NMR09.11.5波谱学
- 格式:ppt
- 大小:9.89 MB
- 文档页数:190
第11章 核磁共振波谱法将自旋核放入磁场后,用适宜频率的电磁波照射,它们吸收能量,发生原子核能级的跃迁,同时产生核磁共振信号,得到核磁共振谱。
这种方法称为核磁共振波谱法(nuclear magnetic resonance spectroscopy,NMR )。
在有机化合物中,经常研究的是1H 核和13C 核的共振吸收谱。
本章将主要介绍1H 核磁共振谱。
核磁共振波谱法是结构分析的重要根据之一,在化学、生物、医学、临床等研究工作中得到了广泛的应用。
分析测定时,样品不会受到破坏,属于无破坏分析方法。
§11-1 基本原理一、核的自旋运动有自旋现象的原子核,应具有自旋角动量(P )。
由于原子核是带正电粒子,故在自旋时产生磁矩μ。
磁矩的方向可用右手定则确定。
磁矩μ和角动量P 都是矢量,方向相互平行,且磁矩随角动量的增加成正比地增加:P ⋅=γμ (11-1) 式中γ为磁旋比。
不同的核具有不同的磁旋比。
核的自旋角动量是量子化的,可用自旋量子数I 表示。
P 的数值与I 的关系如下:()π21h I I P ⋅+= (11-2) I 可以为0,21,1,211,……等值。
很明显,当I=0时,P=0,即原子核没有自旋现象。
只有当I>0时,原子核才有自旋角动量和自旋现象。
实验证明,自旋量子数I 与原子的质量数(A )及原子序数(Z )有关,如表11-1所示。
从表中可以看出,质量数和原子序数均为偶数的核,自旋量子数I=0,即没有自旋现象。
当自旋量子数21=I 时,核电荷呈球形分布于核表面,它们的核磁共振现象较为简单,是目前研究的主要对象。
属于这一类的主要原子核有H 11、C 136、N 157、F 199、P 3115。
其中研究最多、应用最广的是H 1和C 13核磁共振谱。
表11-1 自旋量子数与原子的质量数及原子序数的关系二、自旋核在磁场中的行为若将自旋核放入场强为B 0的磁场中,由于磁矩与磁场相互作用,核磁矩相对外加磁场有不同的取向。
磁共振波谱学的名词解释磁共振波谱学是一门运用核磁共振技术进行物质分析的学科。
核磁共振(Nuclear Magnetic Resonance,简称NMR)是一种基于原子核核磁矩与外加磁场相互作用的物理现象,从而产生特定频率的幅度及相位变化。
磁共振波谱学则是通过测量和分析这种频率变化,来获取有关物质组成和结构特征的信息。
在磁共振波谱学中,一个关键的概念是共振。
共振是指原子核在特定的磁场中,受到一系列不同频率的射频辐射而发生能级跃迁,从而吸收或发射特定频率的电磁辐射。
这些频率信息可以通过经典物理中的共振条件来解释:当磁场的大小等于某个特定频率所需的能级跃迁能量差时,共振发生。
这一现象被用于磁共振波谱学中,通过测量共振频率来获取关于样品的结构和性质的信息。
在磁共振波谱学中,最常用的技术是核磁共振波谱(NMR spectroscopy)。
核磁共振波谱可用于分析各种化合物,包括有机化合物、生物分子和无机物质等。
这是因为核磁共振技术可以提供高分辨率和高灵敏度的信号,从而可以准确测量样品中不同核的共振频率,并将其与已知的标准物质进行比较,以确定分子的结构和化学环境。
除了核磁共振波谱,还存在其他类型的磁共振波谱学技术,如电子顺磁共振(Electron Paramagnetic Resonance,简称EPR)和电子自旋共振(Electron Spin Resonance,简称ESR)。
这些技术在物质分析和材料研究领域也扮演着重要角色。
电子顺磁共振适用于研究具有未成对电子的化学物质,如自由基和过渡金属离子。
而电子自旋共振主要关注电子自旋与外加磁场的相互作用,从而提供电子自旋状况及分子电子结构的信息。
在磁共振波谱学中,通过对固体样品、液体样品或气态样品中的原子核或电子进行测量和分析,可以获得许多有用的信息。
例如,核磁共振波谱可用于鉴定化学物质的成分,确定它们的结构和构象、测定相对数量和浓度,甚至研究物质的动力学性质。
实例分析——核磁共振波谱法(NMR)一、原理核磁共振:用频率为兆赫数量级的能量很低的电磁波照射分子时,能使磁性原子核在外磁场中发生磁能级的共振跃迁,从而产生吸收信号,这种原子核对射频辐射的吸收成为核磁共振光谱。
弛豫过程:大量(而不是单个)原子核的运动规律。
高能态原子核通过非辐射形式放出能量而回到低能态的过程叫弛豫过程。
屏蔽效应:核受周围不断运动着的电子影响,使氢核实际受到的外磁场作用减小, 这种对抗外磁场的作用为屏蔽效应,通过屏蔽效应可分析核周围情况化学位移在有机化合物中,各种氢核周围的电子云密度不同(结构中不同位置)共振频率有差异,即引起共振吸收峰的位移,这种现象称为化学位移。
化学位移的标准:相对标准 TMS(四甲基硅烷)位移常数δ=0TMS原因:①12个氢处于完全相同的化学环境,只产生一个尖峰;②屏蔽强烈,位移最大;只在图谱中远离其他大多数待研究峰的高磁场区有一个尖峰;③易溶于有机溶剂,沸点低,易回收。
二、定性分析总体分析δ小,屏蔽强,σ大,共振需要的磁场强度大,在高场出现,图右侧;δ大,屏蔽弱,σ小,共振需要的磁场强度小,在低场出现,图左侧与裸露的氢核相比,TMS的化学位移最大,但规定 TMS=0,其他种类氢核的位移为负值,负号不加。
影响因素:(1)诱导效应:吸电子,电子云降低,屏蔽下降,低场出现,图左侧(2)共轭效应(3)磁各相异性效应(4)范得华效应(5)氢键去屏蔽效应:电子云密度降低,产生去屏蔽作用,化学位移向低场(6)溶剂效应各峰的面积与氢原子数成正比自选耦合和自旋裂分:分峰是由于分子内部邻近氢核自旋的相互干扰引起的,这种邻近氢核自旋之间的相互干扰作用称为自旋偶合,由自旋偶合引起的谱线增多现象称为自旋裂分。
n+1规律当某基团上的氢有n个相邻氢时,它将裂分为n+1个峰。
若这些相邻氢核处于不同的化学环境中,如一种环境为n个,另一种为n’个,则将裂分为(n+1)(n’+1)个峰。
三、谱图解析与应用:(1)峰的数目:多少种(2)峰的强度(面积):多少个(3)峰的位移( ):每类质子所处的化学环境(4)峰的裂分数:相邻碳原子上质子数(5)偶合常数(J):确定化合物构型四、谱图解析步骤(1)检查谱图是否规则:四甲基硅烷的信号应在零点,是否尖锐、对称、基线平直。