误差理论与数据处理作业答案 第五章
- 格式:docx
- 大小:23.79 KB
- 文档页数:4
《误差理论与数据处理》练习题第一章 绪论1-7 用二等标准活塞压力计测量某压力得100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?【解】在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
故二等标准活塞压力计测量值的绝对误差=测得值-实际值=100.2-100.5=-0.3( Pa )。
相对误差=0.3100%0.3%100.5-⨯≈-1-9 使用凯特摆时,g 由公式g=4π2(h 1+h 2)/T 2给定。
今测出长度(h 1+h 2)为(1.04230±0.00005)m ,振动时间T 为(2.0480±0.0005)s 。
试求g 及其最大相对误差。
如果(h 1+h 2)测出为(1.04220±0.0005)m ,为了使g 的误差能小于0.001m/s 2,T 的测量必须精确到多少? 【解】测得(h 1+h 2)的平均值为1.04230(m ),T 的平均值为2.0480(s )。
由21224()g h h Tπ=+,得:2224 1.042309.81053(/)2.0480g m s π=⨯= 当12()h h +有微小变化12()h h ∆+、T 有T ∆变化时,令12h h h =+ g 的变化量为:22121212231221212248()()()()42[()()]g g g h h T h h h h Th h T T TTh h h h T Tπππ∂∂∆=∆++∆=∆+-+∆∂+∂∆=∆+-+2223224842()g g g h T h h Th T T T T h h T Tπππ∂∂∆=∆+∆=∆-∆∂∂∆=∆- g 的最大相对误差为:22222222124422[][]244()0.000052(0.0005)[]100%0.054%1.04230 2.0480T T h h h h g h T T T T T g h Th h h T Tππππ∆∆∆-∆-∆∆∆===-+±⨯±=-⨯≈± 如果12()h h +测出为(1.04220±0.0005)m ,为使g 的误差能小于0.001m/s 2,即:0.001g ∆<也即 21212242[()()]0.001Tg h h h h T Tπ∆∆=∆+-+< 22420.0005 1.042200.0012.0480 2.04800.0005 1.017780.00106TT T π∆±-⨯<±-∆< 求得:0.00055()T s ∆<1-10. 检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?【解】 引用误差=示值误差/测量范围上限。
《误差理论与数据处理》第一章绪论1-1.研究误差的意义是什么?简述误差理论的主要内容。
答:研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
误差理论的主要内容:误差定义、误差来源及误差分类等。
1-2.试述测量误差的定义及分类,不同种类误差的特点是什么?答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。
1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。
答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少。
(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差解:绝对误差等于:相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度为 50mm,已知其最大绝对误差为 1μm,试问该被测件的真实长度为多少?解:绝对误差=测得值-真值,即:△L=L-L0已知:L=50,△L=1μm=0.001mm,测件的真实长度L0=L-△L=50-0.001=49.999(mm)1-7.用二等标准活塞压力计测量某压力得 100.2Pa,该压力用更准确的办法测得为100.5Pa,问二等标准活塞压力计测量值的误差为多少?解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
《误差理论与数据处理》练习题参考答案第一章 绪论1-7 用二等标准活塞压力计测量某压力得100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?【解】在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
故二等标准活塞压力计测量值的绝对误差=测得值-实际值=100.2-100.5=-0.3( Pa )。
相对误差=0.3100%0.3%100.5-⨯≈- 1-9 使用凯特摆时,g 由公式g=4π2(h 1+h 2)/T 2给定。
今测出长度(h 1+h 2)为(1.04230±0.00005)m ,振动时间T 为(2.0480±0.0005)s 。
试求g 及其最大相对误差。
如果(h 1+h 2)测出为(1.04220±0.0005)m ,为了使g 的误差能小于0.001m/s 2,T 的测量必须精确到多少? 【解】测得(h 1+h 2)的平均值为1.04230(m ),T 的平均值为2.0480(s )。
由21224()g h h Tπ=+,得:2224 1.042309.81053(/)2.0480g m s π=⨯= 当12()h h +有微小变化12()h h ∆+、T 有T ∆变化时,令12h h h =+ g 的变化量为:22121212231221212248()()()()42[()()]g g g h h T h h h h Th h T T TTh h h h T Tπππ∂∂∆=∆++∆=∆+-+∆∂+∂∆=∆+-+2223224842()g g g h T h h Th T T TT h h T Tπππ∂∂∆=∆+∆=∆-∆∂∂∆=∆-g 的最大相对误差为:22222222124422[][]244()0.000052(0.0005)[]100%0.054%1.04230 2.0480T T h h h h g h T T T T T g h Th h h T Tππππ∆∆∆-∆-∆∆∆===-+±⨯±=-⨯≈± 如果12()h h +测出为(1.04220±0.0005)m ,为使g 的误差能小于0.001m/s 2,即:0.001g ∆<也即 21212242[()()]0.001Tg h h h h T Tπ∆∆=∆+-+< 22420.0005 1.042200.0012.0480 2.04800.0005 1.017780.00106TT T π∆±-⨯<±-∆< 求得:0.00055()T s ∆<1-10. 检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?【解】 引用误差=示值误差/测量范围上限。
《误差理论与数据处理》练习题参-考-答-案第一章 绪论1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-8在测量某一长度时,读数值为2.31m ,其最大绝对误差为20m μ,试求其最大相对误差。
%108.66 %1002.311020 100%maxmax 4-6-⨯=⨯⨯=⨯=测得值绝对误差相对误差1-10 检定2.5级(即引用误差为2.5%)的全量程为l00V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电表是否合格? 解:依题意,该电压表的示值误差为 2V由此求出该电表的引用相对误差为 2/100=2% 因为 2%<2.5% 所以,该电表合格。
1-12用两种方法分别测量L 1=50mm ,L 2=80mm 。
测得值各为50.004mm ,80.006mm 。
试评定两种方法测量精度的高低。
相对误差L 1:50mm 0.008%100%5050004.501=⨯-=I L 2:80mm 0.0075%100%8080006.802=⨯-=I21I I > 所以L 2=80mm 方法测量精度高。
1-13 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.lkm ,优秀射手能在距离50m 远处准确地射中直径为2cm 的靶心,试评述哪一个射击精度高? 21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o射手的相对误差为:多级火箭的射击精度高。
第二章 误差的基本性质与处理2-6 测量某电路电流共5次,测得数据(单位为mA)为168.41,168.54,168.59,168.40, 168.50。
《误差理论与数据处理》第一章绪论1-1.研究误差的意义是什么?简述误差理论的主要内容。
答:研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
误差理论的主要内容:误差定义、误差来源及误差分类等。
1-2.试述测量误差的定义及分类,不同种类误差的特点是什么?答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。
1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。
答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少。
(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差解:绝对误差等于:相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度为 50mm,已知其最大绝对误差为 1μm,试问该被测件的真实长度为多少?解:绝对误差=测得值-真值,即:△L=L-L0已知:L=50,△L=1μm=0.001mm,测件的真实长度L0=L-△L=50-0.001=49.999(mm)1-7.用二等标准活塞压力计测量某压力得 100.2Pa,该压力用更准确的办法测得为100.5Pa,问二等标准活塞压力计测量值的误差为多少?解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
《误差理论与数据处理》第一章 绪论1-1.研究误差的意义是什么?简述误差理论的主要内容。
答: 研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
误差理论的主要内容:误差定义、误差来源及误差分类等。
1-2.试述测量误差的定义及分类,不同种类误差的特点是什么?答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化; 粗大误差的特点是可取性。
1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。
答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少。
(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对误差为 1μm ,试问该被测件的真实长度为多少?解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =1μm =0.001mm ,测件的真实长度L0=L -△L =50-0.001=49.999(mm ) 1-7.用二等标准活塞压力计测量某压力得 100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
...《误差理论与数据处理》练习题参-考-答-案第一章绪论1-5 测得某三角块的三个角度之和为180o00’02”, 试求测量的绝对误差和相对误差解:绝对误差等于:o180 00 02o 180 2相对误差等于:2o180 180 260 60=26480000.30864 1 0.000031%1-8在测量某一长度时,读数值为 2.31m,其最大绝对误差为20 m,试求其最大相对误差。
相对误差max 绝对误差测得值max100%-620102.31100%8.66 - 410 %1-10 检定 2.5 级(即引用误差为 2.5%)的全量程为l00V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电表是否合格?解:依题意,该电压表的示值误差为2V由此求出该电表的引用相对误差为2/100=2%因为2%<2.5%所以,该电表合格。
1-12用两种方法分别测量L1=50mm,L2=80mm。
测得值各为50.004mm,80.6mm。
试评定两种方法测量精度的高低。
相对误差50.4 50L1:50mm I 100% 0.008%15080 .006 80L2:80mm I 100% 0.0075%280I1 I 所以L2=80mm 方法测量精度高。
21-13 多级弹导火箭的射程为10000km时,其射击偏离预定点不超过0.lkm ,优秀射手能在距离50m远处准确地射中直径为2cm的靶心,试评述哪一个射击精度高?1解:多级火箭的相对误差为:0.10.00001 0. 001%10000射手的相对误差为:1cm 0.01m0.2 0.002% 50m 50m多级火箭的射击精度高。
第二章误差的基本性质与处理2-6 测量某电路电流共 5 次,测得数据( 单位为mA)为168.41 ,168.54 ,168.59 ,168.40 ,2.32。
试求算术平均值及其标准差、或然误差和平均误差。
解:5IiI i 1 m A8.67( )55(Ii I )i 180.75 15(Ii I )2 2i 150.508 0.053 5 1 35(Ii I )4 4i 10.8 0.065 5 1 52—7 在立式测长仪上测量某校对量具,重复测量 5 次,测得数据( 单位为mm)为20.0015,20.16 ,20.0018 ,20.0015 ,20.0011 。
《误差理论与数据处理》(第七版)习题及参考答案第一章绪论1-5测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差解:绝对误差等于: 180 o 00 02o 1802 相对误差等于: 2 o180180 2 60 60 =26480000.000003086410.000031%1-8在测量某一长度时,读数值为2.31m ,其最大绝对误差为20m ,试求 其最大相对误差。
相对误差max绝对误差 测得值 max 100%-6 20 102.31100%8.66 -4 10%1-10检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现 50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格? 最大引用误差某量程最大示值误差 测量范围上限100%2 100100%2%2.5%该电压表合格1-12用两种方法分别测量L1=50mm ,L2=80mm 。
测得值各为50.004mm ,80.6mm 。
试评定两种方法测量精度的高低。
相对误差50.450L 1:50mmI100%0.008%15080.680L2:80mmI100%0.0075%280I 1I 所以L 2=80mm 方法测量精度高。
21-13多级弹导火箭的射程为10000km时,其射击偏离预定点不超过0.lkm,优秀射手能在距离50m远处准确地射中直径为2cm的靶心,试评述哪一个射击精度高?解:多级火箭的相对误差为:0.12.320.001%10000射手的相对误差为:1cm0.01m8.6700020.002%50m50m多级火箭的射击精度高。
1-14若用两种测量方法测量某零件的长度L1=110mm,其测量误差分别为11和9m;而用第三种测量方法测量另一零件的长度L2=150mm。
m其测量误差为12m,试比较三种测量方法精度的高低。
相对误差I 11m1mm11080.7%I 9m2mm11050.50082%I 12m3mm15080.708%I3II第三种方法的测量精度最高21第二章误差的基本性质与处理2-6测量某电路电流共5次,测得数据(单位为mA)为168.41,168.54,1.,168.40,168.50。
《误差理论与数据处理》练习题参-考-答-案第一章 绪论1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-8在测量某一长度时,读数值为2.31m ,其最大绝对误差为20m μ,试求其最大相对误差。
%108.66 %1002.311020 100%maxmax 4-6-⨯=⨯⨯=⨯=测得值绝对误差相对误差1-10 检定2.5级(即引用误差为2.5%)的全量程为l00V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电表是否合格? 解:依题意,该电压表的示值误差为 2V由此求出该电表的引用相对误差为 2/100=2% 因为 2%<2.5% 所以,该电表合格。
1-12用两种方法分别测量L 1=50mm ,L 2=80mm 。
测得值各为50.004mm ,80.006mm 。
试评定两种方法测量精度的高低。
相对误差L 1:50mm 0.008%100%5050004.501=⨯-=I L 2:80mm 0.0075%100%8080006.802=⨯-=I21I I > 所以L 2=80mm 方法测量精度高。
1-13 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.lkm ,优秀射手能在距离50m 远处准确地射中直径为2cm 的靶心,试评述哪一个射击精度高?21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o解:射手的相对误差为:多级火箭的射击精度高。
第二章 误差的基本性质与处理2-6 测量某电路电流共5次,测得数据(单位为mA)为168.41,168.54,168.59,168.40, 168.50。
误差理论与数据处理知到章节测试答案智慧树2023年最新江苏大学第一章测试1.测量误差越__,测量精确度越高。
参考答案:null2.有a、b两次测量,a测量的绝对误差是0.2mm,相对误差为0.003,b测量的绝对误差是0.3mm,相对误差为0.002,这两个测量中精度较高的是__。
参考答案:null3.18.275的四位有效数字是__________。
参考答案:null4.1657.331+23.51+106.8+6.897=____________。
参考答案:null5.测量某一矩形的两边长,其相对误差分别为 3%和 4%,试求矩形面积的相对误差为________。
参考答案:null6.测量某长度为20.32487mm,标准偏差0.038mm,则长度测量结果保留正确的位数后应为________________。
参考答案:null7.按照误差的特性分,误差可以分为()。
参考答案:系统误差;粗大误差;随机误差8.常用的误差表达形式有()。
参考答案:相对误差;绝对误差;引用误差9.准确度反映测量结果中()的影响程度。
参考答案:系统误差与随机误差10.测得某三角块的三个角度之和为180°00′02″,则测量的相对误差为()。
参考答案:3.09×10-611.有一刻度值为1mm的标准刻尺,每一个刻度处的误差均为Δl,则此测量系统存在着()。
参考答案:不变的系统误差12.检定一只3mA,2.5级电流表的全量程(满刻度)误差,应选择下面哪一只标准电流表最合理?()参考答案:5mA,2级13.若某一被测件和标准器进行比对的结果为D =20.008mm,现要求测量的准确度、精密度及精确度均高,下述哪一种方法的测量结果最符合要求?()参考答案:D=20.005±0.002 mm14.0.0006020含有()位有效数字。
参考答案:4第二章测试1.正态分布是重复条件或复现条件下多次测量的()的分布。
误差理论与数据处理智慧树知到课后章节答案2023年下陕西理工大学陕西理工大学第一章测试1.误差按照性质分为()A:随机误差、系统误差B:随机误差、粗大误差、偶然误差C:随机误差、系统误差、粗大误差答案:随机误差、系统误差、粗大误差2.有关修正值的描述,正确的是()A:修正值没有误差B:修正值与误差大小相等,符号相反C:修正值就等于误差答案:修正值与误差大小相等,符号相反3.环境误差的影响因素有()A:温度场、电磁场B:工作疲劳C:振动、照明答案:温度场、电磁场;振动、照明4.精确度高则一定()A:系统误差小,随机误差也小B:准确度高C:精密度高答案:系统误差小,随机误差也小;准确度高;精密度高5. 3.14159保留四位有效数字为()A:3.141B:3.142C:3.143答案:3.142第二章测试1.下列计算标准差的方法中,计算精度最高的是()A:别捷尔斯法B:贝塞尔公式法C:最大误差法D:极差法答案:贝塞尔公式法2.适用于发现组内数据系统误差方法是()A:t检验法B:不同公式计算标准差比较法C:秩和检验法D:计算数据比较法答案:不同公式计算标准差比较法3.如果一把米尺的测量结果表示为999.9420±0.0021(mm),则表示测量这把米尺的精度为()A:0.0063mmB:0.0021mmC:0.0007mm答案:0.0021mm4.如果对一钢卷尺的长度进行了三组不等精度测量,其标准差分别为0.05mm,0.20mm,0.10mm,则其三组测量结果的权分别为()A:5,2,10B:10,25,2C:16,1,4答案:16,1,45.下列不属于粗大误差的判别准则的是()A:马利科夫准则B:莱以特准则C:狄克松准则D:罗曼诺夫斯基准则答案:马利科夫准则第三章测试1.误差间的线性相关关系是指它们之间具有的线性依赖关系,其取值范围在()A:-1至1之间B:-1值0之间C:0值1之间答案:-1至1之间2.随机误差的合成可以按照()合成A:相对误差B:极限误差C:标准差答案:极限误差;标准差3.系统误差合成可以按照()合成A:代数和法B:标准差C:极限误差答案:代数和法;标准差;极限误差4.误差分配的步骤有()A:验算调整后的总误差B:按等作用原则分配误差C:按照可能性调整误差答案:验算调整后的总误差;按等作用原则分配误差;按照可能性调整误差5.下列关于误差间的线性相关关系,说法正确的是()A:这种关系有强有弱,联系最强时,在平均意义上,一个误差的取值完全决定了另一个误差的取值,此时两误差间具有确定的线性函数关系。
《误差理论与数据处理》第一章绪论1-1.研究误差的意义是什么?简述误差理论的主要内容。
答:研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
误差理论的主要内容:误差定义、误差来源及误差分类等。
1-2.试述测量误差的定义及分类,不同种类误差的特点是什么?答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。
1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。
答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少。
(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差解:绝对误差等于:相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度为 50mm,已知其最大绝对误差为 1μm,试问该被测件的真实长度为多少?解:绝对误差=测得值-真值,即:△L=L-L0已知:L=50,△L=1μm=0.001mm,测件的真实长度L0=L-△L=50-0.001=49.999(mm)1-7.用二等标准活塞压力计测量某压力得 100.2Pa,该压力用更准确的办法测得为100.5Pa,问二等标准活塞压力计测量值的误差为多少?解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
《误差理论与数据处理》第一章 绪论1-1.研究误差的意义是什么?简述误差理论的主要内容。
答:研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据; (3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
误差理论的主要内容:误差定义、误差来源及误差分类等。
1-2.试述测量误差的定义及分类,不同种类误差的特点是什么?答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化; 粗大误差的特点是可取性。
1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。
答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少。
(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定 1-5测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于: 1-6.在万能测长仪上,测量某一被测件的长度为50mm ,已知其最大绝对误差为1μm ,试问该被测件的真实长度为多少?解:绝对误差=测得值-真值,即:△L =L -L 0已知:L =50,△L =1μm =0.001mm ,测件的真实长度L0=L -△L =50-0.001=49.999(mm )1-7.用二等标准活塞压力计测量某压力得100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
《误差理论与数据处理》第一章绪论1-1.研究误差的意义是什么?简述误差理论的主要内容。
答:研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
误差理论的主要内容:误差定义、误差来源及误差分类等。
1-2.试述测量误差的定义及分类,不同种类误差的特点是什么?答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。
1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。
答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少。
(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差解:绝对误差等于:相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度为 50mm,已知其最大绝对误差为 1μm,试问该被测件的真实长度为多少?解:绝对误差=测得值-真值,即:△L=L-L0已知:L=50,△L=1μm=0.001mm,测件的真实长度L0=L-△L=50-0.001=49.999(mm)1-7.用二等标准活塞压力计测量某压力得 100.2Pa,该压力用更准确的办法测得为100.5Pa,问二等标准活塞压力计测量值的误差为多少?解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
《误差理论与数据处理》(第七版)习题及参考答案第一章 绪论1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于::1-8在测量某一长度时,读数值为2.31m ,其最大绝对误差为20m μ,试求其最大相对误差。
%108.66 %1002.311020 100%maxmax 4-6-⨯=⨯⨯=⨯=测得值绝对误差相对误差1-10检定级(即引用误差为%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格%5.22%100%1002100%<=⨯=⨯=测量范围上限某量程最大示值误差最大引用误差该电压表合格1-12用两种方法分别测量L1=50mm ,L2=80mm 。
测得值各为50.004mm ,80.006mm 。
试评定两种方法测量精度的高低。
相对误差L 1:50mm 0.008%100%5050004.501=⨯-=I`L 2:80mm 0.0075%100%8080006.802=⨯-=I21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o21I I > 所以L 2=80mm 方法测量精度高。
1-13 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过,优秀射手能在距离50m 远处准确地射中直径为2cm 的靶心,试评述哪一个射击精度高 解:射手的相对误差为:¥多级火箭的射击精度高。
1-14若用两种测量方法测量某零件的长度L1=110mm ,其测量误差分别为m μ11±和m μ9±;而用第三种测量方法测量另一零件的长度L2=150mm 。
误差理论习题答案1-4 在测量某一长度时,读数值为2.31m ,其最大绝对误差为 20um ,试求其最大相对误差。
解:最大相对误差≈(最大绝对误差)/测得值,所以642010 100%=8.6610%2.31--⨯≈⨯⨯最大相对误差1-5 使用凯特摆时,由公式21224h h g T π+=()给定。
今测出长度12()h h + 为(1.042300.00005)m ±, 振动时间 T 为(2.04800.0005)s ±,试求g 及最大相对误差。
如果12()h h +测出为(1.042200.0005)m ±,为了使g 的误差能小于20.001/m s ,T 的测量必须精确到多少?解:由21224()h h g T π+=得224 1.042309.81053/2.0480g m s π⨯== 对 21224()h h g T π+=进行全微分,令 12h h h =+ 并令g h T ∆∆∆,,代替d d d g h T ,,得222348h h Tg T T ππ∆∆∆=-从而2g h Tg h T∆∆∆=-的最大相对误差为: 4max max max 0.000050.000522 5.362510%1.04230 2.0480g h T g h T -∆∆∆-=-=-⨯=⨯由21224()h h g T π+=,得T =,所以 2.04790T == 1-7 为什么在使用微安表时,总希望指针在全量程的2/3范围内使用?解:设微安表的量程为0~n X ,测量时指针的指示值为X ,微安表的精度等级为S ,最大误差≤%n X S ,相对误差≤%n X S X,一般n X X ≤ ,故当X 越接近n X 相对误差就越小,故在使用微安表时,希望指针在全量程的2/3范围内使用。
1-9 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.1km,优秀选手能在距离50m 远处准确射中直径为2cm 的靶心,试评述哪一个射击精度高? 解:火箭射击的相对误差: 30.1100%10%10000-⨯= 选手射击的相对误差: 20.02100%410%50-⨯=⨯ 所以,相比较可见火箭的射击精度高。
《误差理论与数据处理》第一章绪论1-1.研究误差的意义是什么?简述误差理论的主要内容。
答:研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
误差理论的主要内容:误差定义、误差来源及误差分类等。
1-2.试述测量误差的定义及分类,不同种类误差的特点是什么?答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。
1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。
答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少。
(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差解:绝对误差等于:相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度为 50mm,已知其最大绝对误差为 1μm,试问该被测件的真实长度为多少?解:绝对误差=测得值-真值,即:△L=L-L0已知:L=50,△L=1μm=0.001mm,测件的真实长度L0=L-△L=50-0.001=49.999(mm)1-7.用二等标准活塞压力计测量某压力得 100.2Pa,该压力用更准确的办法测得为100.5Pa,21802000180''=-'''oo%000031.010000030864.0648002066018021802≈=''''''⨯⨯''=''=o问二等标准活塞压力计测量值的误差为多少?解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
《误差理论与数据处理》练习题第一章 绪论1-7 用二等标准活塞压力计测量某压力得100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?【解】在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
故二等标准活塞压力计测量值的绝对误差=测得值-实际值=100.2-100.5=-0.3( Pa )。
相对误差=0.3100%0.3%100.5-⨯≈- 1-9 使用凯特摆时,g 由公式g=4π2(h 1+h 2)/T 2给定。
今测出长度(h 1+h 2)为(1.04230±0.00005)m ,振动时间T 为(2.0480±0.0005)s 。
试求g 及其最大相对误差。
如果(h 1+h 2)测出为(1.04220±0.0005)m ,为了使g 的误差能小于0.001m/s 2,T 的测量必须精确到多少?【解】测得(h 1+h 2)的平均值为1.04230(m ),T 的平均值为2.0480(s )。
由21224()g h h Tπ=+,得:2224 1.042309.81053(/)2.0480g m s π=⨯= 当12()h h +有微小变化12()h h ∆+、T 有T ∆变化时,令12h h h =+ g 的变化量为:22121212231221212248()()()()42[()()]g g g h h T h h h h Th h T T TTh h h h T Tπππ∂∂∆=∆++∆=∆+-+∆∂+∂∆=∆+-+2223224842()g g g h T h h Th T T T T h h T Tπππ∂∂∆=∆+∆=∆-∆∂∂∆=∆- g 的最大相对误差为:22222222124422[][]244()0.000052(0.0005)[]100%0.054%1.04230 2.0480T T h h h h g h T T T T T g h Th h h T Tππππ∆∆∆-∆-∆∆∆===-+±⨯±=-⨯≈± 如果12()h h +测出为(1.04220±0.0005)m ,为使g 的误差能小于0.001m/s 2,即:0.001g ∆<也即 21212242[()()]0.001Tg h h h h T Tπ∆∆=∆+-+< 22420.0005 1.042200.0012.0480 2.04800.0005 1.017780.00106TT T π∆±-⨯<±-∆< 求得:0.00055()T s ∆<1-10. 检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?【解】 引用误差=示值误差/测量范围上限。