基本不等式知识点归纳.
- 格式:doc
- 大小:998.50 KB
- 文档页数:14
基本不等式知识点总结高一基本不等式知识点总结一、不等式的定义和性质不等式是数学中表示大小关系的一种符号方法。
不等式的定义如下:若两个数a、b满足条件a>b,则称a大于b,记作a>b;若a≠b 且a>b或a<b,则称a与b之间存在不等关系。
不等式的性质如下:1. 传递性:若a>b且b>c,则a>c。
2. 对称性:若a>b,则-b>-a。
3. 相反数性质:若a>b,且c>0,则 ac>bc;若a>b,且c<0,则 ac<bc。
4. 分解性质:若a>b,且c>0,则a+c>b+c。
5. 翻转性质:若a>b,且c<0,则-a<-b。
6. 加法性质:若a>b,则a+c>b+c。
7. 乘法性质:若a>b且c>0,则ac>bc;若a<b且c<0,则ac>bc。
二、基本不等式1. 加法不等式:若a>b,则a+c>b+c,其中c为任意实数。
2. 减法不等式:若a>b,则a-c>b-c,其中c为任意实数。
3. 乘法不等式:a) 正数乘法不等式:若a>b且c>0,则ac>bc。
b) 负数乘法不等式:若a>b且c<0,则ac<bc。
4. 除法不等式:a) 正数除法不等式:若a>b且c>0,则a/c>b/c。
b) 负数除法不等式:若a>b且c<0,则a/c<b/c。
5. 绝对值不等式:a) 若|a|<b,则-a<b<a。
b) 若|a|>b,则a<-b 或 a>b。
6. 平方不等式:a) 若a>b>0,则a^2>b^2。
b) 若a<b<0,则a^2>b^2。
三、解不等式的方法1. 加减法解法:对于不等式a+c>b+c,若c>0,则原不等式成立;若c<0,则原不等式不成立。
高中数学基本不等式的巧用一.基本不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
基本不等式完整版一、知识点总结1.基本不等式原始形式:若 $a,b\in\mathbb{R}$,则 $a^2+b^2\geq 2ab$。
2.基本不等式一般形式(均值不等式):若 $a,b\in\mathbb{R^*}$,则 $a+b\geq 2\sqrt{ab}$。
3.基本不等式的两个重要变形:1)若 $a,b\in\mathbb{R^*}$,则 $\frac{a+b}{2}\geq \sqrt{ab}$。
2)若 $a,b\in\mathbb{R^*}$,则 $ab\leq\left(\frac{a+b}{2}\right)^2$。
总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最小值。
特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。
4.求最值的条件:“一正,二定,三相等”。
5.常用结论:1)若 $x>0$,则 $x+\frac{1}{x}\geq 2$(当且仅当$x=1$ 时取“=”)。
2)若 $x<0$,则 $x+\frac{1}{x}\leq -2$(当且仅当 $x=-1$ 时取“=”)。
3)若 $a,b>0$,则 $\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当 $a=b$ 时取“=”)。
4)若 $a,b>0$,则 $ab\leq \left(\frac{a+b}{2}\right)^2\leq \frac{a^2+b^2}{2}$。
5)若 $a,b\in\mathbb{R^*}$,则 $\frac{1}{a+b}\leq\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\leq\frac{1}{2}\sqrt{\frac{1}{a^2}+\frac{1}{b^2}}$。
特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。
6.柯西不等式:1)若 $a,b,c,d\in\mathbb{R}$,则$(a^2+b^2)(c^2+d^2)\geq (ac+bd)^2$。
基本不等式知识点基本不等式知识点1、不等式的基本性质 ①(对称性)a b b a >⇔> ②(传递性),a b b c a c >>⇒> ③(可加性)a b a c b c >⇔+>+ (同向可加性)d b c a d c b a +>+⇒>>, (异向可减性)db c a dc b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0, bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d c d>><<⇒>⑥(平方法则)0(,1)nna b a b n N n >>⇒>∈>且⑦(开方法则)0,1)a b n N n >>⇒∈>且⑧(倒数法则)ba b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b+≥ ()a b R +∈,,(当且仅当a b=时取到等号).变形公式:a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭①平均不等式:1122a b a b --+≤≤≤+,,a b R +∈(,当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均). 变形公式: 222;22a b a b ab ++⎛⎫≤≤⎪⎝⎭222().2a b a b ++≥②幂平均不等式:222212121...(...).n n a a a a a a n+++≥+++③二维形式的三角不等式:≥1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a ab b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立. ⑧排序不等式(排序原理): 设1212...,...n na aa b b b ≤≤≤≤≤≤为两组实数.12,,...,nc c c 是12,,...,nb b b的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...na a a ===或12...nb bb ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数) 若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法: ①舍去或加上一些项,如22131()();242a a ++>+②将分子或分母放大(缩小),如211,(1)k k k <- 211,(1)k k k >+=⇒<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数. 二判:判断对应方程的根. 三求:求对应方程的根. 四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解2()0(0)()f x a a f x a≥⎧>>⇔⎨>⎩2()0(0)()f x a a f x a≥⎧<>⇔⎨<⎩⑶2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或⑷2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩⑸()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解. 9、指数不等式的解法: ⑴当1a >时,()()()()f xg x a a f x g x >⇔> ⑵当01a <<时,()()()()f xg x a a f x g x >⇔<规律:根据指数函数的性质转化. 10、对数不等式的解法 ⑴当1a >时,()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化. 11、含绝对值不等式的解法: ⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩⑵平方法:22()()()().f xg x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或 ③()()()()()(()0)f xg x g x f x g x g x ≤⇔-≤≤≥④()()()()()()(()0)f xg x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集. 13、含参数的不等式的解法 解形如2axbx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小; ⑵讨论∆与0的大小; ⑶讨论两根的大小. 14、恒成立问题 ⑴不等式2ax bx c ++>的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是: ①当0a =时0,0;b c ⇒=< ②当0a ≠时00.a <⎧⇒⎨∆<⎩⑶()f x a <恒成立max();f x a ⇔< ()f x a≤恒成立max();f x a ⇔≤⑷()f x a >恒成立min();f x a ⇔>()f x a≥恒成立min().f x a ⇔≥15、线性规划问题 常见的目标函数的类型: ①“截距”型:;z Ax By =+ ②“斜率”型:y z x=或;y bz x a-=-③“距离”型:22z x y =+或z =22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.。
不等式知识点大全一、不等式的基本概念:1.不等式的定义:不等式是一个包含不等号(>,<,≥,≤)的数学语句。
2.不等式的解集:解集是满足不等式的所有实数的集合。
3.不等式的求解方法:解不等式的方法主要有代入法、分析法、图像法和区间法等。
二、一元一次不等式:1.一元一次不等式的定义:一元一次不等式是指只含有一个未知数的一次函数与一个实数的大小关系。
2.一元一次不等式的解集:一元一次不等式的解集可以用一个开区间或闭区间表示。
三、二次不等式:1.二次不等式的定义:二次不等式是指含有一个未知数的二次函数与一个实数的大小关系。
2.二次不等式的解集:二次不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。
四、绝对值不等式:1.绝对值不等式的定义:绝对值不等式是指含有绝对值符号的不等式。
2.绝对值不等式的解集:绝对值不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。
五、分式不等式:1.分式不等式的定义:分式不等式是指含有一个未知数的分式与一个实数的大小关系。
2.分式不等式的解集:分式不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。
六、三角不等式:1.三角不等式的定义:三角不等式是指三角函数与一个实数之间的大小关系。
2.三角不等式的解集:三角不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。
七、复合不等式:1.复合不等式的定义:复合不等式是由两个或多个不等式通过与或或连接构成的不等式。
2.复合不等式的解集:复合不等式的解集是满足所有不等式的实数的交集或并集。
八、常用的不等式:1.平均不等式:包括算术平均不等式、几何平均不等式、加权平均不等式等。
2.布尔不等式:包括与或非不等式和限制条件不等式等。
3.等价不等式:等式两边取绝对值后变为不等式。
4.单调性不等式:利用函数单调性性质证明不等式。
5.导数不等式:利用函数的导数性质证明不等式。
6.积分不等式:利用积分性质及定积分的性质来推导不等式。
基本不等式1.基本不等式:2b a ab +≤.(一正、二定、三相等) (1)基本不等式成立的条件:0,0≥≥b a .(2)等号成立的条件:当且仅当b a =时取等号. 2.算术平均数与几何平均数设,0,0>>b a 则b a ,的算术平均数为,2b a +几何平均数为,ab 基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数.3.几个重要的不等式(1)),(222R b a ab b a ∈≥+;(2))0,0(2≥≥≥+b a ab b a ;(3)),(4)(2R b a b a ab ∈+≤;(4)222)()(2b a b a +≥+(R b a ∈,) 4.利用基本不等式求最值问题已知,0,0>>y x 则(1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (2)如果和y x +是定值,s 那么当且仅当y x =时,xy 有最大值是.4s 2注:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正(各项均为正),二定(积或和为定值),三相等(等号能否取得)”,若忽略了某个条件,就会出现错误.解答题用基本不等式求最值一定要说明何时取等号,不说明会扣分。
如果多次用基本不等式求最值,必须保持每次取“=”的一致性.5.注意:正负要判断,等号要考虑例(1)已知,45<x 函数54124-+-=x x y 的最大值为_________答案:1. (2)函数4522++=x x y 的最小值是_________答案:.25 6.“1”的代换问题:例(3)设,32,0,0=+>>b a b a 则11a b+最小值是 答案:3223+. (4)已知P 是ABC ∆的边BC 上的任一点,且满足,,,R y x AC y AB x AP ∈+=则xy y x +4的最小值是 .答案:9.7.“y x +”与“xy ”的互相转化例(5)若正实数y x ,满足,62++=y x xy 则xy 的最小值是_________答案:18.(6)设y x ,为实数,若,1422=++xy y x 则y x +2的最大值是_________答案:.5102 8.巧妙运用换元法 例(7)设y x ,是正实数,且,1=+y x 则1222+++y y x x 的最小值是_________答案:41. (8)若,0,0>>b a 且,11121=+++b b a 则b a 2+的最小值为________答案:.321+ 9.灵活使用消元法例(9)已知正实数y x ,满足,42=++y x xy 则y x +的最小值为_____答案:62.3-(10)若ABC ∆的内角满足,sin 2sin 2sin C B A =+则C cos 的最小值是_____答案:.426-。
高二数学基本不等式知识点一、不等式的基本性质在学习不等式之前,我们先来了解一下不等式的基本性质。
不等式具有以下性质:1. 若不等式两边同时加(减)一个相同的正(负)数,不等式的不等关系不变。
2. 若不等式两边同时乘(除)一个相同的正(负)数,不等式的不等关系不变。
但是需注意,当乘(除)以一个负数时,不等号方向需要颠倒。
3. 若不等式两边交换位置,不等号方向需要颠倒。
二、基本不等式1. 两个正数的不等式:若a > 0,b > 0,则a > b等价于a² > b²。
2. 两个负数的不等式:若a < 0,b < 0,则a > b等价于a² < b²。
3. 正负数的不等式:若a > 0,b < 0,则a > b等价于a² < b²。
4. 平方不等式:若x > 0,y > 0,则x < y等价于√x < √y。
同理,对于x < 0,y < 0的情况,不等号方向需要颠倒。
5. 两个正数与一个负数的不等式:若a > 0,b > 0,c < 0,则a > b等价于 -a < -b,a * c > b * c。
三、不等式的解集表示法当我们解不等式时,需要将解表示出来。
不等式的解集表示法有以下几种形式:1. 区间表示法:用数轴上的区间表示解集。
例:对于不等式x > 3,解集可以用开区间(3, +∞)表示。
2. 图形表示法:我们可以通过图形的方式表示解集。
例:对于不等式x ≤ -2,解集可以用沿x轴方向的线段表示。
3. 集合表示法:用集合的形式表示解集。
例:对于不等式2 < x ≤ 5,解集可以用集合表示为{x | 2 < x ≤ 5}。
四、不等式的应用不等式是数学中常见的工具,在现实生活中也有广泛的应用。
基本不等式知识点归纳不等式是数学中重要的概念之一,其在代数中应用广泛。
基本的不等式知识点包括一元一次不等式、二元一次不等式、绝对值不等式以及高次不等式等内容。
本文将对这些基本不等式知识点进行归纳总结。
一、一元一次不等式一元一次不等式即只含有一个变量的一次方程,形如ax+b>0或ax+b<0,其中a、b均为已知常数,x为未知变量。
解一元一次不等式的关键是将其转化为等价的简单形式。
具体解法如下:1.当a>0时,将不等式转化为x>-b/a或x<-b/a,即可得到不等式的解集。
令x=-b/a,即x=b/a为关键点,将实数轴分成两个半区间,选取其中一个半区间,即可确定不等式的解集。
2.当a<0时,将不等式转化为x<-b/a或x>-b/a,即可得到不等式的解集。
同样令x=-b/a,即x=b/a为关键点,将实数轴分成两个半区间,选取其中一个半区间,即可确定不等式的解集。
二、二元一次不等式二元一次不等式即含有两个变量的一次方程,形如ax+by>c或ax+by<c,其中a、b、c均为已知常数,x、y为未知变量。
解二元一次不等式的关键是确定不等式的解集。
具体解法如下:1. 将不等式转化为等价的简单形式,即将不等式化为一个以上的不等式。
例如,对于ax+by>c,可以根据a、b的正负情况,分别得到x>c/a、x<c/a、y>c/b和y<c/b四个不等式。
2.根据得到的不等式,确定不等式的解集。
根据不等式的关系,将x、y的解集分别标在坐标平面上,其中各个解集的交集即为该二元一次不等式的解集。
三、绝对值不等式绝对值不等式是含有绝对值的不等式,形如,ax+b,>c或,ax+b,<c,其中a、b、c均为已知常数,x为未知变量。
解绝对值不等式的关键是确定绝对值不等式的情况,然后将其转化为简单的不等式。
具体解法如下:1. 当a>0时,原绝对值不等式可以转化为ax+b>c或ax+b<c的形式。
基本不等式 一、考点、热点回顾 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号.2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ).(2)b a +a b≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22 (a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎫a +b 22 (a ,b ∈R ).以上不等式等号成立的条件均为a =b .3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值p 24.(简记:和定积最大) 知识拓展不等式的恒成立、能成立、恰成立问题(1)恒成立问题:若f (x )在区间D 上存在最小值,则不等式f (x )>A 在区间D 上恒成立⇔f (x )min >A (x ∈D ); 若f (x )在区间D 上存在最大值,则不等式f (x )<B 在区间D 上恒成立⇔f (x )max <B (x ∈D ).(2)能成立问题:若f (x )在区间D 上存在最大值,则在区间D 上存在实数x 使不等式f (x )>A 成立⇔f (x )max >A (x ∈D ); 若f (x )在区间D 上存在最小值,则在区间D 上存在实数x 使不等式f (x )<B 成立⇔f (x )min <B (x ∈D ).(3)恰成立问题:不等式f (x )>A 恰在区间D 上成立⇔f (x )>A 的解集为D ;不等式f (x )<B 恰在区间D 上成立⇔f (x )<B 的解集为D .二、典型例题例1、设0a b ,则下列不等式中正确的是( )A .a <b << B. a <<<bC .a <<b < D .<a <<b变式训练1、已知等比数列的各项均为正数,公比0<q <1,设392a a P +=,Q =,则a 3,a 9,P 与Q 的大小关系是( )A .a 3>P >Q >a 9 B. a 3>Q >P >a 9C .a 9>P >a 3>QD .P >Q >a 3>a 9考点二、利用基本不等式求最值例2、(1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________.(2)函数y =x 2+2x -1(x >1)的最小值为________. (3)设a >0,b >0,且21a b +=,则11a b+的最小值为 。
基本不等式知识点1、不等式的基本性质①(对称性)a b b a >⇔>②(传递性),a b b c a c >>⇒>③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>,(异向可减性)d b c a d c b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d c d >><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且⑦(开方法则)0,1)a b n N n >>∈>且 ⑧(倒数法则)b a b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b +≥()a b R +∈,,(当且仅当a b =时取到等号).变形公式:a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭ 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:1122a b a b --+≤≤≤+,,a b R +∈(,当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭ 222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n +++≥+++③二维形式的三角不等式:≥1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a ab b b a b a b a b ++++≥++⑥一般形式的柯西不等式: 2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法 常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小),如211,(1)kk k <- 211,(1)k k k>+=⇒<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或 2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解⑴2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩⑵2()0(0)()f x a a f x a ≥⎧<>⇔⎨<⎩⑶2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或⑷2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩⑸()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩ 规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当1a >时,()()()()f x g x a a f x g x >⇔>⑵当01a <<时,()()()()f x g x a a f x g x >⇔< 规律:根据指数函数的性质转化.10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法: ⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩ ⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或 ③()()()()()(()0)f xg x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小.14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是: ①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩ ⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥15、线性规划问题常见的目标函数的类型:①“截距”型:;z Ax By =+ ②“斜率”型:y z x =或;y b z x a -=-③“距离”型:22z x y =+或z = 22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.。
基本不等式知识点归纳基本不等式是数学中的重要概念,涉及到数值之间的大小关系。
在数学学习中,掌握基本不等式的知识点对于解决各类问题至关重要。
本文将对基本不等式的定义、性质以及常用的基本不等式进行归纳总结。
一、基本不等式的定义基本不等式是指关于变量的不等关系式,通常形式为a ≤ b 或 a < b,其中 a、b 为实数,表示 a 与 b 之间的大小关系。
二、基本不等式的性质1. 传递律:若a ≤ b 且b ≤ c,则a ≤ c。
2. 对称律:若a ≤ b,则b ≥ a。
3. 加法性:若a ≤ b,则a + c ≤ b + c。
4. 减法性:若a ≤ b,则 a - c ≤ b - c(其中 c 为正数)。
5. 乘法性:若a ≤ b 且c ≥ 0,则ac ≤ bc。
若c ≤ 0,则ac ≥ bc。
6. 除法性:若a ≤ b 且 c > 0,则a/c ≤ b/c。
若 c < 0,则a/c ≥ b/c。
三、常用的基本不等式1. 平均值不等式:对于任意非负实数 a₁、a₂、...、aₙ,有 (a₁ +a₂ + ... + aₙ)/n ≥ √(a₁a₂...aₙ)。
该不等式表明,若 n 个非负实数的算术平均值大于等于它们的几何平均值,那么这些数之间存在不等关系。
2. 柯西-施瓦茨不等式:对于任意实数 a₁、a₂、...、aₙ 和 b₁、b₂、...、bₙ,有(a₁b₁ + a₂b₂ + ... + aₙbₙ)² ≤ (a₁² + a₂² + ... + aₙ²)(b₁² + b₂²+ ... + bₙ²)。
柯西-施瓦茨不等式表明了两个向量内积的平方与两个向量长度乘积的平方之间的关系。
该不等式在数学分析、线性代数等领域有广泛应用。
3. 三角不等式:对于任意实数 a、b,有|a + b| ≤ |a| + |b|。
三角不等式表明了两个实数之和的绝对值小于等于两个实数的绝对值之和。
必修五数学基本不等式知识点总结
必修五数学基本不等式的知识点总结如下:
1. 基本不等式的定义:对于任意的实数a和b,有a≤b,即两个数的大小关系。
2. 数轴上的不等式:通过将不等式转化为数轴上的线段表示,可以直观地表示出不等式的解集。
3. 加法性质:对于任意的实数a、b和c,如果a≤b,则a+c≤b+c。
4. 减法性质:对于任意的实数a、b和c,如果a≤b,则a-c≤b-c。
5. 乘法性质:对于任意的实数a、b和c,如果a≤b且c≥0,则ac≤bc。
如果a≤b且c ≤0,则ac≥bc。
6. 除法性质:对于任意的实数a、b和c,如果a≤b且c>0,则a/c≤b/c。
如果a≤b且c<0,则a/c≥b/c。
7. 对称性:对于任意的实数a和b,如果a≤b,则b≥a,反之亦然。
8. 传递性:对于任意的实数a、b和c,如果a≤b且b≤c,则a≤c。
9. 绝对值不等式:对于任意的实数a,有|a|≥a或|a|≥-a。
10. 三角形不等式:对于任意的三角形的边a、b和c,有a+b>c、a+c>b和b+c>a。
以上就是必修五数学基本不等式的知识点总结。
基本不等式知识点1. 算术-几何平均不等式(AM-GM不等式)- 表述:对于所有非负实数 \(a_1, a_2, ..., a_n\),算术平均数总是大于或等于几何平均数。
- 数学表达:\(\frac{a_1 + a_2 + ... + a_n}{n} \geq\sqrt[n]{a_1 \cdot a_2 \cdot ... \cdot a_n}\)。
- 等号成立条件:当且仅当所有 \(a_i\) 相等时,等号成立。
2. 柯西-施瓦茨不等式(Cauchy-Schwarz不等式)- 表述:对于所有实数序列 \(a_1, a_2, ..., a_n\) 和 \(b_1,b_2, ..., b_n\),两序列对应元素乘积的和的平方不超过各自平方和的乘积。
- 数学表达:\((a_1b_1 + a_2b_2 + ... + a_nb_n)^2 \leq(a_1^2 + a_2^2 + ... + a_n^2)(b_1^2 + b_2^2 + ... + b_n^2)\)。
- 等号成立条件:当且仅当 \(a_i = \lambda b_i\) 对所有 \(i\) 成立时,等号成立,其中 \(\lambda\) 是一个常数。
3. 詹森不等式(Jensen's Inequality)- 表述:如果 \(\phi\) 是一个实数上的凸函数,对于任意实数序列 \(x_1, x_2, ..., x_n\),算术平均数的函数值总是小于或等于这些数的函数值的算术平均数。
- 数学表达:\(\phi\left(\frac{x_1 + x_2 + ... +x_n}{n}\right) \leq \frac{1}{n}\phi(x_1) +\frac{1}{n}\phi(x_2) + ... + \frac{1}{n}\phi(x_n)\)。
- 等号成立条件:当且仅当 \(x_1 = x_2 = ... = x_n\) 时,等号成立。
基本不等式知识点1.不等式的性质:不等式具有与等式类似的运算性质,例如可以进行加减乘除运算,并且可以对不等式的两边同时进行相同的运算。
但需要注意的是,当不等式两边同时乘或除以负数时,不等号的方向会发生改变。
2.加法不等式:对于实数a、b和c,若a<b,则a+c<b+c。
即不等式两边同时加上相同的数,不等式的关系保持不变。
3.减法不等式:对于实数a、b和c,若a<b,则a-c<b-c。
即不等式两边同时减去相同的数,不等式的关系保持不变。
4.乘法不等式:对于实数a、b和正数c,若a<b且c>0,则a·c<b·c。
即不等式两边同时乘以正数,不等式的关系保持不变。
需要注意,当c为负数时,不等号的方向会发生改变。
5.除法不等式:对于实数a、b和正数c,若a<b且c>0,则a/c<b/c。
即不等式两边同时除以正数,不等式的关系保持不变。
需要注意,当c为负数时,不等号的方向会发生改变。
6.平方不等式:对于实数a和正实数b,若a>b,则a²>b²。
即不等式两边同时取平方,不等式的关系保持不变。
7.绝对值不等式:对于任意实数a和正实数b,若,a,<b,则-b<a<b。
即如果一个实数的绝对值小于一个正实数,则这个实数的取值范围在-b和b之间。
8.基本不等式的应用:基本不等式可以应用于各类数学问题的解决,例如求解方程组、解决最值问题等。
这些应用需要根据具体问题,结合基本不等式的性质,并运用合适的不等式进行推导。
以上是基本不等式的主要知识点。
通过掌握这些知识点,我们能够更好地理解不等式的性质,并有效地运用于解决实际问题。
在学习和应用过程中,我们可以通过大量的练习,加深对基本不等式的理解和掌握,提高解决问题的能力。
基本不等式知识点1、不等式的基本性质①(对称性)②(传递性)③(可加性)(同向可加性)(异向可减性)④(可积性)⑤(同向正数可乘性)(异向正数可除性)⑥(平方法则)⑦(开方法则)⑧(倒数法则)2、几个重要不等式①,(当且仅当时取号). 变形公式:②(基本不等式) ,(当且仅当时取到等号).变形公式:用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)(当且仅当时取到等号).④(当且仅当时取到等号).⑤(当且仅当时取到等号).⑥(当仅当a=b时取等号)(当仅当a=b时取等号)⑦,(其中规律:小于1同加则变大,大于1同加则变小.⑧⑨绝对值三角不等式3、几个著名不等式①平均不等式:,,当且仅当时取号).(即调和平均几何平均算术平均平方平均).变形公式:②幂平均不等式:③二维形式的三角不等式:④二维形式的柯西不等式:当且仅当时,等号成立.⑤三维形式的柯西不等式:⑥一般形式的柯西不等式:⑦向量形式的柯西不等式:设是两个向量,则当且仅当是零向量,或存在实数,使时,等号成立.⑧排序不等式(排序原理):设为两组实数.是的任一排列,则(反序和乱序和顺序和),当且仅当或时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数,对于定义域中任意两点有则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.常见不等式的放缩方法:①舍去或加上一些项,如②将分子或分母放大(缩小),如等.5、一元二次不等式的解法求一元二次不等式解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则(时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解⑴⑵⑶⑷⑸规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当时,⑵当时,规律:根据指数函数的性质转化.10、对数不等式的解法⑴当时,⑵当时,规律:根据对数函数的性质转化.11、含绝对值不等式的解法:⑴定义法:⑵平方法:⑶同解变形法,其同解定理有:①②③④规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有:⑴讨论与0的大小;⑵讨论与0的大小;⑶讨论两根的大小.14、恒成立问题⑴不等式的解集是全体实数(或恒成立)的条件是:①当时②当时⑵不等式的解集是全体实数(或恒成立)的条件是:①当时②当时⑶恒成立恒成立⑷恒成立恒成立15、线性规划问题常见的目标函数的类型:①“截距”型:②“斜率”型:或③“距离”型:或或在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.。
基本不等式知识点归纳1.基本不等式2ba ab +≤(1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义?提示:①当b a =时,ab b a ≥+2取等号,即.2ab ba b a =+⇒= ②仅当b a =时,ab b a ≥+2取等号,即.2b a ab b a =⇒=+ 2.几个重要的不等式).0(2);,(222>≥+∈≥+ab baa b R b a ab b a),(2)2();,()2(2222R b a b a b a R b a b a ab ∈+≤+∈+≤3.算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2ba +,几何平均数为ab ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数.4.利用基本不等式求最值问题 已知,0,0>>y x 则(1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小).(2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.42p (简记:和定积最大). [探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,xx y 1+=在2≥x 时的最小值,利用单调性,易知2=x 时.25min =y[自测·牛刀小试]1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( ) A .18 B .36 C .81D .243解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18.2.若函数)2(21)(>-+=x x x x f 在a x =处取最小值,则=a ( ) A .1+ 2 B .1+ 3 C .3 D .4 3.已知,02,0,0,0=+->>>z y x z y x 则2y xz的( ) A .最小值为8 B .最大值为8 C .最小值为18 D .最大值为184.函数xx y 1+=的值域为 ____________________. 5.在平面直角坐标系xOy 中,过坐标原点的一条直线与函数xx f 2)(=的图象交于P 、Q 两点,则线段PQ 长的最小值是________.利用基本不等式证明不等式[例1] 已知,0,0>>b a ,1=+b a 求证:.9)11)(11(≥++ba保持例题条件不变,证明:a +12+b +12≤2.———————————————————利用基本不等式证明不等式的方法技巧利用基本不等式证明不等式是综合法证明不等式的一种情况,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项、并项,也可乘上一个数或加上一个数,“1”的代换法等.1.已知,0,0,0>>>c b a 求证:.c b a cab b ca a bc ++≥++利用基本不等式求最值[例2] (1)(2012·浙江高考)若,0,0>>y x 满足,53xy y x =+则y x 43+的最小值是( ) A.245 B.285C .5D .6(2)已知,0,0>>b a ,1222=+b a 则21b a +的最大值为________. ———————————————————应用基本不等式求最值的条件利用基本不等式求最值时,要注意其必须满足的三个条件:(1)一正二定三相等.“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.1.(1)函数)1,0(1≠>=-a a a y x的图象过定点,A 若点A 在直线)0,(01>=-+n m ny mx 上,求nm 11+的最小值;(2)若正数b a ,满足,3++=b a ab 求ab 的取值范围.利用基本不等式解决实际问题[例3] 为响应国家扩大内需的政策,某厂家拟在2014年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x 万件与年促销费用)0(≥t t 万元满足124+-=t kx (k 为常数).如果不搞促销活动,则该产品的年销量只能是1万件.已知2014年生产该产品的固定投入为6万元,每生产1万件该产品需要再投入12万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分).(1)将该厂家2014年该产品的利润y 万元表示为年促销费用t 万元的函数; (2)该厂家2014年的年促销费用投入多少万元时,厂家利润最大? ———————————————————解实际应用题时应注意的问题(1)设变量时一般要把求最大值或最小值的变量定义为函数;(2)根据实际问题抽象出函数的解析式后,只需再利用基本不等式求得函数的最值; 3在求函数的最值时,一定要在定义域使实际问题有意义的自变量的取值范围内求. 4有些实际问题中,要求最值的量需要用几个变量表示,同时这几个变量满足某个关系式,这时问题就变成了一个条件最值,可用求条件最值的方法求最值.3.某种商品原来每件售价为25元,年销售量8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最高为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入)600(612-x 万元作为技改费用,投入50万元作为固定宣传费用,投入x 51万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.1个技巧——公式的逆用运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如ab b a 222≥+逆用就是),0,0(222>>+≤b a b a ab 逆用就是)0,()2(2>+≤b a b a ab 等,还要注意“添、拆项”技巧和公式等号成立的条件等.2个变形——基本不等式的变形(1)).,,(2)2(222”时取“当且仅当==∈≥+≤+b a R b a ab b a b a (2),0,0(1122222>>+≥≥+≥+b a ba ab b a b a ).”时取“当且仅当==b a3个关注——利用基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.(3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.创新交汇——基本不等式在其他数学知识中的应用1.考题多以函数、方程、立体几何、解析几何、数列等知识为载体考查基本不等式求最值问题.2.解决此类问题的关键是正确利用条件转换成能利用基本不等式求解的形式,同时要注意基本不等式的使用条件.[典例] (2012·湖南高考)已知两条直线m y l =:1和),0(128:2>+=m m y l 1l 与函数x y 2log =的图象从左至右相交于点A 、B ,2l 与函数x y 2log =的图象从左至右相交于点C 、D ,记线段AC 和BD 在x 轴上的投影长度分别为.,b a 当m 变化时,ab的最小值为( ) A .16 2 B .8 2 C .348 D .344 [名师点评]1.本题具有以下创新点(1)本题是对数函数的图象问题,通过分析、转化为基本不等式求最值问题.(2)本题将指数、对数函数的性质与基本不等式相结合,考查了考生分析问题、解决问题的能力. 2.解决本题的关键有以下几点(1)正确求出A 、B 、C 、D 四点的坐标;(2)正确理解b a ,的几何意义,并能正确用A 、B 、C 、D 的坐标表示;(3)能用拼凑法将)0(128>++m m m 化成利用基本不等式求最值的形式.[变式训练]1.已知,0,0>>y x y b a x ,,,成等差数列y d c x ,,,成等比数列,则cdb a 2)(+的最小值是( )A .0B .1C .2D .42.若直线),0,0(02>>=+-b a by ax 被圆014222=+-++y x y x 截得的弦长为4,则ba 11+的最小值为( ) A.14 B. 2 C.32+ 2 D.32+2 2 3.若,0,0>>y x 且y x a y x +≤+恒成立,则a 的最小值是________.练习一、选择题(本大题共6小题,每小题5分,共30分) 1.(2012·福建高考)下列不等式一定成立的是( ) A .)0(lg )41lg(2>>+x x x B .),(2sin 1sin Z k k x xx ∈≠≥+π C .)(212R x x x ∈≥+ D.)(1112R x x ∈>+ 2.(2012·陕西高考)小王从甲地到乙地往返的时速分别为a 和b (b a <),其全程的平均时速为,v 则( ) A .ab v a << B .ab v =C.2ba v ab +<< D .2ba v +=3.若,0,0>>b a 且,0)ln(=+b a 则ba 11+的最小值是( ) A.14B .1C .4D .84.(2013·淮北模拟)函数)1(122>-+=x x x y 的最小值是( ) A .23+2 B .23-2 C .2 3 D .25.设,0,0>>b a 且不等式011≥+++ba kb a 恒成立,则实数k 的最小值等于( ) A .0 B .4 C .-4D .-26.(2013·温州模拟)已知M 是ABC ∆内的一点,且AB ·AC =23,,300=∠BAC 若MCA MBC ∆∆,和MAB ∆的面积分别为,,,21y x 则y x 41+的最小值是( )A .20B .18C .16D .19二、填空题(本大题共3小题,每小题5分,共15分)7.某公司租地建仓库,每月土地占用费1y 与仓库到车站的距离成反比,而每月库存货物的运费2y 与到车站的距离成正比,如果在距车站10公里处建仓库,这两项费用1y 和2y 分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站________公里处.8.若,2,0,0=+>>b a b a 则下列不等式对一切满足条件的b a ,恒成立的是________(写出所有正确命题的编号).①1≤ab ②2≤+b a ③222≥+b a ④322≥+b a ⑤.211≥+ba 9.(2013·泰州模拟)已知,822,0,0=++>>xy y x y x 则y x 2+的最小值是________.三、解答题(本大题共3小题,每小题12分,共36分) 10.已知.0,0,0,0>>>>d c b a 求证:.4≥+++acadbc bd bc ad11.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数)(x v 的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时))()(x v x x f ⋅=可以达到最大,并求出最大值.(精确到1辆/小时)1.已知,1log log 22≥+b a 则ba93+的最小值为________. 2.设b a ,均为正实数,求证:.221122≥++ab ba3.已知,45<x 求54124)(-+-=x x x f 的最大值.4.某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由长方形A 1B 1C 1D 1的休闲区和环公园人行道(阴影部分)组成.已知休闲区A 1B 1C 1D 1的面积为4 000平方米,人行道的宽分别为4米和10米(如图所示). (1)若设休闲区的长和宽的比|A 1B 1||B 1C 1|=),1(>x x 求公园ABCD 所占面积S 关于x 的函数)(x S 的解析式;(2)要使公园所占面积最小,则休闲区A 1B 1C 1D 1的长和宽该如何设计?[归纳·知识整合]1.合情推理 (1)归纳推理:①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理.②特点:是由部分到整体、由个别到一般的推理. (2)类比推理①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.②特点:类比推理是由特殊到特殊的推理. [探究] 1.归纳推理的结论一定正确吗?提示:不一定,结论是否真实,还需要经过严格的逻辑证明和实践检验. 2.演绎推理 (1)模式:三段论①大前提——已知的一般原理; ②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断. (2)特点:演绎推理是由一般到特殊的推理. [探究] 2.演绎推理所获得的结论一定可靠吗?提示:不一定,只有前提是正确的,推理形式是正确的,结论才一定是真实的,错误的前提则可能导致错误的结论.[自测·牛刀小试]1.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③某次考试张军成绩是100分,由此推出全班同学成绩都是100分;④三角形的内角和是180°,四边形的内角和是360°,五边形的内角和是540°,由此得出凸多边形的内角和是(n -2)·180°.A .①②B .①③C .①②④D .②④2.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 013的末四位数字为( )A .3 125B .5 625C .0 625D .8 1253.(教材习题改编)有一段演绎推理是这样的:“直线平行于平面,则直线平行于平面内所有直线;已知直线b ⊄平面α,直线a ⊂平面α,直线b ∥平面α,则直线b ∥直线a ”,结论显然是错误的,这是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误归纳推理[例1] (1)(2012·江西高考)观察下列各式:,,11,7,4.3,155443322=+=+=+=+=+b a b a b a b a b a 则=+1010b a ( )A .28B .76C .123D .199 (2)设,331)(+=x x f 先分别求),3()2(),2()1(),1()0(f f f f f f +-+-+然后归纳猜想一般性结论,并给出证明.利用本例(2)的结论计算)2015()1()0()1()2013()2014(f f f f f f ++++-++-+- 的值.归纳推理的分类常见的归纳推理分为数的归纳和形的归纳两类(1)数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等.(2)形的归纳主要包括图形数目归纳和图形变化规律归纳.1.观察下列等式:1=11+2=31+2+3=61+2+3+4=101+2+3+4+5=15…13=113+23=913+23+33=3613+23+33+43=10013+23+33+43+53=225…可以推测:13+23+33+…+3n =________(n ∈N *,用含n 的代数式表示).类比推理[例2] (2013·广州模拟)已知数列}{n a 为等差数列,若b a a a n m ==,),,,1(+∈≥-N n m m n 则,mn manb a m n --=+类比等差数列}{n a 的上述结论,对于等比数列}{n b ),,0(+∈>N n b n 若d a c a n m ==,),,,2(+∈≥-N n m m n 则可以得到=+m n b ________.———————————————————类比推理的分类类比推理的应用一般为类比定义、类比性质和类比方法(1)类比定义:在求解由某种熟悉的定义产生的类比推理型试题时,可以借助原定义来求解;(2)类比性质:从一个特殊式子的性质、一个特殊图形的性质入手,提出类比推理型问题,求解时要认真分析两者之间的联系与区别,深入思考两者的转化过程是求解的关键;(3)类比方法:有一些处理问题的方法具有类比性,我们可以把这种方法类比应用到其他问题的求解中,注意知识的迁移.2.在ABC ∆中,,AC AB ⊥BC AD ⊥于D ,求证:.111222ACAB AD +=演 绎 推 理[例3] 已知函数).10()(≠>+-=a a aa ax f x且 (1)证明:函数)(x f y =的图象关于点)21,21(-对称; (2)求)3()2()1()0()1()2(f f f f f f ++++-+-的值.———————————————————演绎推理的结构特点(1)演绎推理是由一般到特殊的推理,其最常见的形式是三段论,它是由大前提、小前提、结论三部分组成的.三段论推理中包含三个判断:第一个判断称为大前提,它提供了一个一般的原理;第二个判断叫小前提,它指出了一个特殊情况.这两个判断联合起来,提示了一般原理和特殊情况的内在联系,从而产生了第三个判断:结论.(2)演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提.一般地,若大前提不明确时,一般可找一个使结论成立的充分条件作为大前提.3.已知函数,)(bx xax f +=其中),,0(,0,0+∞∈>>x b a 试确定)(x f 的单调区间,并证明在每个单调区间上的增减性.2个步骤——归纳推理与类比推理的步骤 (1)归纳推理的一般步骤:①通过观察个别情况发现某些相同性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想); ③检验猜想.实验、观察→概括、推广→猜测一般性结论 (2)类比推理的一般步骤:①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想); ③检验猜想.观察、比较→联想、类推→猜想新结论 1个区别——合情推理与演绎推理的区别 (1)归纳是由特殊到一般的推理; (2)类比是由特殊到特殊的推理; (3)演绎推理是由一般到特殊的推理;(4)从推理的结论来看,合情推理的结论不一定正确,有待证明;若大前提和小前提正确,则演绎推理得到的结论一定正确.创新交汇——合情推理与证明的交汇创新1.归纳推理主要有数与式的归纳推理、图形中的归纳推理、数列中的归纳推理;类比推理主要有运算的类比、性质的类比、平面与空间的类比.题型多为客观题,而2012年福建高考三角恒等式的推理与证明相结合出现在解答题中,是高考命题的一个创新.2.解决此类问题首先要通过观察特例发现某些相似性(特例的共性或一般规律);然后把这种相似性推广到一个明确表述的一般命题(猜想);最后对所得的一般性命题进行检验.一、选择题(本大题共6小题,每小题5分,共30分)1.(2013·合肥模拟)正弦函数是奇函数,)1sin()(2+=x x f 是正弦函数,因此)1sin()(2+=x x f 是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确 2.(2013·银川模拟)当x ∈(0,+∞)时可得到不等式,3)2(224,2122≥++=+≥+xx x x x x x 由此可以推广为,1+≥+n xpx n 取值p 等于( ) A .nn B .2nC .nD .1+n3.(2012·江西高考)观察下列事实:|x |+|y |=1的不同整数解(y x ,)的个数为4,|x |+|y |=2的不同整数解(y x ,)的个数为8,|x |+|y |=3的不同整数解(y x ,)的个数为12,…,则|x |+|y |=20的不同整数解(y x ,)的个数为( )A .76B .80C .86D .925.设ABC ∆的三边长分别为a 、b 、c ,ABC ∆的面积为S ,内切圆半径为r ,则;2cb a Sr ++=类比这个结论可知:四面体ABCD S -的四个面的面积分别为1S 、2S 、3S 、4S ,内切球的半径为R ,四面体ABC S -的体积为V ,则R =( ) A.4321S S S S V+++B.43212S S S S V+++C.43213S S S S V+++D.43214S S S S V+++6.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个数对是( )A .(7,5)B .(5,7)C .(2,10)D .(10,1) 二、填空题(本大题共3小题,每小题5分,共15分) 7.(2012·陕西高考)观察下列不等式1+122<32, 1+122+132<53, 1+122+132+142<74, …照此规律,第五个不等式为________.8.(2012·湖北高考)回文数是指从左到右读与从右到左读都一样的正整数,如22,121,3443,94249等.显然2位回文数有9个:11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则 (1)4位回文数有________个;(2)2n +1(n ∈N *)位回文数有________个.1.正方形ABCD的边长是a,依次连接正方形ABCD各边中点得到一个新的正方形,再依次连接新正方形各边中点又得到一个新的正方形,依此得到一系列的正方形,如图所示.现有一只小虫从A点出发,沿正方形的边逆时针方向爬行,每遇到新正方形的顶点时,沿这个正方形的边逆时针方向爬行,如此下去,爬行了10条线段.则这10条线段的长度的平方和是( )A.1 0232 0482a B.1 0237682aC.5111 0242a D.2 0474 0962a。