人教版八年级数学上册
- 格式:ppt
- 大小:1.59 MB
- 文档页数:15
新人教版八年级上册数学课件注:直接按Ctrl键点击你所要下载的课件即可.可以长期关注11.1 全等三角形PPT课件.ppt11.2 三角形全等的判定PPT课件1.ppt11.2 三角形全等的判定PPT课件2.ppt11.2 三角形全等的判定(ASA AAS) PPT课件.ppt11.2 三角形全等的判定(SAS) PPT课件.ppt11.2 三角形全等的判定(SSS) PPT课件.ppt11.2 三角形全等的判定2PPT课件.ppt11.2 三角形全等的条件PPT课件.ppt11.3 角的平分线的性质PPT课件1.ppt11.3 角的平分线的性质PPT课件2.ppt12.1 轴对称 PPT课件1a.ppt12.1 轴对称 PPT课件2a.ppt12.1 轴对称 PPT课件3a.ppt12.2 作轴对称图形PPT课件1.ppt12.2 作轴对称图形PPT课件2.ppt12.2 作轴对称图形PPT课件3.ppt12.2 作轴对称图形PPT课件4.ppt12.2.1 作轴对称图形PPT课件.ppt 12.2.2 用坐标表示轴对称PPT课件.ppt 12.3.1 等腰三角形PPT课件1.ppt12.3.1 等腰三角形PPT课件2.ppt12.3.1 等腰三角形的判定课件.ppt 12.3.1 等腰三角形的性质课件1.ppt 12.3.1 等腰三角形的性质课件2.ppt 12.3.1 等腰三角形的性质课件3.ppt 12.3.2 等边三角形PPT课件1.ppt12.3.2 等边三角形PPT课件2.ppt12.3.2 等边三角形PPT课件3.ppt13.1 平方根PPT课件1.ppt13.1 平方根PPT课件2.ppt13.1 平方根PPT课件3.ppt13.1 平方根PPT课件4.ppt13.1 平方根PPT课件5.ppt13.1 算术平方根PPT课件.ppt13.1 习题讲解PPT课件.ppt13.2 立方根PPT课件1.ppt13.2 立方根PPT课件2.ppt13.2 立方根PPT课件3.ppt13.2 平方根、立方根习题课课件.ppt13.2 习题讲解PPT课件.ppt13.3 实数PPT课件1.ppt13.3 实数PPT课件2.ppt13.3 实数PPT课件3.ppt13.3 实数(实数的概念)课件.ppt13.3 实数习题讲解课件.ppt14.1 变量与函数的初步认识课件.ppt14.1.1 变量PPT课件.ppt14.1.2 变量与函数PPT课件1.ppt 14.1.2 变量与函数PPT课件2.ppt 14.1.2 函数PPT课件.ppt14.1.3 函数的图象PPT课件1.ppt 14.1.3 函数的图象PPT课件2.ppt 14.2 一次函数_待定系数法PPT课件.ppt 14.2 一次函数_复习课PPT课件.ppt 14.2 一次函数_实际问题PPT课件.ppt 14.2 一次函数_正比例函数PPT课件.ppt 14.2 一次函数的图象和性质课件.ppt 14.2.1正比例函数(第1课时)课件.ppt 14.2.1正比例函数(第2课时)课件.ppt 14.3 一次函数与一元一次方程(1课时).ppt 14.3 一次函数与一元一次方程(2课时).ppt14.3 一次函数与一元一次方程(3课时).ppt 14.3.1一次函数与一元一次方程课件.ppt 14.3.2一次函数与与一元一次不等式.ppt 14.3.3一次函数与二元一次方程组.ppt14.3.4用函数观点看方程(组)与不等式1.ppt 14.3.4用函数观点看方程(组)与不等式2.ppt14.3.4用函数观点看方程(组)与不等式3.ppt15.1 整式的乘法PPT课件1.ppt15.1 整式的乘法PPT课件2.ppt15.1 整式的乘法(1)PPT课件.ppt15.1 整式的乘法(2)PPT课件.ppt15.1.1 单项式乘以单项式PPT课件.ppt 15.1.2 单项式与多项式相乘课件1.ppt 15.1.2 单项式与多项式相乘课件2.ppt 15.1.3 多项式与多项式相乘课件.ppt15.1.4 同底数幂的乘法PPT课件.ppt15.2 乘法公式(第1课时)PPT课件.ppt 15.2 乘法公式(第2课时)PPT课件.ppt 15.2 乘法公式(第3课时)PPT课件.ppt 15.2 乘法公式_平方差公式课件.ppt15.2.1 平方差公式PPT课件.ppt15.2.2 完全平方公式PPT课件.ppt15.3 整式的除法(第1课时)课件.ppt 15.3 整式的除法(第2课时)课件.ppt 15.3.2 单项式除单项式PPT课件.ppt 15.3.2 整式的除法PPT课件.ppt15.4 因式分解.ppt15.4 因式分解(1).ppt15.4 因式分解(2)(平方差公式).ppt 15.4 因式分解(3)(完全平方公式法).ppt 15.4《因式分解》复习ppt课件.ppt。
人教版八年级上册数学全册课件第一章有理数1.1 有理数的定义•有理数的概念•有理数的表示方法•有理数的相反数和绝对值1.2 有理数的比较与排序•有理数的大小比较•有理数的大小排序•有理数的绝对值大小比较1.3 有理数的加法与减法•有理数的加法原理•有理数的减法原理•有理数的加法与减法综合运用1.4 有理数的乘法与除法•有理数的乘法原理•有理数的除法原理•有理数的乘法与除法综合运用1.5 有理数的运算与性质•有理数的运算律•有理数的消去律•有理数的分配律第二章方程与不等式2.1 一元一次方程•一元一次方程的解的概念•解一元一次方程的基本步骤•解实际问题中的一元一次方程2.2 一元一次方程的应用•一元一次方程的应用问题•解问题时的方程建立和方程求解2.3 一元一次不等式•一元一次不等式的解的概念•解一元一次不等式的基本步骤•解实际问题中的一元一次不等式2.4 一元一次不等式的应用•一元一次不等式的应用问题•解问题时的不等式建立和不等式求解第三章二次根式3.1 二次根式的概念•二次根式的定义•二次根式的性质•二次根式的化简3.2 二次根式的加法与减法•二次根式的加法原理•二次根式的减法原理•二次根式的加法与减法综合运用3.3 二次根式的乘法与除法•二次根式的乘法原理•二次根式的除法原理•二次根式的乘法与除法综合运用3.4 二次根式的应用•二次根式的应用问题•解问题时的二次根式建立和二次根式计算第四章图形的认识4.1 点、线、面及平面图形•点、线、面的基本概念•平面图形的分类•平面图形的特征4.2 角的认识•角的定义及分类•角的性质•角的计算4.3 三角形的认识•三角形的定义及分类•三角形的性质•三角形的计算4.4 四边形的认识•四边形的定义及分类•四边形的性质•四边形的计算以上是人教版八年级上册数学全册的教学内容概要。
通过学习这些内容,同学们可以全面掌握有理数的概念与运算,解一元一次方程与不等式,以及二次根式的加减乘除等基础知识。
人教版八年级上册数学教案(5篇)人教版八年级上册数学教案(5篇)人教版八年级上册数学教案1 一、内容和内容解析1.内容三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.2.内容解析本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的才能;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探究的思想感情。
理解三角形高、角平分线及中线概念到用几何语言准确表述,这是学生在几何学习上的一个深化.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着非常重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.本节的重点是理解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.二、目的和目的解析1.教学目的(1)理解三角形的高、中线与角平分线等概念;(2)会用工具画三角形的高、中线与角平分线;2.教学目的解析(1)经历画图理论过程,理解三角形的高、中线与角平分线等概念.(2)可以纯熟用几何语言表达三角形的高、中线与角平分线的性质.(3)掌握三角形的高、中线与角平分线的画法.(4)理解三角形的三条高、三条中线与三条角平分线分别相交于一点.三、教学问题诊断分析^p三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联络又有本质的区别.人教版八年级上册数学教案2 一、教学目的1、认识中位数和众数,并会求出一组数据中的众数和中位数。
第十一章:三角形一、三角形1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
组成三角形的线段叫做三角形的边相邻两边的公共端点叫做三角形的顶点相邻两边所组成的角叫做三角形的内角,简称三角形的角。
★2、三角形的特性与表示三角形有下面三个特性:(三角形是封闭图形)(1)三角形有三条线段(2)三条线段不在同一直线上(3)首尾顺次相接★3、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
★4、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
(平分三角形的面积)(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线。
(简称三角形的高)三角形的面积= 1/2×底×高注意:三角形的高不一定在三角形内部,其交点也不一定在三角形内部。
★5、三角形的分类三角形按边的关系分类如下:★三角形按角的关系分类如下:★把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。
它是两条直角边相等的直角三角形。
★6、三角形的稳定性(1)三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
(2)三角形稳定性的应用:三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。
(3)四边形不具有稳定性。
(4)三角形的表示:三角形用符号“Δ”表示,顶点是A、B、C的三角形记作“ΔABC”,读作“三角形ABC”。
★7、三角形的内角外角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
推论:①直角三角形的两个锐角互余。
八年级上册数学教案人教版【优秀8篇】篇一:人教版八年级上册数学教案篇一一、教学目标:1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值二、重点、难点和难点的突破方法:1、重点:根据频数分布表求加权平均数2、难点:根据频数分布表求加权平均数3、难点的突破方法:首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。
因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。
应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。
而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。
所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。
为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。
三、例习题的意图分析1、教材P140探究栏目的意图。
(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。
2、教材P140的思考的意图。
(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。
人教版八年级数学上册教案5篇作为一位优秀的人民教师,常常需要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。
我们应该怎么写教案呢下面是小编整理的人教版八年级数学上册教案,欢迎大家分享。
人教版八年级数学上册教案1教学目标教学知识点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题.能力训练要求:1.学会观察图形,勇于探索图形间的关系,培养学生的空间观念.2.在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.情感与价值观要求:1.通过有趣的问题提高学习数学的兴趣.2.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学.教学重点难点:重点:探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.教学过程1、创设问题情境,引入新课:前几节课我们学习了勾股定理,你还记得它有什么作用吗例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子根据题意,(如图)AC是建筑物,则AC=12米,BC=5米,AB是梯子的长度.所以在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13米.所以至少需13米长的梯子.2、讲授新课:①、蚂蚁怎么走最近出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆行柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的的最短路程是多少(π的值取3).(1)同学们可自己做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢(小组讨论)(2)如图,将圆柱侧面剪开展开成一个长方形,从A点到B点的最短路线是什么你画对了吗(3)蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少(学生分组讨论,公布结果)我们知道,圆柱的侧面展开图是一长方形.好了,现在咱们就用剪刀沿母线AA′将圆柱的侧面展开(如下图).我们不难发现,刚才几位同学的走法:(1)A→A′→B;(2)A→B′→B;(3)A→D→B;(4)A—→B.哪条路线是最短呢你画对了吗第(4)条路线最短.因为“两点之间的连线中线段最短”.②、做一做:教材14页。
人教版八年级上册数学课本知识点归纳第十五章:整式的乘除与因式分解一、整式的乘法1.同底数幂的乘法规则是:am·an=am+n(m,n都是正整数)。
即同底数幂相乘,底数不变,指数相加。
2.幂的乘法规则是:(am)n=amn(m,n都是正整数)。
即幂的乘方,底数不变,指数相乘。
3.积的乘法规则是:(ab)n=an·bn(n为正整数)。
即乘方的积等于积的乘方。
4.单项式与单项式相乘的规则是:(1)系数与系数相乘;(2)同底数幂与同底数幂相乘;(3)其余字母及其指数不变作为积的因式。
5.单项式与多项式相乘的规则是:用单项式去乘多项式的每一项,再把所得的积相加。
6.多项式与多项式相乘的规则是:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
二、乘法公式1.平方差公式:(a+b)(a-b)=a2-b2.2.完全平方公式:(a±b)2=a2±2ab+b2.口诀:前平方,后平方,积的两倍中间放,中间符号看情况。
(这个情况就是前后两项同号得正,异号得负。
)3.添括号:添括号时,如果括号前面是正号,括到括号里面的各项都不变符号;如果括号前面是负号,括到括号里面的各项都改变符号。
三、整式的除法1.am÷an==am-n(a≠,m,n都是正整数,且m>n)。
即同底数幂相除,底数不变,指数相减。
2.a=1(a≠)。
任何不等于1的数的次幂都等于1.3.单项式除以单项式的规则是:(1)系数相除;(2)同底数幂相除;(3)只在被除式里的幂不变。
4.多项式除以单项式的规则是:先把这个多项式的每一项分别除以单项式,再把所得的商相加。
四、因式分解1.因式分解是把一个多项式化成几个整式乘积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
2.公因式是一个多项式中各项都含有的相同的因式。
3.分解因式的方法:1) 提公因式法:ma+mb+mc =m(a+b+c)。
人教版八年级数学上册知识点总结和复习要点一、全等三角形1全等三角形的概念与性质概念:能够完全重合的两个三角形叫做全等三角形。
性质:全等三角形的对应边相等,对应角相等。
2全等三角形的判定条件SSS(边边边):三边对应相等的两个三角形全等。
SAS(边角边):两边及其夹角对应相等的两个三角形全等。
ASA(角边角):两角及其夹边对应相等的两个三角形全等。
AAS(角角边):两角及其一角的对边对应相等的两个三角形全等。
HL(直角、斜边):在一对直角三角形中,斜边及另一条直角边相等。
例子:若△ABC与△DEF中,AB = DE,AC = DF,∠A = ∠D,则根据SAS判定条件,△ABC ≌△DEF。
二、轴对称1轴对称的概念概念:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2轴对称的性质性质:轴对称图形上对应点到对称轴的距离相等;对应点的连线与对称轴垂直。
例子:等腰三角形是轴对称图形,其对称轴是底边上的高(中线或顶角平分线)。
三、实数1平方根与立方根的概念平方根:如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方根)。
立方根:如果一个数的立方等于a,那么这个数就叫做a的立方根(或三次方根)。
2实数的分类与性质实数可以分为有理数和无理数两大类。
有理数包括整数和分数,而无理数则是无限不循环小数。
实数具有封闭性、有序性和传递性等性质。
例子:√4 = 2,是4的平方根;∛8 = 2,是8的立方根。
四、一次函数1一次函数的概念概念:一般地,形如y = kx + b(k,b是常数,k ≠0)的函数,叫做一次函数。
2一次函数的性质性质:一次函数的图像是一条直线;当k > 0时,函数值y随x的增大而增大;当k < 0时,函数值y随x的增大而减小。
例子:函数y = 2x + 1是一次函数,其图像是一条斜率为2、截距为1的直线。
五、整式的乘法与因式分解1整式的乘法整式的乘法包括单项式乘单项式、单项式乘多项式、多项式乘多项式等。
八年级上册人教版数学知识点7篇八年级上册人教版数学知识点11全等三角形的对应边、对应角相等2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等5边边边公理(SSS)有三边对应相等的两个三角形全等6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等7定理1在角的平分线上的点到这个角的两边的距离相等8定理2到一个角的两边的距离相同的点,在这个角的平分线上9角的平分线是到角的两边距离相等的所有点的集合10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)11推论1等腰三角形顶角的平分线平分底边并且垂直于底边12等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合13推论3等边三角形的各角都相等,并且每一个角都等于60°14等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)15推论1三个角都相等的三角形是等边三角形16推论2有一个角等于60°的等腰三角形是等边三角形17在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半18直角三角形斜边上的中线等于斜边上的一半19定理线段垂直平分线上的点和这条线段两个端点的距离相等20逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上初二数学求定义域口诀求定义域有讲究,四项原则须留意。
负数不能开平方,分母为零无意义。
指是分数底正数,数零没有零次。
限制条件不唯一,满足多个不等式。
求定义域要过关,四项原则须注意。
负数不能开平方,分母为零无意义。
分数指数底正数,数零没有零次。
限制条件不唯一,不等式组求解集。
初中提高数学成绩诀窍很多初中生认为自己只要上数学课听得懂就够了,但是一做到综合题就蒙了,基础题会做,但是会马虎。
人教版八年级数学上册课本目录第十一章三角形11.1与三角形相关的线段信息技术应用画图找规律11.2与三角形有关的角度阅读与思考为什么要证明11.3多边形及其内角和数学活动总结复习题11第十二章全等三角形12.1全等三角形12.2三角形同余的确定信息技术应用探究三角形全等的条件12.3角平分线的性质数学活动总结复习题12第十三章轴对称13.1轴对称13.2绘制轴对称图形信息技术应用用轴对称进行图案设计13.3等腰三角形实验与探究三角形中边与角之间的不等关系13.4学科学习的最短路径问题数学活动总结复习题13第1四章整数的乘法和因式分解14.1整式的乘法14.2乘法公式阅读与思考杨辉三角14.3因式分解数学活动总结复习题14第1五章分数15.1分式15.2分数运算阅读与思考容器中的水能倒完吧15.3分数阶方程数学活动总结复习题15部分汉英词汇索引经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线perpendicularbisector。
轴对称图形的对称轴是由任何一对对应点连接的线段的垂直平分线。
线段垂直平分线上的点与这条线段两个端点的距离相等。
由平面图形得到的轴对称图形称为轴对称变换。
等腰三角形的性质:等腰三角形的两个底角相等。
等边等角等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
三线合一附:顶角+2底角=180°如果三角形的两个角相等,则两个角的对边相等。
等角到等边有一个角是60°的等腰三角形是等边三角形。
在直角三角形中,如果锐角等于30°,则与之相对的右侧等于斜边的一半。
八年级上册数学教案人教版全册第一章:勾股定理1.1 勾股定理的发现【学习目标】1. 了解勾股定理的背景和意义。
2. 掌握勾股定理的表述和证明。
【教学内容】1. 引导学生通过实际问题,探索勾股定理。
2. 讲解勾股定理的证明方法。
【教学活动】1. 引入勾股定理的背景知识,如古代数学家赵爽的《周髀算经》中的证明。
2. 通过几何画图软件或实际测量,让学生验证勾股定理。
【作业布置】1. 请学生运用勾股定理解决实际问题。
1.2 勾股定理的应用【学习目标】1. 掌握运用勾股定理解决直角三角形相关问题的方法。
2. 能够运用勾股定理解决实际生活中的问题。
【教学内容】1. 讲解勾股定理在直角三角形中的应用。
2. 举例说明勾股定理在实际生活中的应用。
【教学活动】1. 通过例题,讲解勾股定理在直角三角形中的应用。
2. 分组讨论,让学生尝试解决实际生活中的问题。
【作业布置】1. 请学生运用勾股定理解决实际问题。
第二章:二次根式2.1 二次根式的定义及性质【学习目标】1. 了解二次根式的概念。
2. 掌握二次根式的性质。
【教学内容】1. 讲解二次根式的定义和性质。
2. 举例说明二次根式的性质的应用。
【教学活动】1. 通过几何画图软件或实际测量,让学生直观地理解二次根式。
2. 引导学生探索二次根式的性质。
【作业布置】1. 请学生运用二次根式的性质解决问题。
2.2 二次根式的运算【学习目标】1. 掌握二次根式的加减乘除运算方法。
2. 能够运用二次根式解决实际问题。
【教学内容】2. 举例说明二次根式在实际问题中的应用。
【教学活动】1. 通过例题,讲解二次根式的加减乘除运算方法。
2. 分组讨论,让学生尝试解决实际问题。
【作业布置】1. 请学生运用二次根式解决实际问题。
第三章:实数3.1 实数的概念及分类【学习目标】1. 了解实数的概念和分类。
2. 掌握实数间的运算规律。
【教学内容】1. 讲解实数的概念和分类。
2. 举例说明实数间的运算规律。
八年级人教版数学上册几何定理
《八年级上册数学》几何定理汇总:
一、直角三角形定理:
角平分线定理:在任意一个直角三角形中,若将直角边分成两部分,则分成的两条边中间会等距地经过直角顶点。
等腰三角形定理:等腰三角形的顶点肯定在直角边的中点上。
垂直边定理:任何一条垂直边分成两部分,分开的两部分所连接的边相等。
二、平行线定理:
对角线定理:如果一个四边形中,以对角线两侧两条边平行,则该四边形是平行四边形。
侧边定理:两个平行四边形的侧边相等。
重点定理:如果一个四边形中,以其对角线,将四边形一分为二,其中两个子四边形的邻边相等,则该四边形两个对角线相等。
三、全等三角形定理:
角平分线定理:如果两个三角形的角都是平分的,则它们是全等的;有关边定理:如果两个三角形的有关边相等,则它们是全等的;
有关角定理:如果两个三角形的有关角相等,则它们是全等的。
四、梯形的定理:
圆形定理:在一个梯形中,经过八点,有四条边形成一个圆形;
对角线定理:在一个梯形中,经过对角线,有两条边形成一个圆形;重点定理:如果两个梯形的对角线和其中一条边相等,则它们是全等的。
人教版八年级上册数学内容一、三角形。
1. 三角形的边。
- 三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
- 三角形三边关系:三角形两边的和大于第三边,两边的差小于第三边。
例如,已知三角形的两边长分别为3和5,则第三边x的取值范围是2 < x <8。
2. 三角形的高、中线与角平分线。
- 三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。
锐角三角形的三条高都在三角形内部;直角三角形有两条高为直角边,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部。
- 三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
三角形的三条中线相交于一点,这点称为三角形的重心。
中线将三角形分成面积相等的两个部分。
- 三角形的角平分线:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
三角形的三条角平分线相交于一点。
3. 三角形的稳定性。
- 三角形具有稳定性,而四边形具有不稳定性。
例如,自行车的车架做成三角形形状就是利用了三角形的稳定性。
4. 三角形的内角。
- 三角形内角和定理:三角形三个内角的和等于180°。
可以通过多种方法证明,如剪拼法、作平行线法等。
- 直角三角形的两个锐角互余。
5. 三角形的外角。
- 三角形的外角定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
- 三角形的外角性质:三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任何一个内角。
二、全等三角形。
1. 全等三角形的概念和性质。
- 概念:能够完全重合的两个三角形叫做全等三角形。
- 性质:全等三角形的对应边相等,对应角相等。
2. 全等三角形的判定。
- SSS(边边边):三边对应相等的两个三角形全等。
- SAS(边角边):两边和它们的夹角对应相等的两个三角形全等。