年新苏教版六年级数学上册知识点归纳总结
- 格式:doc
- 大小:105.50 KB
- 文档页数:5
一、整数的认识1. 整数的概念2. 整数的比较3. 整数的加减法4. 整数的乘法5. 整数的除法6. 整数的实际应用二、分数的认识1. 分数的基本概念2. 分数的大小比较3. 分数的加减法4. 分数的乘法5. 分数的除法6. 分数的实际应用三、小数的认识1. 小数的基本概念2. 小数的大小比较3. 小数的加减法4. 小数的乘法5. 小数的除法6. 小数的实际应用四、约数和倍数1. 约数的概念2. 倍数的概念3. 最大公约数和最小公倍数4. 约数和倍数在日常生活中的应用五、形状与图形1. 四边形的认识2. 三角形的认识3. 直角三角形、等腰三角形、等边三角形的特点4. 四边形和三角形的周长和面积计算5. 图形的对称性六、数学中的单位1. 长度单位2. 重量单位3. 容积单位4. 时间单位5. 金钱单位七、图表的应用1. 图形的读取与分析2. 柱状图的绘制和分析3. 折线图的绘制和分析4. 饼图的绘制和分析5. 数据的收集和整理八、数学逻辑与推理1. 命题的概念2. 命题的联结词3. 命题的真值表4. 命题的等价变换5. 逻辑推理与实际问题分析以上是苏教版六年级上册数学知识点的主要内容归纳。
在学习这些知识点时,希望同学们能够多加思考和练习,掌握基本概念的同时要能够将其应用到实际问题中去,培养良好的数学思维和解决问题的能力。
祝愿同学们在学习数学的过程中取得优异的成绩,为未来的学习打下坚实的基础。
在学习整数的认识时,我们需要理解整数的概念,掌握整数的比较、加减法、乘法和除法,以及整数在实际应用中的运用。
整数包括正整数、负整数和0,它们构成了数轴上的整数集合。
比较整数大小时,我们可以利用数轴或大小的规律进行推测,从而判断整数的大小关系。
在处理整数的加减法时,我们需要理解负数与正数相加减的规律,了解同号两数相加时数值变大,异号两数相加时数值相减的原理。
而乘法和除法涉及了整数的相乘和相除运算,需要掌握负数相乘的规律以及除法中负数的特殊处理方式。
第一单元 长方体和正方体长方体和正方体的特征:表面积概念及计算 【长方体或正方体6个面的总面积;叫做它们的表面积】 算法:长方体的表面积=(长×宽+长×高+宽×高)×2 S=(ab+ah+bh )×2正方体的表面积= 棱长×棱长×6 S= a ×a ×6=62a注:不足6个面的实际问题根据具体情况计算;例如鱼缸、无盖纸盒等等。
体积概念及计算第二单元 分数乘法分数乘法算式的意义:比如3×45 表示3个45 相加的和是多少;也可以表示3的45 是多少?注:【求一个数的几分之几用乘法解答】分数与整数相乘:用整数与分数的分子相乘的积作为分子;分数的分母作为分母;最后约分成最简分数。
或者先将整数与分数的分母进行约分;再应用前面计算法则。
注:【任何整数都可以看作为分母是1的分数】分数与分数相乘:用分子相乘的积作为分子;用分母相乘的积作为分母;最后约分成最简分数。
分数连乘:通过几个分数的分子与分母直接约分再进行计算。
倒数的认识乘积是1的两个数互为倒数。
求一个数(不为0)的倒数;只要将这个数的分子与分母交换位置。
1的倒数是1; 0没有倒数。
假分数的倒数都小于或等于1(或者说不大于1); 真分数的倒数都大于1。
第三单元 分数除法分数除法计算法则:甲数除以乙数(不为0)等于甲数乘乙数的倒数。
分数连除或乘除混合计算:可以从左向右依次计算;但一般是遇到除以一个数;把它改写成乘这个数的倒数来计算。
【转化成分数的连乘来计算】除数大于1;商小于被除数;除数小于1;商大于被除数;除数等于1;商等于被除数。
分数除法的意义:已知一个数的几分之几是多少;求这个数?可以用列方程的方法来解;也可以直接用除法。
注:在单位换算中;要弄清需要换算的单位之间的进率是多少。
认识比比的意义:比表示两个数相除的关系。
比与分数、除法的关系:a:b=a ÷b=b a(b ≠0)比值:比的前项除以比的后项;所得的商就叫比值。
苏教版六年级数学上册(全册)知识点(一)长方体和正方体长方体和正方体的特征:长方体和正方体的表面积:概念:长方体或正方体 6 个面的总面积,叫做它们的表面积计算公式:长方体表面积=(长×宽+长×高+宽×高)×2正方体表面积=棱长×棱长×6注:不足 6 个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等等。
体积(容积)单位进率换算:1 立方米=1000 立方分米 1 立方分米=1000 立方厘米1m³=1000dm³1dm³=1000cm³1 升=1000 毫升 1 立方分米=1 升 1 立方厘米=1 毫升1L=1000mL 1dm=1L 1cm³=1mL长方体和正方体的体积(容积):概念:物体所占空间的大小叫做它们的体积(容器所能容纳其它物体的体积叫做它的容积)。
计算公式:长方体体积公式=长×宽×高正方体体积公式=棱长×棱长×棱长长方体和正方体的体积=底面积×高(二)分数乘法分数与整数相乘及实际问题:1.分数与整数相乘:用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。
或者先将整数与分数的分母进行约分,再应用前面计算法则。
注:【任何整数都可以看作为分母是 1 的分数】2.求一个数的几分之几是多少,可以用乘法计算。
3.解题时可以根据表示几分之几的条件,确定单位 1 的量,想单位 1 的几分之几是哪个数量,找出数量关系式,再根据数量关系式列式解答。
分数与分数相乘及连乘:1.分数与分数相乘:用分子相乘的积作为分子,用分母相乘的积作为分母,最后约分成最简分数。
2.分数连乘:通过几个分数的分子与分母直接约分再进行计算3.一个数与比 1 小的数相乘,积小于原数;一个数与比 1 大的数相乘,积大于原数。
倒数的认识:1.乘积是 1 的两个数互为倒数。
六年级上册苏教版数学知识点归纳一、整数1. 整数的基本概念在数轴上的整数,正整数、零、负整数,绝对值。
2. 整数的加减法同号两数相加、异号两数相加、同号两数相减、异号两数相减,绝对值的概念。
3. 整数的乘除法正整数的乘除、负整数的乘除,零的乘除。
4. 整数的应用温度的表示、海拔的表示、负数的概念、整数的应用问题。
二、有理数1. 有理数的概念整数与分数的概念,有理数的大小比较。
2. 正数、负数、零正数的概念、负数的概念,有理数的分类。
3. 有理数的加减法有理数的加法、有理数的减法,被减数、减数、差的关系。
4. 有理数的乘法有理数的乘法法则,有理数的乘法性质。
5. 有理数的除法有理数的除法法则,有理数的除法性质。
6. 有理数的应用实际问题中的有理数运算,应用题。
三、代数式1. 代数式的概念代数式的组成、代数式的值、代数式的运算。
2. 代数式的加减法同类项、异类项,代数式的加法、代数式的减法。
3. 代数式的乘法单项式的乘法,多项式的乘法。
4. 代数式的负数有理数的乘法性质,有理数的除法性质。
5. 代数式的应用实际问题中的代数式运算,应用题。
四、方程1. 一元一次方程一元一次方程的基本概念,解方程的步骤。
2. 一元一次方程的解法等式的基本性质,一般方程的解法。
3. 一元一次方程的应用实际问题中的一元一次方程的应用,应用题。
五、图形的初步认识1. 点、线、面图形的基本元素,点、线、面的概念。
2. 多边形多边形的概念,边、角的关系。
3. 三角形三角形的分类,三角形的性质。
4. 四边形四边形的分类,四边形的性质。
5. 圆圆的概念,圆的性质。
六、数学课外拓展1. 数学游戏数学游戏的基本概念,数学游戏的分类。
2. 数学思维训练数学思维的培养,数学思维方法。
3. 数学趣味知识数学趣味知识的介绍,数学趣味知识的应用。
以上便是六年级上册苏教版数学知识点的归纳总结,通过深入理解和掌握这些知识点,有助于学生在数学学习中建立坚实的基础,提高数学成绩,培养解决问题的能力。
新苏教版六年级数学上册知识点总结(一)长方体和正方体 (1)长方体和正方体的特征:形体 面顶点 棱 关系 长方体 6个 至多2个面是正方形相对面完全相同 8个 12 条 相对的棱 长度相等 正方体 是特殊 的长方体正方体 6个 正方形 6个面完全相同 8个 12 条 12条棱长度都相等 长方体的一个顶点引出一条长、一条宽和一条高。
长方体的棱长和=(长+宽+高)×4 正方体的棱长和=棱长×12(2)长方体和正方体的表面积:概念:长方体或正方体6个面的总面积,叫做它们的表面积.长方体表面积=(长×宽+长×高+宽×高)×2或=)2S a b a c b c ⨯+⨯+⨯⨯表(正方体表面积=棱长×棱长×6或2=66S a a a ⨯⨯=表注:不足6个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒、管道等等。
长方体侧面积=底面周长×高 S 侧=C ×h=(a+b )×2×h 正方体展开图有11种:(3)体积(容积)单位进率换算:1立方米=1000立方分米 1立方分米=1000立方厘米3311000m dm = 3311000dm cm =1升=1000毫升 1立方分米=1升 1立方厘米=1毫升 1L=1000m L 31dm =1L 31cm =1m L 计量液体的体积,常用升和毫升作单位。
(4)长方体和正方体的体积(容积):概念:物体所占空间的大小叫做它们的体积(容器所能容纳物体的体积叫容积)。
长方体体积公式=长×宽×高 或 V a b h =⨯⨯正方体体积公式=棱长×棱长×棱长 或 3V a a a a =⨯⨯=长方体和正方体的体积=底面积×高 或 ×V S h =底(5)13=1 23=8 33=27 43=64 53=125 63=216 103=1000 长方体的长、宽、高均扩大n 倍,表面积会扩大n 的平方倍,体积n 的立方 正方体的棱长扩大n 倍,表面积会扩大n 的平方倍,体积会扩大n 的立方(二)分数乘法(1)分数与整数相乘及实际问题:1.分数与整数相乘:用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。
六年级上册数学苏教版重点知识全部一、整数1.整数的概念和表示:正整数、负整数、零2.整数的比较大小:绝对值的大小比较3.整数的加减法:同号相加、异号相减二、小数1.小数的概念和表示:小数点的位置、小数的读法2.小数的大小比较:整数和小数的大小比较、小数和小数的大小比较3.小数的加减法:按小数点对齐,数位补齐、逢十进一三、质数和合数1.质数的概念和判定方法:只能被1和自身整除的数2.合数的概念和判定方法:能够被除1和本身外的其他数整除的数3.质数和合数的关系四、分数1.分数的概念和表示:分子、分母、分数线2.分数的大小比较:通分后比较分子的大小3.分数的加减法:通分后进行加减运算4.分数的乘除法:乘法的交叉相乘法则,除法的乘倒法五、小数与分数的转化1.小数与分数的互化:小数转分数、分数转小数2.百分数的概念和表示:分数转百分数、百分数转分数六、约数和倍数1.约数的概念和判定方法:能够整除给定数的数2.倍数的概念和判定方法:给定数的整数倍七、分解质因数1.质因数的概念:一个数能被整除的除1和本身外的质数2.分解质因数的方法:逐步分解、用质数逐步除八、最大公约数和最小公倍数1.最大公约数的概念和求解:能同时整除两个数的最大自然数2.最小公倍数的概念和求解:能够同时被两个数整除的最小自然数九、平方数和平方根1.平方数的概念和性质:一个数的平方2.平方根的概念和求解:一个数的平方根十、图形1.图形的概念和分类:几何图形的种类和特点2.正方形和长方形的计算:计算面积和周长3.圆的概念和计算:计算周长和面积综上所述,六年级上册数学苏教版的重点知识主要包括整数、小数、质数和合数、分数、小数与分数的转化、约数和倍数、分解质因数、最大公约数和最小公倍数、平方数和平方根以及图形的相关知识。
通过系统地学习这些重点知识,可以帮助学生打好数学基础,提高数学的学习能力和解决问题的能力。
苏教版六年级数学上册知识点归纳总结一、整数及运算1. 整数的概念及表示方法整数包括正整数、负整数和零,用整数的绝对值来表示其大小,正整数前面不标正号,负整数前用负号“-”表示。
2. 整数的加法和减法整数的加、减法运算遵循正数加正数、负数加负数的规则,结果的符号由被加数和加数的符号决定。
3. 整数的乘法和除法整数的乘、除法运算结果也遵循正数乘正数、负数乘负数为正,正数乘负数、负数乘正数为负的规则。
二、小数1. 小数的概念及表示方法小数是数的一种,用有限的数位和无限循环的数位来表示一个数,小数点分开整数位和小数位。
2. 小数的加法和减法运算小数的加法和减法运算类似于整数,先对齐小数点,然后按照正常的加减法规则进行运算。
3. 小数的乘法和除法运算小数的乘法和除法运算需要注意小数点位置的移动,乘法时小数位数相加,除法时小数位数相减。
三、约分与化简1. 分数的定义和表示方法分数由分子和分母组成,分子代表取的一部分,分母代表整体被分成的份数,分数的表示形式为分子/分母。
2. 约分与最简分数约分是将分数的分子和分母同时除以一个相同的数,得到一个相等但更简便的分数。
最简分数是指分子和分母没有公约数,不能再约分的分数。
3. 分数的加减法运算分数的加减法运算需要通分,即分母相同,然后对分子进行加减操作,最后将结果约简为最简分数。
四、面积和周长1. 长方形的面积长方形的面积等于长乘以宽,单位为平方单位。
2. 正方形的面积和周长正方形的面积等于边长的平方,周长等于边长的4倍。
3. 三角形的面积三角形的面积等于底乘以高的一半。
4. 圆的面积和周长圆的面积等于半径的平方乘以π(取近似值3.14),周长等于直径乘以π。
五、容量和体积1. 容积的概念及单位容积是指物体所能容纳的内容量,单位有升(L)和毫升(mL)。
2. 直接读数法和求积法通过直接读数法可以快速读出容器中液体的体积;通过求积法可以计算物体的体积,即将长度、宽度和高度相乘。
(新)苏教版六年级上册重点知识总结第一单元:长方体和正方体1.长方体和正方体的特征:2.特殊长方体:当长方体中出现相对的两个面是正方形时,其余4个面是完全相同的长方形。
3.表面积概念及计算:(1)长方体或正方体6个面的总面积,叫做它们的表面积。
(2)表面积计算公式:长方体的表面积=(长×宽+长×高+宽×高)×2 用字母表示:S=(ab+ah+bh)×2(3) 正方体的表面积=棱长×棱长×6用字母表示:S=a×a×6=6a²注:不足6个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等等计算5个面(少一个上面--底×高)、通风管少算2个小面。
4. 体积概念及计算5. 求占地面积是计算底面积;求框架、铁丝就是计算棱长总和;求所用铁皮、纸板是计算表面积;求所占空间大小计算体积。
6. 长方体内放正方体或长方体切正方体:(长÷棱长)×(宽÷棱长)×(高÷棱长)=个数(商取整数)7. 长方体的长、宽、高同时扩大n倍,表面积扩大n²倍,体积扩大n³倍。
8. 正方体的棱长扩大n倍,表面积扩大n²倍,体积扩大n³倍。
9. 正方体表面涂色后切成小正方体,每条棱分n份。
三面涂色:数顶点(8个)两面涂色:数棱(n-2)×12一面涂色:数面(n-2)²×610. 长方体上放小正方体(或长方体)(1)表面积=下图表面积+上图四周的面积(2)体积=下图体积+上图体积11. 拼大正方体至少需要8块小正方体。
12. 长方体中最多有2个正方形;最多有4个面完全相同;最多有8条棱长度相等。
最少有2个面完全相同;最少有4条棱长度相等。
13. 长方体中出现相邻的两个面是正方形时是正方体。
14. 扎彩带数长、宽、高各有几条,再计算总和。
苏教版数学六年级上册知识点(最新最全)第一单元 长方体和正方体2、表面积概念及计算 【长方体或正方体6个面的总面积,叫做它们的表面积】算法:长方体 (长×宽+长×高+宽×高)×2 (ab+ah+bh )×2正方体 棱长×棱长×6|a ×a ×6=62a注:不足6个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等等。
3、体积概念及计算第二单元 分数乘法1、 分数乘法算式的意义:比如3×53表示3个53相加的和是多少,也可以表示3的53是多少 注:【求一个数的几分之几用乘法解答】 2、(3、分数与整数相乘:用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。
或者先将整数与分数的分母进行约分,再应用前面计算法则。
注:【任何整数都可以看作为分母是1的分数】 4、分数与分数相乘:用分子相乘的积作为分子,用分母相乘的积作为分母,最后约分成最简分数。
5、分数连乘:可用分子连乘的积作为分母,分母连乘的积作分母,计算过程中能约分的先约分,可以使计算简便。
倒数的认识 6、乘积是1的两个数互为倒数。
6、 求一个数(不为0)的倒数,只要将这个数的分子与分母交换位置。
【整数是分母为1的分数】7、 1的倒数是1 , 0没有倒数。
@8、 假分数的倒数都小于或等于1(或者说不大于1);真分数的倒数都大于1。
第三单元 分数除法1、 分数除法计算法则:甲数除以乙数(不为0)等于甲数乘乙数的倒数。
2、分数连除或乘除混合计算:可以从左向右依次计算,但一般是遇到除以一个数,把它改写成乘这个数的倒数来计算。
【转化成分数的连乘来计算】3、除数大于1,商小于被除数;除数小于1,商大于被除数;除数等于1,商等于被除数。
4、;5、分数除法的意义:已知一个数的几分之几是多少,求这个数可以用列方程的方法来解,也可以直接用除法。
苏教版六年级上册数学知识点汇总第一单元:长方体和正方体•长方体和正方体的认识:•理解长方体和正方体的基本特征,包括面、棱、顶点的数量及位置关系。
•掌握长方体和正方体的长、宽、高(或棱长)的概念。
•表面积和体积:•学习计算长方体和正方体的表面积和体积的公式。
•应用公式解决实际问题,如包装纸的大小、容器的容量等。
第二单元:分数乘法•分数乘法的意义:•理解分数乘法的意义,即求一个数的几分之几是多少。
•分数乘法的计算:•掌握分数乘法的计算方法,包括分数乘整数、分数乘分数。
•学习约分和通分的技巧,以简化计算过程。
•分数乘法的应用:•应用分数乘法解决实际问题,如分数的加减混合运算、分数的比较等。
第三单元:分数除法•分数除法的意义:•理解分数除法的意义,即已知一个数的几分之几是多少,求这个数。
•分数除法的计算:•掌握分数除法的计算方法,通常转化为乘法进行计算(除以一个数等于乘以这个数的倒数)。
•分数四则混合运算:•学习分数四则混合运算的顺序和计算方法,注意运算律的应用。
第四单元:分数四则混合运算•运算顺序:•掌握分数四则混合运算的顺序,即先乘除后加减,有括号先算括号里的。
•简便运算:•学习利用运算律进行简便运算,提高计算效率。
•实际问题解决:•应用分数四则混合运算解决实际问题,如分数的应用题、比例问题等。
第五单元:比•比的意义:•理解比的意义,即两个数相除又叫做两个数的比。
•比的基本性质:•掌握比的基本性质,即比的前项和后项同时乘或除以相同的数(0除外),比值不变。
•比的应用:•学习化简比、求比值的方法,并应用比解决实际问题,如按比例分配等。
第六单元:百分数•百分数的意义:•理解百分数的意义,即表示一个数是另一个数的百分之几的数。
•百分数与小数、分数的互化:•掌握百分数与小数、分数之间的互化方法。
•百分数的应用:•学习百分数的计算方法,如求一个数的百分之几是多少、已知一个数的百分之几是多少求这个数等。
•应用百分数解决实际问题,如折扣问题、纳税问题、利息问题等。
(新版)苏教版六年级数学上册知识点归纳总结第一单元长方体和正方体1.长方体相交于同一顶点的三条棱的长度,分别叫做它的长、宽、高。
2.长方体的特征:面——有六个面,都是长方形(特殊情况下有两个相对的面是正方形),相对的面完全相同.3.正方体的特征:面-—有六个面,都是正方形,所有的面完全相同;棱——有12条棱,所有的棱长度相等.4.正方体也是一种特殊的长方体.5.长方体的表面积=(长×宽+宽×高+高×长)×2正方体的表面积=棱长×棱长×6.6。
常用的体积单位有立方厘米、立方分米、立方米。
1立方米=1000立方分米,1立方分米=1000立方厘米.7.计量液体的体积,常用升和毫升作单位。
1立方分米=1升,1立方厘米=1毫升,1升=1000毫升.8.长方体的体积=长×宽×高V =abh9。
正方体的体积=棱长×棱长×棱长V =a×a×a= a310.长方体(或正方体)的体积=底面积×高=横截面×长V=Sh11、正方体的棱长扩大n倍,表面积会扩大n 的平方倍,体积会扩大n 的立方倍。
第二单元分数乘法1.一个数乘分数表示求这个数的几分之几是多少,求一个数的几分之几是多少用乘法计算.2。
分数和分数相乘,用分子相乘的积作分子,分母相乘的积作分母。
3。
乘积是1的两个数互为倒数。
4。
1的倒数是1,0没有倒数。
5。
一个数乘真分数(比1小的数)积比原数小;一个数乘比1大的假分数(比1大的数)积比原数大。
6。
真分数的倒数都是假分数,都比1大;假分数的倒数是真分数或1,比1小或等于1.第三单元分数除法1。
比较量=单位“1"的量×分率;2。
单位“1"的量=比较量÷对应分率;分率=比较量÷单位“1”的量3。
甲数除以乙数(0除外),等于甲数乘乙数的倒数(变号变倒数). 4。
苏教版六年级数学上册知识点归纳总结第一单元 长方体和正方体1.长方体相交于同一顶点的三条棱,分别叫做它的长、宽、高。
2.长方体的特征:(8个顶点、12条棱、6个面)棱:12条,相对的棱长度相等;长方体的棱长和=(长+宽+高)×4面:6个面,都是长方形(最多有两个相对的面是正方形),相对的面完全相同。
3.正方体的特征:(8个顶点、12条棱、6个面)棱:有12条棱,所有的棱长度相等;正方体的棱长和=棱长×12面:6个面,都是正方形,所有的面完全相同。
4.正方体是特殊的长方体。
5.长方体的表面积=(长×宽+长×高+宽×高)×2正方体的表面积=棱长×棱长×66.常用的体积单位有立方厘米、立方分米、立方米。
1立方米=1000立方分米,1立方分米=1000立方厘米。
7.计量液体的体积,常用升和毫升作单位。
1立方分米=1升,1立方厘米=1毫升,1升=1000毫升。
8.长方体的体积=长×宽×高 V=abh9.正方体的体积=棱长×棱长×棱长 V=a ×a ×a=a 310.长方体(或正方体)的体积=底面积×高=横截面×长 V=Sh11.正方体的棱长扩大n 倍,表面积会扩大n 的平方倍,体积会扩大n 的立方倍。
第二单元 分数乘法1.一个数乘分数表示求这个数的几分之几是多少,求一个数的几分之几是多少用乘法。
2.分数和分数相乘,用分子相乘的积作分子,分母相乘的积作分母。
画图表示12 ×13的意义: 3.乘积是1的两个数互为倒数。
4.1的倒数是1,0没有倒数。
5.一个数乘真分数(比1小的数)积比原数小;一个数乘比1大的假分数(比1大的数)积比原数大。
6.真分数的倒数都是假分数,都比1大;假分数的倒数是真分数或1,比1小或等于1。
第三单元分数除法1.比较量=单位“1”的量×分率;2.单位“1”的量=比较量÷对应分率;分率=比较量÷单位“1”的量3.甲数除以乙数(0除外),等于甲数乘乙数的倒数。
(新版)苏教版六年级数学上册知识点归纳总结第一单元长方体和正方体1.长方体的表面积=(长×宽+宽×高+高×长)×2正方体的表面积=棱长×棱长×62.长方体的体积=长×宽×高V =abh3.正方体的体积=棱长×棱长×棱长V =a×a×a= a34.长方体(或正方体)的体积=底面积×高=横截面×长V=Sh一、填空。
1.一个正方体的棱长为A,棱长之和是(),当A=6厘米时,这个正方体的棱长总和是()厘米。
2.一个长方体最多可以有()个面是正方形,则其余4个面是完全相等的长方形。
3.用铁丝焊接成一个长12厘米,宽10厘米,高5厘米的长方体的框架,至少需要铁丝()厘米。
4.一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,不小心前面的玻璃被打坏了,修理时配上的玻璃的面积是()平方分米。
5.一个正方体的棱长总和是72厘米,它的棱长是()厘米,它的表面积是()平方厘米。
二、应用题。
1.天天游泳池,长25米,宽10米,深1.6米,在游泳池的四周和池底砌瓷砖,那么至少需要砌瓷砖多少平方米?2.一个通风管的横截面是边长是0.5米的正方形,长2.5米.如果用铁皮做这样的通风管50只,需要多少平方米的铁皮?3.一种牛奶盒长6厘米,宽5厘米,高10厘米。
这种牛奶盒的容积是多少毫升?4.一块棱长8厘米的正方体铁块,如果用这根铁块熔成一个长10厘米、宽8厘米的长方体框架,它的高应该是多少厘米?1.求一个数的几分之几是多少用乘法计算。
2.乘积是1的两个数互为倒数。
( 1的倒数是1,0没有倒数。
) 一、填空1. 910 米的23 是( )米; 14 公顷的45 是( )公顷。
2. 56与( )互为倒数;( )的倒数是1;5的倒数是( ); 0.25的倒数是( )。
3. 512 小时=( )分 720 米=( )厘米425 吨=( )千克 14 升=( )毫升4.看一本书,每天看全书的 19 ,3天看了全书的( )。
新苏教版六年级数学上册知识点总结(一)长方体和正方体 长方体和正方体的特征:长方体和正方体的表面积:概念:长方体或正方体6个面的总面积,叫做它们的表面积 计算公式:长方体表面积=(长×宽+长×高+宽×高)×2或=)2S a b a c b c ⨯+⨯+⨯⨯表( 正方体表面积=棱长×棱长×6或2=66S a a a ⨯⨯=表注:不足6个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等等。
体积(容积)单位进率换算:1立方米=1000立方分米 1立方分米=1000立方厘米3311000m dm = 3311000dm cm =1升=1000毫升 1立方分米=1升 1立方厘米=1毫升 1L=1000m L 31dm =1L 31cm =1m L 长方体和正方体的体积(容积):概念:物体所占空间的大小叫做它们的体积(容器所能容纳其它物体的体积叫做它的容积)。
计算公式:长方体体积公式=长×宽×高 或 V a b h =⨯⨯ 正方体体积公式=棱长×棱长×棱长 或 3V a a a a =⨯⨯= 长方体和正方体的体积=底面积×高 或 ×V S h =底(二)分数乘法分数与整数相乘及实际问题:1.分数与整数相乘:用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。
或者先将整数与分数的分母进行约分,再应用前面计算法则。
注:【任何整数都可以看作为分母是1的分数】2.求一个数的几分之几是多少,可以用乘法计算。
3.解题时可以根据表示几分之几的条件,确定单位1的量,想单位1的几分之几是哪个数量,找出数量关系式,再根据数量关系式列式解答。
分数与分数相乘及连乘:1.分数与分数相乘:用分子相乘的积作为分子,用分母相乘的积作为分母,最后约分成最简分数。
2.分数连乘:通过几个分数的分子与分母直接约分再进行计算3.一个数与比1小的数相乘,积小于原数;一个数与比1大的数相乘,积大于原数。
第一单元长方体和正方体1.长方体是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。
它有6个面、12条棱和8个顶点;在一个长方体中,相对的面完全相同,相对的棱长度相等。
2.把长方体放在桌面上,无论从哪个角度观察,最多只能同时观察到三个面。
3.正方体,有6个完全相同的正方形,12条棱的长度都相等和8个顶点。
正方体是特殊的长方体。
4.长方体6个面的总面积,叫做它的表面积5.长方体的表面积=长×宽×2+长×高×2+高×宽×2=(长×宽+长×高+高×宽)×26.计算公式为S=(ab+ah+bh)×27.正方体的表面积= 6×棱长×棱长计算公式为S=6×a×a(或6×a2)8.体积的意义:物体所占空间的大小叫做物体的体积。
物体大的,占据的空间大,体积就大;物体小的,占据的空间就小,体积就小。
9.容器所能容纳物体的体积,叫做这个容器的容积。
10.常用的体积单位有:立方厘米、立方分米、立方米11.计量液体的体积,常用升和毫升12.1立方分米=1升1立方厘米=1毫升13.长方体的体积=长×宽×高,公式为:V=abh14.正方体的体积=棱长×棱长×棱长,公式为:V=a×a×a(a3)15.长方体或正方体的体积=底面积×高,公式为:V=Sh16.相邻体积单位间的进率是1000.17.1立方米=1000立方分米;18.1立方分米=1000立方厘米(1升=1000毫升)19.把棱长为几厘米的小正方体涂色后切成棱长为1厘米的小正方体,涂色面的规律:●3面涂色的小正方体个数=正方体的顶点个数=8个●2面涂色的小正方体个数=正方体棱的条数乘棱长减2的差=12×(n-2)●1面涂色的小正方体个数=正方体的面数乘棱长减2的差的平方=6×(n-2)2第二单元分数乘法1.分数乘整数的计算方法,先用分数的分子和整数相乘的积作分子,分母不变,再约分;也可以先约分,再计算。
苏教版数学六年级上册知识点第一单元:长方体和正方体1、长方体和正方体的特征相对的2个面完全相同是正方形正方体是特殊的长方体前发现:相对的2个面在展开图中不能相邻。
正方体展开图:(11种)6种:中间四个一连串,两边各一随便放。
简称“一四一”型3种:二三紧连错一个,三一相连一随便,简称“二三一”型1种:两两相连各错一,简称“二二二”型1种:三个两排一对齐简称“三三”型要求:理解并掌握这些情况,能找准哪2个面是相对的面。
3、表面积概念及计算长方体或正方体6个面的总面积,叫做它们的表面积算法:长方体表面积=(长×宽+长×高+宽×高)×2上下、前后、左右s=(ab+ah+bh)×2=2ab+2ah+2bh正方体表面积=棱长×棱长×6s=6×a×a=6a2注:不足 6 个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等等。
4、体积概念及计算体积(容积)定义 1 立方米=1000 立方分米 1 立方分米=1000 立方厘米 1L=1000mL 物体所占空间的大小叫做 它们的体积;容器所能容纳其它物体的 体积叫做它的容积。
V=Sh1 立方分米=1L 1 立方厘米=1mL35、相关例题:(1)已知长方体 a=20cm,b=5cm,h=6cm,求体积。
V=abh=20×5×6=600(cm )3(2) 已知长方体 S 底=100cm ,h=6cm,求体积。
2V=S 底×h=100×6=600(cm )3(3) 已知长方体 S 侧=30cm ,a=20cm,求体积。
2V=S 侧×长=30×20=600(cm )3 (4) 已知正方体的棱长是 6cm,求表面积和体积。
S 表=6a=6×6×6=216 cm ;V= a =6×6×6=216 cm 2 2 3 3 发现:棱长是 6 厘米的正方体体积和表面积相等。
苏教版六年级数学上册知识点归纳总结(新版)苏教版六年级数学上册知识点归纳总结第一单元:长方体和正方体长方体相交于同一顶点的三条棱,分别称为长、宽、高。
长方体有8个顶点、12条棱和6个面。
它的12条棱中,相对的棱长度相等。
长方体的棱长和等于(长+宽+高)×4.6个面都是长方形,最多有两个相对的面是正方形。
正方体有8个顶点、12条棱和6个面。
所有的棱长度相等,正方体的棱长和等于棱长×12.6个面都是正方形,完全相同。
正方体是特殊的长方体。
长方体的表面积等于(长×宽+长×高+宽×高)×2,正方体的表面积等于棱长×棱长×6.常用的体积单位有立方厘米、立方分米和立方米。
1立方米等于1000立方分米,1立方分米等于1000立方厘米。
长方体的体积为长×宽×高(V=abh),正方体的体积为棱长的立方(V=a³)。
长方体(或正方体)的体积也可以表示为底面积×高或横截面×长(V=Sh)。
当正方体的棱长扩大n倍时,表面积会扩大n的平方倍,体积会扩大n的立方倍。
第二单元:分数乘法一个数乘以分数表示求这个数的几分之几是多少。
分数和分数相乘时,分子相乘的积作为新分数的分子,分母相乘的积作为新分数的分母。
乘积为1的两个数互为倒数,1的倒数是1,没有倒数。
一个数乘以真分数(比1小的数)的积比原数小,一个数乘以比1大的假分数(比1大的数)的积比原数大。
第三单元:分数除法比较量等于单位“1”的量×分率。
单位“1”的量等于比较量除以对应分率,分率等于比较量除以单位“1”的量。
甲数除以乙数(除外),等于甲数乘以乙数的倒数。
两个数相除也叫做这两个数的比。
比号前面的数称为比的前项,后面的数称为比的后项。
比的前项相当于除式的被除数,相当于分数的分子;比号相当于除号,相当于分数线;比的后项相当于除式的除数,相当于分数的分母;比值相当于除式的商,相当于分数的值。
苏教版六年级数学上册知识点归纳总结第一单元 长方体和正方体1.长方体相交于同一顶点的三条棱,分别叫做它的长、宽、高。
2.长方体的特征:(8个顶点、12条棱、6个面)棱:12条,相对的棱长度相等;长方体的棱长和=(长+宽+高)×4面:6个面,都是长方形(最多有两个相对的面是正方形),相对的面完全相同。
3.正方体的特征:(8个顶点、12条棱、6个面)棱:有12条棱,所有的棱长度相等;正方体的棱长和=棱长×12面:6个面,都是正方形,所有的面完全相同。
4.正方体是特殊的长方体。
5.长方体的表面积=(长×宽+长×高+宽×高)×2正方体的表面积=棱长×棱长×66.常用的体积单位有立方厘米、立方分米、立方米。
1立方米=1000立方分米,1立方分米=1000立方厘米。
7.计量液体的体积,常用升和毫升作单位。
1立方分米=1升,1立方厘米=1毫升,1升=1000毫升。
8.长方体的体积=长×宽×高 V=abh9.正方体的体积=棱长×棱长×棱长 V=a ×a ×a=a 310.长方体(或正方体)的体积=底面积×高=横截面×长 V=Sh11.正方体的棱长扩大n 倍,表面积会扩大n 的平方倍,体积会扩大n 的立方倍。
第二单元 分数乘法1.一个数乘分数表示求这个数的几分之几是多少,求一个数的几分之几是多少用乘法。
2.分数和分数相乘,用分子相乘的积作分子,分母相乘的积作分母。
画图表示12 ×13的意义: 3.乘积是1的两个数互为倒数。
4.1的倒数是1,0没有倒数。
5.一个数乘真分数(比1小的数)积比原数小;一个数乘比1大的假分数(比1大的数)积比原数大。
6.真分数的倒数都是假分数,都比1大;假分数的倒数是真分数或1,比1小或等于1。
第三单元分数除法1.比较量=单位“1”的量×分率;2.单位“1”的量=比较量÷对应分率;分率=比较量÷单位“1”的量3.甲数除以乙数(0除外),等于甲数乘乙数的倒数。
1 / 1
2017最新苏教版六年级数学上册知识点总结
(一)长方体和正方体 长方体和正方体的特征:
长方体和正方体的表面积:
概念:长方体或正方体6个面的总面积,叫做它们的表面积 计算公式:长方体的棱长总和=(长+宽+高)×4
长方体表面积=(长×宽+长×高+宽×高)×2
或=)2S a b a c b c ⨯+⨯+⨯⨯表( 正方体的棱长总和=棱长×12
正方体表面积=棱长×棱长×6或2=66S a a a ⨯⨯=表
注:不足6个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等等。
体积(容积)单位进率换算:
1立方米=1000立方分米 1立方分米=1000立方厘米
3311000m dm = 3311000dm cm =
1升=1000毫升 1立方分米=1升 1立方厘米=1毫升 1L=1000m L 31dm =1L 31cm =1m L
长方体和正方体的体积(容积):
概念:物体所占空间的大小叫做它们的体积(容器所能容纳其它物体的体积叫做它的容积)。
计算公式:
长方体体积公式=长×宽×高 或 V a b h =⨯⨯ 正方体体积公式=棱长×棱长×棱长 或 3V a a a a =⨯⨯=
长方体和正方体的体积=底面积×高 或 ×
V S h =底 正方体棱上分割表面涂色:三面涂色有8个, 两面涂色有(n-2)×12个 一面涂色有(n-2)2×6个 没有涂色有(n -2)3个 (二)分数乘法
分数与整数相乘及实际问题:
1.分数与整数相乘:用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。
或者先将整数与分数的分母进
行约分,再应用前面计算法则。
注:【任何整数都可以看作为分母是1的分数】
2.求一个数的几分之几是多少,可以用乘法计算。
3.解题时可以根据表示几分之几的条件,确定单位1的量,想单位1的几分之几是哪个数量,找出数量关系式,再根据数量关系式列式解答。
分数与分数相乘及连乘:
1.分数与分数相乘:用分子相乘的积作为分子,用分母相乘的积作为分母,最后约分成最简分数。
2.分数连乘:通过几个分数的分子与分母直接约分再进行计算
3.一个数与比1小的数相乘,积小于原数;一个数与比1大的数相乘,积大于原数。
倒数的认识:
1.乘积是1的两个数互为倒数。
2.求一个数(不为0)的倒数,只要将这个数的分子与分母交换位置。
【整数是分母为1的分数】
3.1的倒数是1,0没有倒数。
4.假分数的倒数都小于或等于1(或者说不大于1);真分数的倒数都大于1。
(三)分数除法
分数除法:1.分数除法计算法则:甲数除以乙数(不为0)等于甲数乘乙数的倒数。
2.分数连除或乘除混合计算:可以从左向右依次计算,但一般是遇到除以一个数,把它改写成乘这个数的倒数来计算。
【转化成分数的连乘来计算】
3.除数大于1,商小于被除数;除数小于1,商大于被除数;除数等于1,商等于被除数。
4.分数除法的意义:已知一个数的几分之几是多少,求这个数?可以用列方程的方法来解,也可以直接用除法。
注:在单位换算中,要弄清需要换算的单位之间的进率是多少
比的认识:
1.比的意义:比表示两个数相除的关系。
2.比与分数、除法的关系::(0)
a
a b a b b
b
=÷=≠
3.比值:比的前项除以比的后项,所得的商就叫比值。
注:比值是一个数,可以是整数、分数、小数,不带单位名称。
4.比的基本性质:比的前项和后项同时乘或除以一个相同的数(0除
1 / 1
外),比值不变。
5.最简整数比:比的前项和后项是互质数。
也就是比的前项和后项除了1意外没有其它公因数。
6.化简:运用比的基本性质对比进行化简,方法:先把比的前、后项变成整数,再除以它们的最大公因数。
注:化简比和求比值是不同的两个概念【意义不同,方法不同,
结果不同】
7.按比例分配问题:将一个数量按照一定比例,分成几个部分,求每个部分是多少,这类问题称为按比例分配问题。
解决方法:先求出总份数,再求各部分数占总数的几分之几,转化成
分数乘法来计算。
(四)解决问题的策略
用“替换”策略解决实际问题:
问题:小明把720毫升果汁倒入6个小杯和1个大杯,正好都倒满,
已知小杯的容量是大杯的1
3
,小杯和大杯的容量各是多少毫升?
如果把720毫升果汁全部倒入小杯,需要(6+3)个小杯。
如果把720毫升果汁全部倒入大杯,需要(1+2)个大杯。
用“假设”策略解决实际问题:
问题:在1个大盒和5个同样的小盒中装满球,正好是80个,每个大盒比每个小盒多装8个,大盒里装了多少个球?小盒呢?
分析:假设6个全是小盒⇒球的总数比80小,把1个大盒换成小盒球的总数比80少8个⇒小盒:(80-8)÷6=12大盒:12+8=20⇒检验
先假设⇒再比较(与条件不符)⇒进行调整⇒得出结果⇒检验
(五)分数四则混合运算
分数四则混合运算的顺序:
分数四则混合运算的顺序与整数相同。
先算乘除法,后算加减法;有括号的先算括号里面的,后算括号外面的。
分数四则混合运算的运算律:
加法的交换律:a b b a
+=+
加法的结合律:()()
a b c a b c
++=++
乘法的交换律:a b b a
⨯=⨯
乘法的结合律:()()
a b c a b c
⨯⨯=⨯⨯
乘法的分配律:()
a b c a c b c
+⨯=⨯+⨯
稍复杂的分数乘法实际问题:
1.甲占(是)乙的几分之几
几分之几=甲÷乙;甲=乙×几分之几;乙=甲÷几分之几;
2.甲占(是)总量的几分之几,求乙?
乙=总量-甲×几分之几
3.甲比乙多(增加、上升、提高)几分之几
1 / 1
几分之几=(甲-乙)÷乙; 甲=乙×(1+几分之几);
乙=甲÷(1+几分之几)
4.乙比甲少(减少、下降、降低)几分之几
几分之几=(甲-乙)÷甲; 甲=乙÷(1-几分之几);
乙=甲×(1-几分之几)
(六)百分数
百分数的意义及读写:
1.百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数,也叫百分比或百分率。
2.百分数的读写:百分数不写成分数形式,先写分子,再写百分号。
注:百分数后面不带单位名称。
(常出现在判断题中)
百分数与小数的互化:
百分数与分数的互化:
求一个数是另一个数的百分之几的实际问题:
公式:(一个数÷另一个数)×100%
生活中常见的一些百分率:
合格率=合格产品数÷产品总数×100%
出勤率=实际出勤人数÷应出勤人数×100%
发芽率=发芽种子数÷试验种子总数×100%
成活率=成活棵数÷种植总棵数×100%
出油率=油的重量÷油料重量×100%
命中率=命中次数÷总次数×100%
及格率=及格人数÷参加考试人数×100%
纳税问题:
求应纳税额实际上就是求一个数的百分之几是多少,也就是把应该纳税部分的总收入乘以税率百分之几,就求出了应纳税额。
利息问题:利息=本金×利率×存期
折扣问题:折扣=实际售价÷原售价×100%
列方程解决稍复杂的百分数实际问题:
1.解答稍复杂的百分数应用题和稍复杂的分数应用题的解题思路、解题方法完全相同。
2.用字母或含有字母的式子表示题中两个未知的数量,找出数量间
的相等关系。
根据求一个数的百分之几是多少用乘法列方程求解,或者根据除法的意义,直接解答。
1 / 1
3.“已知比一个数多(少)百分之几的数是多少,求这个数”的实际
问题,可以根据数量间的相等关系列方程求解;或者根据除法的意义,直接解答。
4.灵活运用本单元所学知识,解决稍复杂的百分数实际问题,沟通
分数、百分数应用题之间的联系。
1 / 1。