析:选C ∵x <1,f (x )=2x+1,∴f (0)=2.由f (f (0))=4a ,得f (2)=4a ,∵x ≥1,f (x )=x 2+ax ,∴4a =4+2a ,解得a =2.4种方法——函数解析式的求法求函数解析式常用的方法有:(1)待定系数法;(2)换元法;(3)配凑法;(4)解方程组法.具体内容见例2[方法·规律].2两个易误点——映射的概念及分段函数求值问题中的易误点(1)判断对应是否为映射,即看A 中元素是否满足“每元有象”和“且象唯一”.但要注意:①A 中不同元素可有相同的象,即允许多对一,但不允许一对多;②B 中元素可无原象,即B 中元素可有剩余.(2)求分段函数应注意的问题在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域是其定义域内不同子集上对应的各关系式的值域的并集.数学思想——分类讨论思想在分段函数中的应用当数学问题不宜用统一的方法处理时,我们常常根据研究对象的差异,按照一定的分类方法或标准,将问题分为“全而不重,广而不漏”的若干类,然后逐类分别讨论,再把结论汇总,得出问题答案的思想,这就是主要考查了分类讨论的数学思想,由于分段函数在不同定义区间上具有不同的解析式,在处理分段函数问题时应对不同的区间进行分类求解,然后整合,这恰好是分类讨论的一种体现.[典例] (2011·江苏高考)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为________.[解析] ①当1-a <1,即a >0时,此时a +1>1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,计算得a =-32(舍去);②当1-a >1,即a <0时,此时a +1<1,由f (1-a )=f (1+a ),得2(1+a )+a =-(1-a )-2a ,计算得a =-34,符合题意,所以综上所述,a =-34. [答案] -34[题后悟道]1.在解决本题时,由于a 的取值不同限制了1-a 及1+a 的取值,从而应对a 进行分类讨论.2.运用分类讨论的思想解题的基本步骤 (1)确定讨论对象和确定研究的区域;(2)对所讨论的问题进行合理的分类(分类时需要做到不重不漏,标准统一、分层不越级); (3)逐类讨论:即对各类问题详细讨论,逐步解决; (4)归纳总结,整合得出结论. [变式训练]1.设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)解析:选C ①当a >0时,∵f (a )>f (-a ), ∴log 2a >log 12a =log 2 1a.∴a >1a,得a >1.②当a <0时,∵f (a )>f (-a ), ∴log 12(-a )>log 2(-a )=log 121-a. ∴-a <1-a得-1<a <0,故C 项为正确选项.2.设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ∈(-∞,1),x 2,x ∈[1,+∞),若f (x )>4,则x 的取值范围是________________.解析:当x <1时,由f (x )>4得2-x >4,即x <-2;当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2,但由于x ≥1,所以x >2. 综上,x 的取值范围是x <-2或x >2. 答案:(-∞,-2)∪(2,+∞)一、选择题1.下列各组函数中,表示相等函数的是( ) A .y =5x 5与y =x 2 B .y =ln e x 与y =e ln x C .y =(x -1)(x +3)x -1与y =x +3D .y =x 0与y =1x解析:选D y =5x 5=x ,y =x 2=|x |,故y =5x 5与y =x 2不表示相等函数;B 、C 选项中的两函数定义域不同;D 选项中的两函数是同一个函数.2.设A ={0,1,2,4},B =⎩⎨⎧⎭⎬⎫12,0,1,2,6,8,则下列对应关系能构成A 到B 的映射的是( )A .f :x →x 3-1B .f :x →(x -1)2C .f :x →2x -1D .f :x →2x解析:选C 对于A ,由于集合A 中x =0时,x 3-1=-1∉B ,即A 中元素0在集合B 中没有元素与之对应,所以选项A 不符合;同理可知B 、D 两选项均不能构成A 到B 的映射,C 符合.3.已知函数f (x )=⎩⎪⎨⎪⎧2x -2,x ≥0,lg (-x ),x <0,则f (f (-10))=( )A.12 B.14 C .1D .-14解析:选A 依题意可知f (-10)=lg 10=1, f (1)=21-2=12.4.(2013·杭州模拟)设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =( )A .-3B .±3C .-1D .±1解析:选D ∵f (a )+f (-1)=2,且f (-1)= 1=1, ∴f (a )=1,当a ≥0时,f (a )= a =1,∴a =1; 当a <0时,f (a )=-a =1,∴a =-1.5.(文)若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )=( ) A .x -1 B .x +1 C .2x +1D .3x +3解析:选B 由题意知2f (x )-f (-x )=3x +1.① 将①中x 换为-x ,则有2f (-x )-f (x )=-3x +1.② ①×2+②得3f (x )=3x +3, 即f (x )=x +1.5.(理)已知函数f (x )满足f (x )+2f (3-x )=x 2,则f (x )的解析式为( ) A .f (x )=x 2-12x +18 B .f (x )=132-4x +6C .f (x )=6x +9D .f (x )=2x +3解析:选B 由f (x )+2f (3-x )=x 2可得f (3-x )+2f (x )=(3-x )2,由以上两式解得f (x )=13x 2-4x +6.6.(2013·泰安模拟)具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”交换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.满足“倒负”变换的函数是( )A .①②B .①③C .②③D .只有①解析:选B ①f ⎝⎛⎭⎫1x =1x -x =-f (x )满足.②f ⎝⎛⎭⎫1x =1x +x =f (x )不满足. ③0<x <1时,f ⎝⎛⎭⎫1x =-x =-f (x ), x =1时,f ⎝⎛⎭⎫1x =0=-f (x ),x >1时,f ⎝⎛⎭⎫1x =1x =-f (x )满足.二、填空题7.已知f ⎝⎛⎭⎫x -1x =x 2+1x 2,则函数f (3)=________. 解析:∵f ⎝⎛⎭⎫x -1x =x 2+1x 2=⎝⎛⎭⎫x -1x 2+2,∴f (x )=x 2+2.∴f (3)=32+2=11. 答案:118.若f (a +b )=f (a )·f (b )且f (1)=1,则f (2)f (1)+f (3)f (2)+…+f (2 012)f (2 011)=________.解析:令b =1,∵f (a +1)f (a )=f (1)=1, ∴f (2)f (1)+f (3)f (2)+…+f (2 012)f (2 011)=2 011. 答案:2 0119.(文)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧2x,x ≤0,f (x -1)-f (x -2),x >0,则f (3)的值为________.解析:由题意得f (3)=f (2)-f (1)=f (1)-f (0)-f (1)=-f (0)=-20=-1. 答案:-19.(理)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.解析:画出f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0的图象,如图.由图象可知,若f (1-x 2)>f (2x ),则⎩⎪⎨⎪⎧1-x 2>0,1-x 2>2x , 即⎩⎨⎧-1<x <1,-1-2<x <-1+ 2.得x ∈(-1,2-1). 答案:(-1,2-1) 三、解答题10.已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0.(1)求f (g (2))和g (f (2))的值; (2)求f (g (x ))和g (f (x ))的解析式. 解:(1)由已知,g (2)=1,f (2)=3, 因此f (g (2))=f (1)=0, g (f (2))=g (3)=2.(2)当x >0时,g (x )=x -1, 故f (g (x ))=(x -1)2-1=x 2-2x ; 当x <0时,g (x )=2-x ,故f (g (x ))=(2-x )2-1=x 2-4x +3.所以f (g (x ))=⎩⎪⎨⎪⎧x 2-2x ,x >0,x 2-4x +3,x <0.当x >1或x <-1时,f (x )>0, 故g (f (x ))=f (x )-1=x 2-2; 当-1<x <1时,f (x )<0, 故g (f (x ))=2-f (x )=3-x 2.所以g (f (x ))=⎩⎪⎨⎪⎧x 2-2,x >1或x <-1,3-x 2,-1<x <1. 11.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有 a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x . ∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.12.规定[t ]为不超过t 的最大整数,例如[12.6]=12,[-3.5]=-4,对任意实数x ,令f 1(x )=[4x ],g (x )=4x -[4x ],进一步令f 2(x )=f 1[g (x )].(1)若x =716,分别求f 1(x )和f 2(x );(2)若f 1(x )=1,f 2(x )=3同时满足,求x 的取值范围. 解:(1)∵x =716时,4x =74, ∴f 1(x )=⎣⎡74=1. ∵g (x )=74-⎣⎡⎦⎤74=34∴f 2(x )=f 1[g (x )]=f 1⎝⎛34=[3]=3.(2)∵f 1(x )=[4x ]=1,g (x )=4x -1, ∴f 2(x )=f 1(4x -1)=[16x -4]=3.∴⎩⎪⎨⎪⎧1≤4x <2,3≤16x -4<4,∴716≤x <12.1.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到达终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…,用s 1,s 2分别表示乌龟和兔子所行的路程,t 为时间,则下图与故事情节相吻合的是( )解析:选B 根据故事的描述,乌龟是先于兔子到达终点,到达终点的最后时刻乌龟的路程大于兔子的路程,并且兔子中间有一段路程为零,分析知B 图象与事实相吻合.2.下列对应关系是集合P 上的函数的是________.(1)P =Z ,Q =N *,对应关系f :对集合P 中的元素取绝对值与集合Q 中的元素相对应; (2)P ={-1,1,-2,2},Q ={1,4},对应关系:f :x →y =x 2,x ∈P ,y ∈Q ;(3)P ={三角形},Q ={x |x >0},对应关系f :对P 中三角形求面积与集合Q 中元素对应. 解析:对于(1),集合P 中元素0在集合Q 中没有对应元素,故(1)不是函数;对于(3)集合P 不是数集,故(3)不是函数;(2)正确.答案:(2)3.试判断以下各组函数是否表示同一函数: (1)y =x -2·x +2,y =x 2-4; (2)y =x ,y =3t 3; (3)y =|x |,y =(x )2.解:∵y =x -2·x +2的定义域为{x |x ≥2}, y =x 2-4的定义域为{x |x ≥2或x ≤-2}, ∴它们不是同一函数.(2)∵它们的定义域相同,且y =3t 3=t , ∴y =x 与y =3t 3是同一函数.(3)∵y =|x |的定义域为R ,y =(x )2的定义域为{x |x ≥0}, ∴它们不是同一函数. 4.已知f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,2x ,-1<x <2,x22,x ≥2,且f (a )=3,求a 的值.解:①当a ≤-1时,f (a )=a +2,由a +2=3,得a =1,与a ≤-1相矛盾,应舍去. ②当-1<a <2时,f (a )=2a , 由2a =3,得a =321<a <2.③当a ≥2时,f (a )=a22,由a 22=3,得a =±6, 又a ≥2,故a = 6. 综上可知,a 的值为32或 6.[备考方向要明了][归纳·知识整合]1.常见基本初等函数的定义域 (1)分式函数中分母不等于零.(2)偶次根式函数被开方式大于或等于0. (3)一次函数、二次函数的定义域均为R .(4)y =a x(a >0且a ≠1),y =sin x ,y =cos x ,定义域均为R . (5)y =log a x (a >0且a ≠1)的定义域为(0,+∞).(6)y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z .(7)实际问题中的函数定义域,除了使函数的解析式有意义外,还要考虑实际问题对函数自变量的制约.2.基本初等函数的值域 (1)y =kx +b (k ≠0)的值域是R . (2)y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为⎩⎨⎧⎬⎫y |y ≥4ac -b 24a ;当a <0时,值域为⎩⎨⎧⎬⎫y |y ≤4ac -b 24a . (3)y =kx (k ≠0)的值域是{y |y ≠0}.(4)y =a x (a >0且a ≠1)的值域是{y |y >0}. (5)y =log a x (a >0且a ≠1)的值域是R . (6)y =sin x ,y =cos x 的值域是[-1,1]. (7)y =tan x 的值域是R .[探究] 1.若函数y =f (x )的定义域和值域相同,则称函数y =f (x )是圆满函数,则函数①y =1x;②y =2x ;③y = x ;④y =x 2中是圆满函数的有哪几个?提示:①y =1x 的定义域和值域都是(-∞,0)∪(0,+∞),故函数y =1x 是圆满函数;②y=2x 的定义域和值域都是R ,故函数y =2x 是圆满函数;③y = x 的定义域和值域都是[0,+∞),故y = x 是圆满函数;④y =x 2的定义域为R ,值域为[0,+∞),故函数y =x 2不是圆满函数.2.分段函数的定义域、值域与各段上的定义域、值域之间有什么关系? 提示:分段函数的定义域、值域为各段上的定义域、值域的并集.[自测·牛刀小试]1.(教材习题改编)函数f (x )=4-xx -1的定义域为( ) A .[-∞,4] B .[4,+∞) C .(-∞,4)D .(-∞,1)∪(1,4]解析:选D 要使函数f (x )=4-x x -1有意义,只需⎩⎪⎨⎪⎧ 4-x ≥0,x -1≠0,即⎩⎪⎨⎪⎧x ≤4,x ≠1.所以函数的定义域为(-∞,1)∪(1,4].2.下表表示y 是x 的函数,则函数的值域是( )A .[2,5]B .NC .(0,20]D .{2,3,4,5}解析:选D 函数值只有四个数2,3,4,5,故值域为{2,3,4,5}. 3.若f (x )=1log 12(2x +1),则f (x )的定义域为( )A.⎝⎛⎭⎫-120 B.⎝⎛⎦⎤-12,0C.⎝⎛⎭⎫-12,+∞D .(0,+∞)解析:选A 根据题意得log 12(2x +1)>0,即0<2x +1<1,解得-12<x <0,即x ∈⎝⎛⎭⎫-120.4.(教材改编题)函数y =f (x )的图象如图所示,则函数y =f (x )的定义域为________,值域为________.解析:由图象可知,函数y =f (x )的定义域为[-6,0]∪[3,7),值域为[0,+∞).答案:[-6,0]∪[3,7) [0,+∞)5.(教材改编题)若x -4有意义,则函数y =x 2-6x +7的值域是________. 解析:∵x -4有意义,∴x -4≥0,即x ≥4. 又∵y =x 2-6x +7=(x -3)2-2, ∴y min =(4-3)2-2=1-2=-1. ∴其值域为[-1,+∞). 答案:[-1,+∞)[例1] (1)(2012·山东高考)函数f (x )=1ln (x +1)+4-x 2的定义域为( ) A .[-2,0)∪(0,2] B .(-1,0)∪(0,2] C .[-2,2]D .(-1,2](2)已知函数f (x 2-1)的定义域为[0,3],则函数y =f (x )的定义域为________. [自主解答] (1)x 满足⎩⎪⎨⎪⎧x +1>0,x +1≠1,4-x 2≥0,即⎩⎪⎨⎪⎧x >-1,x ≠0,-2≤x ≤2.解得-1<x <0或0<x ≤2. (2)∵0≤x ≤3,∴0≤x 2≤9,-1≤x 2-1≤8. ∴函数y =f (x )的定义域为[-1,8].[答案] (1)B (2)[-1,8]本例(2)改为f (x )的定义域为[0,3],求y =f (x 2-1)的定义域. 解:∵y =f (x )的定义域为[0,3], ∴0≤x 2-1≤3,解得-2≤x ≤-1或1≤x ≤2,所以函数定义域为[-2,-1]∪[1,2]. ———————————————————简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)对抽象函数:①若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出.②若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.1.(1)(2012·江苏高考)函数f (x )=1-2log 6x 的定义域为________.(2)已知f (x )的定义域是[-2,4],求f (x 2-3x )的定义域.解析:(1)由1-2log 6x ≥0解得log 6x ≤12⇒0<x ≤6,故所求定义域为(0, 6 ].(2)∵f (x )的定义域是[-2,4],∴-2≤x 2-3x ≤4,由二次函数的图象可得,-1≤x ≤1或2≤x ≤4. ∴定义域为[-1,1]∪[2,4].答案:(1)(0, 6 ] (2)[-1,1]∪[2,4][例2] 求下列函数的值域: (1)y =x -3x +1;(2)y =x -1-2x ;(3)y =x +4x. [自主解答] (1)法一:(分离常数法)y =x -3x +1=x +1-4x +1=1-4x +1.因为4x +1≠0,所以1-4x +1≠1, 即函数的值域是{y |y ∈R ,y ≠1}.法二:由y =x -3x +1得yx +y =x -3. 解得x =y +31-y,所以y ≠1, 即函数值域是{y |y ∈R ,y ≠1}.(2)法一:(换元法)令1-2x =t ,则t ≥0且x =1-t 22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,所以y ≤12,故函数的值域是⎩⎨⎧⎭⎫y |y ≤12.法二:(单调性法)容易判断函数y =f (x )为增函数,而其定义域应满足1-2x ≥0,即x ≤12.所以y ≤f ⎝⎛⎭⎫12=12,即函数的值域是⎩⎨⎧⎭⎬⎫y |y ≤12. (3)法一:(均值不等式法)当x >0时, x +4x≥2 x ×4x=4, 当且仅当x =2时“=”成立; 当x <0时,x +4x =-(-x -4x )≤-4,当且仅当x =-2时“=”成立. 即函数的值域为(-∞,-4]∪[4,+∞).法二:(导数法)f ′(x )=1-4x 2=x 2-4x2.x ∈(-∞,-2)或x ∈(2,+∞)时,f (x )单调递增, 当x ∈(-2,0)或x ∈(0,2)时,f (x )单调递减. 故x =-2时,f (x )极大值=f (-2)=-4; x =2时,f (x )极小值=f (2)=4.即函数的值域为(-∞,-4]∪[4,+∞).若将本例(3)改为“y =x -4x”,如何求解?解:易知函数y =x -4x 在(-∞,0)和(0,+∞)上都是增函数,故函数y =x -4x 的值域为R .———————————————————求函数值域的基本方法(1)观察法:一些简单函数,通过观察法求值域. (2)配方法:“二次函数类”用配方法求值域.(3)换元法:形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且a ≠0)的函数常用换元法求值域,形如y =ax +a -bx 2的函数用三角函数代换求值域.(4)分离常数法:形如y =cx +dax +b(a ≠0)的函数可用此法求值域.(5)单调性法:函数单调性的变化是求最值和值域的依据,根据函数的单调区间判断其增减性进而求最值和值域.(6)数形结合法:画出函数的图象,找出坐标的范围或分析条件的几何意义,在图上找其变化范围.2.求下列函数的值域. (1)y =x 2+2x ,x ∈[0,3]; (2)y =x 2-xx 2-x +1;(3)y =log 3x +log x 3-1.解:(1)(配方法)y =x 2+2x =(x +1)2-1, ∵0≤x ≤3,∴1≤x +1≤4.∴1≤(x +1)2≤16. ∴0≤y ≤15,即函数y =x 2+2x (x ∈[0,3])的值域为[0,15]. (2)y =x 2-x +1-1x 2-x +1=1-1x 2-x +1,∵x 2-x +1=⎝⎛⎭⎫x -122+34≥34, ∴0<1x 2-x +1≤43,∴-13≤y <1,即值域为⎣⎡⎭⎫-13,1. (3)y =log 3x +1log 3x-1, 令log 3x =t , 则y =t +1t -1(t ≠0),当x >1时,t >0,y ≥2t ·1t-1=1, 当且仅当t =1t 即log 3x =1,x =3时,等号成立;当0<x <1时,t <0,y =-⎣⎡⎦⎤(-t )+⎝⎛⎭⎫-1t -1≤-2-1=-3. 当且仅当-t =-1t 即log 3x =-1,x =13综上所述,函数的值域是(-∞,-3]∪[1,+∞).[例3] 已知函数f (x )=ax 2+bx .若至少存在一个正实数b ,使得函数f (x )的定义域与值域相同,求实数a 的值.[自主解答] ①若a =0,则对于每个正数b ,f (x )=bx 的定义域和值域都是[0,+∞),故a =0满足条件;②若a >0,则对于正数b ,f (x )=ax 2+bx 的定义域为D ={x |ax 2+bx ≥0}=⎝⎛⎦⎤-∞,-b a ∪[0,+∞),但f (x )的值域A ⊆[0,+∞),故D ≠A ,即a >0不符合条件;③若a <0,则对于正数b ,f (x )=ax 2+bx 的定义域D =⎣⎡⎦⎤0,-ba ,由于此时f (x )max =f ⎝⎛⎭⎫-b 2a =b 2-a , 故f (x )的值域为⎣⎢⎡⎦⎥⎤0,b2-a , 则-b a =b2-a ⇒⎩⎨⎧a <0,2-a =-a⇒a =-4.综上所述,a 的值为0或-4. ——————————————————— 由函数的定义域或值域求参数的方法已知函数的值域求参数的值或取值范围问题,通常按求函数值域的方法求出其值域,然后依据已知信息确定其中参数的值或取值范围.3.(2013·温州模拟)若函数f (x )=1x -1在区间[a ,b ]上的值域为⎣⎡⎦⎤13,1,则a +b =________.解析:∵由题意知x -1>0,又x ∈[a ,b ], ∴a >1.则f (x )=1x -1在[a ,b ]上为减函数,则f (a )=1a -1=1且f (b )=1b -1=13,∴a =2,b =4,a +b =6.答案:61种意识——定义域优先意识函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质的基础.因此,我们一定要树立函数定义域优先的意识.4个注意——求函数定义域应注意的问题(1)如果没有特别说明,函数的定义域就是能使解析式有意义的所有实数x的集合.(2)不要对解析式进行化简变形,以免定义域变化.(3)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合.(4)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.4个准则——函数表达式有意义的准则函数表达式有意义的准则一般有:①分式中的分母不为0;②偶次根式的被开方数非负;③y=x0要求x≠0;④对数式中的真数大于0,底数大于0且不等于1.6种技巧——妙求函数的值域(1)当所给函数是分式的形式,且分子、分母是同次的,可考虑用分离常数法;(2)若与二次函数有关,可用配方法;(3)若函数解析式中含有根式,可考虑用换元法或单调性法;(4)当函数解析式结构与基本不等式有关,可考虑用基本不等式求解;(5)分段函数宜分段求解;(6)当函数的图象易画出时,还可借助于图象求解.易误警示——与定义域有关的易错问题[典例](2013·福州模拟)函数f(x)=(x+1)2x+1-1-x的定义域为________________.[解析]∵要使函数f(x)=(x+1)2x+1-1-x有意义,则⎩⎪⎨⎪⎧1-x≥0,x+1≠0,∴⎩⎪⎨⎪⎧x≤1,x≠-1,∴函数f(x)的定义域为{x|x≤1,且x≠-1}.[答案](-∞,-1)∪(-1,1][易误辨析]1.本题若将函数f (x )的解析式化简为f (x )=(x +1)-1-x 后求定义域,会误认为其定义域为(-∞,1].事实上,上述化简过程扩大了自变量x 的取值范围.2.在求函数的值域时,要特别注意函数的定义域.求函数的值域时,不但要重视对应关系的作用,而且还要特别注意定义域对值域的制约作用.[变式训练]1.若函数f (x )的值域是⎣⎡⎦⎤12,3,则函数F (x )=f (x )+1f (x )的值域是( ) A.⎣⎡⎦⎤12,5 B.⎣⎡⎦⎤56,5 C.⎣⎡⎦⎤2,103 D.⎣⎡⎦⎤3,103 解析:选C 令t =f (x ),则12≤t ≤3.易知函数g (t )=t +1t 在区间⎣⎡⎦⎤12,1上是减函数,在[1,3]上是增函数. 又因为g ⎝⎛⎭⎫12=52,g (1)=2,g (3)=103.可知函数F (x )=f (x )+1f (x )的值域为⎣⎡2,103. 2.已知函数f (x +2)=x +2x ,则函数f (x )的值域为________. 解析:令2+x =t ,则x =(t -2)2(t ≥2). ∴f (t )=(t -2)2+2(t -2)=t 2-2t (t ≥2). ∴f (x )=x 2-2x (x ≥2).∴f (x )=(x -1)2-1≥(2-1)2-1=0, 即f (x )的值域为[0,+∞). 答案:[0,+∞)一、选择题1.已知a 为实数,则下列函数中,定义域和值域都有可能是R 的是( ) A .f (x )=x 2+a B .f (x )=ax 2+1 C .f (x )=ax 2+x +1D .f (x )=x 2+ax +1解析:选C 当a =0时,f (x )=ax 2+x +1=x +1为一次函数,其定义域和值域都是R . 2.已知等腰△ABC 周长为10,则底边长y 关于腰长x 的函数关系为y =10-2x ,则函数的定义域为( )A .RB .{x |x >0}C .{x |0<x <5} D.⎩⎨⎧⎭⎬⎫x |52<x <5 解析:选C 由题意知⎩⎪⎨⎪⎧x >0,10-2x >0,即0<x <5.3.设M ={x |-2≤x ≤2},N ={y |0≤y ≤2},函数f (x )的定义域为M ,值域为N ,则f (x )的图象可以是( )解析:选A A 中定义域是[-2,2],值域为[0,2];B 中定义域为[-2,0],值域为[0,2];C 不表示函数;D 中的值域不是[0,2].4.(2013·南昌模拟)函数y = x (x -1)-lg 1x的定义域为( )A .{x |x >0}B .{x |x ≥1}C .{x |x ≥1,或x <0}D .{x |0<x ≤1}解析:选B 由⎩⎪⎨⎪⎧x (x -1)≥0,1x ,得x ≥1.5.函数y =2--x 2+4x 的值域是( ) A .[-2,2] B .[1,2] C .[0,2]D .[-2, 2 ]解析:选C ∵-x 2+4x =-(x -2)2+4≤4,0≤-x 2+4x ≤2,-2≤--x 2+4x ≤0, 0≤2--x 2+4x ≤2,∴0≤y ≤2.6.(文)用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为( )A .4B .5C .6D .7解析:选C f (x )=min{2x,x +2,10-x }(x ≥0)的图象如图.令x +2=10-x ,得x =4.当x =4时,f (x )取最大值,f (4)=6.6.(理)设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ),则f (x )的值域是( )A.⎣⎡⎦⎤-940∪(1,+∞) B. )[0,+∞C.⎣⎡⎭⎫-94,+∞ D.⎣⎡⎦⎤-94,0∪(2,+∞) 解析:选D 令x <g (x ),即x 2-x -2>0,解得x <-1或x >2;令x ≥g (x ),即x 2-x -2≤0,解得-1≤x ≤2,故函数f (x )=⎩⎪⎨⎪⎧x 2+x +2,x <-1或x >2,x 2-x -2,-1≤x ≤2.当x <-1或x >2时,函数f (x )>f (-1)=2;当-1≤x ≤2时,函数f ⎝⎛⎭⎫12≤f (x )≤f (-1),即-94f (x )≤0,故函数f (x )的值域是⎣⎡⎦⎤-94,0∪(2,+∞).二、填空题 7.函数y =16-x -x2________.解析:由函数解析式可知6-x -x 2>0,即x 2+x -6<0,故-3<x <2. 答案:(-3,2)8.(文)设函数f (x )=12(x +|x |),则函数f [f (x )]的值域为________.解析:先去绝对值,当x ≥0时,f (x )=x ,故f [f (x )]=f (x )=x ; 当x <0时,f (x )=0,故f [f (x )]=f (0)=0.即f [f (x )]=⎩⎪⎨⎪⎧x (x ≥0),0(x <0),易知其值域为[0,+∞).答案:[0,+∞)8.(理)设x ≥2,则函数y =(x +5)(x +2)x +1的最小值是______.解析:y =[(x +1)+4][(x +1)+1]x +1,设x +1=t ,则t ≥3,那么y =t 2+5t +4t =t +4t +5,在区间[2,+∞)上此函数为增函数,所以t =3时,函数取得最小值即y min =283答案:2839.(2013·厦门模拟)定义新运算“⊕”:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.设函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2],则函数f (x )的值域为________.解析:由题意知,f (x )=⎩⎪⎨⎪⎧x -2,x ∈[-2,1],x 3-2,x ∈(1,2].当x ∈[-2,1]时,f (x )∈[-4,-1];当x ∈(1,2]时,f (x )∈(-1,6],故当x ∈[-2,2]时,f (x )∈[-4,6].答案:[-4,6] 三、解答题10.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ](b >1),求a ,b 的值.解:∵f (x )=12(x -1)2+a -12,∴其对称轴为x =1,即[1,b ]为f (x )的单调递增区间. ∴f (x )min =f (1)=a -12=1,①f (x )max =f (b )=12b 2-b +a =b .②由①②解得⎩⎪⎨⎪⎧a =32,b =3.11.设O 为坐标原点,给定一个定点A (4,3),而点B (x,0)在x 轴的正半轴上移动,l (x )表示 AB 的长,求函数y =xl (x )的值域.解:依题意有x >0,l (x )=(x -4)2+32=x 2-8x +25, 所以y =x l (x )=x x 2-8x +25=11-8x +25x2. 由于1-8x +25x 2=25⎝⎛⎭⎫1x -4252+925, 所以1-8x +25x 2≥35,故0<y ≤53. 即函数y =x l (x )的值域是⎝⎛⎦⎤0,53. 12.(文)已知函数f (x )=x +1-a a -x (a ∈R 且x ≠a ),求x ∈⎣⎡⎦⎤a -1,a -12时,f (x )的值域.解:∵f (x )=-(a -x )+1a -x =-1+1a -x当a -1≤x ≤a -12时,-a +12≤-x ≤-a +1,∴12≤a -x ≤1.∴1≤1a -x ≤2. ∴0≤-1+1a -x≤1,即f (x )的值域为[0,1]. 12.(理)已知函数f (x )=x 2+4ax +2a +6. (1)若函数f (x )的值域为[0,+∞),求a 的值;(2)若函数f (x )的函数值均为非负数,求g (a )=2-a |a +3|的值域. 解:(1)∵函数的值域为[0,+∞), ∴Δ=16a 2-4(2a +6)=0⇒2a 2-a -3=0⇒a =-1或a =32.(2)∵对一切x ∈R 函数值均为非负, ∴Δ=8(2a 2-a -3)≤0⇒-1≤a ≤32.∴a +3>0.∴g (a )=2-a |a +3|=-a 2-3a +2 =-⎝⎛⎭⎫a +322+174⎝⎛⎭⎫a ∈⎣⎡⎦⎤-1,32.∵二次函数g (a )在⎣⎡⎦⎤-1,32上单调递减,∴g ⎝⎛⎭⎫32≤g (a )≤g (-1),即-194≤g (a )≤4.∴g (a )的值域为⎣⎡⎦⎤-194,4.1.下列函数中,与函数y =1x有相同定义域的是( )A .f (x )=ln xB .f (x )=1x C .f (x )=|x |D .f (x )=e x解析:选A 当x >0时,1x 有意义,因此函数y =1x的定义域为{x |x >0}. 对于A ,函数f (x )=ln x 的定义域为{x |x >0}; 对于B ,函数f (x )=1x 的定义域为{x |x ≠0,x ∈R };对于C ,函数f (x )=|x |的定义域为R ; 对于D ,函数f (x )=e x 的定义域为R . 所以与函数y =1x有相同定义域的是f (x )=ln x .2.函数y =ln (x +1)-x 2-3x +4的定义域为( )A .[-4,-1)B .(-4,1)C .(-1,1)D .(-1,1]解析:选C 由⎩⎪⎨⎪⎧-x 2-3x +4>0x +1>0得-1<x <1,因此该函数的定义域是(-1,1).3.若函数y =f (x )的定义域为[0,2],则函数g (x )=f (2x )x -1的定义域是( )A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)解析:选B 要使g (x )有意义,则⎩⎪⎨⎪⎧0≤2x ≤2,x -1≠0,解得0≤x <1.故定义域为[0,1).4.已知函数f (x )=⎝⎛⎭⎫13x ,x ∈[-1,1],函数g (x )=f 2(x )-2af (x )+3的最小值为h (a ).(1)求h (a )的解析式;(2)是否存在实数m ,n 同时满足下列两个条件:①m >n >3;②当h (a )的定义域为[n ,m ]时,值域为[n 2,m 2]?若存在,求出m ,n 的值;若不存在,请说明理由.解:(1)由f (x )=⎝⎛⎭⎫13x,x ∈[-1,1], 知f (x )∈⎣⎡⎦⎤13,3,令t =f (x )∈⎣⎡⎦⎤13,3 记g (x )=y =t 2-2at +3,则g (x )的对称轴为t =a ,故有: ①当a ≤13时,g (x )的最小值h (a )=289-2a3,②当a ≥3时,g (x )的最小值h (a )=12-6a , ③当13<a <3时,g (x )的最小值h (a )=3-a 2综上所述,h (a )=⎩⎪⎨⎪⎧289-2a 3,a ≤13,3-a 2,13<a <3,12-6a ,a ≥3,(2)当a ≥3时,h (a )=-6a +12,故m >n >3时,h (a )在[n ,m ]上为减函数, 所以h (a )在[n ,m ]上的值域为[h (m ),h (n )].由题意,则有⎩⎪⎨⎪⎧ h (m )=n 2,h (n )=m 2,⇒⎩⎪⎨⎪⎧-6m +12=n 2,-6n +12=m 2,,两式相减得6n -6m =n 2-m 2,又m ≠n ,所以m+n=6,这与m>n>3矛盾,故不存在满足题中条件的m,n的值.第三节函数的单调性与最值[备考方向要明了][归纳·知识整合] 1.函数的单调性(1)单调函数的定义.(2)如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在区间D 具有(严格的)单调性,这一区间叫做y =f (x )的单调区间.[探究] 1.函数y =1x (-∞,0)∪(0,+∞),这种表示法对吗?提示:首先函数的单调区间只能用区间表示,不能用集合或不等式的形式表示;如果一个函数有多个单调区间应分别写,分开表示,不能用并集符号“∪”联结,也不能用“或”联结.2.函数f (x )在区间[a ,b ]上单调递增与函数f (x )的单调递增区间为[a ,b ]含义相同吗? 提示:含义不同.f (x )在区间[a ,b ]上单调递增并不能排除f (x )在其他区间上单调递增,而f (x )的单调递增区间为[a ,b ]意味着f (x )在其他区间上不可能单调递增.2.函数的最值[探究] 3.函数的单调性、最大(小)值反映在其图象上有什么特征?提示:函数的单调性反映在图象上是上升或下降的,而最大(小)值反映在图象上为其最高(低)点的纵坐标的值.[自测·牛刀小试]1.(教材习题改编)函数f (x )=2x -1,x ∈[2,6],则下列说法正确的有( )①函数f (x )为减函数;②函数f (x )为增函数;③函数f (x )的最大值为2;④函数f (x )的最小值为25.A .①③B .①③④C .②③④D .②④解析:选B 易知函数f (x )=2x -1在x ∈[2,6]上为减函数,故f (x )min =f (6)=25,f (x )max =f (2)=2.2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12B .k <12C .k >-12D .k <-12解析:选D 使y =(2k +1)x +b 在(-∞,+∞)上是减函数,则2k +1<0,即k <-12.3.已知函数f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( )A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析:选C ∵函数f (x )为R 上的减函数,且f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1), ∴⎪⎪⎪⎪1x >1,即|x |<1且|x |≠0. ∴x ∈(-1,0)∪(0,1).4.(教材习题改编)f (x )=x 2-2x (x ∈[-2,4])的单调递增区间为________;f (x )max =________.解析:∵函数f (x )=x 2-2x 的对称轴为x =1.∴函数f (x )=x 2-2x (x ∈[-2,4])的单调递增区间为[1,4],单调递减区间为[-2,1). 又f (-2)=4+4=8,f (4)=16-8=8. ∴f (x )max =8. 答案:[1,4] 85.(教材习题改编)若函数f (x )=4x 2-kx -8在[5,20]上是单调递增函数,则实数k 的取值范围是________.解析:∵函数f (x )=4x 2-kx -8的对称轴为x =k8,又函数f (x )在[5,20]上为增函数, ∴k8≤5,即k ≤40. 答案:(-∞,40]。
二、泰勒展开式1.泰勒公式若函数f (x )在含有x 0的开区间(a ,b )内有n +1阶导数,则当函数在此区间内时,可以展开为一个关于x -x 0的多项式和一个余项的和:f (x )=f (x 0)+f ′(x 0)·(x -x 0)+f ″x 02!·(x -x 0)2+f x 03!·(x -x 0)3+…+fnx 0n !·(x -x 0)n+R n (x ).2.常见的泰勒展开式在泰勒公式中,令x 0=0,即可得到如下泰勒展开式:(1)e x=1+x +x 22!+x 33!+…+x nn !+…;(2)ln(x +1)=x -x 22+x 33+…+(-1)n +1x nn+…;(3)sin x =x -x 33!+x 55!+…+(-1)n -1·x 2n -12n -1!+…;(4)cos x =1-x 22!+x 44!+…+(-1)n -1·x 2n -22n -2!+….3.泰勒公式的价值泰勒公式将各种类型的函数(指数函数、对数函数、正弦与余弦函数)与多项式函数联系了起来,这样在局部可以用多项式函数近似替代其他函数,我们主要用其证明不等式及比较大小,下面我们主要介绍如何比较大小.(2022·全国甲卷)已知a =3132,b =cos 14,c =4sin 14,则( A ) A .c >b >a B .b >a >c C .a >b >cD .a >c >b[解析] 解法一:根据题意,构造函数f (x )=1-x 22,g (x )=cos x ,h (x )=sin xx,则a =f ⎝ ⎛⎭⎪⎫14,b =g ⎝ ⎛⎭⎪⎫14,c =h ⎝ ⎛⎭⎪⎫14.由泰勒展开式,f (x )=1-x 22,g (x )=1-x 22!+x 44!+o (x 4),h (x )=1-x 23!+x 45!+o (x 4),g ⎝ ⎛⎭⎪⎫14=1-12×116+124×1256+o (x 4)=3132+124×1256+o (x 4),h ⎝ ⎛⎭⎪⎫14=1-16×116+1120×1256+o (x 4)=9596+1120×1256+o (x 4),所以f ⎝ ⎛⎭⎪⎫14<g ⎝ ⎛⎭⎪⎫14<h ⎝ ⎛⎭⎪⎫14,即a <b <c . 解法二:因为b =cos 14=1-2sin 218,所以b -a =1-2sin 218-3132=132-2sin 218=2⎝ ⎛⎭⎪⎫164-sin 218.令f (x )=x -sin x ,则f ′(x )=1-cos x ≥0,所以函数f (x )在R 上单调递增,所以当x >0时,f (x )>f (0)=0,即有x >sin x (x >0)成立,所以18>sin 18,得164>sin 218,所以b >a .因为c b =4sin14cos14=4tan 14,所以令g (x )=tan x -x ,则g ′(x )=cos 2x +sin 2x cos 2x -1=1-cos 2xcos 2x ≥0,所以函数g (x )在定义域内单调递增,所以当x >0时,g (x )>g (0)=0,即有tan x >x (x >0)成立,所以tan 14>14,即4tan 14>1,所以cb >1,又b >0,所以c >b .综上,c >b >a .【变式训练】 若a =ln 1-0.010.02,b =0.02sin 0.01,c =0.01sin 0.02,则( B )A .a <b <cB .a <c <bC .b <c <aD .c <a <b[解析] 易知a =ln 1-0.010.02<ln 1=0,而b >0,c >0.当x →0时,由泰勒公式展开,得b =0.02sin 0.01=0.02⎝ ⎛⎭⎪⎫0.01-0.0133+ox 3=2×10-4-23×10-8+o (x 3),c =0.01sin 0.02=0.01⎝⎛⎭⎪⎫0.02-0.0233+ox 3=2×10-4-83×10-8+o (x 3).可知23×10-8<83×10-8,所以b >c .故b >c >a .。
高考数学二轮复习考点知识与题型专题解析导数的简单应用微专题1导数的几何意义及其应用导数的几何意义函数f(x)在x0处的导数是曲线f(x)在点P(x0,f(x0))处的切线的斜率,曲线f(x)在点P 处的切线的斜率k=f′(x0),相应的切线方程为y-f(x0)=f′(x0)·(x-x0).『典型题训练』1.若过函数f(x)=ln x-2x图象上一点的切线与直线y=2x+1平行,则该切线方程为()A.2x-y-1=0B.2x-y-2ln2+1=0C.2x-y-2ln2-1=0D.2x+y-2ln2-1=02.已知a∈R,设函数f(x)=ax-ln x+1的图象在点(1,f(1))处的切线为l,则l过定点()A.(0,2) B.(1,0)C.(1,a+1) D.(e,1)),则曲线y=f(x)在x=0 3.已知函数f(x)的导函数为f′(x),且满足f(x)=cos x-xf′(π2处的切线方程是()A.2x-y-1=0 B.2x+y+1=0C.x-2y+2=0 D.x+2y+1=04.已知函数f(x)=a e x+x2的图象在点M(1,f(1))处的切线方程是y=(2e+2)x+b,那么ab=()A.2 B.1 C.-1 D.-25.[2021·重庆三模]已知曲线C1:f(x)=e x+a和曲线C2:g(x)=ln (x+b)+a2(a,b∈R),若存在斜率为1的直线与C1,C2同时相切,则b的取值范围是(),+∞)B.[0,+∞)A.[−94]C.(−∞,1]D.(−∞,94在点(-1,-3)处的切线方程为________________.6.[2021·全国甲卷(理)]曲线y=2x−1x+2微专题2利用导数研究函数的单调性『常考常用结论』导数与单调性的关系1.f′(x)>0是f(x)为增函数的充分不必要条件,如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0;2.f′(x)≥0是f(x)为增函数的必要不充分条件,当函数在某个区间内恒有f′(x)=0时,则f(x)为常数,函数不具有单调性.『提分题组训练』1.[2021·山东烟台模拟]已知a=ln12 020+2 0192 020,b=ln12 021+2 0202 021,c=ln12 022+2 0212 022,则a,b,c的大小关系是()A.a>b>c B.a>c>bC.c>b>a D.c>a>b2.函数f(x)=x2-a ln x在[1,+∞)上单调递增,则实数a的取值范围是()A.(0,2] B.(2,+∞)C.(-∞,2] D.(-∞,2)3.已知函数f(x)=23x3-ax2+4x在区间(-2,-1)内存在单调递减区间,则实数a的取值范围是()A.(2√2,+∞) B.[2√2,+∞)C.(-∞,-2√2) D.(-∞,-2√2]4.若函数f(x)的导函数为f′(x),对任意x∈(-π,0),f′(x)sin x<f(x)cos x恒成立,则()A.√2f(−5π6)>f(−3π4)B.f(−5π6)>√2f(−3π4)C.√2f(−5π6)<f(−3π4)D.f(−5π6)<√2f(−3π4)5.定义在R上的函数f(x)满足f(x)>1-f′(x),f(0)=6,则不等式f(x)>1+5e x(e为自然对数的底数)的解集为()A.(0,+∞) B.(5,+∞)C.(-∞,0)∪(5,+∞) D.(−∞,0)6.[2021·山东济南一模]设a=2022ln2020,b=2021ln2021,c=2020ln2022,则() A.a>c>b B.c>b>aC.b>a>c D.a>b>c微专题3利用导数研究函数的极值、最值『常考常用结论』导数与极值、最值(1)函数f(x)在x0处的导数f′(x0)=0且f′(x)在x0附近“左正右负”⇔f(x)在x0处取极大值;函数f(x)在x0处的导数f′(x0)=0且f′(x)在x0附近“左负右正”⇔f(x)在x0处取极小值.(2)函数f(x)在一闭区间上的最大值是此函数在该区间上的极值与该区间端点处函数值中的“最大者”;函数f(x)在一闭区间上的最小值是此函数在该区间上的极值与该区间端点处函数值中的“最小者”.『提分题组训练』1.已知函数f(x)=12sin2x+sin x,则f(x)的最小值是()A.-3√32B.3√32C.-3√34D.3√342.[2021·全国乙卷(理)]设a≠0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则()A .a <bB .a >bC .ab <a 2D .ab >a 23.函数f (x )=x 3-ax 2-bx +a 2在x =1处有极值10,则点(a ,b )为() A .(3,-3) B .(-4,11) C .(3,-3)或(-4,11) D .(4,11)4.若函数f (x )=x 3-3x 在区间(2a ,3-a 2)上有最大值,则实数a 的取值范围是() A .(-3,1) B .(-2,1) C .(−3,−12) D .(-2,-1]5.若函数f (x )=12e 2x -m e x -m2x 2有两个极值点,则实数m 的取值范围是() A .(12,+∞) B .(1,+∞) C .(e 2,+∞) D .(e ,+∞) 6.[2021·山东模拟]若函数f (x )={2x−2−2m ,x <12x 3−6x 2,x ≥1有最小值,则m 的一个正整数取值可以为________.参考答案导数的简单应用微专题1导数的几何意义及其应用典型题训练1.解析:由题意,求导函数可得y ′=1x -2, ∵切线与直线y =2x +1平行, ∴1x -2=2, ∴x =14,∴切点P 坐标为(14,−2ln 2−12),∴过点P 且与直线y =2x +1平行的切线方程为y +2ln2+12=2(x −14),即2x -y -2ln2-1=0.故选C.答案:C2.解析:由f (x )=ax -ln x +1⇒f ′(x )=a -1x ,f ′(1)=a -1,f (1)=a +1,故过(1,f (1))处的切线方程为:y =(a -1)(x -1)+a +1=(a -1)x +2,故l 过定点(0,2).故选A.答案:A3.解析:∵f (x )=cos x -xf ′(π2), ∴f ′(x )=-sin x -f ′(π2),∴f ′(π2)=-sin π2-f ′(π2)=-1-f ′(π2), 解得:f ′(π2)=-12,∴f (x )=cos x +12x ,f ′(x )=-sin x +12,∴f (0)=1,f ′(0)=12,∴y =f (x )在x =0处的切线方程为y -1=12x ,即x -2y +2=0.故选C.4.解析:因为f (x )=a e x +x 2,所以f ′(x )=a e x +2x ,因此切线方程的斜率k =f ′(1)=a e +2,所以有a e +2=2e +2,得a =2,又切点在切线上,可得切点坐标为(1,2e +2+b ), 将切点代入f (x )中,有f (1)=2e +1=2e +2+b ,得b =-1, 所以ab =-2.故选D. 答案:D5.解析:f ′(x )=e x ,g ′(x )=1x+b ,设斜率为1的切线在C 1,C 2上的切点横坐标分别为x 1,x 2,由题知e x 1=1x2+b=1,∴x 1=0,x 2=1-b ,两点处的切线方程分别为y -(1+a )=x 和y -a 2=x -(1-b ), 故a +1=a 2-1+b ,即b =2+a -a 2=-(a −12)2+94≤94.故选D. 答案:D6.解析:y ′=(2x−1x+2)′=2(x+2)−(2x−1)(x+2)2=5(x+2)2,所以y ′|x =-1=5(−1+2)2=5,所以切线方程为y +3=5(x +1),即y =5x +2.答案:y =5x +2微专题2利用导数研究函数的单调性提分题组训练1.解析:构造函数f (x )=ln x +1-x ,f ′(x )=1x-1=1−x x,当0<x <1时,f ′(x )>0,f (x )单调递增,所以f (12 020)>f (12 021)>f (12 022),a >b >c .故选A.2.解析:由题意得,f ′(x )=2x -ax ≥0在x ∈[1,+∞)上恒成立, 所以a ≤2x 2在x ∈[1,+∞)上恒成立, 因为2x 2在x ∈[1,+∞)的最小值为2, 所以m ≤2.故选C. 答案:C3.解析:f ′(x )=2x 2-2ax +4,由题意得∃x ∈(-2,-1),使得不等式f ′(x )=2(x 2-ax +2)<0成立, 即x ∈(-2,-1)时,a <(x +2x )max ,令g (x )=x +2x ,x ∈(-2,-1), 则g ′(x )=1-2x 2=x 2−2x 2,令g ′(x )>0,解得-2<x <-√2, 令g ′(x )<0,解得-√2<x <-1,故g (x )在(-2,-√2)上单调递增,在(-√2,-1)上单调递减, 故g (x )max =g (-√2)=-2√2,故满足条件的a 的范围是(-∞,-2√2), 故选C. 答案:C4.解析:因为任意x ∈(-π,0),f ′(x )sin x <f (x )cos x 恒成立, 即任意x ∈(-π,0),f ′(x )sin x -f (x )cos x <0恒成立, 又x ∈(-π,0)时,sin x <0,所以[f (x )sin x ]′=f ′(x )sin x−f (x )cos x(sin x )2<0,所以f (x )sin x 在(-π,0)上单调递减, 因为-5π6<-3π4,所以f(−5π6)sin(−5π6)>f(−3π4)sin(−3π4),即f(−5π6)−12>f(−3π4)−√22,所以√2f (−5π6)<f (−3π4),故选C.答案:C5.解析:设g (x )=e x f (x )-e x ,因为f (x )>1-f ′(x ),所以g ′(x )=e x [f (x )+f ′(x )]-e x =e x [f (x )+f ′(x )-1]>0,所以g (x )是R 上的增函数, 又g (0)=e 0f (0)-e 0=5,所以不等式f (x )>1+5e x 可化为e xf (x )-e x >5,即g (x )>g (0),所以x >0.故选A.答案:A6.解析:令f (x )=ln xx+1且x ∈(0,+∞),则f ′(x )=1+1x−ln x (x+1)2,若g (x )=1+1x -ln x ,则在x ∈(0,+∞)上g ′(x )=-1x 2−1x <0,即g (x )单调递减, 又g (e)=1e >0,g (e 2)=1e 2-1<0,即∃x 0∈(1e ,e 2)使g (x 0)=0, ∴在(x 0,+∞)上g (x )<0,即f ′(x )<0,f (x )单调递减; ∴f (2021)<f (2020),有ln 20212 022<ln 20202 021,即a >b ,令m (x )=ln xx−1且x ∈(0,1)∪(1,+∞),则m ′(x )=1−1x−ln x (x−1)2,若n (x )=1-1x -ln x ,则n ′(x )=1x (1x -1),即在x ∈(0,1)上n (x )单调递增,在x ∈(1,+∞)上n (x )单调递减,∴n (x )<n (1)=0,即m ′(x )<0,m (x )在x ∈(1,+∞)上递减, ∴m (2022)<m (2021),有ln 20222 021<ln 20212 020,即b >c ,故选D.答案:D微专题3利用导数研究函数的极值、最值提分题组训练1.解析:由题得f ′(x )=cos2x +cos x =2cos 2x +cos x -1=(2cos x -1)(cos x +1), 所以当cos x >12时,f ′(x )>0,f (x )单调递增;当-1≤cos x <12时,f ′(x )<0,f (x )单调递减.所以f (x )取得最小值时,cos x =12,此时sin x =±√32, 当sin x =-√32时,f (x )=sin x cos x +sin x =-3√34; 当sin x =√32时,f (x )=sin x cos x +sin x =3√34; 所以f (x )的最小值是-3√34.故选C.答案:C 2.解析:当a >0时,根据题意画出函数f (x )的大致图象,如图1所示,观察可知b >a .当a <0时,根据题意画出函数f (x )的大致图象,如图2所示,观察可知a >b .综上,可知必有ab >a 2成立.故选D.答案:D3.解析:由f (x )=x 3-ax 2-bx +a 2,求导f ′(x )=3x 2-2ax -b ,由函数f(x)=x3-ax2-bx+a2在x=1处有极值10,则{f(1)=10f′(1)=0,即{1−a−b+a2=103−2a−b=0,解得{a=−4b=11或{a=3b=−3,当a=3,b=-3时,f′(x)=3x2-6x+3=3(x-1)2≥0,此时f(x)在定义域R上为增函数,无极值,舍去.当a=-4,b=11,f′(x)=3x2+8x-11,x=1为极小值点,符合题意,故选B.答案:B4.解析:因为函数f(x)=x3-3x,所以f′(x)=3x2-3,当x<-1或x>1时,f′(x)>0,当-1<x<1时,f′(x)<0,所以当x=-1时,f(x)取得最大值,又f(-1)=f(2)=2,且f(x)在区间(2a,3-a2)上有最大值,所以2a<-1<3-a2≤2,解得-2<a≤-1,所以实数a的取值范围是(-2,-1]故选D.答案:D5.解析:依题意,f′(x)=e2x-m e x-mx有两个变号零点,令f′(x)=0,即e2x-m e x-mx=0,则e2x=m(e x+x),显然m≠0,则1m =e x+xe2x,设g(x)=e x+xe2x,则g′(x)=(e x+1)·e2x−(e x+x)·2e2xe4x =1−e x−2xe2x,设h(x)=1-e x-2x,则h′(x)=-e x-2<0,∴h(x)在R上单调递减,又h(0)=0,∴当x∈(-∞,0)时,h(x)>0,g′(x)>0,g(x)单调递增,当x∈(0,+∞)时,h(x)<0,g′(x)<0,g(x)单调递减,∴g(x)max=g(0)=1,且x→-∞时,g(x)→-∞,x→+∞时,g(x)→0,<1,解得m>1.∴0<1m故选B.答案:B6.解析:y=2x-2-2m在(-∞,1)上单调递增,∴y=2x-2-2m>-2m;当x≥1时,y=2x3-6x2,此时,y′=6x2-12x=6x(x-2).∴y=2x3-6x2在(1,2)上单调递减,在(2,+∞)上单调递增,∴y=2x3-6x2在[1,+∞)上的最小值为-8,函数f(x)有最小值,则-2m≥-8,即m≤4,故m的一个正整数取值可以为4.答案:4。
专题一 函数与导数的题型与方法
第三讲 导数及其应用(第1课时)
一、高考考情追踪
1、 导数的意义和运算是导数应用的基础,是高考的一个热点;
2、 利用函数的单调性和最值确定函数的解析式或参数的值,突出考查导数的工具性作用。
二、主干知识梳理
(一)导数的概念及几何意义:
1、函数在x=x0处的导数及其导函数的概念;
2、函导数的几何意义.
(二)导数运算
1、求导公式;
2、导数的四则运算法则.
(三)导数的应用
1、利用导数求曲线的切线;
2、利用导数判断函数的单调性:
(1)f ′(x )>0是f (x )为增函数的充分不必要条件,如函数f (x )=x 3在(-∞,+∞)上单调递增,但
f ′(x )≥0.
(2)f ′(x )≥0是f (x )为增函数的必要不充分条件,当函数在某个区间内恒有f ′(x )=0时,则f (x )为 常数函数,函数不具有单调性.
3、利用导数求函数极值和最值:
(1)函数的极值是局部范围内讨论的问题,函数的最值是对整个定义域而言的,是在整个范围内讨论的问题.
(2)函数在其定义区间的最大值、最小值最多有一个,而函数的极值可能不止一个,也可能没有.
(3)闭区间上连续的函数一定有最值,开区间内的函数不一定有最值,若有唯一的极值,则此极值一定是函数的最值.
4、利用导数综合研究函数的性质、函数的零点、方程的根、构造函数证明不等式等问题.
(四)定积分
1、定积分的几何意义:
()()b
x a f x f x d ≥⎰如果是区间[a,b]上的连续函数,并且f(x)0,那么的几何意义是直线x=a,x=b,y=0与曲线y=f(x)所围成的曲边梯形的面积.
2、定积分的三个公式:
1212(1)()();(2)[()()]()();3()=()()().b b
x x a a b b b x x x a a a b c b
x x x a a c kf x d k f x d f x f x d f x d f x d f x d f x d f x d a c b =±=±+<<⎰⎰⎰⎰⎰⎰⎰⎰()其中
3、微积分基本定理:
()()().b
x a f x f F b F a '=-⎰一般地,如果是区间[a,b]上的连续函数,并且F (x)=f(x),那么(x)d 三 、热点分类突破
类型一 导数的几何意义
求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.
利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.
321122121211),0,()(0(0))32
(1),,())0,2().
a f x x x bx c a y f x P f
b
c f x x x f x =-++>=≠≠【例】设函数(其中曲线在点,处的切线方程为y=1.确定的值;(2)设曲线y=f(x)在点(x ,f(x ))及(x 处的切线都过点(),证明:当时,f(x )
类型二 定积分的概念及运算
利用定积分求所围成的阴影部分的面积时,要利用数形结合的方法确定出被积函数和积分的上限与下限.同时,有的定积分不易直接求出,需要借用其几何意义求出
.
120ln ,0,121(2)(),()(log )___________;62,0.
(2)(201121016. .4 . .633x x x x x e x d f x f a f x y x y A B C D -≥⎧+=+=⎨≤⎩=-⎰【例】()已知a=,函数则全国新课标)由曲线直线及轴所围成的图像的面积为( )
答案:(1)7 (2)C
四、作业:
《步步高 大二轮专题复习》P11例1、变1P13例4(2)变4。