《倍数与因数》全章知识点总结
- 格式:pdf
- 大小:88.12 KB
- 文档页数:4
第二单元因数和倍数知识点归纳一、因数和倍数1.因数、倍数的意义:如果α×b二c(α、b、c都是不为0的整数),那么α、b就是c的因数,c就是α、b的倍数。
(1)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
(2)一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
2.因数与倍数的关系:因数和倍数是相互依存的概念,二者不能单独存在。
3.找一个数的因数的方法:(1)列乘法算式找;(2)列除法算式找。
4.找一个数的倍数的方法:(1)列乘法算式找一个数的倍数,就是用这个数依次与非零自然数相乘,所得积就是这个数的倍数;(2)列除法算式找。
5.表示一个数的因数和倍数的方法:(1)列举法;(2)集合法。
二、2、5、3的倍数的特征1、2的倍数的特征:个位上是O,2,4,6,8的数都是2的倍数。
2、奇数和偶数的意义:在自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。
3、奇数、偶数的运算性质:奇数+奇数=偶数偶数+偶数=偶数奇数+偶数=奇数奇数-奇数=偶数偶数-偶数=偶数奇数-偶数=奇数奇数×奇数=奇数奇数×偶数=偶数偶数×偶数=偶数4、5的倍数的特征:个位上是0或5的数都是5的倍数。
5、3的倍数的特征:一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。
三、质数和合数1.质数和合数的意义:一个数如果只有1和它本身两个因数,这样的叫做质数(或素数);一个数如果除了1和它本身还有别的因数,这样的数叫做合数。
2.分解质因数:把一个合数用几个质数相乘的形式表示出来,就是分解质因数。
3.质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的质因数。
4.分解质因数的方法:(l)枝状图式分解法;(2)短除法。
倍数与因数单元知识总结1.在整数除法中, 如果商是整数而没有余数, 我们就说被除数是除数的倍数, 除数是被除数的因数。
但要注意我们在研究因数和倍数的时候,所说的数是指自然数(一般不包括0)。
2.一个数的因数的个数是有限的, 其中最小的因数是1, 最大的因数是它本身;一个数的倍数的个数是无限的, 其中最小的倍数是它本身, 没有最大的倍数。
倍数和因数是相互依存的。
3、2的倍数特征: 个位上是0、2.4、6.8的数都是2的倍数。
4.5的倍数的特征: 个位上是0或5的数是5的倍数。
5、3的倍数的特征:一个数各位上的数字之和是3的倍数, 这个数就是3的倍数。
6、4的倍数特征: 一个数的末两位数是4的倍数, 这个数就是4的倍数。
7、自然数中, 是2的倍数的数叫做偶数(0也是偶数), 不是2的倍数的数叫做奇数。
根据这个定义, 我们可以把自然数分为偶数和奇数两类。
最小的偶数是0, 最小的奇数是1.8、质数: 一个数, 如果只有1和它本身两个因数, 这样的数叫做质数(或素数)。
如2.3.5.7都是质数。
最小的质数是2, 除2外, 所有的质数都是奇数。
9、合数:一个数, 如果除了1和它本身还有别的因数(合数的因数至少有3个), 这样的数叫做合数。
最小的合数是4。
10、1既不是质数, 也不是合数。
所以我们可以根据一个数因数的个数把自然数分为质数、合数、1和0。
11、100以内的质数表: 2、3.5.7、11、13.17、19、23.29、31、37、41、43.47、53.59、61、67、71、73.79、83.89、97.12.奇数+奇数=偶数偶数+偶数=偶数奇数+偶数=奇数奇数-奇数=偶数偶数-偶数=偶数奇数-偶数=奇数偶数-奇数=奇数奇数×奇数=奇数奇数×偶数=偶数偶数×偶数=偶数13.2.5的倍数特征: 个位上是0的数既是2的倍数又是5的倍数。
1 / 1。
因数和倍数综合知识点总结一、因数和倍数的概念1. 因数的概念所谓因数,就是能够整除某个数的数。
例如,对于正整数12来说,它的因数包括1、2、3、4、6、12。
因为1、2、3、4、6、12能够整除12,所以它们都是12的因数。
与此同时,我们可以发现,12能够被1、2、3、4、6、12整除,因此1、2、3、4、6、12也可称为12的因数。
2. 倍数的概念倍数指的是某个数的整数倍。
例如,对于正整数3来说,6、9、12、15等都是3的倍数,因为它们分别是3的2倍、3的3倍、3的4倍、3的5倍。
反过来讲,如果一个数能够整除另一个数,那么这个数就是另一个数的倍数。
二、因数和倍数的基本性质1. 因数的性质(1)一个自然数必然有自身作为因数,也必然有1作为因数。
这是因为自然数可以被1和自己整除。
(2)若a是b的因数,b是c的因数,则a必然是c的因数。
这是因为若a能够整除b,b能够整除c,则a也能够整除c。
(3)最小的因数是1,最大的因数是这个数本身。
这是因为1可以整除任何数,而这个数本身必然能够整除自身。
2. 倍数的性质(1)一个自然数的倍数包括这个自然数本身和1。
这是因为任何数的倍数都包括它自身和1。
(2)若a是b的倍数,b是c的倍数,则a必然是c的倍数。
这是因为若a是b的倍数,b是c的倍数,那么a也必然是c的倍数。
(3)最小的倍数是0,最大的倍数是无穷大。
这是因为0是任何数的倍数,而自然数的倍数是无穷大的。
三、因数和倍数的计算方法1. 因数的计算方法(1)列举法。
就是通过试除法,把所有可能的因数列举出来,直到所有因数都列举完毕。
(2)分解质因数法。
将一个数进行质因数分解,可以得到所有的因数。
例如,56=2×2×2×7,56的因数包括1、2、4、7、8、14、28、56。
2. 倍数的计算方法(1)直接乘法。
将一个数乘以另一个数,即可得到这个数的倍数。
例如,3的倍数包括3、6、9、12、15等。
总结倍数与因数知识点一、倍数的定义和性质1.1倍数的定义正整数a是正整数b的倍数,是指存在一个整数k,使得a=k*b。
例如,6是3的倍数,因为存在一个整数k=2,使得6=2*3。
1.2倍数的性质(1)零是一切整数的倍数,因为对于任意整数a,都有0=a*0。
(2)整数a是自己的倍数,因为对任意整数a,都有a=1*a。
(3)整数a的所有倍数可以用集合的形式表示为{a, 2a, 3a, ...}。
1.3倍数的运算(1)两个正整数a和b的最小公倍数(最小公倍数定义为能同时被a和b整除的最小正整数)可以表示为a*b/gcd(a,b),其中gcd(a,b)表示a和b的最大公约数。
(2)在实际问题中,需要计算出某个数的倍数,可以通过不断地累加这个数得到。
二、因数的定义和性质2.1因数的定义正整数a是正整数b的因数,是指存在一个整数k,使得a=k*b。
例如,3是6的因数,因为存在一个整数k=2,使得6=3*2。
2.2因数的性质(1)每个整数都有两个特殊的因数1和自身。
(2)如果一个正整数有除了1和它自己之外的其他因数,那么这个数就是合数,否则就是质数。
(3)整数a的所有因数可以用集合的形式表示为{1, a, f1, f2, ...},其中f1、f2等为a的其他因数。
2.3因数的运算(1)任意整数可以分解成它的质因数的乘积,例如,60=2*2*3*5=2^2*3*5。
(2)两个正整数a和b的最大公约数可以表示为a*b/lcm(a,b),其中lcm(a,b)表示a和b 的最小公倍数。
三、倍数和因数的实际应用3.1最大公约数和最小公倍数(1)最大公约数和最小公倍数在实际问题中有着广泛的应用,例如在分数的化简、比例的计算、物品的包装等方面都会用到这两个概念。
(2)在分数的运算中,首先需要求出分子和分母的最大公约数,然后将分子和分母同时除以这个最大公约数,得到最简分数。
3.2倍数和因数在几何中的应用(1)倍数和因数在计算几何图形的周长和面积时有着重要的作用。
五年级上册《倍数与因数》知识点归纳数的世界【知识点】:1、认识自然数和整数,联系乘法认识倍数与因数。
像0,1,2,3,4,5,6,这样的数是自然数。
像-3,-2,-1,0,1,2,3,这样的数是整数。
2、我们只在自然数(零除外)范围内研究倍数和因数。
3、倍数与因数是相互依存的关系,要说清谁是谁的倍数,谁是谁的因数。
补充【知识点】:一个数的倍数的个数是无限的。
探索活动(一)2,5的倍数的特征【知识点】:1、2的倍数的特征。
个位上是0,2,4,6,8的数是2的倍数。
2、5的倍数的特征。
个位上是0或5的数是5的倍数。
3、偶数和奇数的定义。
是2的倍数的数叫偶数,不是2的倍数的数叫奇数。
4、能判断一个数是不是2或5的倍数。
能判断一个非零自然数是奇数或偶数。
补充【知识点】:既是2的倍数,又是5的倍数的特征。
个位上是0的数既是2的倍数,又是5的倍数。
探索活动(二)3的倍数的特征【知识点】:1、3的倍数的特征。
一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。
2、能判断一个数是不是3的倍数。
补充【知识点】:1、同时是2和3的倍数的特征。
个位上的数是0,2,4,6,8,并且各个数位上的数字的和是3的倍数的数,既是2的倍数,又是3的倍数。
2、同时是3和5的倍数的特征。
个位上的数是0或5,并且各个数位上的数字的和是3的倍数的数,既是3的倍数,又是5的倍数。
3、同时是2,3和5的倍数的特征。
个位上的数是0,并且各个数位上的数字的和是3的倍数的数,既是2和5的倍数,又是3的倍数。
找因数【知识点】:在1~100的自然数中,找出某个自然数的所有因数。
方法:运用乘法算式,思考:哪两个数相乘等于这个自然数。
补充【知识点】:一个数的因数的个数是有限的。
其中最小的因数是1,最大的因数是它本身。
找质数【知识点】:1、理解质数与合数的意义。
一个数只有1和它本身两个因数,这个数叫作质数。
一个数除了1和它本身以外还有别的因数,这个数叫作合数。
倍数因数知识点总结一、倍数的概念1、基本概念倍数是指一个数是另一个数的若干倍的关系。
换句话说,如果一个数a 能整除另一个数b,那么 b 是 a 的倍数。
例如,2 是 6 的倍数,因为 6 ÷ 2 = 3。
在这个例子中,6 是 2 的 3 倍。
而另一方面,6 也是 3 的倍数,因为 3 × 2 = 6。
2、倍数的特点(1)零是任何数的倍数,因为任何数乘以零都等于零。
(2)一个数一定是它自己的倍数。
(3)所有整数都有无限个倍数。
二、因数的概念1、基本概念因数是指能够整除一个数的数。
例如,4 的因数有 1、2、4,因为 1 乘以 4 等于 4,2 乘以2 等于 4。
2、因数的性质(1)一个数的因数一定包括这个数的所有正整数因数。
(2)1 不是任何数的因数,因为任何数除以 1 都得到它自己。
(3)一个数的因数不可能比这个数大。
三、倍数与因数的关系倍数和因数是密切相关的概念。
在数的整除关系中,一个数的因数就是它的约数,即能够整除这个数的数。
而这个数本身就是它的倍数。
因此,因数和倍数是数的整除关系的两个方面。
四、倍数和因数的应用倍数和因数的概念在数学中是非常重要的,它们往往是解决问题的基础。
在初中数学的教学中,倍数和因数的应用是非常广泛的,包括质因数分解、最大公因数与最小公倍数、约数的性质等等。
1、质因数分解质因数分解是指将一个正整数分解成若干个质数的乘积。
例如,60 = 2 × 2 × 3 × 5,这就是数 60 的质因数分解。
利用质因数分解可以简化计算、求素数因子、判断因数个数等问题。
2、最大公因数与最小公倍数最大公因数是指两个或多个整数公有的因数中最大的一个。
最小公倍数是指两个或多个整数公有的倍数中最小的一个。
最大公因数和最小公倍数在解决分数化简、约分、求同分母等问题时有着重要的应用。
3、约数的性质约数的性质包括约数的个数、约数的和等。
对于一个数,它的约数个数是有限的,且能被1 和自身整除。
五年级上册《倍数与因数》知识点归纳一、倍数的概念和性质1. 倍数的定义倍数是指一个数可以被另一个数整除,那么这个数就是另一个数的倍数。
### 2. 倍数的判断方法一个数乘以另一个数,如果结果是整数,则这个数是另一个数的倍数。
### 3. 特殊的倍数 #### a. 最小公倍数最小公倍数是指两个或多个数公有的最小倍数。
#### b. 不相邻数的倍数关系两个不相邻的数的倍数关系是指两个数之间所有的整数倍数的集合。
### 4. 倍数的性质 #### a. 倍数的自反性任何数都是它自己的倍数。
#### b. 倍数的传递性如果一个数是另一个数的倍数,而另一个数又是另一个数的倍数,则这个数也是后一个数的倍数。
二、因数的概念和性质1. 因数的定义因数是指能够整除一个数的数,这个数就是因数。
### 2. 因数的判断方法一个数除以另一个数,如果结果是整数,则这个数是另一个数的因数。
### 3. 特殊的因数 #### a. 最大公因数最大公因数是指两个或多个数公有的最大因数。
#### b. 因式分解将一个数按照质因数分解的形式表示。
### 4. 因数的性质 #### a. 因数的自反性任何数都是它自己的因数。
#### b. 因数的传递性如果一个数是另一个数的因数,而另一个数又是另一个数的因数,则这个数也是后一个数的因数。
三、倍数和因数的关系1. 倍数与因数的联系一个数既是另一个数的因数,又是另一个数的倍数。
### 2. 倍数与因数的共同性质倍数和因数都有自反性和传递性。
四、求解倍数和因数的方法1. 求解倍数的方法可以通过逐个乘以另一个数的方式来判断一个数是否是另一个数的倍数。
### 2. 求解因数的方法可以通过逐个除以另一个数的方式来判断一个数是否是另一个数的因数。
### 3. 求解最小公倍数的方法可以通过分解质因数的方法,然后找到最大的公共质因数,再将其相乘得到最小公倍数。
### 4. 求解最大公因数的方法可以通过分解质因数的方法,然后找到两个数共有的质因数中最大的一个,即最大公因数。
一、倍数1.倍数的概念:倍数是指一个数能够被另一个数整除,即能够被另一个数乘以一个整数得到的数。
2.判断一个数是另一个数的倍数的方法:如果一个数能够被另一个数整除,那么这个数就是另一个数的倍数。
3.倍数的性质:(1)0是任何数的倍数。
(2)一个数是它自己的倍数。
(3)任何数的正倍数都是正数,任何数的负倍数都是负数。
(4)任何数的倍数中,0是最小的倍数,无穷多个数是最大的倍数。
4.判断一个数是另一个数的倍数的方法:(1)如果一个数能够被另一个数整除,那么这个数就是另一个数的倍数。
(2)如果一个数是另一个数的倍数,那么这个数一定能够被另一个数整除。
5.求一个数的倍数的方法:(1)用这个数乘以一个整数,得到的结果就是这个数的倍数。
(2)如果一个数是另一个数的倍数,那么这个数乘以2、乘以3、乘以4...得到的结果也是这个数的倍数。
二、因数1.因数的概念:因数是指一个数能够整除另一个数,并且能够被另一个数整除。
2.判断一个数是另一个数的因数的方法:如果一个数能够被另一个数整除,那么这个数就是另一个数的因数。
3.因数的性质:(1)0是任何数的因数。
(2)一个数是它自己的因数。
(3)任何数的因数都是小于或等于它自己的数。
4.判断一个数是另一个数的因数的方法:(1)如果一个数能够被另一个数整除,那么这个数就是另一个数的因数。
(2)如果一个数是另一个数的因数,那么这个数一定能够被另一个数整除。
5.求一个数的因数的方法:(1)用这个数除以一个整数,如果能够整除,那么这个整数就是这个数的因数。
(2)如果一个数是另一个数的因数,那么这个数除以2、除以3、除以4...得到的结果也是这个数的因数。
三、倍数与因数的关系1.倍数与因数的关系:如果一个数是另一个数的倍数,那么另一个数一定是这个数的因数。
如果一个数是另一个数的因数,那么另一个数一定是这个数的倍数。
2.倍数与因数的性质:(1)如果一个数是另一个数的倍数,那么这个数的倍数中,0是最小的倍数,无穷多个数是最大的倍数。
倍数与因数公因数与公倍数——基本知识点1.倍数与因数1.1倍数:一个数a如果能够被另一个数b整除,那么a就是b的倍数。
例如,6是2的倍数,因为6能够被2整除。
1.2因数:对于一个数a来说,如果存在一些数b使得a能够被b整除,那么b就是a的因数。
例如,2是6的因数,因为6能够被2整除。
2.公因数与公倍数2.1公因数:对于两个数a和b来说,如果存在一些数c同时是a和b的因数,那么c就是a和b的公因数。
例如,4是8和12的公因数,因为4同时是8和12的因数。
2.2公倍数:对于两个数a和b来说,如果存在一些数c同时是a和b的倍数,那么c就是a和b的公倍数。
例如,24是8和12的公倍数,因为24同时是8和12的倍数。
3.公因数与公倍数的性质3.1公因数的性质:-任何一个数的因数都是它的公因数。
-0的所有因数都是任何一个数的公因数。
-两个数的公因数的集合中一定包含它们的最大公因数。
3.2公倍数的性质:-任何一个数的倍数都是它的公倍数。
-两个数的公倍数的集合中一定包含它们的最小公倍数。
4.最大公因数与最小公倍数4.1 最大公因数:对于两个数a和b来说,它们的最大公因数,记作gcd(a, b),是同时是a和b的因数中最大的一个数。
例如,gcd(8, 12) = 44.2 最小公倍数:对于两个数a和b来说,它们的最小公倍数,记作lcm(a, b),是同时是a和b的倍数中最小的一个数。
例如,lcm(8, 12) = 245.两个数的最大公因数与最小公倍数的关系对于两个数a和b来说,有以下关系成立:a *b = gcd(a, b) * lcm(a, b)6.公因数与公倍数的计算方法6.1公因数的计算方法:-可以将两个数的所有因数列举出来,然后找出它们的公因数。
-使用辗转相除法来计算最大公因数,具体步骤如下:-用较大的数除以较小的数,得到商和余数。
-若余数为0,则较小的数就是最大公因数。
-若余数不为0,则将较小的数作为被除数,余数作为除数,继续进行除法运算,直到余数为0为止。
倍数和因数知识点总结一、倍数的概念和性质1. 倍数的概念所谓倍数,就是一个数是另一个数的整数倍。
例如,6是3的倍数,因为6÷3=2,2是一个整数。
同样地,12是3的倍数,因为12÷3=4,4也是一个整数。
对于任何一个正整数a、b,如果存在整数n,使得a=n×b,那么我们就说a是b的倍数。
2. 倍数的性质(1)任何一个数都是自己的倍数。
(2)所有的正整数都是1的倍数。
(3)大于等于2的整数的倍数肯定大于它本身。
(4)一个数的倍数有无穷多个,因为只要不断地将这个数乘以正整数,就可以得到它的所有倍数。
二、因数的概念和性质1. 因数的概念所谓因数,就是一个数能够被另一个数整除得到的数。
例如,6的因数有1、2、3和6,因为6能够被1、2、3和6整除。
同样地,12的因数有1、2、3、4、6和12,因为12能够被1、2、3、4、6和12整除。
对于任何一个正整数a、b,如果存在整数n,使得a=b×n,那么我们就说b是a的因数。
2. 因数的性质(1)任何一个数都有1和它本身两个因数。
(2)一个数除以它自己得到的商是1。
(3)一个数的因数是有限的,因为不可能存在一个大于它一半的整数,使得它除以这个数得到的商是整数。
(4)一个数若能被另一个数整除,那么这个数也是那个数的因数。
(5)一个数的因数是有序的,即它们可以排成一个从小到大的序列。
三、倍数和因数的关系1. 倍数和因数的关系任何一个整数都有它的倍数,而任何一个正整数都可以看作是若干个不同的质数的乘积。
一个数的倍数是它本身的数和其他数的乘积,而它的因数是它本身和其他数的约数。
因此,倍数和因数是息息相关的,在数学中它们有着十分密切的联系。
2. 倍数和因数的应用在数学中,倍数和因数广泛应用于各个领域。
在初中数学的学习中,倍数和因数主要用于解决整数的整除性质问题,如最大公因数、最小公倍数、合数和素数等。
在实际生活中,倍数和因数也有着许多应用,如在排列组合、概率统计、化学计算等领域都有着重要的作用。
《倍数与因数》全章知识点总结倍数与因数是小学数学中的基础内容,是建立数学思维和逻辑推理能力的基础。
下面是关于倍数与因数的全章知识点总结。
1.倍数的概念:倍数是指一个数和另一个数的比值形成的商等于整数的数。
例如,4是8的倍数,因为8除以4的商等于2,而2是整数。
2.倍数的判定:判断一个数是否为另一个数的倍数,可以通过除法运算来判断。
如果除法的结果为整数,则该数是另一个数的倍数;如果除法结果不是整数,则该数不是另一个数的倍数。
3.倍数的性质:-0是任何数的倍数,因为任何数乘以0的结果都是0。
-任何数的倍数都是它的因数。
-一个数的倍数的个数是无穷多的,因为可以无限次地乘以这个数。
4.公倍数的概念:公倍数是指几个数公有的倍数。
例如,6和8的公倍数有24、48、72等。
其中,24是6和8的最小公倍数。
5.最小公倍数的求解:求两个数的最小公倍数的方法是利用它们的倍数之间的关系,通过倍数的递增,找到两个数的共同倍数,然后从中选择最小的那个数作为最小公倍数。
6.公倍数的性质:任何数与0的公倍数都是0。
任何数都是自己的公倍数,因为任何数乘以1等于它本身。
两个数的公倍数的个数是无穷多的,因为可以无限次地乘以这两个数。
7.因数的概念:因数是指一个数能够整除另一个数的数。
例如,4是8的因数,因为8除以4等于2,2是整数。
8.因数的判定:判断一个数是否为另一个数的因数,可以通过除法运算来判断。
如果除法的结果为整数,则该数是另一个数的因数;如果除法结果不是整数,则该数不是另一个数的因数。
9.因数的性质:任何数都是自身的因数,因为任何数除以自身的结果是1一个数的因数的个数是有限的,因为一个数的因数不能大于它本身。
10.公因数的概念:公因数是指几个数公有的因数。
例如,12和18的公因数有1、2、3、6,其中6是12和18的最大公因数。
11.最大公因数的求解:求两个数的最大公因数的方法是利用它们的公因数之间的关系,通过因数的递减,找到两个数的共同因数,然后从中选择最大的那个数作为最大公因数。
因数和倍数知识点归纳一、因数:1.定义:若整数a除以整数b,商为整数而没有余数,那么b就是a 的因数,同时a也是b的倍数。
2.性质:每个整数都有1和它本身作为因数,这两个因数称为它的“平凡因数”。
3.因数的表示:a.用数学符号表达:记作a,b(a能整除b),读作“a整除b”或“b能被a整除”。
b.用集合表示:将a的所有因数放在一对括号中,如{1,a}表示a的因数集合。
4.因数的判断:若a能整除b,则b是a的因数;若a能被b整除,则a是b的因数。
5.因数的个数:a.若n是一个合数(非素数),则它的因数个数一定大于2个。
b.若n是一个素数,它的因数只有1和它本身两个。
6.因数的性质:a.因数是整数,可以是正数、负数或零。
b.若x是y的因数,y是z的因数,则x也是z的因数。
7.因数的求法:a.可以通过试除法来求一个数的因数。
从2开始逐个试除,直到试除到该数的平方根为止。
b.可以通过质因数分解来求一个数的因数。
将该数分解为若干个质数的乘积,再根据乘法的交换律将质数分解表示的因数重新排列组合。
二、倍数:1.定义:若整数a除以整数b,商为整数,则a是b的倍数,b是a的约数。
2. 性质:对于任何整数a和正整数b,ab都是a的倍数,且ab/a=b。
3.倍数的表示:a.用数学符号表达:记作a∣b(a是b的倍数)。
b.用集合表示:将a的所有倍数放在一对括号中,如{a,2a,3a,...}表示a的倍数集合。
4.倍数的判断:若a是b的倍数,则b是a的因数。
5.最小公倍数(LCM):表示两个或多个数共有的最小倍数。
6.最大公约数(GCD):表示两个或多个数共有的最大因数。
三、公约数和公倍数:1.公约数:两个或多个数同时能够整除的因数,称为公约数。
a.公约数的求法:通过分别求出两个或多个数的因数集合,找出它们的交集即为它们的公约数。
b.公约数的性质:若a是b的公约数,而b是c的公约数,则a也是c的公约数。
2.公倍数:两个或多个数同时是另一个数的倍数,称为公倍数。
一.自然数自然数:像0、1、2、3、4、5、6……这样的数是自然数。
最小的自然数是0,没有最大的自然数。
二.倍数和因数的特征1.我们只在自然数(0除外)范围内研究倍数和因数。
2.倍数与因数是相互依存的。
没有倍数就不存在因数,没有因数就不存在倍数。
不能单独说一个数是倍数或因数。
3.一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
4.一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
5.倍和倍数的区别:“倍”和倍数”不一样,“倍”可以适用于小数,分数,整数;而倍数相对因数而言,只能适用于(不为0)的自然数。
6.口诀:因数和倍数,单独不存在。
互相来依靠,永远不分开。
列举找因数,相乘找倍数。
因数能数清,倍数数不清。
例:(1)请找出12的全部因数。
(2)请写出20以内6的倍数。
12=1×12 1×6=612=2×6 2×6=1212=3×4 3×6=1812的全部因数是:1,2,3,4,6,12。
20以内6的倍数有:6,12,18...三.倍数特征2的倍数特征:个位上是0,2,4,6或8的数。
5的倍数的特征:个位上是0或5的数。
3(或9)的倍数特征:一个数各个数位上的数字之和是3(或9)的倍数。
2和5的倍数特征:个位上是0的数。
2和3的倍数特征:个位上是0,2,4,6或8且各个数位上的数字之和是3的倍数的数。
3和5的倍数特征:个位上是0或5且各个数位上的数字之和是3的倍数的数。
2,3和5的倍数特征:个位上是0且各个数位上的数字之和是3的倍数的数。
同时是2、3的倍数的最小两位数是102.同时是2、3、5的倍数的最小两位数是30,最大两位数是90,最小三位数是120,最大三位数是990四.质数与合数的意义自然数按因数的个数分为:质数、合数、1、0四类。
质数:一个数只有1和它本身两个因数的数。
合数:一个数除了1和它本身以外还有别的因数的数。
《倍数与因数》全章知识点总结自然数和整数:整数包括(正整数、0、负整数)像-3、-2、-1、0、1、2、3……这样的数是整数。
没有最大最小的整数。
自然数 (正整数、0):像0、1、2、3、4、5、6……这样的数是自然数。
最小的自然数是0,没有最大的自然数。
倍数和因数的特征:1:我们只在自然数(零除外)范围内研究倍数和因数。
2:倍数与因数是相互依存的。
没有倍数就不存在因数,没有因数就不存在倍数。
不能单独说一个数是倍数或因数。
3:一个数的倍数的个数是无限的,最小的是它本身,没有最大的倍数。
4:一个数的因数的个数数有限的,最小的因数是1,最大的因数是它本身。
例:a × b = c ( a、b、c是不为0的自然数),那么a、 b就是c的因数,c是a、 b的倍数。
除法算式辨别因数和倍数,被除数是除数和商的倍数。
除数和商是被除数的因数。
倍和倍数的区别:“倍”的概念比“倍数”要广,“倍”可以适用于小数,分数,整数;而倍数相对因数而言,只能适用于(不为0)的自然数。
口诀:因数和倍数,单独不存在。
互相来依靠,永远不分开。
枚举找因数,相乘找倍数。
因数能数清,倍数数不清。
从小到大成双成对直到重复重复一次倍数特征:2的倍数特征:个位上是0,2,4,6或8的数。
3(或9)的倍数特征:一个数各个数位上的数之和是3(或9)的数。
5的倍数的特征:个位是0或5的数。
既是2的倍数又是5的倍数特征:个位是0既是2的倍数又是3的倍数特征:个位是0、2、4、6、8并且各位数字之和是3的倍数既是3的倍数又是5的倍数特征;个位是0或5且各位数字之和是3的倍数同时是2、3、5的倍数特征:个位是0且各位数字之和是3的倍数4(或25)的倍数的特征:一个数末2位是4(或25)的倍数的数。
例如:124、1258(或125)的倍数的特征:一个数末3位是8(或125)的倍数。
例如:1104、11252 质数与合数的意义:质数(素数):一个数只有1和它本身两个因数的数。
倍数与因数知识点总结一、倍数的概念与性质1.定义:一个整数a能被另一个整数b整除,那么a就是b的倍数。
简单来说,如果一个数能够除尽另一个数,那么这个数就是另一个数的倍数。
2.性质:(1)一个数是自身的倍数,即任何整数a都是a的倍数。
(2)0是任何整数的倍数,因为任何整数除以0的结果都是无意义的。
(3)如果b是a的倍数,那么a一定是b的因数,即a能整除b。
(4)如果一个数是两个数的倍数,那么它一定是这两个数的公倍数。
(5)最小公倍数(简称LCM)是两个数的共有倍数中最小的一个。
二、因数的概念与性质1.定义:一个整数a除以另一个整数b得到的商不为零,那么a就是b的倍数,b就是a的因数。
简单来说,如果一个数能够整除另一个数,那么这个数就是另一个数的因数。
2.性质:(1)一个数是自身的因数,即任何整数a都是a的因数。
(2)1是任何整数的因数,因为任何整数除以1的结果都是自身。
(3)如果a是b的因数,那么b一定是a的倍数,即a能整除b。
(4)一个数的因数中,最大的因数是它本身。
(5)最大公因数(简称GCD)是两个数的共有因数中最大的一个。
三、倍数与因数的关系1.如果一个数a是另一个数b的倍数,那么b肯定是a的因数;反之,如果一个数a是另一个数b的因数,那么a肯定是b的倍数。
举例说明:4是12的因数,12是4的倍数。
10是50的倍数,50是10的因数。
因此,倍数与因数是相互关联的,它们互为转换关系。
2.找倍数与找因数的方法(1)找倍数:如果要找一个数的倍数,可以将这个数乘以任意整数。
(2)找因数:如果要找一个数的因数,可以将这个数除以任意整数。
四、倍数与因数的运算技巧1.找公倍数的方法:(1)将两个数分别列出其倍数,然后找出共有的倍数,其中最小的一个就是它们的最小公倍数。
(2)如果需要求多个数的最小公倍数,可以依次求两个数的最小公倍数再与下一个数求最小公倍数,直至求出所有数的最小公倍数。
2.找公因数的方法:(1)找出两个数的因数分别列出,然后找出它们的共有因数,其中最大的一个就是它们的最大公因数。
1、倍数和因数是相互依存的关系,即甲数是乙数的倍数,那么乙数必定是甲数的因数。
2、一个数最小的倍数是它本身,没有最大的倍数。
一个数的倍数的个数是无限的。
一个数最小的因数是1,最大的因数是它本身。
一个数的因数的个数是有限的。
3、5的倍数的特征:个位上的数是5或0。
2的倍数的特征:个位上的数是2、4、6、8、0。
3的倍数的特征:各位上的数字之和是3的倍数。
拓展:9的倍数的特征:各位上的数字之和是9的倍数。
能同时被2和5整除的数,个位上一定是0。
4、是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。
5、只有1和它本身两个因数的数叫质数。
除了1和它本身还有别的因数,这样的数叫合数。
1既不是质数,也不是合数。
6、三个连续自然数的和一定是3的倍数。
三个连续偶数的和一定是3的倍数。
三个连续奇数的和一定是3的倍数。
7、一个数是2的倍数,又是3的倍数,这个数一定是6的倍数。
8、20以内的质数有:2、3、5、7、11、13、17、19。
20以内的合数有:4、6、8、9、10、12、14、15、16、18、20。
20以内连续的合数有:8、9、10和14、15、16。
2是最小的质数,4是最小的合数。
20以内是合数但不是偶数的数有:9和15。
2是质数又是偶数。
9、自然数按因数的个数可以分为1、质数和合数。
自然数按是否能被2整除可以分为奇数和偶数。
一. 整数和自然数整数(包括正整数、0、负整数):像-3、-2、-1、0、1、2、3……这样的数是整数。
没有最大或最小的整数。
自然数 (包括正整数、0):像0、1、2、3、4、5、6……这样的数是自然数。
最小的自然数是0,没有最大的自然数。
整数的分类正整数:1、2、3、4、5……整数 0负整数:……-4、-3、-2、-1二. 倍数和因数的特征1.我们只在自然数(零除外)范围内研究倍数和因数。
2.倍数与因数是相互依存的。
没有倍数就不存在因数,没有因数就不存在倍数。
不能单独说一个数是倍数或因数。
要说清谁是谁的倍数,谁是谁的因数。
3.一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
4.一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
1是任何非零自然数的因数。
例如:a 的最小因数是1,a 的最大因数是a ,a 的最小倍数是a ,a 没有最大的倍数,a 的因数个数是有限的,a 的倍数个数是无限的例:a × b = c ( a 、b 、c 是不为0的自然数),那么a 、 b 就是c 的因数,c 是a 、 b 的倍数。
除法算式辨别倍数和因数:被除数是除数和商的倍数,除数和商是被除数的因数。
自然数5.倍和倍数的区别:“倍”的概念比“倍数”要广,“倍”可以适用于小数,分数,整数;而倍数相对因数而言,只能适用于(不为0)的自然数。
6.口诀:因数和倍数,单独不存在。
互相来依靠,永远不分开。
枚举找因数,相乘找倍数。
因数能数清,倍数数不清。
例:(1)请找出12的全部因数。
(2)请写出20以内6的倍数。
12=1×12 1×6=612=2×6 2×6=1212=3×4 3×6=18 12的全部因数是:1,2,3,4,6,12。
20以内6的倍数有:6,12,18。
三.倍数特征2的倍数特征:个位上是0,2,4,6或8的数。
《倍数与因数》全章知识点总结
自然数和整数:整数包括(正整数、0、负整数)像-3、-2、-1、0、1、2、3……这样的数是整数。
没有最大最小的整数。
自然数 (正整数、0):像0、1、2、3、4、5、6……这样的数是自然数。
最小的自然数是0,没有最大的自然数。
倍数和因数的特征:
1:我们只在自然数(零除外)范围内研究倍数和因数。
2:倍数与因数是相互依存的。
没有倍数就不存在因数,没有因数就不存在倍数。
不能单独说一个数是倍数或因数。
3:一个数的倍数的个数是无限的,最小的是它本身,没有最大的倍数。
4:一个数的因数的个数数有限的,最小的因数是1,最大的因数是它本身。
例:a × b =c ( a、b、c是不为0的自然数),那么a、 b就是c的因数,c是a、 b的倍数。
除法算式辨别因数和倍数,被除数是除数和商的倍数。
除数和商是被除数的因数。
倍和倍数的区别: “倍”的概念比“倍数”要广,“倍”可以适用于小数,分数,整数;而倍数相对因数而言,只能适用于(不为0)的自然数。
口诀:因数和倍数,单独不存在。
互相来依靠,永远不分开。
枚举找因数,相乘找倍数。
因数能数清,倍数数不清。
从小到大成双成对直到重复重复一次
倍数特征:
2的倍数特征:个位上是0,2,4,6或8的数。
3(或9)的倍数特征:一个数各个数位上的数之和是3(或9)的数。
5的倍数的特征:个位是0或5的数。
既是2的倍数又是5的倍数特征:个位是0
既是2的倍数又是3的倍数特征:个位是0、2、4、6、8并且各位数字之和是3的倍数
既是3的倍数又是5的倍数特征;个位是0或5且各位数字之和是3的倍数
同时是2、3、5的倍数特征:个位是0且各位数字之和是3的倍数
4(或25)的倍数的特征:一个数末2位是4(或25)的倍数的数。
例如:124、125
8(或125)的倍数的特征:一个数末3位是8(或125)的倍数。
例如:1104、1125
2 质数与合数的意义:
质数(素数):一个数只有1和它本身两个因数的数。
如 2、3、5 、7 合数:一个数除了1和它本身以外还有别的因数的数。
4、6、8、10
1既不是质数也不是合数。
质数除了2以外都是奇数。
100以内质数口诀
一位质数偶打头,2、3、5、7要记熟;(2、3、5、7)
两位质数不用愁,可以编成顺口溜。
十位若是4和1,个位准有1、3、7;(41、43、47、11、13、17)
十位若是2、5、8,个位3、9往上加;(23、29、53、59、83、89)
十位若是3和6,个位1、7跟在后;(31、37、61、67)
十位若是被7占,个位准是1、9、3;(71、79、73)
1997在最后。
(19、97
100以内的质数:2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
数的奇偶数:奇数:不是2的倍数的数叫奇数,奇数的个位数字一定是1、3、5、7、9。
偶数:是2的倍数的数叫偶数,偶数个位数字是0、2、4、6、8的数。
0是偶数
相临两个自然数之和为奇数,相临自然数之积为偶数。
0是偶数
偶数用2a表示、奇数用2a+1表示
(同名的偶)偶数±偶数=偶数奇数±奇数=偶数奇数±偶数=奇数
(有偶的偶)偶数×偶数=偶数奇数×奇数=奇数奇数×偶数=偶数
求最大公因数和最小公倍数方法
公因数、最大公因数
(1)、几个数公有的因数叫这些数的公因数。
其中最大的那个就叫它们的最大公因数。
例:6的因数有:1,6,2,3;8的因数有:1,8,2,4,所以6和8个公因数有1、2。
其中2就是6个8的最大公因数。
(2)、用短除法求两个数或三个数的最大公因数(除到互质为止,把所有的除数连乘起来)例:求24和18的最大公因数
注:①几个数的公因数只有1,就说这几个数互质。
②如果两数是倍数关系时,那么较小的数就是它们的最大公因数。
③如果两数互质时,那么1就是它们的最大公因数。
公倍数、最小公倍数
(1)、几个数公有的倍数叫这些数的公倍数。
其中最小的那个就叫它们的最小公倍数。
例:求3和6的最小公倍数
分析:3的倍数有:3×1=1,3×2=6,3×3=9……;6的倍数有:6×1=6,6×2=12……
由此发现,3和6的倍数中第一个公共出现的是6,所以6是它们的最小公倍数。
(2)、用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。
如果两数互质时,那么它们的积就是它们的最小公倍数。
的最小公倍数
例:求24和18
用12和16来举例
(1)、求法一:(列举求同法)
最大公因数的求法:
12的因数有:1、12、2、6、3、4
16的因数有:1、16、2、8、4
最大公因数是4
最小公倍数的求法:
12的倍数有:12、24、36、48、…
16的倍数有:16、32、48、…
最小公倍数是48
(2)、求法二:(分解质因数法)
12=2×2×3
16=2×2×2×2
最大公因数是:2×2=4 (相同乘)
最小公倍数是:2×2 × 3×2×2= 48 (相同乘× 不同乘)(3)、求法三:(前面所讲到的短除法)。