河南省洛阳市2018-2019学年高一下期末数学试卷(有答案)
- 格式:doc
- 大小:434.00 KB
- 文档页数:22
河南省洛阳市第二中学2018-2019学年高一数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设,,,那么、、三者的大小关系是()A. B. C. D.参考答案:A2. 化简的结果是()A. B. C. D.参考答案:A3. 如图,在正方体ABCD﹣A1B1C1D1中,A1B与平面BB1D1D所成的角的大小是()A.90°B.30°C.45°D.60°参考答案:B【考点】直线与平面所成的角.【专题】计算题.【分析】连接A1C1交B1D1于O,连接OB,说明∠A1BO为A1B与平面BB1D1D所成的角,然后求解即可.【解答】解:连接A1C1交B1D1于O,连接OB,因为B1D1⊥A1C1,A1C1⊥BB1,所以A1C1⊥平面BB1D1D,所以∠A1BO为A1B与平面BB1D1D所成的角,设正方体棱长为1,所以A1O=,A1B=,sin∠A1BO=,∠A1BO=30°.故选B.【点评】本题考查直线与平面所成角的求法,找出直线与平面所成角是解题的关键,考查计算能力.4. (5分)函数的周期,振幅,初相分别是()A.B.C.D.参考答案:C考点:y=Asin(ωx+φ)中参数的物理意义.专题:计算题.分析:本题的函数解析式已知,由其形式观察出振幅,初相,再由公式求出函数的周期,对照四个选项得出正确选项解答:∵函数∴振幅是2,初相是又x的系数是,故函数的周期是T==4π对照四个选项知应选C故选C点评:本题考查y=Asin(ωx+φ)中参数的物理意义,解题的关键是理解A,ω,φ的意义,根据解析式及相关公式求出此三个参数的值.本题是基本概念型题.5. 给出下列四个关系式:①∈R;②Z∈Q;③0∈④?{0}.其中正确的个数是( ) A.1 B.2C.3 D.4参考答案:B6. 设集合,则的取值范围是()A.; B.C.或; D.或参考答案:A7. 已知函数f(x)=,若存在实数x1,x2,x3,x4,满足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),则的取值范围是()A.(0,4)B.(0,)C.(,)D.(,)参考答案:B【考点】分段函数的应用.【分析】由题意,可得﹣1<x1<0<x2<1<x3<1.5,4.5<x4<6,进而确定(x1+1)(x2+1)=1,x3+x4=6,则=x3x4﹣5=x3(6﹣x3)﹣5=﹣(x3﹣3)2+4在(1,1.5)递增,即可求出的取值范围.【解答】解:由题意,可得﹣1<x1<0<x2<1<x3<1.5,4.5<x4<6,则|log4(x1+1)|=|log4(x2+1)|,即为﹣log4(x1+1)=log4(x2+1),可得(x1+1)(x2+1)=1,由y=cos x的图象关于直线x=3对称,可得x3+x4=6,则=x3x4﹣5=x3(6﹣x3)﹣5=﹣(x3﹣3)2+4在(1,1.5)递增,即有的取值范围是(0,).故选B.8. (5分)若{2,3}?M?{1,2,3,4,5},则M的个数为()A. 5 B. 6 C.7 D.8参考答案:B考点:子集与真子集.专题:计算题;集合.分析:由题意,{2,3}?M?{1,2,3,4,5}可看成求集合{1,4,5}的非空真子集,从而求解.解答:{2,3}?M?{1,2,3,4,5}可看成求集合{1,4,5}的非空真子集,故23﹣2=6;故选B.点评:本题考查集合的子集的求法,属于基础题.9. 若是一个三角形的最小内角,则函数的值域是 ( )A. B. C. D.参考答案:C10. 椭圆的焦点在轴上,长轴长是短轴长的两倍,则的值为A. B. C.D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. 函数对一切实数都满足,并且方程有三个实根,则这三个实根的和为。
洛阳市2018-2019学年第一学期期末考试高一数学试卷一、选择题(本大题共12小题,每小题5分,共60分)1已知集合A=,B={x|则()A.{x|x>1}B.{x|02.下列直线中国第一,二,四象限的是()A.y=2x+1B.x-2y+1=0C.y-2=-2(x-1)D.-=13.若a=,b=(,c=,则下列大小关系正确的是()A.cB.cC.aD.4.若圆锥的轴截面(过圆锥轴的一个截面)是一个边长为2的等边三角形,则该圆锥的侧面积为()A. B.2 C.3 D.5.已知直线L1:x+y+=0和直线L2:x+y+=0,下列说法正确的是()A.若则L1∥L2B.若L1∥L2,则=C.若+=0,则L1⊥L2D.若,则=-16.一几何体的三视图如图所示,正视图和侧视图都是半径为2的半圆,俯视图为圆内接一个正方形,则该几何体的体积为()A. B.32 C.16 D.7.给出一下命题(其中a,b,l是空间中不同的直线,是空间中不同的平面);①若a∥b,b,则a∥b;②若a⊥b,b⊥,则a∥;③若⊥,l a,则l⊥;④若l⊥a,l⊥b,a,b,则l⊥⊥,其中正确的个数为()A.0个B.1个C.2个D.3个8.与直线3x+4y+5=0关于y轴对称的直线的方程为()A.3x+4y-5=0B.3x+4y+5=0C.4x+3y-5=0D.4x-3y+5=09.已知f(x)=+-1(a且),f(-1)=2,若实数m满足f(m-1),则实数m的取值范围是()A.,B.,C.,D.,,10.同时与园++6x-7=0和圆+-6y-27=0都相切的直线共有()A.1条B.2条C.3条D.4条11.若函数f(x)=(a且)的值域是,,则实数a的取值范围是()A.(1,)B.(2,)C.,D.,12.如图,在正方体ABCD-中,点F是线段上的动点,则下列说法错误的是()A.无论点F在上怎么移动,异面直线F与CD所成角都不可能是30°B.无论点F在上怎么移动,都有F⊥ DC.当点F移动至中点时,才有F与D相交于一点,记为点E,且=2D.当点F移动至中点时,直线F与平面BD所成角最大且为60二:填空题(本大题共4小题,每小题5分,共20分)13.在空间直角坐标系中,点A(1,0,-2)到点B(-2,4,3)的距离为_______.14.两条平行直线3x-4y-12=0与ax-8y+11=0间的距离是_________.15.在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是矩形,且PA=5,AB=4,AD=3,则该四棱锥外接球的表面积为________.16.已知函数F(x)=,,,若方程f(x)-kx+2k-1=0 有3个实数根,则k的取值范围是_________.三.解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。
河南省洛阳市重点名校2018-2019学年高一下学期期末质量跟踪监视数学试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某大学数学系共有本科生1 000人,其中一、二、三、四年级的人数比为4∶3∶2∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( ) A .80 B .40C .60D .20【答案】B 【解析】试题分析:方法一:由条件可知三年级的同学的人数为,所以应抽人数为,方法二:由条件可知样本中一、二、三、四年级的人数比为4∶3∶2∶1,因此应抽取三年级的学生人数为,答案选B.考点:分层抽样2.已知函数()ln(1)f x x =+,()g x kx =(*k N ∈),若对任意的(0,)x t ∈(0t >),恒有2()()f x g x x -<,那么k 的取值集合是( )A .{1}B .{2}C .{1,2}D .{1,2,3}【答案】A 【解析】当2k =时,()()()()222ln 122ln 12f x g x x x x x x x x x -=+-<⇔-+<+<+,画出图象如下图所示,由图可知,2k =时不符合题意,故选A .【点睛】本题主要考查含有绝对值的不等式的解法,考查选择题的解题策略中的特殊值法.主要的需要满足的是()()2f xg x x -≤,根据不等式的解法,大于在中间,小于在两边,可化简为()222ln 12x x x x x -+<+<+,左右两边为二次函数,中间可以由对数函数图象平移得到,由此画出图象验证是否符合题意.3.一位妈妈记录了孩子6至9岁的身高(单位:cm ),所得数据如下表:由散点图可知,身高y 与年龄x 之间的线性回归方程为8.8y x a =+,预测该孩子10岁时的身高为 A .154 B .153C .152D .151【答案】B 【解析】试题分析:根据题意,由表格可知,6789118126136144x==7.5y==13144++++++,身高y 与年龄x 之间的线性回归直线方程为8.8ˆˆyx a =+,那么可知回归方程必定过样本中心点,即为(7,131)代入可知,a ∧=65,预测该学生10岁时的身高,将x=10代入方程中,即可知为153,故可知答案为B 考点:线性回归直线方程点评:主要是考查了线性回归直线方程的回归系数的运用,属于基础题. 4.下列函数中最小正周期为π的是( ) A .sin y x = B .1sin y x =+C .cos y x =D .tan 2y x =【答案】C 【解析】 【分析】对A 选项,对x 赋值,即可判断其最小正周期不是π;利用三角函数的周期公式即可判断B 、D 的最小正周期不是π,问题得解. 【详解】对A 选项,令32x π=-,则33sin 122f ππ⎛⎫-=-=- ⎪⎝⎭ 3sin 122f πππ⎛⎫-+=-= ⎪⎝⎭,不满足3322f f πππ⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭,所以sin y x =不是以π为周期的函数,其最小正周期不为π; 对B 选项,1sin y x =+的最小正周期为:2T π=; 对D 选项,tan 2y x =的最小正周期为:2T π=;排除A 、B 、D故选C【点睛】本题主要考查了三角函数的周期公式及周期函数的定义,还考查了赋值法,属于基础题. 5.若偶函数()af x x =在(),0-∞上是增函数,则( )A .0a >B .0a <C .0a =D .不能确定【答案】B 【解析】 【分析】根据偶函数性质与幂函数性质可得. 【详解】偶函数()af x x =在(),0-∞上是增函数,则它在(0,)+∞上是减函数,所以0a <.故选:B . 【点睛】本题考查幂函数的性质,考查偶函数性质,属于基础题.6.若圆()()()222120x y r r -++=>上有且仅有两个点到直线260x y -+=r 的取值范围是( ) A.(0, B.C.D.(【答案】B 【解析】 【分析】先求出圆心()1,2-到直线260x y -+=的距离,然后结合图象,即可得到本题答案. 【详解】由题意可得,圆心()1,2-到直线260x y -+=的距离为d ==故由图可知, 当r =()()22125x y -++=上有且仅有一个点到直线260x y -+=当r =()()221245x y -++=上有且仅有三个点到直线260x y -+=;当则r 的取值范围为时,圆()()()222120x y r r -++=>上有且仅有两个点到直线260x y -+=故选:B 【点睛】本题主要考查直线与圆的综合问题,数学结合是解决本题的关键.7.水平放置的ABC ,用斜二测画法作出的直观图是如图所示的A B C ''',其中1O A O B ''''==,32O C ''=,则ABC 绕AB 所在直线旋转一周后形成的几何体的表面积为( )A .23πB .43πC .33)4πD .(433)π【答案】B 【解析】 【分析】先根据斜二测画法的性质求出原图形,再分析ABC 绕AB 所在直线旋转一周后形成的几何体的表面积即可. 【详解】根据斜二测画法的性质可知,原ABC 是以2AB =为底,高为23OC O C ''==的等腰三角形.又22132AC AB =+==.故ABC 为边长为2的正三角形.则ABC 绕AB 所在直线旋转一周后形成的几何体可看做两个以底面半径为3OC =高为1OA =的圆锥组合而成.故表面积为23243ππ=. 故选:B 【点睛】本题主要考查了斜二测画法还原几何图形与旋转体的侧面积求解.需要根据题意判断出旋转后的几何体形状再用公式求解.属于中档题.8.若|a |=2cos 15°,|b |=4sin 15°,,a b 的夹角为30°,则a b •等于( )A B C .D .12【答案】B 【解析】分析:先根据向量数量积定义化简,再根据二倍角公式求值.详解:因为0000002154sin15304sin 30302sin 60a b cos cos cos ⋅=⨯⨯=== 所以选B.点睛:平面向量数量积的类型及求法(1)求平面向量数量积有三种方法:一是夹角公式||||cos a b a b θ⋅=⋅;二是坐标公式1212a b x x y y ⋅=+;三是利用数量积的几何意义.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简. 9.已知函数4(1)1y x x x =+>-,函数的最小值等于( )A B .1C .5D .9【答案】C 【解析】 【分析】 先将41y x x =+-化为()4111y x x =-++-,由基本不等式即可求出最小值. 【详解】因为()44111511y x x x x =+=-++≥=--,当且仅当411x x -=-, 即3x =时,取等号. 故选C 【点睛】本题主要考查利用基本不等式求函数的最值问题,需要先将函数化为能用基本不等式的形式,即可利用基本不等式求解,属于基础题型.10.已知四面体ABCD 中,E ,F 分别是AC ,BD 的中点,若2AB =,4CD =,EF 与CD 所成角的度数为30°,则EF 与AB 所成角的度数为()A .90°B .45°C .60°D .30°【答案】A 【解析】 【分析】取BC 的中点M ,利用三角形中位线定理,可以得到30EFM ︒∠=,EF 与AB 所成角为MEF ∠,运用三角形中位线定理和正弦定理,可以求出MEF ∠的大小,也就能求出EF 与AB 所成角的度数. 【详解】取BC 的中点M 连接EM FM 、,如下图所示:因为E ,F 分别是AC ,BD 的中点,所以有11,1,,222EM AB EM AB FM CD FM CD ====,因为EF 与CD 所成角的度数为30°,所以30EFM ︒∠=,EF 与AB 所成角的大小等于MEF ∠的度数.在EFM ∆中,12sin 1901sin sin sin 2EM FM MEF MEF EFM MEFMEF ︒=⇒=⇒∠=⇒∠=∠∠∠,故本题选A. 【点睛】本题考查了异面直线所成角的求法,考查了正弦定理,取中点利用三角形中位线定理是解题的关键. 11.设直线:,:,若与平行,则的值为( )A .B .0或C .0D .6【答案】B 【解析】 【分析】通过两条直线平行的关系,可建立关于的方程,解方程求得结果。
洛阳市高一年级质量检测数学试卷第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合{}0,5,10A =,集合{}22,1B a a =++,且{}5AB =,则满足条件的实数a 的个数有A. 0个B. 1个C. 2个D. 3个 2.下列函数中,既是奇函数又存在零点的是A.2sin y x =+B. cos y x =C. ln y x =D. x x y e e -=- 3.已知平行四边形ABCD 中,60,1,2ABC AB BC ∠===,则BA BD ⋅=A. 1B. 2C. 12-4.执行如图所示的程序框图,若输入a,b 的分别为78,182,则输出的a = A. 0 B. 2 C. 13 D. 265.为了了解某服装厂某种服装的年产量x (单位:千件)对价格y (单位:千元/千件)的影响,对近五年该产品的年产量和价格统计情况如下表:如果y 关于x 的线性回归方程为ˆ12.386.9yx =-+,且1270,65y y ==,则345y y y ++= A. 50 B. 113 C. 115 D. 2386.设直线32120x y --=与直线4310x y ++=交于点M,若一条光线从点()2,3P 射出,经y 轴反射后过点M,则入射光线所在直线的方程为A.10x y --=B.10x y -+=C.50x y --=D.50x y +-= 7.一个几何体的三视图如图所示,则该几何体的体积为A. 12B. 9C. 6D. 36 8.已知曲线11:sin ,:sin 23C y x C y x π⎛⎫==+ ⎪⎝⎭,则下列结论正确的是 A. 把1C 上个点的横坐标缩短为原来的12倍,纵坐标不变,再把所得的曲线向左平移23π个单位长度,得到曲线2C B.把1C 上个点的横坐标伸长为原来的2倍,纵坐标不变,再把所得的曲线向左平移3π个单位长度,得到曲线2C C.把1C 上个点的横坐标伸长为原来的2倍,纵坐标不变,再把所得的曲线向左平移23π个单位长度,得到曲线2CD. 把1C 上个点的横坐标伸长为原来的2倍,纵坐标不变,再把所得的曲线向左平移3π个单位长度,得到曲线2C9.在直三棱柱111ABC A B C -中,,6,8AB BC AB BC ⊥==若此三棱柱外接球的半径为13,则该三棱柱的表面积为A. 624B.576C. 672D.72010.一位同学家里定了一份报纸,送报人每天都在早上6:20—7:40之间将报纸送达,该同学需要早上7:00——8:00之间出发上学,则该同学在离开家之前能拿到报纸的概率为 A.16 B. 13 C. 23 D.5611.在平面直角坐标系xoy 中,已知()150,0,,04O A ⎛⎫⎪⎝⎭,曲线C 上任一点M 满足4OM AM =,点P 在直线)1y x =-上,如果曲线C 上总存在两点到P 的距离为2,那么点P 的横坐标t 的范围是A. 13t <<B. 14t <<C. 23t <<D. 24t <<12.已知两条直线()122:3,:261l y l y m m ==≤≤-,1l 与函数2log y x =的图象从左到右交于A,B 两点,2l 与函数2log y x =的图象从左到右交于C,D 两点,若,AC AB BD CD a B AB CD⋅⋅==,当m 变化时,ba 的范围是A. 352,4⎛⎫ ⎪⎝⎭B. 352,4⎡⎤⎢⎥⎣⎦C. 172,32⎡⎤⎣⎦D.()172,32二、填空题:本大题共4小题,每小题5分,共20分. 13.若1cos ,02απα=--<<,则角α= .(用弧度表示)14.某公司为了解用户对其产品的满意度,随机调查了一些客户,得到了满意度评分的茎叶图,则这组评分数据的中位数为 .15.执行如图所示的程序框图,如果输入9x =时,299y =,则整数a 的值为 . 16.已知锐角,αβ满足()()sin cos 2cos sin αββαββ+=+,当α取得最大值时,tan 2α= .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程. 17.(本题满分10分)已知点()()8,3,3,6-在函数()log ,02,0a xx x f x b x >⎧=⎨-≤⎩的图象上.(1)求函数()f x 的解析式; (2)求不等式()0f x >的解集.18.(本题满分12分) 已知向量2cos ,1,cos ,cos ,66a x b x x x R ππ⎛⎫⎛⎫⎛⎫⎛⎫=--=-∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,函数().f x a b =⋅(1)求函数()f x 的图象的对称中心; (2)若,42x ππ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的最大值和最小值,并求出()f x 取得最值时x 的大小.19.(本题满分12分)学校高一数学考试后,对90分(含90分)以上的成绩进行统计,其频率分布直方图如图所示,分数在120—130分的学生人数为30人.(1)求这所学校分数在90—140分的学生人数; (2)请根据频率分布直方图估计这所学校学生分数在90—140分的学生的平均成绩;(3)为进一步了解学生的学习情况,按分层抽样方法从分数子啊90—100分和120—130分的学生中抽出5人,从抽取的学生中选出2人分别做问卷A 和问卷B,求90—100分的学生做问卷A,120—130分的学生做问卷B 的概率.20.(本题满分12分)在四棱锥P ABCD -中,底面ABCD 是矩形,AB PC ⊥,其中3,BP BC PC ===(1)点,E F 分别为线段,BP DC 的中点,求证://EF 平面APD ;(2)设G 为线段BC 上一点,且2BG GC =,求证:PG ⊥平面ABCD .21.(本题满分12分)已知函数()()sin 0,0,,2f x A x B A x R πωϕωϕ⎛⎫=++>><∈ ⎪⎝⎭在区间3,22ππ⎛⎫ ⎪⎝⎭上单调,当2x π=时,()f x 取得最大值5,当32x π=时,()f x 取得最小值-1. (1)求()f x 的解析式;(2)当[]0,4x π∈时,函数()()()1212xx g x f x a +=-+有8个零点,求实数a 的取值范围.22.(本题满分12分)在平面直角坐标系中,()()()2,0,2,0,,A B P x y -满足2216PA PB +=,设点P 的轨迹为1C ,从1C 上一点Q 向圆()2222:0C x y rr +=>做两条切线,切点分别为,M N ,且60.MQN ∠=(1)求点P 的轨迹方程和; (2)当点Q 在第一象限时,连接切点,M N ,分别交,x y 轴于点,C D ,求O C D ∆面积最小时点Q 的坐标.。
2018-2019学年第二学期期末考试高一年级数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的人数为20000人,其中持各种态度的人数如表所示:电视台为了了解观众的具体想法和意见,打算从中抽选出100人进行更为详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中各应抽选出的人数为()A.25,25,25,25 B.48,72,64,16 C.20,40,30,10 D.24,36,32,82.某校为了解学生学习的情况,采用分层抽样的方法从高一1000人、高二1200人、高三n人中,抽取81人进行问卷调查.已知高二被抽取的人数为30,那么n=()A.860 B.720 C.1020 D.10403. 在中,,,则等于()A. 3B.C. 1D. 24.(1+tan20°)(1+tan25°)=()A.2 B.1 C.﹣1 D.﹣25.在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定6.如图,给出的是的值的一个程序框图,判断框内应填入的条件是()A.i<99 B.i≤99 C.i>99 D.i≥997. 已知直线平面,直线平面,则下列命题正确的是()A. 若,则B. 若,则C. 若,则D. 若,则8.已知过点P(0,2)的直线l与圆(x﹣1)2+y2=5相切,且与直线ax﹣2y+1=0垂直,则a=()A.2 B.4 C.﹣4 D.19.《数学九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即S=.现有周长为2+的△ABC满足sinA:sinB:sinC=(﹣1)::( +1),试用以上给出的公式求得△ABC的面积为()A. B. C. D.10.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,这三天中恰有两天下雨的概率近似为()A.0.35 B.0.25 C.0.20 D.0.1511.在区间(0,3]上随机取一个数x,则事件“0≤log2x≤1”发生的概率为()A.B.C.D.12.已知函数f(x)=sin2x向左平移个单位后,得到函数y=g(x),下列关于y=g(x)的说法正确的是()A.图象关于点(﹣,0)中心对称B.图象关于x=﹣轴对称C.在区间[﹣,﹣]单调递增D.在[﹣,]单调递减二、填空题(共4小题,每小题5分,满分20分)13.函数f(x)=Asin(ωx+φ)+b的图象如图所示,则f(x)的解析式为.14.在△ABC中,内角A、B、C所对应的边分别为a、b、c,若bsinA﹣acosB=0,则A+C= .15. 已知直线的倾斜角为,则直线的斜率为__________.16.已知正实数x,y满足x+2y﹣xy=0,则x+2y的最小值为8y的取值范围是.三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)17.某同学用“五点法”画函数f (x )=Asin (ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f (x )的解析式;(2)将y=f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g (x )的图象.若y=g (x )图象的一个对称中心为(,0),求θ的最小值.18. 在中,内角所对的边分别为,且.(1)求;(2)若,且的面积为,求的值.19.设函数f (x )=mx 2﹣mx ﹣1.若对一切实数x ,f (x )<0恒成立,求实数m 的取值范围.20.已知函数f (x )=cosx (sinx+cosx )﹣. (1)若0<α<,且sin α=,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.21.根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表(1)从样本中PM2.5的24小时平均浓度超过50微克/立方米的天数中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;(2)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图.①求图中a的值;②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.22.(12分)(2016秋•德化县校级期末)已知f(x)=sin2(2x﹣)﹣2t•sin(2x﹣)+t2﹣6t+1(x∈[,])其最小值为g(t).(1)求g(t)的表达式;(2)当﹣≤t≤1时,要使关于t的方程g(t)=kt有一个实根,求实数k的取值范围.参考答案:一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.D2.D3.D4.A5.C6.B7. B8.C9.A10.B11.C12.C二、填空题(共4小题,每小题5分,满分20分)13..14.120°. 15. 16. 8;(1,+∞).三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)17.(1)根据表中已知数据,解得A=5,ω=2,φ=﹣.数据补全如下表:且函数表达式为f(x)=5sin(2x﹣).(2)由(Ⅰ)知f(x)=5sin(2x﹣),得g(x)=5sin(2x+2θ﹣).因为y=sinx的对称中心为(kπ,0),k∈Z.令2x+2θ﹣=kπ,解得x=,k∈Z.由于函数y=g(x)的图象关于点(,0)成中心对称,令=,解得θ=,k∈Z.由θ>0可知,当K=1时,θ取得最小值.18. (1) ;(2). 19.(﹣4,0].20.(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣=×(+)﹣=;(2)∵函数f(x)=cosx(sinx+cosx)﹣=sinxcosx+cos2x﹣=sin2x+﹣=(sin2x+cos2x)=sin(2x+),∴f(x)的最小正周期为T==π;令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z;∴f(x)的单调增区间为[kπ﹣,kπ+],k∈Z..21.1) P==.(2)a=0.00422.(1)∵x∈[,],∴sin(2x﹣)∈[﹣,1],∴f(x)=[sin(2x﹣﹣t]2﹣6t+1,当t<﹣时,则当sinx=﹣时,f(x)min=;当﹣≤t≤1时,当sinx=t时,f(x)min=﹣6t+1;当t>1时,当sinx=1时,f(x)min=t2﹣8t+2;∴g(t)=(2)k≤﹣8或k≥﹣5.。
2018-2019学年河南省洛阳市新新中学高一数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 给出下列语句:其中正确的个数是()①一个平面长3m,宽2m;②平面内有无数个点,平面可以看成点的集合;③空间图形是由空间的点、线、面所构成的.A.1 B.2 C.3 D.0参考答案:B【考点】命题的真假判断与应用.【分析】根据空间内平面的定义及空间内点,线,面的关系,判断三个语句的真假,可得答案.【解答】解:平面是无限延展的,故①一个平面长3m,宽2m,错误;②平面内有无数个点,平面可以看成点的集合,正确;③空间图形是由空间的点、线、面所构成的,正确.故正确的语句有2个,故选:B2. 设ΔABC的三个内角为A、B、C,,则角C等于()A.B.C.D.参考答案:C3. 下列各式中,集合关系表示正确的序号是▲ .① ② ③参考答案:②略4. 已知函数,则函数的定义域为()A. B.C. D.?参考答案:A5. 下列说法中,正确的是( )①任取x∈R都有3x>2x;②当a>1时,任取x∈R都有ax>a-x;③y=()-x是增函数;④y=2|x|的最小值为1;⑤在同一坐标系中,y=2x与y=2-x的图象关于y轴对称.A.①②④ B.④⑤ C.②③④ D.①⑤参考答案:B略6. 已知,,四个实数成等差数列,,,五个实数成等比数列,则()A.8B.-8 C.±8 D.参考答案:B略7. 将正整数排列如下:12 34 5 67 8 9 1011 12 13 14 15……则图中数2020出现在( )A. 第64行3列B. 第64行4列C. 第65行3列D. 第65行4列参考答案:B【分析】计算每行首个数字的通项公式,再判断出现在第几列,得到答案.【详解】每行的首个数字为:1,2,4,7,11…利用累加法:计算知:数出现在第行列故答案选B【点睛】本题考查了数列的应用,计算首数字的通项公式是解题的关键.8. 已知函数y=2sin(ωx+φ)(ω>0)在区间[0,2π]的图象如图所示,那么ω等于( )A.1 B.2 C. D.参考答案:B9. 已知一次函数在R上是减函数,则的取值范围是()A. B. C.D.参考答案:C10. 已知等差数列{a n}中,,则公差d=()A. -2B. -1C. 1D. 2参考答案:C【分析】利用通项得到关于公差d的方程,解方程即得解.【详解】由题得.故选:C【点睛】本题主要考查数列的通项的基本量的计算,意在考查学生对该知识的理解掌握水平和分析推理能力.二、填空题:本大题共7小题,每小题4分,共28分11. 已知数列{a n}中,,,则_____.参考答案:【分析】利用,根据,先令求出,再令,然后求解即可【详解】解:数列中,,,则:当时,,当时,.故答案为:【点睛】本题考查数列的递推式,考查学生的逻辑推理能力,计算能力,属于基础题12. 若函数f(x)=x3+2x﹣1的零点在区间(k,k+1)(k∈Z)内,则k= .参考答案:【考点】二分法求方程的近似解.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】利用根的存在性确定函数零点所在的区间,然后确定k的值.【解答】解;∵f(x)=x3+2x﹣1,∴f′(x)=3x2+2>0,∴f(x)在R上单调递增,∵f(0)=﹣1<0,f(1)=1+2﹣1>0,∴f(0)f(1)<0,∴函数零点所在的区间为(0,1),∴k=0.故答案为:0.【点评】本题考查函数零点的判定定理的应用,属基础知识、基本运算的考查.13. 当时,函数的最大值为__________.参考答案:21【分析】根据题干中的条件可得到二次函数的对称轴,再由二次函数的性质得到最值即可.【详解】当时,函数,对称轴为x=2,在所给区间内,根据二次函数的性质得到在x=-3处取得最大值,代入得到21.故答案为:21.【点睛】这个题目考查了二次函数在小区间上的最值的求法,一般是讨论轴和区间的位置关系,结合二次函数图像的性质得到相应的最值.14. 非零向量的夹角为,且满足,向量组由一个和两个排列而成,向量组由两个和一个排列而成,若所有可能值中的最小值为,则.参考答案:,,向量组共有三种情况,即,向量组共有三种情况,即,所以所有可能值有2种情况,即,,所以所有可能值中的最小值为,所以或解得.15. (4分)函数y=sinx,x∈R,则y的取值范围是.参考答案:[-1,1]考点:正弦函数的图象.专题:三角函数的图像与性质.分析:由条件利用正弦函数的定义域和值域,求得y的取值范围.解答:由x∈,可得y=sinx∈[-1,1].点评:本题主要考查正弦函数的定义域和值域,属于基础题.16. 将全体正整数排成一个三角形数阵:按照以上排列的规律,第行从左向右的第3个数为参考答案:略17. 已知函数,若,且,则的取值范围是▲ .参考答案:(3,+∞)三、解答题:本大题共5小题,共72分。
2018-2019学年河南省洛阳市高一下学期期中考试数学试题一、单选题1.已知角α的终边经过点P(-3,y),且y<0,cosα=-,则tanα=()A.B.C.D.【答案】C【解析】由题意利用任意角的三角函数的定义,即可求解的值,得到答案.【详解】由题意,角的终边经过点,且,则,∴,所以,故选:C.【点睛】本题主要考查了任意角的三角函数的定义,其中解答中熟记三角函数的定义是解答的关键,着重考查了运算与求解能力,属于基础题.2.已知向量=(-2,3),=(x,1),且⊥,则x=()A.B.C.D.【答案】D【解析】根据即可得出,进行数量积的坐标运算,即可求解,得到答案.【详解】由题意,向量=(-2,3),=(x,1),又由,则,解得,故选D.【点睛】本题主要考查了向量垂直的充要条件,以及向量数量积的坐标运算,其中解答中熟记向量的数量积的运算公式和向量垂直的条件是解答的关键,着重考查了运算与求解能力,属于基础题.3.把-765°化成2kπ+α(0≤α<2π),k∈Z)的形式是()A.B.C.D.【答案】D【解析】根据终边相同角的定义及角度制与弧度制的互化,即可求解,得到答案.【详解】由题意,可得,故选:D.【点睛】本题主要考查了终边相同角的表示,以及角度制与弧度值的互化,其中将角进行拆分是解决本题的关键,着重考查了运算与求解能力,属于基础题.4.cos475°-sin475°的值为()A.B.C.D.【答案】A【解析】直接利用平方差公式以及二倍角的余弦函数,化简即可求解,得到答案.【详解】由题意,可知.故选:A.【点睛】本题主要考查了二倍角的三角函数,及三角函数求值,其中解答中熟记余弦的二倍角公式和特殊角的三角函数值是解答的关键,着重考查了运算与求解能力,属于基础题.5.若扇形的周长为8,圆心角为2rad,则该扇形的面积为()A.2 B.4 C.8 D.16【答案】B【解析】设扇形的半径为,弧长为,由且,解得,再利用扇形的面积公式,即可求解.【详解】设扇形的半径为,弧长为,则且,解得,所以该扇形的面积为.故选:B.【点睛】本题主要考查了扇形的弧长公式和扇形的面积公式的应用,其中解答中熟记扇形的弧长公式和面积公式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.6.在中,,则一定是A.等腰三角形B.等边三角形C.直角三角形D.锐角三角形【答案】C【解析】此题考查解三角形解:由sin(A+B)=sin(A-B)得,所以,又因为为三角形的内角,故,因此,,所以是直角三角形.选C.答案:C7.要得到函数y=cos x的图象,只需将y=cos (2x+)的图象所有点()A.横坐标伸长到原来的2倍,纵坐标不变,再向右平移个单位长度B.横坐标伸长到原来的2倍,纵坐标不变,再向右平移个单位长度C.横坐标缩短到原来的倍,纵坐标不变,再向右平移个单位长度D.横坐标缩短到原来的倍,纵坐标不变,再向左平移个单位长度【答案】A【解析】先根据三角函数的伸缩变换,得到,再根据平移变换,可得到函数,即可求解,得到答案.【详解】由题意,函数图像所有点横坐标伸长为原来的2倍,纵坐标不变,可得函数,再将函数图象上个点向右平移个单位长度,即可得函数的图象.故选:A.【点睛】本题主要考查了三角函数的图象变换,其中解答中熟记三角函数的伸缩变换和三角函数的平移变换的规则,合理变换是解答的关键,着重考查了推理与运算能力,属于基础题.8.已知tan(α+β)=,tanβ=,则tanα=()A.B.C.D.【答案】A【解析】利用两角差的正切函数的公式,化简,即可求解,得到答案.【详解】由题意知,则,故选:A.【点睛】本题主要考查了两角差的正切函数公式的化简、求值问题,其中解答中合理完成角的配凑,及熟记两角差的正切公式是解答的关键,着重考查了运算与求解能力,属于基础题.9.对于函数f(x)=-3cos(2x-),下列说法正确的是()A.在上单调递减B.的图象关于点对称C.在上最大值为3 D.的图象关于直线对称【答案】B【解析】利用型函数的图象和性质,逐一判定四个选项,即可求解,得到答案.【详解】当时,,所以在上先增后减,所以A错误;当时,,所以函数的图象关于点对称,所以B正确;当时,,所以在的最大值为,所以C错误;当时,,所以函数的图象不关于对称,所以D 错,故选B.【点睛】本题主要考查了三角函数的图象与性质的应用,其中解答中熟记余弦型函数的图象与性质,逐项判定是解答的关键,着重考查了推理与运算能力,属于基础题.10.已知向量,满足||=2,|-3|=5,|+3|=1,则在方向上的投影为()A.B.1 C.D.2【答案】C【解析】通过向量的模求解向量的数量积,然后求解在方向上的投影,得到答案.【详解】由题意,向量满足,可得,解得,则在方向上的投影为.故选:C.【点睛】本题主要考查了向量的数量积的应用,向量的模的求法,其中解答中熟记向量的数量积的运算公式和向量的模的公式是解答的关键,着重考查了运算与求解能力,属于基础题.11.已知0<β<<α<,cos(+α)=-,sin(+β)=,则cos(α+β)=()A.B.C.D.【答案】D【解析】利用同角三角函数的基本关系求得和的值,再利用两角和的余弦公式求得的值,即可求解.【详解】由题意知,,,所以为第二象限角,所以,因为,所以为第二象限角,所以,则,故选:D.【点睛】本题主要考查了同角三角函数的基本关系,两角和的余弦公式的应用,以及三角函数在各个象限中的符号,其中解答中熟记三角恒等变换的公式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.12.在锐角△ABC中,AC=BC=2,=x+y(其中x+y=1),若函数f(λ)=|-λ|的最小值为,则||的最小值为()A.1 B.C.2 D.【答案】B【解析】因为的最小值为,得到恒成立,当且仅当时等号成立,代入函数中得到,再利用向量的模的计算公式和二次函数的性质,即可求解,得到答案.【详解】由,因为的最小值为,即恒成立,即恒成立,当且仅当时等号成立,代入函数中得到,所以,所以,当且仅当时,取得最小值,所以的最小值为,故选B.【点睛】本题主要考查了平面向量的和与差的模的最值,其中解答中熟记向量的模的运算公式,以及合理利用二次函数的性质求解是解答的关键,着重考查了推理与运算能力,属于中档试题.二、填空题13.若sin(π-α)=-,且α∈(π,),则cosα=______【答案】-.【解析】利用三角函数的诱导公式结合同角三角函数关系进行转化,即可求解,得到答案.【详解】由题意,可知,所以,因为,所以,所以,故答案为:.【点睛】本题主要考查了三角函数值的化简和计算,其中解答中结合三角函数的诱导公式以及同角三角函数关系是解决本题的关键,着重考查了推理与运算能力,属于基础题.14.在△ABC中,||=3,||=5,D是BC边的中点,则•=______【答案】8.【解析】利用已知条件,表示出向量,然后求解向量的数量积,即可得到答案.【详解】在中,,是边上的中点,则,故答案为:.【点睛】本题主要考查了平面向量的数量积的应用,其中解答中熟记向量的数量积的运算是解答的关键,着重考查转化思想以及计算能力,属于基础题.15.已知向量=(6,3),=(sinθ,cosθ),若//,则sin2θ-2cos2θ=______【答案】.【解析】因为,求得,得,在由,即可求解,得到答案.【详解】由题意,因为,所以,即,所以,所以,故答案为:.【点睛】本题主要考查了向量的共线定理的应用,以及三角函数的基本关系式的化简、求值,其中解答中熟练应用向量的共线定理,合理利用三角函数的基本关系式求解是解答的关键,着重考查了运算与求解能力,属于基础题.16.在平面直角坐标系xOy中,P(1,),若||=||=||=1,++=,则•的取值范围是______【答案】[-,].【解析】根据题,可得点在以原点为圆心,1为半径的圆上运动的正三角形,设,再利用向量的数量积的运算和三角函数的性质,即可求解,得到答案.【详解】由,得点在以原点为圆心,1为半径的圆上运动的正三角形,设,则,则因为2,所以,故答案为:【点睛】本题主要考查了单位圆、平面向量数量积的性质及其运算及两角差的余弦公式与辅助角公式的应用,试题的综合性强,属于中档试题,着重考查了分析问题和解答问题的能力.三、解答题17.已知向量=(2,-1),=(m,1)(1)若,的夹角为锐角,求m的取值范围;(2)当3-2=(4,n)时,求m-n的值.【答案】(1)().(2)6.【解析】(1)若的夹角为锐角,则且去掉的情况,即可求解;(2)直接根据向量减法的坐标表示及向量相等的条件,即可求解.【详解】(1)由题意,因为,所以,若的夹角为锐角,则,解得,∴的取值范围.(2)由,所以,解得,所以【点睛】本题主要考查了向量的数量积的性质的坐标表示及向量减法的坐标表示,着重考查了运算与求解能力,属于基础试题.18.已知f(α)=,其中α≠kπ(k∈Z).(1)化简f(α);(2)若f(+β)=-,β是第四象限的角,求sin(2β+)的值.【答案】(1)(2)【解析】(1)直接利用三角函数的诱导公式,化简运算,即可求解;(2)由,得,进一步求得,得到sin2与cos2,再由sin (2+)展开两角和的正弦求解.【详解】(1)由题意,可得=;(2)由f(+)==-,得sin.又β是第四象限的角,∴cos=.∴sin2,cos2.∴sin(2+)=sin2cos+cos2sin=.【点睛】本题主要考查了三角函数的化简求值,及诱导公式及两角差的正弦公式的应用,其中解答中熟记三家函数的恒等变换的公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.19.已知,的夹角为120°,且||=2,||=3,记=3-2,=2+k(1)若⊥,求实数k的值;(2)当k=时,求向量与的夹角θ.【答案】(1)(2)【解析】(1)根据条件求得,则,根据,利用,从而求出k的值;(2)当时,可求出,从而可求出,再由根据向量夹角的范围,即可求解.【详解】(1)由题意,可知,则,因为,所以解得.(2)当时,,∴,∴,又,∴.【点睛】本题主要考查了向量数量积的运算及计算公式,向量垂直的充要条件,以及向量夹角公式的应用,其中熟记向量的数量积的运算公式,以及向量的运算是解答的关键,着重考查了推理与运算能力,属于基础题.20.已知函数f(x)=sin(2ωx+)+sin(2ωx-)+2cos2ωx,其中ω>0,且函数f(x)的最小正周期为π(1)求ω的值;(2)求f(x)的单调增区间(3)若函数g(x)=f(x)-a在区间[-,]上有两个零点,求实数a的取值范围.【答案】(1)1.(2) [-+kπ,+kπ],k∈Z,(3)见解析.【解析】(1)利用三角函数恒等变换的应用化简函数解析式可得,利用三角函数周期公式可求的值.(2)由正弦函数的单调性可求的单调增区间.(3)作出函数在上的图象,从图象可看出,可求当曲线与在∈上有两个交点时,2,即可得解实数的取值范围.【详解】(1)由三角恒等变换的公式,可得f(x)=sin(2+)+sin(2-)+2=sin2+cos2+sin2-cos2+1+cos2=sin2+cos2+1,又因为T==π,所以.(2)由2kπ-2+2kπ+,k∈Z,解得:-+kπ+kπ,k∈Z,可得f(x)的单调增区间为:[-+kπ,+kπ],k∈Z,(3)作出函数在上的图象如图:函数g(x)有两个零点,即方程有两解,亦即曲线与在x∈上有两个交点,从图象可看出f(0)=f()=2,f()=+1,所以当曲线与在x∈上有两个交点时,则2,即实数的取值范围是.【点睛】本题主要考查了三角函数恒等变换的应用,三角函数周期公式,正弦函数的图象和性质,其中解答合理利用三角恒等变换的公式化简函数的解析式,熟记三角函数的图象与性质是解答的关键,着重考查了计算能力和数形结合思想的应用,属于中档题.21.如图在△AOB中,D是边OB的中点,C是边OA上靠近O的三等分点,AD与BC交于M点.设=,=.(1)用,表示;(2)过点M的直线与边OA,OB分别交于E,F.设=p,=p,求+的值.【答案】(1) 5.【解析】(1)由A,M,D三点共线和C,M,B三点共线,列出方程,即可求解;(2)利用平面向量的线性运算和共线定理,列出方程组,即可求解.【详解】(1)设,则,,∵三点共线,∴共线,从而又C,M,B三点共线,∴共线,同理可得联立①②,解得,故.(2)∵..∵共线,∴,整理得.【点睛】本题主要考查了平面向量共线定理和平面向量的线性运算,其中解答熟记向量的共线定理和平面向量的线性运算,合理里程方程组是解答的关键,着重考查了推理与运算能力,属于中档题.22.已知向量=(4cos2(-),cos x+sin x),=(sin x,cos x-sin x),设f(x)=•-1(1)求满足|f(x)|≤1的实数x的集合;(2)若函数φ(x)=[f(2x)+tf(x)-tf(-x)]-(1+)在[-,]上的最大值为2,求实数t的值.【答案】(1) {x|kπ-≤x≤kπ+,k∈Z}.(2) t=-2或6.【解析】(1)由向量的数量积的坐标表示和二倍角公式、诱导公式,化简可得,再由正弦函数的图象可得所求集合;(2)化简,由换元法和二次函数在闭区间上的最值求法,可得所求最大值,解方程可得所求值.【详解】(1)由题意,向量(4cos2(-),cosx+sinx),(sinx,cosx-sinx),则f(x)=4sinxcos2(-)+(cosx+sinx)(cosx-sinx)-1=2sinx(1+cos(x-))+cos2x-sin2x-1=1-cos2x+cos2x+2sinx-1=2sinx,|f(x)|1,即为2|sinx|1,即-sinx,可得kπ-x kπ+,k∈Z,则满足|f(x)|1的实数x的集合为{x|kπ-x kπ+,k∈Z};(2)由题意,函数=[2sin2x+2tsinx-2tcosx]-(1+),可令u=sinx-cosx=sin(x-),x∈[-,],即有x-∈[-,],可得u∈[-,1],sin2x=1-u2,g(u)=1-u2+ut-1-=-(u-t)2+-t,当t>1即t>2时,g(u)max=g(1)=t-1,由g(1)=2,可得t=6;当-≤t≤1,即-2≤t≤2时,则g(t)=-t,由-t=2,解得t=-2(4舍去);当t<-,即t<-2时,g(u)max=g(-)=-2-t-t,由-2-t-t=2,可得t=-(舍去).综上可得t=-2或6.【点睛】本题主要考查了向量的数量积的坐标表示和三角函数的恒等变换,以及换元法、二次函数在闭区间上的最值求法,考查分类讨论思想方法,化简运算能力,属于中档题.。
一、选择题(本大题共12小题,共60.0分)已知集合,,则 A ={x|x <2}B ={x|3‒2x >0}()B. ∩B ={x|x <32}A ∩B =⌀D. B ={x|x <32}A ∪B =R解:集合,,∵A ={x|x <2}B ={x|3‒2x >0}={x|x <32},故A 正确,B 错误;{x|x <32},故C ,D 错误;{x||x <2}解不等式求出集合B ,结合集合交集和并集的定义,可得结论.本题考查的知识点集合的交集和并集运算,难度不大,属于基础题.已知圆:与圆:,则两圆的公切线条数为 C 1x 2+y 2‒2x =0C 2x 2+y 2‒4y +3=0()条 B. 2条 C. 3条 D. 4条解:圆:化为标准形式是,C 1x 2+y 2‒2x =0(x ‒1)2+y 2=1,半径是;(1,0)r 1=1化为标准形式是,+y 2‒4y +3=0x 2+(y ‒2)2=1,半径是;(0,2)r 2=1,5>r 1+r 2求出两圆的圆心与半径,利用圆心距判断两圆外离,公切线有4条.本题考查了两圆的一般方程与位置关系应用问题,是基础题.a=70.3b=0.37c=ln0.3()3.三个数,,大小的顺序是 a>b>c a>c>b b>a>c c>a>bA. B. C. D.【答案】A【解析】解:由指数函数和对数函数的图象可知:70.3>10<0.37<1ln0.3<0,,,所以ln0.3<0.37<70.3故选:A.a=70.3b=0.37c=ln0.3a=70.3由指数函数和对数函数的图象可以判断,,和0和1的大小,从而可以判断,b=0.37c=ln0.3,的大小.本题考查利用插值法比较大小、考查指数函数、对数函数的图象和性质,属基础知识、基本题型的考查.α()4.已知m,n表示两条不同直线,表示平面,下列说法正确的是 m//αn//αm//n m⊥αn⊂αm⊥nA. 若,,则B. 若,,则m⊥αm⊥n n//αm//αm⊥n n⊥αC. 若,,则D. 若,,则【答案】BA.m//αn//α【解析】解:若,,则m,n相交或平行或异面,故A错;m⊥αn⊂αm⊥nB.若,,则,故B正确;m⊥αm⊥n n//αn⊂αC.若,,则或,故C错;m//αm⊥n n//αn⊂αn⊥αD.若,,则或或,故D错.故选:B.A.运用线面平行的性质,结合线线的位置关系,即可判断;B.运用线面垂直的性质,即可判断;C.运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;关键,注意观察空间的直线与平面的模型.在四面体的四个面中,是直角三角形的至多有 P ‒ABC ()个B. 2个C. 3个D. 4个解:如图,平面ABC ,PA ⊥,故四个面均为直角三角形.作出图形,能够做到PA 与AB ,AC 垂直,BC 与BA ,BP 垂直,得解.此题考查了线面垂直等问题,难度不大.上有且仅有两个点到直线的距离为1,则半径r 的取值范围是(x ‒3)2+(y +5)2=r 24x ‒3y ‒2=0B. C. D. (4,6)[4,6)(4,6][4,6]解:依题意可知圆心坐标为,到直线的距离是5,(3,‒5)距离是1的直线有两个和,3y ‒2=04x ‒3y ‒7=04x ‒3y +3=0距离为到距离是.3y ‒7=0|12+15‒7|16+9=44x ‒3y +3=0|12+15+3|16+9=6相交,那么圆也肯定与相交,4x ‒3y +3=04x ‒3y ‒7=0交点个数多于两个,于是圆上点到的距离等于1的点不止两个,4x ‒3y ‒2=0不相交,4x ‒3y +3=04<r<6所以.故选:A.4x‒3y‒2=0先根据圆的方程求得圆心坐标和圆心到已知直线的距离,进而可推断出与直线距离是1的两个直线4x‒3y+3=04x‒3y‒7=0方程,分别求得圆心到这两直线的距离,分析如果与相交那么圆也肯定与相交交点4x‒3y‒2=04x‒3y+3=0个数多于两个,则到直线的距离等于1的点不止2个,进而推断出圆与不相交;同4x‒3y‒7=04x‒3y‒7=04x‒3y+3=0时如果圆与的距离小于等于1那么圆与和交点个数和至多为1个也不4x‒3y‒7=04x‒3y+3=0符合题意,最后综合可知圆只能与相交,与相离,进而求得半径r的范围...本题主要考查了圆与圆的位置关系和判定考查了学生分析问题和数形结合思想的运用要求学生有严密的逻辑思维能力.f(x)f(‒x)=‒f(x)f(3‒x)=f(x)f(2019)=()7.已知定义在R上的函数满足,,则 ‒3A. B. 0 C. 1 D. 3【答案】Bf(x)f(‒x)=‒f(x)f(0)=0【解析】解:定义在R上的函数满足,可知函数是奇函数,.f(3‒x)=f(x)f(3+x)=f(‒x)=‒f(x),可得,f(x+6)=‒f(x+3)=f(x)所以,函数的周期是6.f(2019)=f(336×6+3)=f(3)=f(3‒3)=f(0)=0.故选:B.判断函数的奇偶性以及函数的周期性,化简求解函数值即可.本题考查抽象函数的应用,函数的奇偶性以及函数的周期性的应用,考查计算能力.()8.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为 22322B. C. D. 2解:由三视图可得直观图,‒ABCD中,最长的棱为PA,PB2+PC2=22+(22)2根据三视图可得物体的直观图,结合图形可得最长的棱为PA,根据勾股定理求出即可.本题考查了三视图的问题,关键画出物体的直观图,属于基础题.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重..△ABC A(2,0)B(0,4)△心到垂心距离的一半这条直线被后人称之为三角形的欧拉线若的顶点,,且x‒y+2=0()拉线的方程为,则顶点C的坐标为 4,0)(‒4,‒2)(‒2,2)(‒3,0)B. C. D.C(m,n)解:设,由重心坐标公式得,的中点为,直线AB 的斜率,(1,2)k =4‒00‒2=‒2的中垂线方程为,即.y ‒2=12(x ‒1)x ‒2y +3=0,解得.2y +3=0+2=0{x =‒1y =1的外心为.(‒1,1),+(n ‒1)2=32+12=102+n 2+2m ‒2n =8②得:,或,.m =‒4n =0m =0n =4时B ,C 重合,舍去.n =4的坐标是.(‒4,0)的坐标,由重心坐标公式求得重心,代入欧拉线得一方程,求出AB 的垂直平分线,和欧拉线方程联立求得三角形的外心,由外心到两个顶点的距离相等得另一方程,两方程联立求得点C 的坐标.本题考查直线方程的求法,训练了直线方程的点斜式,考查了方程组的解法.设函数的最小值为,则实数a 的取值范围是 f(x)={x 2‒2x +a,x <124x ‒3,x ≥12‒1()B. C. D. ≥‒2a >‒2a ≥‒14a >‒14解:当时,,x ≥12f(x)=4x ‒3≥2‒3=‒1时,取得最小值;‒1时,,f(x)=x 2‒2x +a =(x ‒1)2+a ‒1运用指数函数的单调性和二次函数的单调性,分别求出当时,当时,函数的值域,由题意可得x ≥12x <12式,计算即可得到.本题考查分段函数的运用:求最值,主要考查指数函数的单调性和二次函数的值域的求法,属于中档题.由直线上的点向圆引切线,则切线长的最小值为 y =x +2(x ‒4)2+(y +2)2=1()B. C. D. 30314233解:要使切线长最小,必须直线上的点到圆心的距离最小,此最小值即为圆心y =x +2(4,‒2)由点到直线的距离公式得,m =|4+2+2|2=42由勾股定理求得切线长的最小值为.m 2‒r 2=32‒1=31要使切线长最小,必须直线上的点到圆心的距离最小,此最小值即为圆心到直线的距离y =x +2(4,‒2),由勾股定理可求切线长的最小值.本题考查直线和圆的位置关系,点到直线的距离公式、勾股定理得应用.已知函数与的图象关于y 轴对称,当函数和在区间同时递增或同时递减y =f(x)y =F(x)y =f(x)y =F(x)[a,b]时,把区间叫做函数的“不动区间”若区间为函数的“不动区间”,则实数[a,b]y =f(x).[1,2]f(x)=|2x ‒t|的取值范围是 ()B. C. D. (0,2][12,+∞)[12,2][12,2]∪[4,+∞)为函数的“不动区间”,f(x)=|2x‒t|F(x)=|2‒x‒t|[1,2]和函数在上单调性相同,t y=2‒x‒t和函数的单调性相反,2‒x‒t)≤0[1,2]在上恒成立,+2‒x)+t2≤0[1,2]在上恒成立,≤2x[1,2]在上恒成立,,[1,2]f(x)=|2x‒t|f(x)=|2x‒t|F(x)=|2‒x‒t|[1,2]为函数的“不动区间”,则函数和函数在上单调性相‒t)(2‒x‒t)≤0[1,2]在上恒成立,进而得到答案.本题考查的知识点是函数恒成立问题,指数函数的图象和性质,正确理解不动区间的定义,是解答的关键.二、填空题(本大题共4小题,共20.0分)f(x)x∈(‒∞,0)f(x)=2x3+x2f(2)=已知函数是定义在R上的奇函数,当时,,则______.12∵x∈(‒∞,0)f(x)=2x3+x2解:当时,,=‒12,f(x)是定义在R上的奇函数,12,故答案为:12x∈(‒∞,0)f(x)=2x3+x2f(‒2)由已知中当时,,先求出,进而根据奇函数的性质,可得答案.本题考查的知识点是函数奇偶性的性质,函数求值,难度不大,属于基础题.,,,,+z 2=32该点到原点的距离是.x 2+y 2+z 2=32=62故答案为:.62设出该点的坐标,根据题意列方程组,从而求得该点到原点的距离.本题考查了空间中点的坐标与应用问题,是基础题.的单调递增区间是______.f(x)=ln (x 2‒2x ‒8)(4,+∞)解:由得或,x 2‒2x ‒8>0x <‒2x >4,则是增函数,2x ‒8y =lnt 的单调递增区间,f(x)=ln (x 2‒2x ‒8)等价为求函数的递增区间,t =x 2‒2x ‒8的递增区间为,2x ‒8(4,+∞)的递增区间为,f(x)(4,+∞)故答案为:(4,+∞)求出函数的定义域,结合复合函数单调性的性质进行求解即可.本题主要考查复合函数单调区间的求解,利用换元法结合复合函数单调性之间的关系是解决本题的关键.如图,矩形ABCD 中,,,平面ABCD ,若在BC 上只有一个AB =1BC =a PA ⊥满足,则a 的值等于______.PQ ⊥DQ平面ABCD ,,PQ ⊥DQ 由三垂线定理的逆定理可得.DQ ⊥AQ 在以线段AD 的中点O 为圆心的圆上,上有且仅有一个点Q 满足,与圆O 相切,否则相交就有PQ ⊥DQ ∴BC (两点满足垂直,矛盾.),,,,∴OQ =AB =1∴BC =AD =2故答案为:2.利用三垂线定理的逆定理、直线与圆相切的判定与性质、矩形的性质、平行线的性质即可求出.本题体现转化的数学思想,转化为BC 与以线段AD 的中点O 为圆心的圆相切是关键,属于中档题.三、解答题(本大题共6小题,共70.0分):,:,分别求m 的值,使得和:x +my +6=0l 2(m ‒2)x +3y +2m =0l 1l 2垂直;平行;重合;相交.解:若和垂直,则(1)l 1l 2m ‒2+3m =0若和平行,则(2)l 1l 2m ‒21=3m ≠2m 6若和重合,则3=0±3∴m =‒1(3)l 1l 2m ‒21=3m =2m6若和相交,则由可知且(4)l 1l 2(2)(3)m ≠3m ≠‒1若和垂直,则(1)l 1l 2m ‒2+3m =0本题主要考查了两直线的位置关系的应用,解题的关键是熟练掌握直线的不同位置的条件一般式方程的表示有两直线和,当a 在区间内变化时,求直线与两坐标轴围ax ‒2y ‒2a +4=02x ‒(1‒a 2)y ‒2‒2a 2=0(0,2)成的四边形面积的最小值.解:,∵0<a <2,与坐标轴的交点,.‒2y =2a ‒4A(0,‒a +2)B(2‒4a ,0),与坐标轴的交点,‒a 2)y ‒2‒2a 2=0C(a 2+1,0)).和,都经过定点2y ‒2a +4=02x ‒(1‒a 2)y ‒2‒2a 2=0.E =2OCEA =S △BCE ‒S △OAB =12|BC|⋅y E ‒12|OA|⋅|OB|=12(a 2+4a ‒1)×2‒12(2‒a)×(4a ‒2)=a 2‒,当时取等号.+114≥114a =12与坐标轴围成的四边形面积的最小值为.114利用直线方程,求出相关点的坐标,利用直线系解得根据即可得出.y E =2.S 四边形OCEA =S △BCE ‒S △OAB 本题考查了相交直线、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.如图,在圆锥PO 中,已知,圆O 的直径,C 是弧AB 的中点,PO =2AB =2AC 的中点.求异面直线PD 和BC 所成的角求直线OC 和平面PAC 所成角的正弦值.中,,C 是AB 的中点,D 为AC 的中点,AB =2,=2 ,OD =22,面ABC ,2PO ⊥,tan∠PDO =POOD =2异面直线PD 和BC 所成的角为.arctan 2,D 是AC 的中点,,OC ∴AC ⊥OD 底面ABC ,底面ABC ,,AC ⊂∴AC ⊥PO ,平面POD ,=O ∴AC ⊥平面PAC ,平面平面PAC ,∴POD ⊥POD 中,过O 作于H ,OH ⊥PD 平面PAC ,连结CH ,则CH 是OC 在平面PAC 上的射影,是直线OC 和平面PAC 所成的角.中,,POD OH =PO ⋅ODPO 2+OD 2=2×122+14=23中,.OHC sin∠OCH =OHOC =23和平面PAC 所成角的正弦值为.23由已知得,从而异面直线PD 和BC 所成的角为,由此能求出异面直线PD 和(1)OD//BC ∠PDO POD 中,过O 作于H ,由已知得是直线OC 和平面PAC 所成的角由此能求出直线OH ⊥PD ∠OCH .PAC 所成角的正弦值.本题考查异面直线所成角的大小的求法,考查线面解的正弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.2,.图象的对称轴方程是.f(x)=x 2‒4x +a +3x =2,即时,,解得:;≤2a ≤1f(x )max =f(a)=a 2‒3a +3=3a =0,即时,a +11≤a ≤2,,f(a +1)=a 2‒a ,‒f(a)=3a ‒3>0,解得:,=a 2‒a =3a =1±132即时,,2a >2f(x)max =f(a +1)=a 2‒a =3,1+132或.0a =1+132由函数在R 上至少有一个零点方程至少有一个实数根(1)y =f(x)⇔f(x)=x 2‒4x +a +3=0⇔解出即可;通过对区间端点与对称轴顶点的横坐标2的大小比较,再利用二次函数的单调性即可得出.[a,a +1]本题考查了二次函数零点与一元二次方程的实数根的关系、一元二次方程的实数根与判别式的关系、二次函数△的单调性、分类讨论等基础知识与基本技能方法.如图,已知正三棱柱的底面边长为2,侧棱长为,点E 在侧棱上,点FABC ‒A 1B 1C 132AA 1在侧棱上,且,.BB 1AE =22BF =2求证:;CF ⊥C 1E 求二面角的大小.E ‒CF ‒C 1解:由已知可得,,(I)CC 1=32CE =C 1F =23,,+(AE ‒BF )2EF =C 1E =6,,+C 1E 2=C 1F 2CE 2+C 1E 2=C 1C 2,又,C 1E C 1E ⊥CE.EF ∩CE =E 平面CEF平面CEF ,故CF ;⊥C 1E 中,由可得,,CEF (I)EF =CF =6CE =23,所以,+CF 2=CE 2CF ⊥EF ,且,所以平面CF ⊥C 1E EF ∩C 1E =E CF ⊥C 1EF平面,故CF C 1EF ⊥C 1F即为二面角的平面角1E ‒CF ‒C 1是等腰直角三角形,所以,即所求二面角的大小为C 1EF ∠EFC 1=45∘E ‒CF ‒C 145∘欲证平面CEF ,根据直线与平面垂直的判定定理可知只需证与平面CEF 内两相交直线垂直,(I)C 1E ⊥C 1E 根据勾股定理可知,,又,满足线面垂直的判定定理,最后根据线面垂直的性质可EF ⊥C 1E C 1E ⊥CE EF ∩CE =E ;E 根据勾股定理可知,根据线面垂直的判定定理可知平面,而平面,则CF ⊥EF CF ⊥C 1EF C 1F ⊂C 1EF CF 即为二面角的平面角,在是等腰直角三角形,求出此角即可.1E ‒CF ‒C 1△C 1EF 本题主要考查了空间直线与平面的位置关系和二面角的求法,同时考查了空间想象能力和推理论证的能力.已知直线l :与x 轴交于A 点,动圆M 与直线l 相切,并且和圆O :相外切.x =m(m <‒2)x 2+y 2=4求动圆圆心M 的轨迹C 的方程.若过原点且倾斜角为的直线与曲线C 交于M 、N 两点,问是否存在以MN 为直径的圆过点A ?若存在,求π3出实数m 的值;若不存在,说明理由.解:设动圆的圆心M 坐标,(1)(x 0,y 0)与直线l 相切,并且和圆O :相外切,x 2+y 2=4,即.=x 20+y 20‒2x 0+2‒m =x 20+y 20.20=(4‒2m)x 0+(2‒m )2动圆圆心M 的轨迹C 的方程为.y 2=(4‒2m)x +(2‒m )2MN 为直径的圆过点A .事实上,过原点倾斜角为的直线方程为.π3y =3x ,得.y =3x (4‒2m)x +(2‒m )23x 2‒(4‒2m)x ‒(2‒m )2=0,,N(x 2,y 2),=4‒2m 3,x 1x 2=‒(2‒m )23.x 2=‒(2‒m )2MN 为直径的圆过点A ,则,⃗AM ⋅⃗AN =0m,y 1)⋅(x 2‒m,y 2),解得:m(x 1+x 2)+m 2+y 1y 2=‒(2‒m )23‒m ⋅4‒2m 3+m 2‒(2‒m )2=m 2+12m ‒163=0,舍去.213m 2=‒6+213()时,存在以MN 为直径的圆过点A .‒213设出动圆圆心坐标,由动圆圆心到切线的距离等于动圆与定圆的圆心距减定圆的半径列式求解动圆圆(1)列式求解m 的值,结合m 的范围说明存在以MN 为直径的圆过点A .⃗AM ⋅⃗AN =0本题考查了轨迹方程的求法,考查了直线与圆锥曲线的关系,训练了利用数量积判断两个向量的垂直关系,考查了学生的计算能力,是有一定难度题目.。
河南省洛阳市2018-2019学年高一下学期期末质量检测数学试题本试卷分第Ⅰ卷(选择題)和第Ⅱ卷(非选择题)两部分.第I 卷1至2项,第Ⅱ卷3至4页.共150分.考试时间120分钟第Ⅰ卷(选择题,共60分)注意事项1.答卷前,考生务必将自己的姓名、考号填写在答题卡上2.考试结束,将答题卡交回一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求.1.已知集{}1()22x A x =<,集合{}2B x x =<,则A B =I A. (-2,-1) B. (-1,0) C. (0,2) D. (-1,2) 2.某厂家生产甲、乙、丙三种不同类型的饮品・产量之比为2:3:4.为检验该厂家产品质量,用分层抽样的方法抽取一个容量为72的样本,则样本中乙类型饮品的数量为A. 16B. 24C. 32D. 483.在△ABC 中,点D 在边BC 上,若2BD DC =u u u r u u u r ,则AD =u u u r A. 14AB u u u r +34AC u u u r B. 34AB u u u r +14AC u u u r C. 13AB u u u r +23AC u u u r D. 23AB u u u r +13AC u u u r 4.计算: 2sincos 12122cos 112πππ=-D. 5.执行如图所示的程序框图,若输人的n 值为2019,则S =A. 1-B. 12-C. 12D. 16.为研究需要,统计了两个变量x ,y 的数据·情况如下表:其中数据x 1、x 2、x 3…x n ,和数据y 1、y 2、y 3,…y n 的平均数分别为x 和y ,并且计算相关系数r =-0.8,回归方程为y b x a ∧∧∧=+,有如下几个结论:①点(x ,y )必在回归直线上,即y =b x +a ∧;②变量x ,y相关性强;③当x =x 1,则必有1y y ∧=;④b <0. 其中正确结论个数为 A. 1 B. 2 C. 3 D. 4 7.已知两条直线,a b 与两个平面,αβ,给出下列命题:①若,,a b αβαβ⊂⊂∥,则a b ∥;②若,,,a b a b αββα⊂⊂P P ,则αβ∥;③若,,a b αβαβ⊥⊥P ,则a b ∥;④若,,a b αβαβ⊥P P ,则a b ∥;其中正确的命题个数为A. 1B. 2C. 3D. 48.设()()ln 21x g x +=,则(4)(3)(3)(4)g g g g -+---= A. -1 B. 1 C. l n2 D. -ln29.如图是一圆锥的三视图,正视图和侧视图都是顶角为120°的等腰三角形,若过该圆锥顶点S 的截面三角形面积的最大值为2,则该圆锥的侧面积为B. C.163π D. 4π10.已知向量a r 是单位向量,b r =(3,4),且b r 在a r 方向上的投影为74-,則2a b -=r r A. 36 B. 21 C. 9 D. 6 11.已知圆C 的半径为2,在圆内随机取一点P ,并以P 为中点作弦AB,则弦长AB ≤的概率为 A. 14B. 34D. 4 12.函数y =A. [1]B. [1,2]C.,2]2] 第Ⅱ卷(非选择题,共90分) 二、填空题:本大题共4个小题,每小题5分,共20分13.若π3sin ,35α⎛⎫+= ⎪⎝⎭则πcos 6α⎛⎫-= ⎪⎝⎭____________ 14.已知实数,x y 满足cos sin 1x y αα+=的最小值为_______. 15.在四面体A -BCD 中,AB =AC =DB =DCBC ,且四面体A -BCD 的最大体积为13,则四面体A -BCD ,外接球的表面积为________.16.已知曲线y =750x y -+=交于A ,B 两点,若直线OA ,OB 的倾斜角分别为α、β,则cos()αβ-=__________三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤 17.已知点A (1,2),B (3,1),C (2,2),D (1,m)(1)若向量AC u u u r ∥BD u u u r ,求实数m 的值;(2)若m =3,求向量AC u u u r 与BDu u u r 夹角.18.高二数学期中测试中,为了了解学生的考试情况,从中抽取了n 个学生的成绩(满分为100分)进行统计.按照[50,60), [60,70), [70,80), [80,90), [90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出得分在[50,60), [90,100]的数据).(1)求样本容量n 和频率分布直方图中,x y值; (2)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取3名参加志愿者活动,所抽取的3名同学中至少有一名成绩在[90,100]内的概率。
河南省洛阳市2018-2019学年高一上学期期末数学测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第I卷1至2页,第Ⅱ卷3至4页.共150分.考试时间120分钟第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A=,B=,则A. A B=B. A BC. A BD. A B=R【答案】A【解析】由得,所以,选A.点睛:对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.2.已知圆:与圆:,则两圆的公切线条数为A. 1条B. 2条C. 3条D. 4条【答案】D【解析】【分析】求出两圆的圆心与半径,利用圆心距判断两圆外离,公切线有4条.【详解】圆C1:x2+y2﹣2x=0化为标准形式是(x﹣1)2+y2=1,圆心是C1(1,0),半径是r1=1;圆C2:x2+y2﹣4y+3=0化为标准形式是x2+(y﹣2)2=1,圆心是C2(0,2),半径是r2=1;则|C1C2|r1+r2,∴两圆外离,公切线有4条.故选:D.【点睛】本题考查了两圆的一般方程与位置关系应用问题,是基础题.3.三个数大小的顺序是()A. B. C. D.【答案】A【解析】试题分析:,所以.考点:比较大小.4.已知表示两条不同直线,表示平面,下列说法正确的是()A. 若则B. 若,,则C. 若,,则D. 若,,则【答案】B【解析】试题分析:若则或相交或异面,故A错;若,,,由直线和平面垂直的定义知,,故B正确;若,,则或,故C错;若,,则与位置关系不确定,故D错.考点:空间直线和平面的位置关系.5.在四面体的四个面中,是直角三角形的至多有()A. 0个B. 2个C. 3个D. 4个【答案】D【解析】【分析】作出图形,能够做到P A与AB,AC垂直,BC与BA,BP垂直,得解.【详解】如图,P A⊥平面ABC,CB⊥AB,则CB⊥BP,故四个面均为直角三角形.故选:D.【点睛】本题考查了四面体的结构与特征,考查了线面的垂直关系,属于基础题.6.若圆上有且仅有两个点到直线的距离为1,则半径r的取值范围是()A. B. C. D.【答案】A【解析】【分析】先利用点到直线的距离求出圆心到直线的距离,由题意得,解此不等式求得半径r的取值范围.【详解】由圆的方程可知圆心为,圆心到直线的距离因为圆上有且仅有两个点到直线的距离为1,所以,解得,故选A.【点睛】本题主要考查了直线与圆的位置关系,点到直线的距离,绝对值不等式的解法,属于中档题.7.已知定义在上的函数满足,,则()A. B. C. D.【答案】B【解析】试题分析:,且,又,,由此可得,,是周期为的函数,,,故选B.考点:函数的奇偶性,周期性,对称性,是对函数的基本性质的考察.【易错点晴】函数满足则函数关于中心对称,,则函数关于轴对称,常用结论:若在上的函数满足,则函数以为周期.本题中,利用此结论可得周期为,进而,需要回到本题利用题干条件赋值即可.8.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A. 3B. 2C. 2D. 2【答案】B【解析】由三视图还原原几何体如图,四棱锥A﹣BCDE,其中AE⊥平面BCDE,底面BCDE为正方形,则AD=AB=2,AC=.∴该四棱锥的最长棱的长度为.故选:.9.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线后人称之为三角形的欧拉线.已知的顶点,若其欧拉线方程为,则顶点C的坐标是()A. B.C.D.【答案】A 【解析】 【分析】设C 的坐标,由重心坐标公式求重心,代入欧拉线得方程,求出AB 的垂直平分线,联立欧拉线方程得三角形外心,外心到三角形两顶点距离相等可得另一方程,两方程联立求得C 点的坐标. 【详解】设C(m ,n),由重心坐标公式得重心为,代入欧拉线方程得: ① AB 的中点为,, 所以AB 的中垂线方程为 联立,解得所以三角形ABC 的外心为, 则,化简得: ② 联立①②得:或,当时,B,C 重合,舍去,所以顶点C 的坐标是故选A.【点睛】本题主要考查了直线方程的各种形式,重心坐标公式,属于中档题.10.设函数的最小值为-1,则实数的取值范围是( )A. B.C.D.【答案】C 【解析】试题分析:当时,为增函数,最小值为,故当时,,分离参数得,函数开口向下,且对称轴为,故在递增,,即.考点:分段函数的最值.【思路点晴】本题主要考查分段函数值域问题,由于函数的最小值为,所以要在两段函数图象都要讨论最小值.首先考虑没有参数的一段,当时,为增函数,最小值为.由于这一段函数值域已经包括了最小值,故当时,值域应该不小于,分离常数后利用二次函数图象与性质可求得参数的取值范围.11.过直线上的点向圆引切线,则切线长的最小值为()A. B. C. D.【答案】C【解析】【分析】要使切线长最小,则直线上的点到圆心的距离最小,此最小值即为圆心到直线的距离,求出后再利用勾股定理求得切线长的最小值.【详解】要使切线长最小,必须直线上的点到圆心的距离最小,此最小值为圆心到直线的距离d,由点到直线的距离可得根据勾股定理知切线长的最小值为,故选C.【点睛】本题主要考查了直线与圆的位置关系,点到直线的距离公式,勾股定理,属于中档题.12.已知函数与的图象关于轴对称,当函数和在区间同时递增或同时递减时,把区间叫做函数的“不动区间”,若区间为函数的“不动区间”,则实数的取值范围是A. B. C. D.【答案】C【解析】试题分析:易知与在上单调性相同,当两个函数单调递增时,与的图象如图1所示,易知,解得;当两个函数单调递减时,的图象如图2所示,此时关于轴对称的函数不可能在上为减函数.综上所述,,故选C.考点:1、新定义;2、函数的图象.第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.已知函数是定义在上的奇函数,当时,,则__________. 【答案】12【解析】函数是定义在上的奇函数,,则,.14.在空间直角坐标系中,一点到三个坐标轴的距离都是1,则该点到原点的距离是________. 【答案】【解析】【分析】设出点的坐标,根据题意列出方程组,从而求得该点到原点的距离.【详解】设该点的坐标因为点到三个坐标轴的距离都是1所以,,,所以故该点到原点的距离为,故填.【点睛】本题主要考查了空间中点的坐标与应用,空间两点间的距离公式,属于中档题. 15.函数的单调递增区间是_________。
2018-2019学年河南省洛阳市孟津县第一中学高一数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知全集U=R,集合A={x|1≤x<7},B={x|x2-7x+10<0},则A∩(?R B) = ()A.(1,2)∪(5,7) B.[1,2]∪[5,7)C.(1,2)∪(5,7] D.(1,2]∪(5,7)参考答案:B2. 设集合A={x|-5≤x<1},B={x|x≤2},则A∪B=()A.{x|-5≤x<1} B.{x|-5≤x≤2}C.{x|x<1} D.{x|x≤2}参考答案:D略3. 若函数是R上的单调递增函数,则实数a的取值范围为A. B. C.D.参考答案:D4. 在△ABC中,,则三角形的形状为A.直角三角形 B.等腰三角形或直角三角形 C.正三角形 D.等腰直角三角形参考答案:A5. 已知函数在(-,2)上单调递减,则的取值范围是()A.[0,4]B.C.[0,]D.(0,]参考答案:C6. 如f(x)=则f(﹣3)=( )A.2 B.C.8 D.参考答案:B【考点】函数的值.【专题】计算题.【分析】本题考查的分段函数的函数值,由函数解析式,应先进行﹣3与2的大小关系的确定,再代入相应的解析式求解.【解答】解:∵﹣3<2,∴f(﹣3)=f(﹣3+2)=f(﹣1),而﹣1<2,∴f(﹣1)=f(﹣1+2)=f(1),又∵1<2,∴f(1)=f(3),而3≥2,∴f(3)=2﹣3=.故选:B.【点评】分段函数分段处理,这是研究分段函数图象和性质最核心的理念,具体做法是:分段函数的定义域、值域是各段上x、y取值范围的并集,分段函数的奇偶性、单调性要在各段上分别论证;分段函数的最大值,是各段上最大值中的最大者.7. f(x)是定义在(-2,2)上的减函数,若,则实数m的取值范围是()A. (0,+ ∞)B.C. (-1,3)D.参考答案:B【分析】根据函数的定义域和单调性,得到不等式组,即可求解,得到答案. 【详解】由题意,函数f(x)是定义在(-2,2)上的减函数,又由,所以,解得,即实数的取值范围是,故选B.【点睛】本题主要考查了函数的单调性的应用,其中解答中利用函数的定义域和单调性得出不等式组是解答的关键,着重考查了推理与运算能力,属于基础题.8. 如图所示的程序框图,若输出的S是62,则①可以为()A.n≤3? B.n≤4? C.n≤5? D.n≤6?参考答案:C考点:程序框图.专题:算法和程序框图.分析:根据程序框图进行模拟计算即可得到结论.解答:解:第一次,n=1,S=0,满足条件.S=0+21=2,n=2,第二次,n=2,S=2,满足条件.S=2+22=6,n=3,第三次,n=3,S=6,满足条件.S=6+23=14,n=4,第四次,n=4,S=14,满足条件.S=14+24=30,n=5,第五次,n=5,S=30,满足条件.S=30+25=62,n=6,第六次,n=6,S=62,不满足条件输出S=62,则①可以为n≤5?,故选:C点评:本题主要考查程序框图的识别和应用,根据条件进行模拟运算是解决本题的关键.9. 如图,在正四棱柱ABCD﹣A1B1C1D1中,AB=1,AA1=2,点P是平面A1B1C1D1内的一个动点,则三棱锥P﹣ABC的正视图与俯视图的面积之比的最大值为()A.1 B.2 C.D.参考答案:B【考点】简单空间图形的三视图.【分析】由题意确定棱锥P﹣ABC的正视图的面积,三棱锥P﹣ABC的俯视图的面积的最小值,即可求出三棱锥P﹣ABC的正视图与俯视图的面积之比的最大值.【解答】解:由题意可知,P在正视图中的射影是在C1D1上,AB在正视图中,在平面CDD1C1上的射影是CD,P的射影到CD的距离是AA1=2,所以三棱锥P﹣ABC的正视图的面积为=1;三棱锥P﹣ABC的俯视图的面积的最小值为=,所以三棱锥P﹣ABC的正视图与俯视图的面积之比的最大值为=2,故选:B.10. 若两个函数的图象经过若干次平移后能够重合,则称这两个函数为“同形”函数.给出四个函数:,,,. 则“同形”函数是 ( ) ks5uA.与 B.与 C.与D.与参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 已知直线l过点P(2,3),且与两条坐标轴在第一象限所围成的三角形的面积为12,则直线l的方程为.参考答案:3x+2y﹣12=0【考点】IB:直线的点斜式方程.【分析】写出直线的截距式方程,根据要求条件参数的值,得到本题结论.【解答】解:设l在x轴、y轴上的截距分别为a,b(a>0,b>0),则直线l的方程为+=1∵P(2,3)在直线l上,∴+=1.又由l与两条坐标轴在第一象限所围成的三角形面积为12,可得ab=24,∴a=4,b=6,∴直线l的方程为+=1,即3x+2y﹣12=0,故答案为:3x+2y﹣12=0.12. 已知函数f(x)=log2(x+2),则f(x)>2时x的取值范围为.参考答案:{x|x>2}【考点】指、对数不等式的解法;对数函数的图象与性质.【专题】计算题;函数思想;转化思想;函数的性质及应用;不等式的解法及应用.【分析】利用对数函数的单调性,转化不等式为代数不等式求解即可.【解答】解:函数f(x)=log2(x+2),则f(x)>2,可得log2(x+2)>2,即x+2>4,解得x>2.x的取值范围为{x|x>2}.故答案为:{x|x>2}.【点评】本题考查对数不等式的解法,对数函数的单调性的应用,考查计算能力.13. 已知,,则;.参考答案:,,,,14. 直线与平面所成角为,,则与所成角的取值范围是 _________参考答案:15. 设数集,,且都是集合的子集,如果把叫做集合的“长度”,那么集合的长度的最小值是.参考答案:16. (4分)f(x)是R上的偶函数,当x≥0时,f(x)=2x+1,若f(m)=5,则m的值为.参考答案:±2考点:函数奇偶性的判断.专题:函数的性质及应用.分析:根据函数奇偶性的性质进行求解即可.解答:若m≥0,则由f(m)=5得f(m)=2m+1=5,即2m=4,解得m=2,∵f(x)是偶函数,∴f(﹣2)=f(2)=5,则m=±2,故答案为:±2点评:本题主要考查函数奇偶性的应用,解方程即可,比较基础.17. 已知定义在R上的偶函数对任意的,有则满足<的x 取值范围是_____ _____________参考答案:<x<略三、解答题:本大题共5小题,共72分。
2018-2019学年河南省洛阳市栾川一高高一数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. .已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列四个结论:①b<0;②b2﹣4ac>0;③4a﹣2b+c>0;④a﹣b+c<0其中正确结论有()个.A.1 B.2 C.3 D.4参考答案:C【考点】二次函数的性质.【分析】根据抛物线开口方向,判断a的正负;根据对称轴方程是x=﹣<0,可判断b 的符号,判断①的正确性;根据图象与x轴交点的个数判断②是否正确;利用f(﹣2)>0判断③是否正确;利用f(﹣1)>0判断④是否正确.【解答】解:根据图象开口向下,∴a<0;∵﹣<0?b<0,①正确;∵图象与 x轴有两个交点,∴△>0,②正确;∵f(﹣2)=4a﹣2b+c>0,∴③正确;∵a﹣b+c=f(﹣1)>0,∴④不正确.故选C.2. 在△ABC中,设D为边BC的中点,则()A.B. C. D.参考答案:D3. 已知,,则为()A. B. C.D.参考答案:B略4. 已知函数y=log2(ax﹣1)在(﹣2,﹣1)上单调递减,则实数a的取值范围是()A.(﹣1,0] B.[﹣2,﹣1] C.(﹣∞,﹣1] D.(﹣∞,﹣1)参考答案:C【考点】对数函数的图象与性质.【分析】根据对数函数的性质以及一次函数的性质,分离参数a,求出a的范围即可.【解答】解:若函数y=log2(ax﹣1)在(﹣2,﹣1)上单调递减,则a<0且ax﹣1≥0在(﹣2,﹣1)恒成立,即a≤在(﹣2,﹣1)恒成立,故a≤﹣1,故选:C.【点评】本题考查了对数函数的性质,考查函数的单调性问题,是一道基础题.5. 已知,则的值为()A. B.- C. D.-参考答案:A6. 在△ABC中,a、b、c分别是角A、B、C的对边,a=1,△ABC的面积为,f(x)=2sin(2x+)+1,且f(B)=2,则的值为( )A. B.2 C.D.4参考答案:B7. 设f(x)=,则f(f(3))的值为()A.﹣1 B.1 C.2 D.参考答案:B【考点】函数的值.【专题】计算题.【分析】根据题意,由函数的解析式可得f(3)=1,则f(f(3))=f(1),代入数据即可得答案.【解答】解:根据题意,对于f(x)=,f(3)=log5(3×3﹣4)=log55=1,f(f(3))=f(1)=2﹣30=1;故选:B.【点评】本题考查函数的值的计算,属于基础题,注意准确计算即可.8. 已知,则向量与向量的夹角是()A. B. C. D.参考答案:C试题分析:由条件得,所以,所以,即.考点:向量的数量积运算.9. 已知,则的值为(**** )A.B.C.或D.参考答案:D10. 方程组的解集是()A、B、C、D、参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11. 若角α的终边经过点P(﹣1,2),则sin2α=.参考答案:﹣【考点】任意角的三角函数的定义;二倍角的正弦.【专题】计算题;方程思想;综合法;三角函数的求值.【分析】利用三角函数的定义,计算α的正弦与余弦值,再利用二倍角公式,即可求得结论.【解答】解:由题意,|OP|=,∴sinα=,cosα=﹣,∴sin2α=2sinαcosα=2××(﹣)=﹣,故答案为:﹣.【点评】本题考查三角函数的定义,考查二倍角公式,属于基础题.12. 已知集合A=-1, 1, 3 ,B=3,,且B A.则实数的值是参考答案:13. 已知函数,若,则.参考答案:-4或514. 的值是.参考答案:略15. 函数的单调递增区间为.参考答案:略16. 已知函数,则=参考答案:-217. 在等式的括号中,填写一个锐角,使得等式成立,这个锐角是▲参考答案:三、解答题:本大题共5小题,共72分。
2018-2019学年河南省洛阳市高一(下)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一个符合题目要求的.1.集合A={(x,y)|y=3x﹣2},B={(x,y)|y=x+4},则A∩B=()A.{3,7} B.{(3,7)} C.(3,7)D.[3,7]2.计算:1﹣2sin2105°=()A.﹣B.C.﹣D.3.过点(3,1)且与直线x﹣2y﹣3=0垂直的直线方程是()A.2x+y﹣7=0 B.x+2y﹣5=0 C.x﹣2y﹣1=0 D.2x﹣y﹣5=04.下列函数中,最小正周期为π且图象关于y轴对称的函数是()A.y=sin2x+cos2x B.y=sinx•cosxC.y=|cos2x| D.y=sin(2x+)5.如图所示的程序框图输出的结果是S=5040,则判断框内应填的条件是()A.i≤7 B.i>7 C.i≤6 D.i>66.某工厂生产某种产品的产量x(吨)与相应的生产能耗y(吨标准煤)有如表几组样本数据:据相关性检验,这组样本数据具有线性相关关系,求得其回归方程是=0.7x+0.35,则实数m 的值为()A.3.5 B.3.85 C.4 D.4.157.在区间[﹣1,2]上随机取一个数,则﹣1<2sin<的概率为()A.B.C.D.8.一个几何体的三视图如图所示,则这个几何体的体积等于()A.12 B.C.D.49.设向量=(1,sinθ),=(1,3cosθ),若∥,则等于()A.﹣B.﹣C.D.10.已知函数f(x)=sin(ωx+φ)(其中ω>0|φ|<)图象相邻对称轴的距离为,一个对称中心为(﹣,0),为了得到g(x)=cosωx的图象,则只要将f(x)的图象()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位11.已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则坐标原点O与圆(x﹣)2+(y+)2=2的位置关系是()A.点O在圆外 B.点O在圆上 C.点O在圆内 D.不能确定12.已知⊙O的半径为2,A为圆上的一个定点,B为圆上的一个动点,若点A,B,O不共线,且|﹣t|≥||对任意t∈R恒成立,则•=()A.4B.4 C.2D.2二、填空题:本大题共4个小题,每小题5分.共20分.13.某工厂生产A、B、C、D四种不同型号的产品,产品数量之比依次为2:3:5:2,现用分层抽样的方法抽出一个容量为n的样本,样本中A种型号的产品有16件,那么此样本的容量n=_______.14.如图程序运行后输出的结果是_______.15.设f(x)=msin(πx+α)+ncos(πx+β)+8,其中m,n,α,β均为实数,若f=_______.16.已知符号函数sgn(x)=,f(x)=x2﹣2x,则函数F(x)=sgn[f(x)]﹣f (x)的零点个数为_______.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.已知||=4,||=,( +)•(﹣2)=16.(1)求•;(2)求|+|.18.学校达标运动会后,为了解学生的体质情况,从中抽取了部分学生的成绩,得到一个容量为n的样本,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出了如图的频率分布直方图,已知[50,60)与[90,100]两组的频数分别为24与6.(1)求n及频率分布直方图中的x,y的值;(2)估计本次达标运动会中,学生成绩的中位数和平均数;(3)已知[90,100]组中有2名男生,4名女生,为掌握性别与学生体质的关系,从本组中选2名作进一步调查,求2名学生中至少有1名男生的频率.19.已知函数f(x)=cos(2ωx﹣)+sin2ωx﹣cos2ωx(ω>0)的最小正周期是π.(1)求函数f(x)图象的对称轴方程;(2)求函数f(x)的单调递增区间.20.如图,三棱柱ABC﹣A1B1C1的所有棱长都为1,且侧棱与底面垂直,M是BC的中点.(1)求证:A1C∥平面AB1M;(2)求直线BB1与平面AB1M所成角的正弦值;(3)求点C到平面AB1M的距离.21.已知f(x)=是奇函数,g(x)=x2+nx+1为偶函数.(1)求m,n的值;(2)不等式3f(sinx)•g(sinx)>g(cosx)﹣λ对任意x∈R恒成立,求实数λ的取值范围.22.如图,已知点A(﹣3,0),B(3,0),M是线段AB上的任意一点,在AB的同侧分别作正方形AMCD、MBEF,⊙P和⊙Q是两个正方形的外接圆,它们交于点M,N.(1)证明:直线MN恒过一定点S,并求S的坐标;(2)过A作⊙Q的割线,交⊙Q于G、H两点,求|AH|•|AG|的取值范围.2018-2019学年河南省洛阳市高一(下)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一个符合题目要求的.1.集合A={(x,y)|y=3x﹣2},B={(x,y)|y=x+4},则A∩B=()A.{3,7} B.{(3,7)} C.(3,7)D.[3,7]【考点】交集及其运算.【分析】联立A与B中二元一次方程组成方程组,求出方程组的解即可得到两集合的交集即可.【解答】解:联立A与B中方程得:,消去y得:3x﹣2=x+4,解得:x=3,把x=3代入得:y=9﹣2=7,∴方程组的解为,∵A={(x,y)|y=3x﹣2},B={(x,y)|y=x+4},∴A∩B={(3,7)},故选:B.2.计算:1﹣2sin2105°=()A.﹣B.C.﹣D.【考点】二倍角的余弦.【分析】利用诱导公式,降幂公式,特殊角的三角函数值即可化简求值得解.【解答】解:1﹣2sin 2105°=1﹣2sin 275°=1﹣(1﹣cos150°)=﹣cos30°=﹣.故选:C .3.过点(3,1)且与直线x ﹣2y ﹣3=0垂直的直线方程是( ) A .2x+y ﹣7=0 B .x+2y ﹣5=0 C .x ﹣2y ﹣1=0 D .2x ﹣y ﹣5=0 【考点】直线的一般式方程与直线的垂直关系.【分析】由两直线垂直的性质可知,所求的直线的斜率k ,然后利用直线的点斜式可求直线方程【解答】解:由两直线垂直的性质可知,所求的直线的斜率k=﹣2 所求直线的方程为y ﹣1=﹣2(x ﹣3)即2x+y ﹣7=0 故选:A .4.下列函数中,最小正周期为π且图象关于y 轴对称的函数是( ) A .y=sin2x+cos2x B .y=sinx •cosx C .y=|cos2x| D .y=sin (2x+)【考点】三角函数的周期性及其求法.【分析】利用两角和差的三角函数、诱导公式化简函数的解析式,再利用三角函数的周期性和奇偶性,判断各个选项是否正确,从而得出结论.【解答】解:由于y=sin2x+cos2x=sin (2x+)为非奇非偶函数,故它的图象不关于y 轴对称,故排除A ;由于y=sinx •cosx=sin2x ,为奇函数,它的图象关于原点对称,故排除B ;由于y=|cos2x|的周期为•=,故排除C;由于y=sin(2x+)=cos2x,它的周期为=π,且它为偶函数,它的图象关于y轴对称,故满足条件,故选:D.5.如图所示的程序框图输出的结果是S=5040,则判断框内应填的条件是()A.i≤7 B.i>7 C.i≤6 D.i>6【考点】程序框图.【分析】根据程序输出的结果,得到满足条件的i的取值,即可得到结论.【解答】解:模拟执行程序框图,可得i=10,S=1满足条件,执行循环体,S=10,i=9满足条件,执行循环体,S=90,i=8满足条件,执行循环体,S=720,i=7满足条件,执行循环体,S=5040,i=6由题意,此时应该不满足条件,退出循环,输出S的值为5040.故判断框内应填入的条件是i>6.故选:D.6.某工厂生产某种产品的产量x(吨)与相应的生产能耗y(吨标准煤)有如表几组样本数据:据相关性检验,这组样本数据具有线性相关关系,求得其回归方程是=0.7x+0.35,则实数m 的值为()A.3.5 B.3.85 C.4 D.4.15【考点】线性回归方程.【分析】根据表格中所给的数据,求出这组数据的横标和纵标的平均值,表示出这组数据的样本中心点,根据样本中心点在线性回归直线上,代入得到关于m的方程,解方程即可.【解答】解:根据所给的表格可以求出=×(3+4+5+6)=4.5, =×(2.5+3+m+4.5)=,∵这组数据的样本中心点在线性回归直线上,∴=0.7×4.5+0.35,∴m=4,故选:C.7.在区间[﹣1,2]上随机取一个数,则﹣1<2sin<的概率为()A.B.C.D.【考点】几何概型.【分析】根据三角函数的不等式求出x的取值范围,结合几何概型的概率公式进行计算即可.【解答】解:由可﹣1<2sin<得﹣<sin<,∵﹣1≤x≤2,∴﹣≤≤,则﹣≤<,即﹣≤x<1,则对应的概率P===,故选:C8.一个几何体的三视图如图所示,则这个几何体的体积等于()A.12 B.C.D.4【考点】由三视图求面积、体积.【分析】由已知中的三视图,我们易判断出这个几何体的形状及结构特征,进而求出底面各边长,求出底面面积和棱锥的高后,代入棱锥的体积公式,是解答本题的关键.【解答】解:由已知中的三视图可得这是一个底面为梯形的四棱锥其中底面的上底为2,下底为4,高为2,则底面面积S==6棱锥的高H为2则这个几何体的体积V===4故选D9.设向量=(1,sinθ),=(1,3cosθ),若∥,则等于()A.﹣B.﹣C.D.【考点】三角函数的化简求值;平面向量共线(平行)的坐标表示.【分析】根据两向量平行的坐标表示,利用同角的三角函数关系﹣﹣弦化切,即可求出答案.【解答】解:∵向量=(1,sinθ),=(1,3cosθ),∥,∴3cosθ=sinθ,可得:tanθ=3,∴====,故选:D.10.已知函数f(x)=sin(ωx+φ)(其中ω>0|φ|<)图象相邻对称轴的距离为,一个对称中心为(﹣,0),为了得到g(x)=cosωx的图象,则只要将f(x)的图象()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由周期求得ω,根据图象的对称中心求得φ的值,可得函数的解析式,再根据函数y=Asin(ωx+φ)的图象变换规律得出结论.【解答】解:由题意可得函数的最小正周期为=2×,∴ω=2.再根据﹣×2+φ=kπ,|φ|<,k∈z,可得φ=,f(x)=sin(2x+),故将f(x)的图象向左平移个单位,可得y=sin[2(x+)+]=sin(2x+)=cos2x的图象,故选:D.11.已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则坐标原点O与圆(x﹣)2+(y+)2=2的位置关系是()A.点O在圆外 B.点O在圆上 C.点O在圆内 D.不能确定【考点】分段函数的应用;对数函数的图象与性质;点与圆的位置关系.【分析】画出分段函数y=|lgx|的图象,求出ab关系,进而根据点与圆的位置关系定义,可得答案.【解答】解:画出y=|lgx|的图象如图:∵0<a<b,且f(a)=f(b),∴|lga|=|lgb|且0<a<1,b>1∴﹣lga=lgb即ab=1,则a+b>2,故坐标原点O在圆(x﹣)2+(y+)2=2外,故选:A.12.已知⊙O的半径为2,A为圆上的一个定点,B为圆上的一个动点,若点A,B,O不共线,且|﹣t|≥||对任意t∈R恒成立,则•=()A.4B.4 C.2D.2【考点】平面向量数量积的运算.【分析】根据向量的减法的运算法则将向量进行化简,然后两边平方,设•=m,整理可得4t2﹣2tm﹣(4﹣2m)≥0恒成立,再由不等式恒成立思想,运用判别式小于等于0,解不等式即可.【解答】解:∵|﹣t|≥||,∴|﹣t|≥|﹣|,两边平方可得:2﹣2t•+t22≥2﹣2•+2,设•=m,则有:4t2﹣2tm﹣(4﹣2m)≥0恒成立,则有判别式△=4m2+16(4﹣2m)≤0,即m2﹣8m+16≤0,化简可得(m﹣4)2≤0,即m=4,即有•=4,故选:B二、填空题:本大题共4个小题,每小题5分.共20分.13.某工厂生产A、B、C、D四种不同型号的产品,产品数量之比依次为2:3:5:2,现用分层抽样的方法抽出一个容量为n的样本,样本中A种型号的产品有16件,那么此样本的容量n=96.【考点】分层抽样方法.【分析】先求出总体中中A种型号产品所占的比例,是样本中A种型号产品所占的比例,再由条件求出样本容量.【解答】解:由题意知,总体中中A种型号产品所占的比例是=,因样本中A种型号产品有16件,则×n=16,解得n=96.故答案为:96.14.如图程序运行后输出的结果是61.【考点】伪代码.【分析】经过观察为直到型循环结构,按照循环结构进行执行,当满足条件时跳出循环,输出结果即可.【解答】解:经过分析,本题为直到型循环结构,模拟执行程序如下:i=1,S=1执行循环体,S=5,i=3不满足条件i>8,执行循环体,S=13,i=5不满足条件i>8,执行循环体,S=29,i=7不满足条件i>8,执行循环体,S=61,i=9此时,满足条件i>8,跳出循环,输出S=61.故答案为:61.15.设f(x)=msin(πx+α)+ncos(πx+β)+8,其中m,n,α,β均为实数,若f=2016.【考点】运用诱导公式化简求值.【分析】根据三角函数的诱导公式,列方程即可得到结论.【解答】解:∵f(x)=msin(πx+α)+ncos(πx+β)+8,f=msin+ncos+8=msinα+ncosβ+8=﹣2000,∴可得:msinα+ncosβ=﹣2008,则 f+ncos+8=﹣msinα﹣ncosβ+8=﹣(msinα+ncosβ)+8=2016.故答案为:2016.16.已知符号函数sgn(x)=,f(x)=x2﹣2x,则函数F(x)=sgn[f(x)]﹣f (x)的零点个数为5.【考点】根的存在性及根的个数判断.【分析】利用符号函数求出F(x)的解析式,然后求解函数的零点即可得到结果.【解答】解:符号函数sgn(x)=,f(x)=x2﹣2x,则函数F(x)=sgn[f(x)]﹣f(x)=,当x∈(﹣∞,0)∪(2,+∞)时,﹣x2+2x+1=0,解得x=满足题意.当x=0或x=2时,﹣x2+2x=0,x=0或x=2是函数的零点.当x∈(0,2)时,﹣x2+2x﹣1=0,解得x=1满足题意.所以函数的零点个数是5.故答案为:5.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.已知||=4,||=,( +)•(﹣2)=16.(1)求•;(2)求|+|.【考点】平面向量数量积的运算;平面向量的坐标运算.【分析】(1)根据条件,( +)•(﹣2)=16,展开化简即可得•;(2)根据向量长度和向量数量积的关系即可求|+|.【解答】解:(1)∵(+)•(﹣2)=16,∴2﹣22﹣•=16,即•=2﹣22﹣16=16﹣2×3﹣16=﹣6;(2)|+|==.18.学校达标运动会后,为了解学生的体质情况,从中抽取了部分学生的成绩,得到一个容量为n的样本,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出了如图的频率分布直方图,已知[50,60)与[90,100]两组的频数分别为24与6.(1)求n及频率分布直方图中的x,y的值;(2)估计本次达标运动会中,学生成绩的中位数和平均数;(3)已知[90,100]组中有2名男生,4名女生,为掌握性别与学生体质的关系,从本组中选2名作进一步调查,求2名学生中至少有1名男生的频率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图;众数、中位数、平均数.【分析】(1)由题意能求出样本容量n和x,y的值.(2)利用频率分布直主图能估计学生成绩的中位数和学生成绩的平均数.(3)记2名男生分别为a1,a2,4名女生分别为b1,b2,b3,b4,至少有一名男生的对立事件为抽到2名女生,由此利用对立事件能求出2名学生中至少有1名男生的频率.【解答】解:(1)由题意知样本容量n==150,y==0.004,x=0.1﹣0.004﹣0.010﹣0.016﹣0.040=0.030.(2)估计学生成绩的中位数m=70+×10=71,估计学生成绩的平均数=55×0.16+65×0.30+75×0.40+85×0.10+95×0.04=70.6.(3)记2名男生分别为a1,a2,4名女生分别为b1,b2,b3,b4,抽取两名学生的结果有:基本事件总数n==15,其中至少有一名男生的对立事件为抽到2名女生,∴2名学生中至少有1名男生的频率p=1﹣=.19.已知函数f(x)=cos(2ωx﹣)+sin2ωx﹣cos2ωx(ω>0)的最小正周期是π.(1)求函数f(x)图象的对称轴方程;(2)求函数f(x)的单调递增区间.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)利用二倍角的正弦公式,两角差的余弦、正弦公式化简解析式,由周期公式求出ω的值,由正弦函数的对称轴求出函数f(x)图象的对称轴方程;(2)由正弦函数的增区间、整体思想求出函数f(x)的单调递增区间.【解答】解:(1)由题意得,f(x)=cos2ωx+sin2ωx﹣cos2ωx=sin2ωx﹣cos2ωx=,∴最小正周期T==π,解得ω=1,则f(x)=由得,,∴f(x)图象的对称轴方程是;(2)由(1)得f(x)=,由得,,∴函数f(x)的单调递增区间是.20.如图,三棱柱ABC﹣A1B1C1的所有棱长都为1,且侧棱与底面垂直,M是BC的中点.(1)求证:A1C∥平面AB1M;(2)求直线BB1与平面AB1M所成角的正弦值;(3)求点C到平面AB1M的距离.【考点】点、线、面间的距离计算;直线与平面所成的角.【分析】(1)证明线面平行,通常利用线面平行的判定定理,这里我们可以利用中位线的性质,得到线线平行;(2)过B 作BD ⊥B 1M 于D ,易得BD ⊥平面AB 1M ,故∠BB 1D 是直线BB 1与平面AB 1M 所成角; (3)M 是BC 的中点,点C 与点B 到平面AB 1M 的距离相等. 【解答】(1)证明:连接A 1B ,交AB 1于O ,连接OM 因为直三棱柱ABC ﹣A 1B 1C 1,所以O 是A 1B 的中点 因为O ,M 分别是A 1B 和BC 的中点,所以OM ∥A 1C 因为A 1C ⊄面AB 1M ,OM ⊂面AB 1M 所以A 1C ∥面AB 1M ; (2)解:由题意BB 1⊥AM , ∵M 是BC 的中点,∴BC ⊥AM , ∴AM ⊥平面B 1BM , ∴平面AB 1M ⊥平面B 1BM ,过B 作BD ⊥B 1M 于D ,易得BD ⊥平面AB 1M 故∠BB 1D 是直线BB 1与平面AB 1M 所成角. Rt △BB 1D 中,BD==,∴sin ∠BB 1D=,∴直线BB 1与平面AB 1M 所成角的正弦值为;(3)解:M是BC的中点,点C与点B到平面ABM的距离相等,1M的距离BD=,由(2)可知点B到平面AB1M的距离为.∴点C到平面AB121.已知f(x)=是奇函数,g(x)=x2+nx+1为偶函数.(1)求m,n的值;(2)不等式3f(sinx)•g(sinx)>g(cosx)﹣λ对任意x∈R恒成立,求实数λ的取值范围.【考点】函数恒成立问题;函数奇偶性的性质.【分析】(1)根据函数奇偶性的性质建立方程关系进行求解即可.(2)将不等式进行化简,利用参数分离法把不等式恒成立问题进行转化,求最值即可.【解答】解:(1)∵f(x)=是奇函数,∴f(0)=0,即f(0)=﹣m=0,则m=0,∵g(x)=x2+nx+1为偶函数.∴对称轴x=﹣=0,即n=0.(2)由(1)知f(x)=,g(x)=x2+1,则3f(sinx)•g(sinx)=(sin2x+1)=3sinx,则不等式3f(sinx)•g(sinx)>g(cosx)﹣λ对任意x∈R恒成立,等价为不等式3sinx>g(cosx)﹣λ=cos2x+1﹣λ对任意x∈R恒成立,即λ>cos2x﹣3sinx+1恒成立,∵cos2x﹣3sinx+1=﹣(sinx+)2+∈[﹣2,4],∴λ>4,即实数λ的取值范围是(4,+∞).22.如图,已知点A(﹣3,0),B(3,0),M是线段AB上的任意一点,在AB的同侧分别作正方形AMCD、MBEF,⊙P和⊙Q是两个正方形的外接圆,它们交于点M,N.(1)证明:直线MN恒过一定点S,并求S的坐标;(2)过A作⊙Q的割线,交⊙Q于G、H两点,求|AH|•|AG|的取值范围.【考点】直线与圆的位置关系.【分析】(1)根据题意,写出⊙P与⊙Q的方程,利用两圆的方程作差,得出公共弦MN所在的直线方程,从而求出直线MN恒过的定点S;(2)过点Q作QT⊥GH于T,根据垂径定理与切割线定理,即可求出|AH|•|AG|的取值范围.【解答】解:(1)设点M(m,0),其中m∈(﹣3,3),则C(m,m+3),F(m,3﹣m),P(,),Q(,);易知⊙P的方程为: +=,即x2+y2﹣(m﹣3)x﹣(m+3)y﹣3m=0;①⊙Q的方程为: +=,即x2+y2﹣(3+m)x﹣(3﹣m)y+3m=0;②①﹣②得,公共弦MN所在的直线方程为6x﹣2my﹣6m=0,整理得3x﹣m(3+y)=0,所以MN恒过定点S(0,3);(2)过点Q作QT⊥GH于T,则|TH|=|TG|,从而|AH|•|AG|=(|AT|﹣|TH|)•(|AT|+|TG|)=|AT|2﹣|TH|2 =(|AQ|2﹣|QT|2)﹣(|HQ|2﹣|QT|2)=|AQ|2﹣|HQ|2=+﹣=6m+18;由于m∈(﹣3,3),|AH|•|AG|∈(0,36),即|AH|•|AG|的取值范围是(0,36).。