浙大版_普通化学第六版知识点归纳
- 格式:ppt
- 大小:628.00 KB
- 文档页数:27
普通化学知识点总结一.气体液体和固体1.气体状态方程(1)状态变量:温度,体积,压强,密度,黏度,折射率,热的传导率等,各物理量之间并非完全独立。
(2)理想气体状态方程:,或,其中R=8.314 J/(mol·K)模型化条件:气体分子本身(相对于其间距)大小可以忽略;分子间不存在相互作用。
适用范围:高温(接近或高于室温)低压(接近或低于1个大气压)气体。
(3)道尔顿分压定律:p=p(A)+p(B),或者p(A)=p·y(A),其中y(A)=n(A) /n(4)真实气体状态方程:通过实验测量,总结出许多适用于不同气体的状态方程,最具代表性的是范德华方程:(²)()理解:²项是分子间作用力对压强的增加量,与摩尔体积成平方反比关系;b是扣去气体分子本身体积的大小。
此外还有维里方程:其中B、C、D分别称作第二,第三,第四维里系数,与气体本性有关,是温度的函数。
2.气体的液化(1)相与相变:(物)相是物理性质与化学性质一致的宏观分子聚集体。
相变是物质从一种相(中间经历复相系)转变成另一种相的过程。
例如:混合均匀的不同气体或液体是单相系,水和油共存(不能混合)属于复相系,水在低温下的六种结晶态分属于不同的六种相。
气体等温压缩(准静态变化且未产生液体)前后两个状态属于两种相,但该过程不属于相变化。
(2)CO2等温压缩曲线(2)液体热胀冷缩,随着T增大,增大(3)温度升高时,气液共存时的蒸汽压(即超临界状态:温度超过临界温度,压力超过临界压力的状态。
特点:①分子间距很小,与通常液体相近,可作溶剂。
②同时具备液体高密度和气体低黏度的特性,物质在其中扩散很快。
因此,超临界流体对于许多化学物质具有很强的溶解性。
应用:(超临界萃取)用超临界状态的流体,溶出植物原料中的有用化学成分(香精、天然药用成分等);当压力和温度恢复到常温常压时,超临界流体变成普通状态的气体而离去,只留下所需的化学成分。
普通化学知识点总结1. 化学基本概念1.1 物质的组成和分类物质是构成世界的基本实体,由原子、分子、离子等组成。
物质可分为纯净物和混合物。
纯净物又可分为元素和化合物。
元素是由同种原子组成的纯净物,化合物是由两种或两种以上不同元素组成的纯净物。
1.2 化学反应化学反应是物质在原子、离子或分子层面上发生原子或离子重新组合,形成新物质的过程。
化学反应遵循质量守恒定律、能量守恒定律和电荷守恒定律。
1.3 化学平衡化学平衡是指在封闭系统中,正反两个化学反应的速率相等,各种物质的浓度保持不变的状态。
化学平衡常数K表示平衡时反应物和生成物的浓度比。
2. 化学计量学2.1 摩尔概念摩尔是物质的量的单位,表示含有一定数目粒子的集体。
1摩尔粒子数为阿伏伽德罗常数,约为6.02×10^23。
2.2 化学方程式化学方程式表示化学反应的类型、反应物、生成物及反应条件。
化学方程式遵循质量守恒定律和电荷守恒定律。
2.3 摩尔计算摩尔计算涉及物质的量、质量、体积、浓度等之间的关系。
通过摩尔计算,可以确定化学反应中反应物和生成物的量。
3. 元素周期表与元素周期律3.1 元素周期表元素周期表是按照原子序数递增排列元素的科学工具,反映了元素的周期性变化规律。
元素周期表包含七个周期、十六个族。
3.2 元素周期律元素周期律是指元素性质随着原子序数递增而呈周期性变化的规律。
元素周期律包括原子半径、离子半径、电负性、金属性和非金属性等周期性变化。
4. 化合物与化学键4.1 化合物类型化合物可分为离子化合物、共价化合物和金属化合物。
离子化合物由正负离子通过离子键结合而成;共价化合物由共用电子对形成共价键的分子组成;金属化合物由金属原子通过金属键结合而成。
4.2 化学键化学键是原子间强烈的相互作用力。
化学键包括离子键、共价键、金属键和氢键等。
5. 溶液与浓度5.1 溶液溶液是由溶剂和溶质组成的均匀稳定的分散体系。
溶液的性质取决于溶剂和溶质的相互作用。
普通化学知识点整理第1章热化学与能量1.几个基本概念1)系统:作为研究对象的那一部分物质和空间a.开放系统:有物质和能量交换 b.封闭系统:只有能量交换 c.隔离系统:无物质和能量交换2)环境:系统之外,与系统密切联系的其它物质和空间3)相:系统中任何物理和化学性质完全相同的、均匀部分——单相(均匀),多相(不均匀)注意:一个气态(固体)一个相;液体,若相溶,一个相,若不相溶,几种液体,几个相同一物质不同状态就是不同相;碳元素同素异形体不同相4)状态:用来描述系统;状态函数:描述系统状态(如pV=nRT)5)状态函数的性质:状态函数是状态的单值函数;当系统的状态发生变化时,状态函数的变化量只与系统的始、末态有关,而与变化的实际途径无关6)状态函数的分类:广度性质:其量值具有加和性,如体积、质量,热容,焓,熵等强度性质:其量值不具有加和性,如温度、压力,密度,摩尔体积等两个广度性质的物理量的商是一个强度性质的物理量7)过程:系统状态发生任何的变化VS 途径:实现一个过程的具体步骤8)化学计量数其中νB 称为B的化学计量数(根据具体的反应式子系数)反应物:νB为负;产物:νB为正9)反应进度ξ:反应进度只与化学反应方程式的书写有关2.反应热:化学反应过程中系统放出或吸收的热量;热化学规定:系统放热为负,系统吸热为正注意:摩尔反应热指当反应进度为1mol时系统放出或吸收的热量3.热效应:等容热效应(弹式量热计);等压热效应(火焰热量计)q=ΔU q p= ΔU + p(V2–V1)V反应热:(两种液体时比热容不同需分开,注意比热单位)摩尔反应热:4.热化学方程式:表示化学反应与热效应关系的方程式注意:先写出反应方程,再写出相应反应热,两者之间用分号或逗号隔开若不注明T, p, 皆指在T=298.15 K,p=100kPa下标明反应温度、压力及反应物、生成物的量和状态5.热力学第一定律封闭系统,不做非体积功时,若系统从环境吸收热q,从环境得功w,则系统热力学能的增加ΔU(U2–U1)为:ΔU=q + w(热力学能从前称为热能)6.内能的特征:状态函数(状态确定,其值确定;殊途同归;周而复始)、无绝对数值、广度性质7.热:系统吸热为正,放热为负热量q不是状态函数8.功:系统对外功为负,外部对系统作功为正功w不是状态函数9.体积功w体的计算w=–p外(V2–V1)=–p外ΔV体10.焓(状态函数)(kJ/mol)Δr H m:反应的摩尔焓H =U + pV q p =H2–H1=ΔH(ΔH<0放热;ΔH>0吸热)注意:q V=ΔU(定容)VS q P=ΔH(定压) q p– q V = n2(g)RT – n1(g)RT = Δn(g)RT对于没有气态物质参与的反应或Δn (g)=0的反应,q V ≈ q p对于有气态物质参与的反应,且Δn (g)≠0的反应,q V ≠ q p 11.盖斯定律:化学反应的恒压或恒容反应热只与物质的始态或终态有关而与变化的途径无关标准压力p=100kPa12.标准摩尔生成焓:标准状态时由指定单质生成单位物质的量的纯物质B 时反应的焓变称为标准摩尔生成焓,记作注意:标准态指定单质的标准生成焓为0。
目 录第1部分 名校考研真题第1章 热化学与能源第2章 化学反应的基本原理与大气污染控制第3章 水溶液化学第4章 电化学与金属腐蚀第5章 物质结构基础第6章 无机化合物第7章 高分子化合物第8章 生物大分子基础第9章 仪器分析基础第2部分 课后习题第1章 热化学与能源第2章 化学反应的基本原理与大气污染控制第3章 水溶液化学第4章 电化学与金属腐蚀第5章 物质结构基础第6章 无机化合物第7章 高分子化合物第8章 生物大分子基础第9章 仪器分析基础第3部分 章节题库第1章 热化学与能源第2章 化学反应的基本原理与大气污染控制第3章 水溶液化学第4章 电化学与金属腐蚀第5章 物质结构基础第6章 无机化合物第7章 高分子化合物第8章 生物大分子基础第9章 仪器分析基础第4部分 模拟试题浙江大学《普通化学》(第6版)配套模拟试题及详解(一)浙江大学《普通化学》(第6版)配套模拟试题及详解(二)第1部分 名校考研真题说明:本部分从指定浙江大学编写的《普通化学》(第6版)为考研参考书目的名校历年考研真题中挑选最具代表性的部分,并对其进行了详细的解答。
所选考研真题既注重对基础知识的掌握,让学员具有扎实的专业基础;又对一些重难点部分进行详细阐释,以使学员不遗漏任何一个重要知识点。
第1章 热化学与能源一、选择题1.下列过程或反应中,哪一个是熵增的过程或反应?( )[华南理工大学2016研]A.I2(g)=I2(l)B.H2O(s)=H2O(g)C.2H2(g)+O2(g)=2H2O(l)D.2CO(g)+O2(g)=2CO2(g)【答案】B【解析】熵增过程是系统的混乱度增高的过程,B项由固体变为气体的过程是系统的混乱度增高的过程,熵值增大。
2.如果系统经过一系列的变化后,又变回初始态,则系统的( )。
[华南理工大学2014研]A.Q=0,W=0,ΔH=0,ΔU=0B.Q=0,W=0,ΔH≠0,ΔU≠0C.Q≠-W,ΔU=Q+W,ΔH=0D.Q=-W,ΔU=Q+W,ΔH=0【答案】D【解析】ΔU、ΔH为状态函数,与变化途径无关;Q、W为非状态函数,变化途径不同,数值不同。
(完整版)普通化学第六版知识点整理普通化学知识点整理第1章热化学与能量1.⼏个基本概念1)系统:作为研究对象的那⼀部分物质和空间a.开放系统:有物质和能量交换 b.封闭系统:只有能量交换 c.隔离系统:⽆物质和能量交换2)环境:系统之外,与系统密切联系的其它物质和空间3)相:系统中任何物理和化学性质完全相同的、均匀部分——单相(均匀),多相(不均匀)注意:⼀个⽓态(固体)⼀个相;液体,若相溶,⼀个相,若不相溶,⼏种液体,⼏个相同⼀物质不同状态就是不同相;碳元素同素异形体不同相4)状态:⽤来描述系统;状态函数:描述系统状态(如pV=nRT)5)状态函数的性质:状态函数是状态的单值函数;当系统的状态发⽣变化时,状态函数的变化量只与系统的始、末态有关,⽽与变化的实际途径⽆关6)状态函数的分类:⼴度性质:其量值具有加和性,如体积、质量,热容,焓,熵等强度性质:其量值不具有加和性,如温度、压⼒,密度,摩尔体积等两个⼴度性质的物理量的商是⼀个强度性质的物理量7)过程:系统状态发⽣任何的变化VS 途径:实现⼀个过程的具体步骤8)化学计量数其中νB 称为B的化学计量数(根据具体的反应式⼦系数)反应物:νB为负;产物:νB为正9)反应进度ξ:反应进度只与化学反应⽅程式的书写有关2.反应热:化学反应过程中系统放出或吸收的热量;热化学规定:系统放热为负,系统吸热为正注意:摩尔反应热指当反应进度为1mol时系统放出或吸收的热量3.热效应:等容热效应(弹式量热计);等压热效应(⽕焰热量计)q=ΔU q p= ΔU + p(V2–V1)V反应热:(两种液体时⽐热容不同需分开,注意⽐热单位)摩尔反应热:4.热化学⽅程式:表⽰化学反应与热效应关系的⽅程式注意:先写出反应⽅程,再写出相应反应热,两者之间⽤分号或逗号隔开若不注明T, p, 皆指在T=298.15 K,p=100kPa下标明反应温度、压⼒及反应物、⽣成物的量和状态5.热⼒学第⼀定律封闭系统,不做⾮体积功时,若系统从环境吸收热q,从环境得功w,则系统热⼒学能的增加ΔU(U2–U1)为:ΔU=q + w(热⼒学能从前称为热能)6.内能的特征:状态函数(状态确定,其值确定;殊途同归;周⽽复始)、⽆绝对数值、⼴度性质7.热:系统吸热为正,放热为负热量q不是状态函数8.功:系统对外功为负,外部对系统作功为正功w不是状态函数9.体积功w体的计算w=–p外(V2–V1)=–p外ΔV体10.焓(状态函数)(kJ/mol)Δr H m:反应的摩尔焓H =U + pV q p =H2–H1=ΔH(ΔH<0放热;ΔH>0吸热)注意:q V=ΔU(定容)VS q P=ΔH(定压) q p– q V = n2(g)RT – n1(g)RT = Δn(g)RT对于没有⽓态物质参与的反应或Δn (g)=0的反应,q V ≈ q p对于有⽓态物质参与的反应,且Δn (g)≠0的反应,q V ≠ q p 11.盖斯定律:化学反应的恒压或恒容反应热只与物质的始态或终态有关⽽与变化的途径⽆关标准压⼒p=100kPa12.标准摩尔⽣成焓:标准状态时由指定单质⽣成单位物质的量的纯物质B 时反应的焓变称为标准摩尔⽣成焓,记作注意:标准态指定单质的标准⽣成焓为0。
普通化学重点普通化学是一门关于基础化学原理和概念的学科,它对于化学领域的研究和应用有着非常重要的作用。
以下是一些普通化学的重点内容:1.原子和分子结构:普通化学中最基础的概念就是原子和分子结构。
这包括原子的核和电子结构,以及分子的成分和结构。
这些概念对于我们理解化学反应、化学键和化学反应速率有着重要的作用。
2.化学反应和化学方程式:化学反应和化学方程式是普通化学中的一个非常重要的概念。
了解化学反应的类型、速率和影响因素以及如何编写和平衡化学方程式对于我们预测化学反应和解释化学现象非常重要。
3.化学键和分子间相互作用:了解分子间的化学键以及它们如何形成和断裂对于我们理解分子的性质和反应机制非常重要。
在普通化学中,我们学习了共价键、离子键、金属键、氢键和范德华力等不同类型的化学键和分子间相互作用。
4.热力学和化学动力学:热力学和化学动力学是普通化学中的两个重要的分支学科。
热力学主要研究化学反应发生或进行时的能量转移和物质转移,而化学动力学研究原子或分子之间的反应速率、反应机理和反应动力学等问题。
5.电化学和电解质溶液:电化学和电解质溶液也是普通化学中的一个重要方向。
这包括电解质的溶解和电离、电化学反应和电化学电池等。
电化学在生命科学、环境和能源等领域中有着重要的应用。
6.材料化学和环境化学:材料化学和环境化学是普通化学中涉及到的两个重要的应用领域。
材料化学主要研究材料的结构、性质和应用,环境化学则涉及到对环境中存在的污染物和有害物质的监测、分析和处理等。
以上六个方面是普通化学中的一些重点内容,它们是我们理解化学现象、解决化学难题和拓展化学应用的基础。
当然,这些内容只是普通化学中的一部分,随着化学领域的发展和进步,我们还会涉及到很多新的概念和应用。
浙江⼤学普通化学知识点总结⼆普通化学知识点总结⼆.化学热⼒学基础本章研究化学反应进⾏的⽅向及限度问题。
1.热⼒学第⼀定律(1)体系:根据体系与环境之间能量、物质交换的情况,将体系分类。
①开放体系:既有物质交换,⼜有能量交换②封闭体系:没有物质交换,但有能量交换③孤⽴体系:既没有物质交换,⼜没有能量交换。
(2)过程:①可逆(reversible)过程:热⼒学系统从状态A出发,经过过程p到达另⼀状态B;如果存在另⼀过程p*,它能使系统和环境完全复原,即系统回到原来状态A,同时消除原来过程p对环境产⽣的影响,则过程p称为可逆过程。
②准静态过程(平衡过程):若系统从⼀个平衡状态连续经过⽆数个中间的平衡状态过渡到另⼀个平衡状态,在任意有限的时间内,系统状态不发⽣改变,该过程称为准静态过程。
准静态过程是可逆过程的必要条件(可逆过程要求没有⾮平衡损失和耗散损失,准静态过程只满⾜前者)。
在⼀般讨论中,认为两者等价。
③⾃发过程:⾃发过程是由于体系与环境不平衡引起的,故⾃发过程都是不可逆过程。
综上,在以下讨论中,可以粗糙地认为:“不可逆(irreversible),⾮平衡,⾃发”三者等价,“可逆,平衡,⾮⾃发”三者等价。
(3)热⼒学第⼀定律:,式中①为内能增量。
内能是体系内部所有能量的总和,包括分⼦动能,分⼦间势能,分⼦内部的能量(转动、振动、电⼦和核运动),但不包括体系整体运动的能量。
内能是状态函数,U = f((n,T,V))。
②W为体系对外界做功,分为⾮体积功和体积功,即。
注意当环境压⼒与体系压⼒不等时,应该⽤环境压⼒,因为体系处于⾮平衡态时,压⼒p没有意义。
可以证明,恒温膨胀或压缩,可逆过程⽐不可逆过程的功(代数值)⼤。
③Q为体系吸热量。
分物理过程和化学过程讨论如下:物理过程:相变潜热(熔化热,汽化热,升华热等):单位质量的物质在等温等压情况下,从⼀个相变化到另⼀个相吸收或放出的热量。
利⽤T1、T2温度下的饱和蒸⽓压,可以计算出摩尔蒸发热(焓)。
普通化学复习资料3.1物质的结构与物质的状态3.1.1原子结构1.核外电子的运动特性核外电子运动具有能量量子化、波粒二象性和统计性的特征,不能用经典的牛顿力学来描述核外电子的运动状态。
2.核外电子的运动规律的描述由于微观粒子具有波的特性,所以在量子力学中用波函数Ψ来描述核外电子的运动状态,以代替经典力学中的原子轨道概念。
(1)波函数Ψ(原子轨道):用空间坐标来描写波的数学函数式,以表征原子中电子的运动状态。
一个确定的波函数Ψ,称为一个原子轨道。
(2)概率密度(几率密度):Ψ2表示微观粒子在空间某位置单位体积内出现的概率即概率密度。
(3)电子云:用黑点疏密的程度描述原子核外电子出现的概率密度(Ψ2)分布规律的图形。
黑点较密的地方,表示电子出现的概率密度较大,单位体积内电子出现的机会较多。
(4)四个量子数:波函数Ψ由n.l.m三个量子数决定,三个量子数取值相互制约:1)主量子数n的物理意义:n的取值:n=1,2,3,4……∞ ,意义:表示核外的电子层数并确定电子到核的平均距离;确定单电子原子的电子运动的能量。
n = 1,2,3,4, ……∞,对应于电子层K,L,M,N, ···具有相同n值的原子轨道称为处于同一电子层。
2)角量子数ι:ι的取值:受n的限制,ι= 0,1,2……n-1 (n个)。
意义:表示亚层,确定原子轨道的形状;对于多电子原子,与n共同确定原子轨道的能量。
…ι的取值: 1 , 2 , 3 , 4电子亚层: s, p, d, f……轨道形状:球形纺锤形梅花形复杂图3-13)磁量子数m:m的取值:受ι的限制, m=0 ,±1,±2……±ι(2ι+1个) 。
意义:确定原子轨道的空间取向。
ι=0, m=0, s轨道空间取向为1;ι=1, m=0 ,±1, p轨道空间取向为3;ι=2, m=0 ,±1,±2 , d轨道空间取向为5;……n ,ι相同的轨道称为等价轨道。
普通化学知识点总结完整版一、化学基础知识1. 元素:抗氧化剂、金属元素、非金属元素、重要元素、微量元素2. 化合物:酸、碱、盐、氧化物、酒精、醛、酮、酯、脂肪酸、糖类3. 化学反应:化学平衡、化学能、化学式、化学反应速率、化学催化、化学热力学二、物质的性质1. 物质状态:气态、液态、固态2. 能态、量态、物态三态的关系3. 水的物理性质、化学性质4. 空气成分、空气的密度、空气中的氧气、氮气、二氧化碳、水蒸气5. 水溶性、油溶性、极性、非极性三、化学实验1. 实验操作:溶解、吸收、沉淀、过滤、蒸发、升华、冷凝2. 实验设备:烧杯、容量瓶、三角瓶、试管、pH计、天平、恒温水浴器3. 实验技术:分析、稀释、放大、标定、比较、反应、测定、取样四、化学反应1. 双价、三价、四价、五价元素2. 酸碱反应、置换反应、化合反应、分解反应、氧化还原反应、酸酐化反应3. 氧化、还原、过氧化、加氢、脱氢、加氧、脱氧等反应4. 化学品的稳定性、杂质对反应的影响、反应产物纯度五、化学材料1. 金属材料:铜、铁、铝、锌、镁、钛、铬、钴、镍、银、金、钨等2. 非金属材料:炭黑、聚合物、树脂、玻璃、橡胶、陶瓷、石墨、石灰石、石膏等六、化学分析1. 化学分析技术:比色法、滴定法、色谱法、光谱法、电化学分析、分子筛分析、荧光分析2. 化学分析分离技术:萃取、蒸馏、结晶、电泳、色层分离、透析等3. 化学分析方法:重量法、容积法、化学计量、标准化、数据处理七、化学应用1. 化学在生产中的应用:化工、冶金、制药、纺织、塑料、能源等2. 化学在生活中的应用:化妆品、食品、药品、清洁剂、杀虫剂、火药、烟花等3. 化学在环境中的应用:污染控制、废水、废气、废固体、环保材料总结:化学是自然科学中非常重要的一门学科,涉及到生活中的方方面面。
通过学习化学,能够提高我们对物质世界的认识和了解,对于我们的日常生活和未来的发展也具有重要的意义。