工程力学第03节 惯性矩的平行移轴公式
- 格式:ppt
- 大小:412.50 KB
- 文档页数:6
材料力学平行移轴公式
材料力学平行移轴公式是指,在研究杆件(也可以是板件、壳体、筏板等)的受力、变形及稳定性时,如果一个平行于某一轴线的受力系统在该轴线上的合力为零,则可以通过平移该受力系统,将其作用点移到该轴线上,不影响杆件的静力平衡和变形,即满足等效原理,从而用该轴线作为该杆件的平移轴线。
在材料力学中,平行移轴公式应用广泛,特别是在弹性力学的应用中很常见。
根据平行移轴公式,如果一个杆件受到的作用力在某一轴线上的合力为零,那么这个杆件就可以在该轴线上进行平移,移动的距离可以确定为受力系统到该轴线距离的乘积除以作用在某一点上的合力,即:
s = (M/V) * r
其中,s代表杆件平移的距离,M代表作用在轴线上的合力矩,V 代表轴线上的截面积,r代表受力系统到轴线的距离。
通过这个公式,可以比较方便地计算出杆件的平移距离。
需要注意的是,平移轴线要求在平移前后,杆件的受力状态和形状是不变的。
如果平移后,杆件的受力状态和形状发生了变化,就不能使用平移轴公式计算了。
总之,平行移轴公式在材料力学中具有重要的作用,特别是在弹性力学的应用中,可以方便地计算杆件的平移距离,为分析各种力学问题提供了有力的支持。
第1节静矩和形心4.1静矩和形心任何受力构件的承载能力不仅与材料性能和加载方式有关.而口与构件截面的几何形状和尺寸有关.如:计算杆的拉伸与压缩变形时用到截面而积A ,计算圆轴扭转变形时用到横截面的极惯性矩I?等.A、1?等是从不同角度反映了截而的几何特性,因此称它们为截而图形的几何性质.4.1静矩和形心设有一任意截而图形如图4 一1所示,其面积为A .选収直角坐标系yoz ,在坐标为(y,z)处取一微小而积dA ,定义微而积dA乘以到y轴的距离z ,沿整个截面的积分,为图形对y轴的静矩S?,其数学表达式(4 -la )同理,图形对z轴的静矩为□4-1图41截面静矩与坐标轴的选取有关•它随坐标轴y、z的不同而不同.所以静矩的数值可能足正,也可能足负或定零.静矩的虽纲为长度的三次方.确定截面图形的形心位置(图4-1中C点):A (4-2b)第1页共30页式中T、"为截而图形形心的坐标值.若把式(4-2)改写成心"•儿,為"•乙(4 3)性质:・若截面图形的静矩等于零,则此坐标轴必定通过截面的形心.・若坐标轴通过截而形心,则截而对此轴的静矩必为零.・山于截而图形的对称轴必定通过截而形心,故图形对其对称轴的静矩恒为零。
4 )工程实际中,有些构件的截面形状比较复杂,将这些复杂的截面形状看成是山若干简单图形(如矩形、圆形等)组合g而成的.对于这样的组合截而图形,计算静矩(S»‘ r)与形心坐标(y*、z ')时,可用以下公式1-1 2-1式中A— y i , z i分别表示第,个简单图形的面积及其形心坐标值,n为组成组合图形的简单图形个数.即:组合图形对某一轴的静矩等于组成它的简单图形对同一轴的静矩的代数和.组合图形的形心坐标值等于组合图形对相应坐标轴的静矩除以组合图形的面积.组合截面图形有时还可以认为是山一种简单图形减去另一种简单图形所组成的.例4J己知T形截面尺寸如图4-2所示,试确定此截面的形心坐标值.i-1 i-1 (4-5)图4-2解:(1)选参考轴为y 轴,z 轴为对称轴,(2)将图形分成I 、口两个矩形,则= 20 x 100加朋 S 右=(10 + 140)^^34 = 2Q X 14%/,22 二注型(3)代入公式(4・5)20x100x150+20x140x70 20x100 + 20x140此=°4.2惯性矩、惯性积和惯性半径设任一截面图形(图4-3),其而积为A ・选取直角坐标系yoz ,在坐标为(y 、z)处取一微小面积dA ,定义此微2面积dA 乘以到坐标原点o 的距离的平方Q ,沿整个截面积分,为截而图形的极惯性矩I?.做而积dA 乘以到坐标轴y 的2距离的平方2 ,沿整个截而积分为截面图形对y 轴的惯性矩I 》•极惯性矩、惯性矩常简称极惯矩、惯矩.j.l ~2Z4数学表达式为打=f p^dA极惯性矩“俎(4-6)对y轴惯性矩图4-3山图4-3看到“ =y +Z 9所以有打=\A^dA= £cy2 +/)曲二必+加必即;? (4-8)式(4-8)说明截面对任一对正交轴的惯性矩之和恒等于它对该两轴交点的极惯性矩。
平行轴定理公式
平行轴定理公式是力学中的一个基本公式,它描述了同一物体绕不同轴旋转时转动惯量的关系。
它表明,对于一个质量为m的刚体,绕距离为R的平行轴旋转的转动惯量I和绕通过质心的轴旋转的转动惯量I0之间有如下关系:
I = I0 + mR²
其中,I0是绕通过质心轴旋转的转动惯量,m是物体的质量,R是距离质心的平行轴距离。
平行轴定理公式的应用非常广泛。
在机械制造、物理学、工程学等领域中,经常使用这一公式来计算刚体的转动惯量。
了解平行轴定理公式的应用可以帮助我们更好地理解物体的旋转运动,为实际问题的解决提供更为科学的方法和工具。
平行移轴公式
平行移轴公式
同一平面内对所有相互平行的坐标轴的惯性矩,对形心轴的最小。
定义/平行移轴公式编辑
由于同一平面图形对于相互平行的两对直角坐标轴
或惯性积并不相同,如果其中一对轴是图形
(A
证明:
图形微面积dA在y,z坐标系中的位置可以表示为(y c+a , z c+b),则
I z= ∫A y2dA= ∫A(a2+2ay c+y c2)dA=a2A+2aS z+I zc
其中S z为图形对形心轴的静矩,其值应等于零,则得
I z= I zc+ Aa2
同理可证图中的其它两式。
结论:从平行移轴公式中可以看出,图形对形心轴的惯性矩最小。
另外,在使用惯性积移轴公式时应注意 a ,b 的正负号。
惯性矩的计算方法及常用截面惯性矩计算公式 截面图形的几何性质一.重点及难点:(一).截面静矩和形心1•静矩的定义式如图1所示任意有限平面图形,取其单元如面积 dA ,定义它对任意轴的 一次矩为它对该轴的静矩,即dS y =xdA dSx 二 ydA整个图形对y 、z 轴的静矩分别为S y = AXdA(I )Sx ydA、A2. 形心与静矩关系设平面图形形心C 的坐标为y C , z CS xSyy - , x( I-2)AA推论1如果y 轴通过形心(即x = 0),则静矩S y =0 ;同理,如果x 轴 通过形心(即y = 0),则静矩Sx=o ;反之也成立。
推论2如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果 y 轴为图形对称轴,贝昭形形心必在此轴上。
3. 组合图形的静矩和形心设截面图形由几个面积分别为 A,A 2,A3……A n 的简单图形组成,且一直 各族图形的形心坐标分别为 丘局乂2*2;壬3,『3"…=,则图形对y 轴和x 轴 的静矩分别为图I-1则 0S y = " S yi = 'Ai Xii 4 i 4nnS x = ' S xi = 'A i y ii 4i 4截面图形的形心坐标为、' A i X i4. 静矩的特征(1)界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。
(2)静矩有的单位为m 3(3)静矩的数值可正可负,也可为零。
图形对任意形心轴的静矩必定 为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。
⑷ 若已知图形的形心坐标。
则可由式(1-1)求图形对坐标轴的静矩。
若已知图形对坐标轴的静矩,则可由式(1-2)求图形的形心坐标。
组 合图形的形心位置,通常是先由式(1-3)求出图形对某一坐标系的静 矩,然后由式(1-4)求出其形心坐标。
(二)■惯性矩惯性积惯性半径1. 惯性矩定义 设任意形状的截面图形的面积为 A (图I-3),则图形对0点的极 惯性矩定义为 I p = A'2dA(1-5)图形对y 轴和x 轴的光性矩分别定义为 I y 「A X 2dA , I x 「A y 2dA ( I-6)惯性矩的特征(1)界面图形的极惯性矩是对某一极点定义的; 轴惯性矩是对某一坐 标轴定义的。
惯性矩总结(含常用惯性矩公式)惯性矩总结(含常用惯性矩公式)惯性矩是描述物体对旋转运动惯性性质的物理量。
它们在工程、物理学和机械设计等领域中起着非常重要的作用。
本文将对惯性矩进行总结,并介绍一些常用的惯性矩公式。
一、惯性矩的定义惯性矩又称为转动惯量或转动惯性矩,用符号I表示。
惯性矩描述了物体对于绕特定轴线旋转的难易程度。
它与物体的质量分布和轴线的位置有关。
对于一个质量分布均匀的物体,其惯性矩可以通过对质量元素的微小体积进行积分来计算。
二、常用惯性矩公式1. 刚体绕轴线旋转的惯性矩对于一个刚体绕轴线旋转,其惯性矩可以表示为:I = ∫r^2dm其中,r是质量元素到轴线的距离,dm是质量元素的微小质量。
2. 常见几何形状的惯性矩公式常见几何形状的惯性矩公式如下:- 环状物体绕其对称轴的惯性矩公式:I = (mR^2)/2其中,m是环状物体的质量,R是环的半径。
- 圆盘绕其对称轴的惯性矩公式:I = (mR^2)/4其中,m是圆盘的质量,R是圆盘的半径。
- 长棒绕其一端垂直轴的惯性矩公式:I = (mL^2)/3其中,m是长棒的质量,L是长棒的长度。
- 长方体绕通过其质心轴的惯性矩公式:I = (m(a^2 + b^2))/12其中,m是长方体的质量,a和b分别是长方体的两个相邻边的长度。
3. 复杂形状的惯性矩公式对于一些复杂的形状,可以利用积分来计算其惯性矩。
例如,对于一个半径为R的圆柱体,其绕通过其质心轴的惯性矩可以表示为:I = (mR^2)/2 + ∫(r^2 - R^2)dm其中,r是圆柱体内任意一点到轴线的距离。
三、应用举例惯性矩广泛应用于工程和物理学中的各种问题。
例如,在机械设计中,惯性矩用于计算旋转部件的稳定性和旋转惯量。
在物理学中,惯性矩用于描述刚体的转动运动和角动量。
以机械工程为例,当设计一个旋转的零件时,需要计算其惯性矩,以确定所需要的力矩和加速度。
同时,惯性矩也可以用来评估旋转零件的稳定性。
惯性矩是一个物理量,通常被用作描述一个物体抵抗扭动,扭转的能力。
惯性矩的国际单位为(m^4)。
工程构件典型截面几何性质的计算2.1面积矩1.面积矩的定义图2-2.1任意截面的几何图形如图2-31所示为一任意截面的几何图形(以下简称图形)。
定义:积分和分别定义为该图形对z轴和y轴的面积矩或静矩,用符号S z和S y,来表示,如式(2—2.1)(2—2.1)面积矩的数值可正、可负,也可为零。
面积矩的量纲是长度的三次方,其常用单位为m3或mm3。
2.面积矩与形心平面图形的形心坐标公式如式(2—2.2)(2—2.2)或改写成,如式(2—2.3)(2—2.3)面积矩的几何意义:图形的形心相对于指定的坐标轴之间距离的远近程度。
图形形心相对于某一坐标距离愈远,对该轴的面积矩绝对值愈大。
图形对通过其形心的轴的面积矩等于零;反之,图形对某一轴的面积矩等于零,该轴一定通过图形形心。
3.组合截面面积矩和形心的计算组合截面对某一轴的面积矩等于其各简单图形对该轴面积矩的代数和。
如式(2—2.4)(2—2.4)式中,A和y i、z i分别代表各简单图形的面积和形心坐标。
组合平面图形的形心位置由式(2—2.5)确定。
(2—2.5)2.2极惯性矩、惯性矩和惯性积1.极惯性矩任意平面图形如图2-31所示,其面积为A。
定义:积分称为图形对O点的极惯性矩,用符号I P,表示,如式(2—2.6)(2—2.6)极惯性矩是相对于指定的点而言的,即同一图形对不同的点的极惯性矩一般是不同的。
极惯性矩恒为正,其量纲是长度的4次方,常用单位为m4或mm4。
(1)圆截面对其圆心的极惯性矩,如式(2—7)(2—2.7)(2)对于外径为D、内径为d的空心圆截面对圆心的极惯性矩,如式(2—2.8)(2—2.8)式中,d/D为空心圆截面内、外径的比值。
2.惯性矩在如图6-1所示中,定义积分,如式(2—2.9)(2—2.9)称为图形对z轴和y轴的惯性矩。
惯性矩是对一定的轴而言的,同一图形对不同的轴的惯性矩一般不同。
惯性矩的计算方法及常用截面惯性矩计算公式截面图形的几何性质一.重点及难点:(一).截面静矩和形心1.静矩的定义式如图1所示任意有限平面图形,取其单元如面积dA ,定义它对任意轴的一次矩为它对该轴的静矩,即ydAdSx xdAdS y == 整个图形对y 、z 轴的静矩分别为⎰⎰==AAy ydASx xdAS (I-1) 2.形心与静矩关系 图I-1设平面图形形心C 的坐标为C C z y , 则 0A S y x=, AS x y = (I-2) 推论1 如果y 轴通过形心(即0=x ),则静矩0=y S ;同理,如果x 轴通过形心(即0=y ),则静矩0=Sx ;反之也成立。
推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果y 轴为图形对称轴,则图形形心必在此轴上。
3.组合图形的静矩和形心设截面图形由几个面积分别为n A A A A ⋯⋯321,,的简单图形组成,且一直各族图形的形心坐标分别为⋯⋯332211,,,y x y x y x ;;,则图形对y 轴和x 轴的静矩分别为∑∑∑∑========ni ni ii xi x ni ii n i yi y y A S S x A S 1111S (I-3)截面图形的形心坐标为∑∑===ni ini ii AxA x 11 , ∑∑===ni ini ii AyA y 11 (I-4)4.静矩的特征(1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。
(2) 静矩有的单位为3m 。
(3) 静矩的数值可正可负,也可为零。
图形对任意形心轴的静矩必定为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。
(4) 若已知图形的形心坐标。
则可由式(I-1)求图形对坐标轴的静矩。
若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形心坐标。
组合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静矩,然后由式(I-4)求出其形心坐标。