第二章 有理数的运算 单元练习题(含答案)
- 格式:doc
- 大小:1.43 MB
- 文档页数:10
第二章 有理数的运算一、单选题1.徐州地铁1号线全长31900米,将31900用科学记数法表示为( )A .3.19×102B .0.319×103C .3.19×104D .0.319×1052.计算(−2)3+23等于( )A .0B .16C .32D .−323.武汉市某天凌晨的气温是−3℃,中午比凌晨上升了8℃,中午的气温是( )A .2℃B .3℃C .7℃D .5℃4.下列各对数中,数值相等的是( )A .−23与(−2)3B .−32与(−3)2C .(−1)2023与(−1)2024D .(−2)3与(−3)2 5.下列问题情境,不能用加法算式−2+8表示的是( )A .某日最低气温为−2℃,温差为8℃,该日最高气温B .用8元纸币购买2元文具后找回的零钱C .数轴上表示−2与8的两个点之间的距离D .水位先下降2cm ,再上升8cm 后的水位变化情况6.某粮店出售的三种品牌的面粉袋上分别标有质量为(50±0.2)kg ,(50±0.3)kg ,(50±0.4)kg 的字样,从中任意拿出两袋,则这两袋的质量最多相差与最少相差分别为( )A .0.8kg 和0.4kgB .0.6kg 和0.4kgC .0.8kg 和0kgD .0.8kg 和0.6kg 7.在简便运算时,把12×(−9991112)变形成最合适的形式是( ) A .12×(−1000+112)B .12×(−1000−112)C .12×(−999−1112)D .12×(−999+1112)8.在1,2,−2这三个数中,任意两数之商的最小值是( )A .12B .−12C .−1D .−29.规定a △b =a −2b ,则3△(−2)的值为( )A .7B .−5C .1D .−110.a ,b 两数在一条隐去原点的数轴上的位置如图所示,下列5个式子:℃a −b <0,℃a +b <0,℃ab <0,℃(a +1)(b +1)<0,℃(a −1)(b +1)<0中一定成立的有( )A.2个B.3个C.4个D.5个二、填空题11.将式子(−20)+(+3)−(−5)−(+7)省略括号和加号后变形正确的是.12.将13.549精确到十分位得.13.一潜艇所在的高度是−50m,一条鲨鱼在潜艇的上方20m处,那么鲨鱼所在的高度为m.14.在某地区,夏季高山上的温度从山脚起每升高100米平均降低0.8℃,已知山脚的温度是24℃,山顶的温度是4℃,试问这座山的高度是米.15.如果x、y都是不为0的有理数且xy<0,则代数式x|x|+|y|y的值是.16.如图所示是计算机某计算程序,若开始输入x=2,则最后输出的结果是.17.设非零数a是平方等于它本身的数,b是相反数等于它本身的数,c是绝对值最小的数,则a+b+c=.18.你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示.这样捏合到第次后可拉出2048根细面条.三、解答题19.计算.(1)12−(−6)+(−5)−15;(2)−113÷(−3)×(−13);(3)(−23+58−16)×(−24);(4)−14+16÷(−2)3×|−3−1|.20.阅读下面的解题过程:计算:(−15)÷(13−112−3)×6.解:原式=(−15)÷(−256)×6(第一步)=(−15)÷(−25)(第二步)=−35(第三步)回答:(1)上面解题过程中有两个错误,两处错误分别是第______,______步.(2)请写出正确的计算过程.21.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:(1)与标准重量比较,8筐白菜总计超过或不足多少千克?(2)若白菜每千克售价2元,则出售这8筐白菜可卖多少元?22.出租车司机小李某天上午的营运都是在一条东西走向的大道上,规定向东为正,向西为负,这天上午小李的行车路程(单位:千米)如下:+3,−2,+15,−1,+12,−3,−2,−23.(1)当小李将最后一名乘客送到目的地时,车距出发地的距离是多少千米?在什么方向?(2)若每千米的营运额为7元,则小李这天上午的总营运额为多少元?(3)在(2)的条件下,如果营运成本为1.5元/千米,那么这天上午小李盈利多少元?参考答案:1.C2.A3.D4.A5.C6.C7.A8.D9.A10.C11.−20+3+5−712.13.513.−3014.250015.016.1817.118.1119.(1)−2(2)−427(3)5(4)−920.(1)二,三(2)108521.(1)不足5.5千克(2)389元22.(1)车在出发地西1千米处(2)427元(3)335.5元。
第二章《有理数及其运算》专项练习专题一:正数和负数1、下列各数中,大于-21小于21的负数是( ) A.-32B.-31C.31D.02、负数是指( )A.把某个数的前边加上“-”号B.不大于0的数C.除去正数的其他数D.小于0的数 3、关于零的叙述错误的是( )A.零大于所有的负数B.零小于所有的正数C.零是整数D.零既是正数,也是负数 4、非负数是( )A.正数B.零C.正数和零D.自然数5、文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A.文具店B.玩具店C.文具店西40米处D.玩具店西60米处 6、大于-5.1的所有负整数为_____.7、珠穆朗玛峰高出海平面8848米,表示为+8848米.吐鲁番盆地低于海平面155米,表示为____. 8、请写出3个大于-1的负分数_____.9、某旅游景点一天门票收入5000元,记作+5000元,则同一天支出水、电、维修等各种费用600元,应记作_____.10、某同学语、数、外三科的成绩,高出平均分部分记作正数,低出部分记作负数,如表所示请回答,该生成绩最好和最差的科目分别是什么?专题二:数轴与相反数1、下面正确的是( )A.数轴是一条规定了原点,正方向和长度单位的射线B.离原点近的点所对应的有理数较小C.数轴可以表示任意有理数D.原点在数轴的正中间 2、关于相反数的叙述错误的是( )A.两数之和为0,则这两个数为相反数B.如果两数所对应的点到原点的距离相等,这两个数互为相反数C.符号相反的两个数,一定互为相反数D.零的相反数为零3、若数轴上A 、B 两点所对应的有理数分别为a 、b ,且B 在A 的右边,则a -b 一定( )A.大于零B.小于零C.等于零D.无法确定 4、在数轴上A 点表示-31,B 点表示21,则离原点较近的点是_____. 5、两个负数较大的数所对应的点离原点较_____.6、在数轴上距离原点为2的点所对应的数为_____,它们互为_____.7、数轴上A 、B 、C 三点所对应的实数为-32,-43,54,则此三点距原点由近及远的顺序为_____. 8、数轴上-1所对应的点为A ,将A 点右移4个单位再向左平移6个单位,则此时A 点距原点的距离为_____. 9、在等式3215⨯-⨯=的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立。
北师大版(2024版)七年级(上)数学单元测试卷第2章《有理数及其运算》满分120分时间100分钟题号得分一、选择题(共10题;共30分)1.−110的绝对值是( )A.110B.10C.−110D.−102.如果“亏损5%”记作−5%,那么+3%表示( )A.多赚3%B.盈利−3%C.盈利3%D.亏损3%3.如图,数轴上点P表示的数是( )A.-1B.0C.1D.24.2023年3月13日,十四届全国人大一次会议闭幕后,国务院总理李强在答记者问时表示,我们国家现在适合劳动年龄人口已经有近9亿人,每年新增劳动力是1500万人,人力资源丰富仍然是中国一个巨大优势或者说显著优势.其中1500万用科学记数法表示为( )A.1.5×103B.1500×104C.1.5×106D.1.5×1075.如图,数轴上的点A,B,C,D表示的数与−13互为相反数的是( )A.A B.B C.C D.D6.下列各式中,计算结果最大的是( )A.3+(−2)B.3−(−2)C.3×(−2)D.3÷(−2)7.式子−2−1+6−9有下面两种读法;读法一:负2,负1,正6与负9的和;读法二:负2减1加6减9.则关于这两种读法,下列说法正确的是( )A.只有读法一正确B.只有读法二正确C .两种读法都不正确D .两种读法都正确8.用“▲”定义一种新运算:对于任何有理数a 和b ,规定a▲b =ab +b 2,如2▲3=2×3+32=15,则(−4)▲2的值为( )A .−4B .4C .−8D .89.已知两个有理数a ,b ,如果ab <0且a +b >0,那么( )A .a >0,b >0B .a >0,b <0C .a ,b 同号D .a ,b 异号,且正数的绝对值较大10.已知有理数a ,b ,c 在数轴上的位置如图所示,则a 2|a 2|−|b |b−c |c |=( )A .−1B .1C .2D .3二、填空题(共6题;共18分)11.既不是正数也不是负数的数是 . 12.−25 的倒数是 .13.某天最高气温为6℃,最低气温为−3℃.这天的温差是 ℃.14.一个整数8150…0用科学记数法表示为8.15×1010,则原数中“0”的个数为 个.15.比较大小:−|−8| −42.(填“>”“ <”或“=”)16.数轴上的A 点与表示−3的点距离4个单位长度,则A 点表示的数为 .三、解答题(共9题;共72分)17.(6分) 把下列数填在相应的集合内.−56,0,-3.5,1.2,6.(1)负分数集合:{}.(2)非负数集合:{ }.18.(8分)计算:(1)(−7)+13−5;(2)(−14)−(−34)−|12−1|.19.(6分)阅读下面的解题过程,并解决问题.计算:53.27−(−18)+(−21)+46.73−(+15)+21.解:原式=53.27+18−21+46.73−15+21…①=(53.27+46.73)+(21−21)+(18−15)…②=100+0+3…③=103(1)第①步经历了哪些转变:_____,体现了数学中的转化思想,为了计算简便,第②步应用了哪些运算律:_______.(2)根据以上解题技巧进行计算:−2123+314−(−23)−(+14).20.(8分)已知算式“(−2)×4−8”.(1)请你计算上式结果;(2)嘉嘉将数字“8”抄错了,所得结果为−11,求嘉嘉把“8”错写成了哪个数;(3)淇淇把运算符号“×”错看成了“+”,求淇淇的计算结果比原题的正确结果大多少?21.(8分)如图的数轴上,每小格的宽度相等.(1)填空:数轴上点A表示的数是 ,点B表示的数是 .(2)点C表示的数是−13,点D表示的数是−1,请在数轴上分别画出点C和点D的位置.(3)将A,B,C,D四个点所表示的数按从大到小的顺序排列,用“>”连接.22.(8分)一辆出租车从A 站出发,先向东行驶12km ,接着向西行驶8km ,然后又向东行驶4km .(1)画一条数轴,以原点表示A 站,向东为正方向,在数轴上表示出租车每次行驶的终点位置.(2)求各次路程的绝对值的和.这个数据的实际意义是什么?23.(8分)如图,一只甲虫在5×5的方格(每一格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右为正,向下向左为负.例如:从A 到B 记为:A→B(+1,+3);从C 到D 记为:C→D(+1,−2)(其中第一个数表示左右方向,第二个数表示上下方向).(1)填空:A→C ( , );C→B ( , ).(2)若甲虫的行走路线为:A→B→C→D→A ,请计算甲虫走过的路程.24.(8分)(1)如果a ,b 互为相反数(a ,b 均不为0),c ,d 互为倒数,|m |=4,则b a =______,求a +b 2024−cd +b a ×m 的值;(2)若实数a ,b 满足|a |=3,|b |=5,且a <b ,求a +13b 的值.25.(12分) 学习了绝对值的概念后,我们知道一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,即当a ≥0时,|a|=a ;当a <0时,|a|=−a .请完成下面的问题:(1)因为3<π,所以3−π<0,|3−π|=−(3−π)= ;(2)若有理数a <b ,则|a−b|= ;(3)(6分)计算:|13−12|+|14−13|+|15−14|+⋯+|12022−12021|+|12023−12022|参考答案一、选择题1.A 2.C 3.A 4.D 5.D 6.B 7.D 8.A 9.D 10.B二、填空题11.0 12.- 52 13.9 14.8 15.> 16.−7或1三、解答题17.(1)解:负分数集合:{−56,−3.5⋅⋅⋅}.(2)解:非负数集合:{0,1.2,6⋅⋅⋅}18.(1)解:(−7)+13−5=6−5=1(2)解:(−14)−(−34)−|12−1|=(−14)+34−|−12|=12−12=0.19.(1)去括号,省略加号;加法交换律、结合律(2)−1820.(1)−16(2)嘉嘉把“8”错写成了3(3)淇淇的计算结果比原题的正确结果大1021.(1)23;213(2)解:如图.(3)解:由数轴可知,213>22>−13−122.(1)解:如图所示,(2)解:|12|+|−8|+|4|=24km ,这个数据的实际意义是出租车行驶的总路程为24km.23.(1)+3;+4;-2;-1(2)如图所示,∵A→B =3+1=4,B→C =1+2=3,C→D =1+2=3,D→A =2+4=6.∴AB +BC +CD +DA =4+3+3+6=16.∴甲虫走过的路程为16.24.(1)−1,−5或3;(2)a +13b 的值是143或−4325.(1)π−3(2)b−a(3)解:原式=12−13+13−14+14−15+⋯+12021−12022+12022−12023=12−12023=20214046。
浙教版数学七年级上册第二章有理数的运算一、选择题1.下列各对数中,互为相反数的是( )A.+(﹣2)与﹣(+2)B.﹣(﹣3)与|﹣3|C.﹣32与(﹣3)2D.﹣23与(﹣2)32.已知数549039用四舍五入法后得到的是5.490×105,则所得近似数精确到( ).A.十位B.百位C.千分位D.万位3.两数相加,如果和小于任何一个加数,那么这两个数( )A.同为正数B.同为负数C.一正数一负数D.一个为0,一个为负数4.下列说法正确的是( )A.1是最小的自然数B.平方等于它本身的数只有1C.任何有理数都有倒数D.绝对值最小的数是05.用“▲”定义一种新运算:对于任何有理数a和b,规定a▲b=ab+b2,如2▲3=2×3+32=15,则(−4)▲2的值为( )A.−4B.4C.−8D.86.有理数a,b在数轴上的对应点如图所示,则下列式子中错误的是( )A.ab>0B.a+b<0C.a﹣b<0D.b﹣a<07.一件衣服的进价为100元,商家提高80%进行标价,为了吸引顾客,商店进行打7折促销活动,商家出售这件衣服时,获得的利润是( )A.26元B.44元C.56元D.80元8.若x、y二者满足等式x2−3y=3x+y2,且x、y互为倒数,则代数式x2−3(x+y)+5−y2−4xy的值为( )A.1B.4C.5D.99.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .1202110.计算机利用的是二进制数,它共有两个数码0,1,将一个十进制数转化为二进制,只需将该数写为若干个2n 的数字之和,依次写出1或0的系数即可,如十进制数字19可以写为二进制数字10011,因为19=16+2+1=1×24+0×23+0×22+1×21+1×20,32可以写为二进制数字100000,因为32=32=1×25+0×24+0×23+0×22+0×21+0×20,则十进制数字70是二进制下的( )A .4位数B .5位数C .6位数D .7位数二、填空题11.2022年11月20日晚,卡塔尔世界杯正式开幕,仅两天时间,抖音世界杯总话题播放量高达21480000000次,其中数21480000000用科学记数法表示为 .12.计算(−1)2023÷(−1)2004= .13.一个数的立方等于它本身,这个数是 14.如图所示的程序图,当输入﹣1时,输出的结果是 .15.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .16.如图,商品条形码是商品的“身份证”,共有13位数字.它是由前12位数字和校验码构成,其结构分别代表“国家代码、厂商代码、产品代码、校验码”.其中,校验码是用来校验商品条形码中前12位数字代码的正确性.它的编制是按照特定的算法得来的.其算法为:步骤1:计算前12位数字中偶数位数字的和a ,即a =9+1+3+5+7+9=34;步骤2:计算前12位数字中奇数位数字的和b ,即b =6+0+2+4+6+8=26;步骤3:计算3a 与b 的和c ,即c =3×34+26=128;步骤4:取大于或等于c 且为10的整数倍的最小数d ,即d =130;步骤5:计算d 与c 的差就是校验码X ,即X =130−128=2.如图,若条形码中被污染的两个数字的和是5,则被污染的两个数字中右边的数字是 .三、解答题17.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 18.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+5,−3,+10,−8,−6,+12,−10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线的最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?19.已知a、b互为倒数,c、d互为相反数,|m|=3,n是最大的负整数,求代数式(−ab)2024−3(c+d)−n+m2的值.20.在一条不完整的数轴上从左到右有A,B,C三点,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以C为原点,写出点A,B所对应的数,计算p的值;(2)若p的值是﹣1,求出点A,B,C所对应的数;(3)在(2)的条件下,在数轴上表示|﹣0.5|、(﹣1)3和A,B,C所对应的数,并把这5个数进行大小比较,用“<”连接.21.现定义一种新运算“*”,对任意有理数a、b,规定a*b=ab+a﹣b,例如:1*2=1×2+1﹣2.(1)求2*(﹣3)的值;(2)求(﹣3)*[(﹣2)*5]的值.22.目前,某城市“一户一表”居民用电实行阶梯电价,具体收费标准如下.一户居民一个月用电量(单位:度)电价(单位:元/度)第1档不超过180度的部分0.5第2档超过180度的部分0.7(1)若该市某户12月用电量为200度,该户应交电费 元;(2)若该市某户12月用电量为x度,请用含x的代数式分别表示0≤x≤180和x>180时该户12月应交电费多少元;(3)若该市某户12月应交电费125元,则该户12月用电量为多少度?23.如图,已知数轴上有A,B两点,分别代表−40,20,两只电子蚂蚁甲,乙分别从A,B两点同时出发,甲沿线段AB以1个单位长度秒的速度向右运动,到达点B处时运动停止;乙沿BA方向以4个单位长度秒的速度向左运动.(1)A,B两点间的距离为 个单位长度;乙到达A点时共运动了 秒.(2)甲,乙在数轴上的哪个点相遇?(3)多少秒时,甲、乙相距10个单位长度?(4)若乙到达A点后立刻掉头并保持速度不变,则甲到达B点前,甲,乙还能在数轴上相遇吗?若能,求出相遇点所对应的数;若不能,请说明理由.答案解析部分1.【答案】C2.【答案】B3.【答案】B4.【答案】D5.【答案】A6.【答案】D7.【答案】A8.【答案】A9.【答案】B10.【答案】D11.【答案】2.148×101012.【答案】−113.【答案】0或±114.【答案】715.【答案】0或4或﹣416.【答案】417.【答案】(1)解:如图所示(2)50(3)-818.【答案】(1)守门员最后回到了球门线的位置(2)12米(3)54米19.【答案】解:∵a、b互为倒数,c、d互为相反数,|m|=3,n是最大的负整数,∴ab=1,c+d=0,m2=9,n=−1,∴(−ab)2024−3(c+d)−n+m2=(−1)2024−3×0−(−1)+9=1−0+1+9=11.20.【答案】(1)解:若以C为原点,∵AB=2,BC=1,∴B表示﹣1,A表示﹣3,此时,p=(﹣3)+(﹣1)+0=﹣4;(2)解:设B对应的数为x,∵AB=2,BC=1,则A点表示的数为x﹣2,C表示的数为x+1,p=x+x+1+x﹣2=﹣1;x=0,则B点为原点,∴A表示﹣2,C表示1;(3)解:如图所示:故﹣2<(﹣1)3<0<|﹣0.5|<1.21.【答案】(1)解:2*(﹣3)=2×(﹣3)+2﹣(﹣3)=﹣6+2+3=﹣1;(2)解:(﹣3)*[(﹣2)*5]=(﹣3)*[(﹣2)×5+(﹣2)﹣5]=(﹣3)*(﹣17)=(﹣3)×(﹣17)+(﹣3)﹣(﹣17)=51﹣3+17=65.22.【答案】(1)104(2)解:当0≤x≤180时,该户12月应交电费为0.5x元;当x>180时,该户12月应交电费为0.5×180+0.7(x−180),=90+0.7x−126,=(0.7x−36)(元).(3)解:∵104<125,∴x>180,∴0.7x−36=125,∴x=230.答:该户12月用电量为230度.23.【答案】(1)60;15(2)解:60÷(4+1)=12,−40+12=−28.答:甲,乙在数轴上的−28点相遇(3)解:两种情况:相遇前,(60−10)÷(4+1)=10;相遇后,(60+10)÷(4+1)=14,答:10秒或14秒时,甲、乙相距10个单位长度;(4)解:乙到达A点需要15秒,甲位于−40+15=−25,乙追上甲需要25÷(1+4)=5(秒)此时相遇点的数是−25+5=−20,故甲,乙能在数轴上相遇,相遇点表示的数是−20.。
第二章 有理数的运算单元测试题班级 ______________ 学号一、选择题1、以下表达正确的选项是〔 〕(A)有理数中有最大的数. (B)零是整数中最小的数.(C)有理数中有绝对值最小的数. (D)假设一个数的平方与立方结果相等,则这个数是0.2、 以下近似数中,含有3个有效数字的是〔 〕 〔A 〕5 430. 〔B 〕5.430×106〔C 〕0.543 0. 〔D 〕5.43万.3、已知两数相乘大与0,两数相加小于0,则这两数的符号为( )(A) 同正. 〔B 〕同负. 〔C 〕一正一负. 〔D 〕无法确定. 4、假设-2减去一个有理数的差是-5,则-2乘这个有理数的积是〔 〕 〔A 〕10. 〔B 〕-10. 〔C 〕6. 〔D 〕-6. 5、算式〔61-21-31〕×24的值为〔 〕 〔A 〕-16. 〔B 〕16. 〔C 〕24. 〔D 〕-24. 6、已知不为零的a,b 两数互为相反数,则以下各数不是互为相反数的是〔 〕 〔A 〕5 a 与5 b . (B)a 3与b 3. (C)a 1与b1. (D)a 2与b 2. 7、按下面的按键顺序在某型号计算器上按键:显示结果为〔 〕〔A 〕56.25. 〔B 〕5.625. 〔C 〕0.562 5. 〔D 〕0.056 25.8.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米, 超过部分按每立方米1.2元收费.已知甲用户某月份用煤气80每立方米,那么这个月甲用户应交煤气费 ( )A.64元B.66元C.72元D.96元 9. 3是331的近似值,其中331叫做真值,假设某数由四舍五入得到的近似数是27,则以下各数中不可能是27的真值的是 ( )A.26.48B.26.53C.26.99D.27.02 10.小华和小丽最近测了自己的身高,小华量得自己约1.6m ,小丽测得自己的身高约为1.60m ,以下关于她俩身高的说法正确的选项是 ( )A.小华和小丽一样高B.小华比小丽高C.小华比小丽低D.无法确定谁高 二、填空题 11. -32的倒数是 ;-32的相反数是 ,-32的绝对值是 ;-32的平方是 . 12、比较以下各组数的大小:〔1〕43 65; 〔2〕-87 -98; 〔3〕 -22 〔-2〕2;〔4〕〔-3〕3 -33.13、〔1〕近似数2.5万精确到 位;有效数字分别是 ;〔2〕1纳米等于十亿分之一米,用科学记数法表示25米= 纳米. 14.数轴上表示有理数-3.5与4.5两点的距离是 . 15.(-1)2+(-1)3+…+(-1)2010= .16.李明与王伟在玩一种计算的游戏,计算的规则是|d c b a |=ad -bc,李明轮到计算|1523|,根据规则|1523|=3×1-2×5=3-10=-7,,现在轮到王伟计算|5632|得 .17、我国著名数学家华罗庚曾经说过这样一句话:“数形结合百般好,隔裂分家万事休”.如图, 在一个边长为1的正方形纸板上,依次贴上面积为21,41,81,161,…,1021的小长方形纸片,请你写出最后余下未贴部分的面积的表达式: .18.a 是不为1的有理数,我们把a -11称为a 的差倒数....如:3的差倒数是311-=-21,-1的差倒数是)1(11--=21.已知a 1=2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,则a 2010= 。
单元测试(二) 有理数的运算(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分) 1.16的倒数是(D ) A .-16B .16C .-6D .62.比-5大3的数是(A )A .-2B .-8C .8D .23.计算-42的结果等于(B )A .-8B .-16C .16D .84.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作.根据规划,“一带一路”地区覆盖总人口约为440 000 000人,这个数用科学记数法表示为(C )A .44×108B .4.4×109C .4.4×108D .4.4×10105.某地一天的最高气温是8 ℃,最低气温是-2 ℃,则该地这天的温差是(A )A .10 ℃B .-10 ℃C .6 ℃D .-6 ℃6.下列各式运算的结果不是互为相反数的是(D )A .3×(-2)与(-12)÷(-2)B .(-2)3与23C .-12与12D .23和37.(东阳期中)下列说法正确的是(D )A .-22与(-2)2相等B .如果两个有理数的和为零,那么这两个数一定是一正一负C .-a 表示一个负数D .两个有理数的差不一定小于被减数 8.(路桥区校级期中)下列说法正确的是(A )A .若a >0,ab <0,则b <0B .若|a |=|b |,则a =bC .若a 2=b 2,则a =bD .若xy <0,yz <0,则zx <09.某食品罐头的标准质量为100 g ,超过100 g 记为正数,不足100 g 记为负数,记录如下:-2 g ,-4 g ,0 g ,+2 g ,-3 g ,+5 g ,则这6盒罐头的总质量为(B )A .616 gB .598 gC .600 gD .602 g10.(桐乡校级期中)如图,A ,B 两点在数轴上表示的数分别为a ,b ,下列式子成立的是(C )A .ab >0B .a +b <0C .(b -1)(a +1)>0D .(b -1)(a -1)>0二、填空题(每小题4分,共24分) 11.比2小5的数是-3.12.浙江省陆域面积10.414 1万平方公里,是我国面积最小的省份之一.数字10.414 1精确到十分位为10.4.13.+5.8的相反数与-7.1的绝对值的和是1.3. 14.若||a -2与||b +1互为相反数,则a +b =1.15.将一刻度尺如图所示放在数轴上(数轴的单位长度是1 cm ),数轴上的两点A ,B 恰好与刻度尺上的“0 cm ”和“7 cm ”分别对应,若点A 表示的数为-2.3,则点B 表示的数应为4.7.16.如图是一个计算程序,若输入的值为-1,则输出的结果应为7.三、解答题(共66分) 17.(12分)计算:(1)15+(-11)-2; (2)-14+6-34;解:原式=15-11-2=2. 解:原式=6-(14+34)=5.(3)-2×6+(-4)÷2; (4)(-2)×12÷(-13)×3.解:原式=-12+(-2)=-14. 解:原式=2×12×3×3=9.18.(12分)计算:(1)-62÷32×23+0.53; (2)(17-38+528)×(-56);解:原式=-36×23×23+18=-16+18=-1578. 解:原式=-17×56+38×56-528×56=-8+21-10 =3.(3)-12-34×[-32×(-23)2-2]÷(-1)2 014.解:原式=-1-34×(-9×49-2)÷1=-1-34×(-6)÷1=-1+92=72.19.(7分)用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b =ab 2+2ab +a .如:1☆3=1×32+2×1×3+1=16.求(-2)☆3的值.解:(-2)☆3=-2×32+2×(-2)×3+(-2)=-18-12-2=-32.20.(9分)已知有理数x ,y 分别满足|x |=5,|y |=2,且xy <0,求x -y 的值.解:∵|x |=5,|y |=2,且xy <0, ∴x =5,y =-2或x =-5,y =2.则x -y =5-(-2)=7或x -y =-5-2=-7.21.(12分)有一张厚度为0.1毫米的纸,将它对折1次后,厚度为2×0.1毫米.请在下面括号内填上适当的数:(1)对折3次后,厚度为23×0.1毫米;(2)对折20次后,厚度为多少毫米?大约有多少层楼高?(每层楼高度为3米)(参考数据:219=524 288,220=1 048 576,221=2 097 152)解:对折20次后,厚度为:220×0.1=1 048 576×0.1=104 857.6(毫米),104 857.6毫米=104.857 6米,104.857 6÷3≈35(层).答:厚度为104 857.6毫米,大约有35层楼高.22.(14分)上海股民杨百万上星期五交易结束时买进某公司股票1 000股,每股50元,下表为本周内每日该股的涨跌情况(星期六、日股市休市)(单位:元):(1)星期三收盘时,每股是多少元?(2)本周内每股最高价多少元?最低价是多少元?(3)已知买进股票还要付成交金额2‰的手续费,卖出时还需付成交额2‰的手续费和1‰交易税,如果在星期五按收盘价将全部股票卖出,他的收益情况如何?(注意:‰不是百分号,是千分号)解:(1)星期三收盘时,每股是:50+4+4.5-1=57.5(元).(2)周内每股最高价为:50+4+4.5-1+2.5=60(元),最低价为50+4=54(元).(3)50+4+4.5-1+2.5-5=55(元),1 000×55×(1-3‰)-1 000×50×(1+2‰)=4 735(元).答:他赚了4 735元.。
2020-2021学年浙教新版七年级上册数学《第2章有理数的运算》单元测试卷一.选择题1.计算×的结果是()A.B.C.D.2.北部湾港1月10日晚间公告,2018年完成货物吞吐量183000000吨,同比增长13.15%.其中数据183000000用科学记数法表示为()A.18.3×107B.1.83×108C.1.83×109D.0.183×1093.用四舍五入法对2020.89(精确到十分位)取近似数的结果是()A.2020B.2020.8C.2020.9D.2020.894.一个数比﹣10的绝对值大1,另一个数比2的相反数小1,则这两个数的和为()A.7B.8C.9D.105.2的倒数是()A.1B.C.D.6.把1m铁丝平均分成4段,每段长()m.A.B.4C.2D.7.在有理数﹣(﹣3),(﹣2)2,0,﹣32,﹣|3|,,中,正数的个数有()个.A.3B.2C.1D.08.冬季某天我国三个城市的最高气温分别是﹣13℃,1℃,﹣3℃,它们任意两城市中最大的温差是()A.12℃B.16℃C.10℃D.14℃9.下列算式的结果中是负数的是()A.﹣7﹣(﹣8)B.﹣C.(﹣2)+(﹣3)﹣(﹣4)D.0﹣(﹣2019)10.代数式(a﹣2)2+5取最小值时,a值为()A.a=0B.a=2C.a=﹣2D.无法确定二.填空题11.我们知道,在三阶幻方中,每行、每列、每条对角线上的三个数之和都是相等的,在如图的三阶幻方中已经填入了三个数1,2,﹣4,则图中x应该是.12.某日傍晚,某山山顶的气温由中午的﹣2℃下降了7℃,则这天傍晚的气温为℃.13.24的是.14.÷7=,÷=36.15.2020年全国普通高考参加考试人数为10710000人,将10710000用科学记数法表示为.16.已知|x|=5,|y﹣3|=0.且x+y<0.则x y=.17.计算:﹣1+(﹣)=.18.1的倒数是;2.5的倒数是.19.一个整数9666…0用科学记数法表示为9.666×107,则原数中“0”的个数为.20.若规定a*b=a(a+b),例2*3=2×(2+3)=10,则*=.三.解答题21.(﹣2.8)+(﹣3.6)+3.6.22.计算题:(1)(﹣3)+(﹣4)+(+11)+(﹣9);(2);(3)(﹣1.5)+(﹣)﹣(﹣)﹣(+1).23.列式计算:加上除以的商,所得的和再乘以,积是多少?24.计算:(﹣6.5)×(﹣2)÷(﹣)÷(﹣5).25.据不完全统计,某市至少有6×105个水龙头漏水,这些水龙头每月流失的总水量约1.68×105立方米.(1)每个水龙头每月的漏水量约多少立方米?(结果精确到0.1立方米)(2)如果该市每立方米水费是1.9元,这些水龙头一年漏水量的总水费是多少万元?26.计算:(1)﹣27+(﹣32)+(﹣8)+77;(2)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4);(3)3﹣2×(﹣5)2;(4)(﹣81)÷2×(﹣)÷(﹣16).27.“2019年11月5日至10日,第二届中国国际进口博览会在中国上海国家会展中心举行,参加会展的国家、地区和国际组织从第一届的130个增加到180个,此次进博会交易采购成果丰硕,按一年计,累计意向成交约711.3亿美元,比第一届增长23%.”根据以上资料计算:(1)参加第二届进博会的国家、地区和国际组织的数量与第一届相比增加的百分数是多少?(精确到0.1%)(2)第一届进口博览会的累计意向成交额约多少亿美元?(保留一位小数)参考答案与试题解析一.选择题1.解:×=;故选:C.2.解:183000000=1.83×108.故选:B.3.解:2020.89(精确到十分位)取近似数的结果是2020.9.故选:C.4.解:比﹣10的绝对值大1的数是11,比2的相反数小1的数是﹣3,11+(﹣3)=8,故选:B.5.解:∵2×=1,∴2的倒数是,故选:B.6.解:1÷4=(m).答:每段长m.故选:D.7.解:∵﹣(﹣3)=3,(﹣2)2=4,﹣32=﹣9,﹣|3|=﹣3,∴正数有:﹣(﹣3),(﹣2)2.故选:B.8.解:∵﹣13℃<﹣3℃<1℃,∴它们任意两城市中最大的温差是:1﹣(﹣13)=14(℃).故选:D.9.解:∵﹣7﹣(﹣8)=1>0,∴选项A不符合题意;∵﹣=>0,∴选项B不符合题意;∵(﹣2)+(﹣3)﹣(﹣4)=﹣1<0,∴选项C符合题意;∵0﹣(﹣2019)=2019>0,∴选项D不符合题意.故选:C.10.解:∵(a﹣2)2≥0,∴(a﹣2)2+5≥5,(a﹣2)2+5取最小值时,a﹣2=0,即a=2,故选:B.二.填空题11.解:由题意得,1+2=﹣4+x,解得x=7,故答案为:7.12.解:﹣2﹣7=﹣2+(﹣7)=﹣(7+2)=﹣9(℃).故答案为:﹣9.13.解:,故答案为:16.14.解:∵,∴;∵,∴.故答案为:;.15.解:10710000=1.071×107故答案为:1.071×107.16.解:∵|x|=5,|y﹣3|=0,∴x=±5,y=3,∵x+y<0,∴x=﹣5,y=3,则x y=(﹣5)3=﹣125,故答案为:﹣125.17.解:﹣1+(﹣)=﹣1+=﹣.故答案为:﹣.18.解:∵1×=1,2.5×=1,∴1的倒数是;2.5的倒数是,故答案为:,.19.解:∵9.666×107表示的原数为96660000,∴原数中“0”的个数为4,故答案为:4.20.解:∵a*b=a(a+b),∴*=×(+)=×=.故答案为:.三.解答题21.解:原式=(﹣2.8)+(3.6﹣3.6)=﹣2.8+0=﹣2.8.22.解:(1)(﹣3)+(﹣4)+(+11)+(﹣9)=﹣3﹣4+11﹣9=﹣3﹣4﹣9+11=﹣5;(2)===1;(3)==﹣3.23.解:由题意可得:===.24.解:原式=13×(﹣3)×(﹣)=.25.解:(1)(1.68×105)÷(6×105)≈0.3(立方米);每个水龙头每月的漏水量约0.3立方米;(2)1.68×105×12×1.9÷10000≈106.1(万元).答:这些水龙头一年漏水量的总水费约106.1万元.26.解:(1)原式=(﹣27+77)+(﹣32﹣8)=50+(﹣40)=10;(2)原式=(4.3﹣2.3)+(4﹣4)=2;(3)原式=3﹣2×25=3﹣50=﹣47;(4)原式=﹣81×××=﹣1.27.解:(1)增长率=×100%≈38.5%,答:与第一届相比增加的百分数是38.5%;(2)711.3÷(1+23%)≈578.3答:第一届进口博览会的累计意向成交额约578.3亿美元.。
第2章 有理数单元测试一、选择题(本大题共8小题,每小题3分,共24分.在每小题列出的四个选项中,只有一项符合题意)1.-2的绝对值是( )A .-2B .2C .-12 D.122.在3.14159,4,1.1010010001,4.2·1·,π,132中,无理数有( )A .1个B .2个C .3个D .4个3.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000 kg 的煤所产生的能量.把130000000 kg 用科学记数法可表示为( )A .13×107kgB .0.13×108kgC .1.3×107kgD .1.3×108kg 4.下列说法中,正确的是( )A .两个有理数的和一定大于每个加数B .3与-13互为倒数C .0没有倒数也没有相反数D .绝对值最小的数是0 5.在数-3,2,0,3中,大小在-1和2之间的数是( ) A .-3 B .2 C .0 D .36.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案( )A .少5B .少10C .多5D .多107.在-(-2),(-1)3,-22,(-2)2,-|-2|,(-1)2n (n 为正整数)这六个数中,负数的个数是( )A .1B .2C .3D .48.依次排列4个数:2,11,8,9.对于相邻的两个数,都用右边的数减去左边的数,所得的差排在这两个数之间得到一串新的数:2,9,11,-3,8,1,9.这称为一次操作,做两次操作后得到一串新的数:2,7,9,2,11,-14,-3,11,8,-7,1,8,9.这样下去,第100次操作后得到的一串数的和是( )A .737B .700C .723D .730二、填空题(本大题共9小题,每小题3分,共27分)9.若将顺时针旋转60°记为-60°,则逆时针旋转45°可记为________.10.小明家的冰箱冷冻室的温度是-2 ℃,冷藏室的温度是5 ℃,则小明家的冰箱冷藏室的温度比冷冻室的温度高________ ℃.11.计算:3-22=________. 12.将下列各数:-0.2,-12,-13,按从小到大的顺序排列应为________<________<________.13.若a <0,b >0,且|a|>|b|,则a +b________0.14.已知2,-3,-4,6四个数,取其中的任意三个数求和,和最小是________. 15.若数轴上的点A 所表示的有理数是-223,则与点A 相距5个单位长度的点所表示的有理数是____________.16.在算式1-︱-2□3︱中的“□”里,填入运算符号(在符号+,-,×,÷中选择一个):________,使得算式的值最小.17.已知(a -3)2+|b -2|=0,则a b =________. 三、解答题(本大题共5小题,共49分) 18.(16分)计算下列各题:(1)25.3+(-7.3)+(-13.7)+7.3; (2)(-54)×214÷⎝⎛⎭⎫-412×29;(3)-(-3)2-|(-5)3|×⎝⎛⎭⎫-252-18÷|-32|; (4)(-3)3÷214×⎝⎛⎭⎫-232+4-22×⎝⎛⎭⎫-13.19.(8分)用简便方法计算下列各题:(1)⎝⎛⎭⎫-112-136+34-16×(-48); (2)-201.8×⎝⎛⎭⎫-318-201.8×⎝⎛⎭⎫-678.20.(6分)登山队员攀登珠穆朗玛峰,在海拔3000 m 时,气温为-20 ℃,已知每登高1000 m ,气温降低6 ℃,当海拔为5000 m 和8000 m 时,气温分别是多少?21.(8分)邮递员小王从邮局出发,向东走3 km 到M 家,继续向前走1 km 到N 家,然后折回头向西走6 km 到Z 家,最后回到邮局.图1-Z -1(1)若以邮局为原点,向东为正方向,1个单位长度表示1 km ,画一条数轴(如图1-Z -1),请在数轴上分别表示出M ,N ,Z 的位置;(2)小王一共走了多少千米?22.(11分)某自行车厂计划一周生产1400辆自行车,平均每天生产200辆,由于各种原因,无法按计划进行生产,下表是一周的生产情况(超产为正,减产为负,单位:辆):(1)根据记录可知前4天共生产自行车________辆;(2)这一周自行车产量最多的一天比产量最少的一天多生产________辆;(3)该厂实行计件工资制,每生产一辆自行车厂方付给工人工资60元,超额完成计划任务的每辆奖励15元,没有完成计划任务的每辆车要扣15元,则该厂工人这一周的工资总额是多少?参考答案1.B. 2.A. 3.D. 4.D. 5.C. 6. D 7.C. 8.D.9.[答案] +45° 10.[答案] 7[解析] 5-(-2)=5+2=7(℃). 11.[答案] -112.[答案] -12 -13 -0.213.[答案] < 14.[答案] -5 15.[答案] -723或21316.[答案] × 17.[答案] 9[解析] 由题意得a =3,b =2,则a b =32=9.18.解:(1)原式=11.6. (2)原式=(-54)×94×⎝⎛⎭⎫-29×29=6.(3)原式=-9-20-2=-31.(4)原式=-27×49×49+4+43=-163+4+43=0.19.解:(1)原式=⎝⎛⎭⎫-112×(-48)-136×(-48)+34×(-48)-16×(-48)=4+43-36+8=-2223. (2)原式=-201.8×⎣⎡⎦⎤⎝⎛⎭⎫-318+⎝⎛⎭⎫-678=-201.8×(-10)=2018. 20.解:当海拔为5000 m 时,-20-5000-30001000×6=-32(℃).当海拔为8000 m 时,-20-8000-30001000×6=-50(℃),因此当海拔为5000 m 时,气温为-32 ℃,当海拔为8000 m 时,气温为-50 ℃. 21.解:(1)如图所示:(2)3+1+6+2=12(千米). 答:小王一共走了12千米. 22.解:(1)812 (2)28(3)5-2-6+15-9-13+8=-2(辆), (1400-2)×60-2×15=83850(元).答:该厂工人这一周的工资总额是83850元.。
浙教版初中数学七年级上册第二单元《有理数的运算》单元测试卷考试范围:第二章;考试时间:120分钟;总分:120分第I 卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1. 两个有理数相加,如果和小于每一个加数,那么( )A. 这两个加数同为负数B. 这两个加数同为正数C. 这两个加数中有一个负数,一个正数D. 这两个加数中有一个为零2. 小于2014且不小于−2013的所有整数的和是( )A. 0B. 1C. 2013D. 20143. 杭州某企业第一季度盈余2200万元,第二季度亏损500万元,第三季度亏损1400万元,第四季度盈余1100万元.该企业当年的盈亏情况是( )A. 盈余1400万元B. 盈余1500万元C. 亏损1400万元D. 亏损1500万元4. 下列计算结果正确的是( )A. −3−7=−3+7=4B. 4.5−6.8=6.8−4.5=2.3C. −2−(−13)=−2+13=−213D. −3−(−12)=−3+12=−212 5. 有理数a ,b ,c 在数轴上的对应点的位置如图所示,有如下四个结论:①|a|>3;②ab >0;③b +c <0;④b −a >0.上述结论中,所有正确结论的序号是( )A. ①②B. ②③C. ②④D. ③④ 6. 已知abc >0,则|a |a +|b |b −|c |c 的值是( )A. 1或3B. 1或−3C. −1或3D. −1或−37. 若规定“!”是一种数学运算符号,且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,⋯,则100!98!的值为( )A. 5049B. 99!C. 9900D. 2!8.有理数a、b在数轴上对应的位置如图所示,则( )>0 C. a+b>0 D. a−b>0A. ab>0B. ab9.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量.由图可知,她一共采集到的野果数量为( )A. 1837个B. 1838个C. 12302个D. 1839个10.如图所示为按照一定规律画出的树形图经观察可以发现;图②比图①多出2个树枝,图③比图②多出4个树枝,图④比图③多出8个树枝照此规律,图⑥比图②多出的树枝个数为( )A. 28B. 56C. 60D. 12411.已知4个有理数之和的1是4,其中的3个数分别是−12、−6、9,那么第4个数是( )3A. −9B. 15C. −18D. 2112.小明在计算机上设置了一个运算程序:任意输入一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2.通过对输出结果的观察,他发现了一个有意思的现象:无论输入的自然数是多少,按此规则经过若干次运算后可得到1.例如:如图所示,输入自然数5,最少经过5次运算后可得到1.如果一个自然数a恰好经过7次运算后得到1,则所有符合条件的a的值有( )A. 1个B. 2个C. 3个D. 4个第II 卷(非选择题)二、填空题(本大题共4小题,共12分)13. 数轴上有两个数a ,b.若a >0,b <0,a +b <0,则四个数a ,b ,−a ,−b 的大小关系为 (用“<”连接).14. 已知x 是3的相反数,|y|=5,则x −y 的值是 .15. a 是不为1的有理数,我们把11−a 称为a 的差倒数.如:2的差倒数是11−2=−1,−1的差倒数是11−(−1)=12.已知a 1=−13,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,则a 2022=________________.16. 如果a ,b ,c 是整数,且a c =b ,那么我们规定一种记号(a,b)=c ,例如32=9,那么记作(3,9)=2,根据以上规定,求(−2,−32)=______.三、解答题(本大题共9小题,共72分。
第二章 有理数的运算一、单选题1.天宫空间站每天大约要绕地球15周半,大约每90分钟,航天员就要经历一次日出与日落,经计算,空间站绕地球一周的路程大约为43000千米.将数据43000可用科学记数法表示为( )A .43×103B .4.3×104C .4.3×105D .0.43×1052.把算式(−5)−(−4)+(−7)−(+2)写成省略括号的形式,结果正确的是( )A .−5−4−7+2B .−5+4−7+2C .−5+4−7−2D .−5−4+7−23.下列各数中,结果相等的是( )A .23和32B .(−2)3和−23C .(−3)2和−32D .|−2|3和(−2)34.某市一天的最高气温为2°C ,最低气温为−9°C ,那么这天的最高气温比最低气温高( )A .−11°CB .−7°C C .11°CD .7°C5.计算|−2|−23×(−3)的结果为( )A .–26B .–22C .26D .226.下列算式:①(−2)+(−3)=−5; ②(−2)×(−3)=−6; ③−32−(−3)2=0; ④−27÷13×3=−27,其中正确的有( )A .0个B .1个C .2个D .3个7.绝对值不大于2的所有负整数的和为( )A .0B .-1C .-2D .-38.若−1<a <0,则对a 、−a 、a 2、a 3排列正确的是( )A .a <a 3<a 2<−aB .a <−a <a 2<a 3C .a <a 3<−a <a 2D .−a <a <a 2<a 39.如果a ,b 满足a +b >0且ab <0,则下列各式中正确的是( )A .a >0,b <0B .a <0,b >0C .a >0,b <0且|a |<|b |D .a ,b 异号,且正数的绝对值较大10.若|a |=2,|b |=23,且ab <0,则a b =( )A .3B .−2C .−3D .3或−3二、填空题11.计算|−18|+6= .12.比-3.5大的所有负整数的和为 .13.点A ,B ,C 在同一条数轴上,其中点A ,B 表示的数分别为−3,1,若BC =2,则AC 等于 .14.若a 、b 互为相反数,c 、d 互为倒数,|x |=3,则式子−2(a +b )+cd +x 的值为 .15.若|a +3|+(b ﹣1)2=0,则a +b = .16.规定“*”是一种运算符号,且a *b =ab ﹣3a ,则计算(﹣3)*2= .17.小明和小聪坐公交从学校去体育馆参加运动会,他们从学校门口的公交车站上车,上车后发现包括他们俩共13人,经过2个站点小明观察到上下车情况如下(记上车为正,下车为负):A (+4,-2),B (+6,-5).经过A ,B 这两站点后,车上还有 人.18.有一个数值转换器,其工作原理如图所示,若输入-2,则输出的结果是 .三、解答题19.计算:(1)−20−(−18); (2)2×(−3)+8÷(−2);(3)−22+[1−(−3)2]×|−14|; (4)(−24)×(0.25−38)+(−1)2023.20.“十一”黄金周期间,某超市家电部大力促销,收银情况如下表,下表为当天与前一天的营业额的涨跌情况(上涨为正,下跌为负,单位:万元).已知9月30日的营业额为26万元:10月1日10月2日10月3日10月4日10月5日10月6日10月7日+4+3+20−1−3−5(1)家电部黄金周内哪天收入最高,为多少万元?哪天收入最低,为多少万元?(2)家电部黄金周内平均每天的营业额是多少万元?21.小明骑摩托车从咖啡店出发,在东西向的大道上送咖啡.如果规定向东行驶为正,向西行驶为负,一天中小明的五次行驶记录如下(单位:km):−7,+8,−4,+6,−5.(1)求第五次咖啡送完时小明在咖啡店的什么方向?距离多少千米?(2)若摩托车每千米耗油量为0.2升,小明从出发送第一次咖啡到送完五次咖啡后返回咖啡店共耗油多少升?22.外卖送餐为我们的生活带来了许多便利,某学习小组调查了一名外卖小哥一周每天的送餐情况,规定送餐量超过40单(送一次外卖称为一单)的部分记为“+”,低于40单的部分记为“−”,下表是该外卖小哥一周的送餐量:星期一二三四五六日送餐量/单−3+4−5+14−8+7+12求该外卖小哥这一周平均每天送餐多少单.23.学校图书馆平均每天借出图书50册,如果某天借出53册,就记作+3;如果某天借出40册,就记作−10.上星期图书馆借出图书记录如下:星期星期一星期二星期三星期四星期五记录数值+8−7+6+12小明统计时不小心把星期四的数据滴上墨水了,请你根据以上信息,回答下列问题:(1)上星期三借出图书多少册?(2)上星期二比上星期三少借出图书多少册?(3)上星期五比上星期四多借出图书15册,被污染的数据是多少?(4)上星期图书馆一共借出图书多少册?24.阅读材料:求1+2+22+…+22023+22024的值.解:设S=1+2+22+…+22023+22024将等式两边同时乘以2,得2S=2+22+23+…+22024+22025将下式减去上式,得S=22025−1即1+2+22+…+22023+22024=22025−1请你仿照此法计算:(1)1+3+32+33+⋯+310(2)15+152+153+⋯+1519参考答案:1.B2.C3.B4.C5.C6.B7.D8.A9.D10.C11.2412.-613.6或214.4或−215.﹣2.16.317.1618.-219.(1)-2;(2)-10;(3)-6;(4)2.20.(1)家电部黄金周内10月3日、4日收入最高,为35万元;10月7日收入最低,为26万元(2)家电部黄金周内平均每天的营业额是32万元21.(1)西方,2km(2)6.4升22.该外卖小哥这一周平均每天送餐43单23.(1)56册(2)13册(3)−3(4)266册24.(1)311−12(2)519−14×519。
第二章有理数及其运算单元测试卷一、选择题(每小题3分,共30分) 1.-13的倒数的绝对值是( )A .-3B .13C .-13 D .32.检验4个工件,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的工件是( )A .-2B .-3C .3D .5 3.在-12,0,-2,13,1这五个数中,最小的数为( )A .0B .-12C .-2D .134.下列说法中,正确的个数有( ) ①-3.14既是负数,又是小数,也是有理数; ②-25既是负数,又是整数,但不是自然数; ③0既不是正数也不是负数,但是整数; ④0是非负数.A .1个B .2个C .3个D .4个 5.下列运算结果正确的是( )A .-87×(-83)=7 221B .-2.68-7.42=-10C .3.77-7.11=-4.66D .-101102<-1021036.据中国电子商务研究中心监测数据显示,2018年第一季度中国轻纺城市场群的商品成交额达27 800 000 000元.将27 800 000 000用科学记数法表示为( )A .2.78×1010B .2.78×1011C .27.8×1010D .0.278×1011 7.一件商品的成本价是100元,提高50%后标价,又以8折出售,则这件商品的售价是( )A .150元B .120元C .100元D .80元 8.如图,数轴上的A ,B ,C 三点所表示的数分别为a ,b ,c ,其中AB =B C .如果|a |>|c |>|b |,那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边 9.式子⎝⎛⎭⎫12-310+25×4×25=⎝⎛⎭⎫12-310+25×100=50-30+40中运用的运算律是( ) A .乘法交换律及乘法结合律; B .乘法交换律及乘法对加法的分配律; C .加法结合律及乘法对加法的分配律; D .乘法结合律及乘法对加法的分配律 10.有理数a ,b 在数轴上的位置如图所示,下面结论正确的是( )A .b -a <0B .ab >0C .a +b >0D .|a |>|b | 二、填空题(每小题4分,共16分)11.-23的相反数是________,绝对值是________,倒数是________.12.在-1,0,-2这三个数中,最小的数是________.13.某品牌汽车经过两次连续的调价,先降价10%,后又提价10%,原价10万元的汽车,现售价________万元.14.某程序如图所示,当输入x =5时,输出的值为 ________.输入x →平方→减去x →除以2→取相反数→输出三、解答题(本大题共6小题,共54分)15.(8分)画数轴,在数轴上表示下列各数,并用“<”把这些数的相反数连接起来:3,0,-|-2|,-52,1.5,-22.16.(8分)(1)13的相反数加上-27的绝对值,再加上-31的和是多少?(2)从-3中减去-712与-16的和,所得的差是多少?17.(10分)计算:(1)(-121.3)+(-78.5)-⎝⎛⎭⎫-812-(-121.3); (2)-12-[2-(-3)2]×⎪⎪⎪⎪15-13÷⎝⎛⎭⎫-110.18.(8分)一辆货车从超市出发送货,先向南行驶30 km 到达A 单位,继续向南行驶20 km 到达B 单位.回到超市后,又给向北15 km 处的C 单位送了3次货,然后回到超市休息.(1)C 单位离A 单位有多远? (2)该货车一共行驶了多少千米?19.(10分)已知a ,b 互为相反数,c ,d 互为倒数,e 的绝对值为3,试求(a +b )÷108-e 2÷[(-cd )2 017-2]的值.20.(10分)2017年“十一”国庆假期间,万彬和温权听到各自的父母都将带他们去黄山旅游,他们听到后立即上网查资料,资料显示:高山气温一般每上升100 m,气温就下降0.8 ℃.10月2日上午10点,万彬在黄山顶,温权在黄山脚下.他们用手机通话,同时测出他们所在位置气温,分别是13.2 ℃和28.2 ℃,因而,他们就推算出这时候彼此所在地的海拔差.你知道他们是怎么算出的吗?他们的海拔差是多少?B卷(共50分)四、填空题(本大题共5个小题,每小题4分,共20分)21.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1 011)2换算成十进制数应为:(101)2=1×22+0×21+1×20=4+0+1=5,(1 011)2=1×23+0×22+1×21+1×20=11.按此方式,将二进制(1 001)2换算成十进制数的结果是_______.22.绝对值小于3的整数为__________,绝对值大于 3.2且小于7.5的负整数为________________.23.若|x|=4,|y|=5,则x-y的值为____________.24.将从1开始的连续自然数按以下规律排列:…则2 018在第_______行.25.若|m-2|+(n-2)2=0,则m n的值是______.五、解答题(本大题共3个小题,共30分)26.(10分)在有些情况下,不需要计算出结果也能把绝对值符号去掉.例如: |6+7|=6+7;|6-7|=7-6;|7-6|=7-6;|-6-7|=6+7; 根据上面的规律,把下列各式写成去掉绝对值符号的形式: (1)|7-21|=_________; (2)⎪⎪⎪⎪-12+0.8=____________; (3)⎪⎪⎪⎪717-718=__________;(4)用合理的方法计算:⎪⎪⎪⎪15-12 018+|12 018-12|-12×⎪⎪⎪⎪-12+11 009.27.(10分)现定义两种运算:“⊕”“⊗”,对于任意两个整数a ,b ,a ⊕b =a +b -1,a ⊗b =a ×b -1,求4⊗[(6⊕8)⊕(3⊗5)]的值.28.(10分)下面是按一定规律排列的一列数: 第1个数:1-⎝⎛⎭⎫1+-12;第2个数:2-⎝⎛⎭⎫1+-12⎣⎡⎦⎤1+(-1)23⎣⎡⎦⎤1+(-1)34;第3个数:3-⎝⎛⎭⎫1+-12⎝⎛⎭⎫1+(-1)23⎝⎛⎭⎫1+(-1)34⎝⎛⎭⎫1+(-1)45⎣⎡⎦⎤1+(-1)56. …(1)分别计算这三个数的结果(直接写答案);(2)写出第2 017个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.参考答案1. D2. A3. C4. D5. A6. A7. B8. C9. D 10. A 11.2323-3212. -2 13.9.9 14. -10 15. 解:如答图.它们的相反数分别为-3,0,2,52,-1.5,4,2分答图16. 解:(1)根据题意,得-13+||-27+(-31)=-17.(2)根据题意,得-3-⎣⎡⎦⎤-712+⎝⎛⎭⎫-16=-214. 17. 解:(1)原式=-121.3-78.5+8.5+121.3=(-121.3+121.3)+(-78.5+8.5) =-70(2)原式=-12-(2-9)×⎪⎪⎪⎪315-515÷⎝⎛⎭⎫-110 =-1-(-7)×215÷⎝⎛⎭⎫-110 =-1-1415×10=-1-283=-31318. 解:(1)规定超市为原点,向南为正,向北为负,1分依题意,得C 单位离A 单位有30+||-15=45(km),3分 ∴C 单位离A 单位45 km.4分(2)该货车一共行驶了(30+20)×2+||-15×6=190(km).7分答:该货车一共行驶了190 km.8分19. 解:因为a ,b 互为相反数,c ,d 互为倒数,e 的绝对值为3,所以a +b =0,cd =1,e =±3.4分所以原式=0÷108-(±3)2÷[(-1)2 017-2] =(-9)÷(-1-2)=(-9)÷(-3)=3. 20. 解:根据题意,得(28.2-13.2)÷0.8×100 =15×1.25×100 =1 875(m).答:他们的海拔差是1 875 m . 21.922. 0,±1,±2 -4,-5,-6,-7 23. ±1,±9【解析】∵|x |=4,∴x =±4.∵|y |=5,∴y =±5.当x =4,y =5时,x -y =-1; 当x =4,y =-5时,x -y =9; 当x =-4,y =5时,x -y =-9; 当x =-4,y =-5时,x -y =1.24.45【解析】∵442=1 936,452=2 025,∴2 018在第45行. 25.426.(1) 21-7 (2) 0.8-12 (3)717-718 (4) 920解:(4)原式=15-12 018+12-12 018-14+11 009=920.27. 解:根据新运算的定义,(6⊕8)=6+8-1=13,(3⊗5)=3×5-1=14,则(6⊕8)⊕(3⊗5)=13⊕14=13+14-1=26, 则4⊗[(6⊕8)⊕(3⊗5)]=4⊗26=4×26-1=103.28. 解:(1)第1个数:12;第2个数:32;第3个数:52.(2)第2 017个数:2 017-⎝⎛⎭⎫1+-12⎣⎡⎦⎤1+(-1)23⎣⎡⎦⎤(1+(-1)34…⎣⎡⎦⎤1+(-1)4 0334 034=4 0332.。
人教版七年级数学上册《第二章有理数的运算》单元检测卷(带答案)一、单选题(本大题共10小题)1.第五届世界智能大会采取“云上”办会的全新模式呈现,48家直播网站及平台同时在线观看云开幕式暨主题峰会的总人数最高约为67400000,将67400000科学记数法表示应为( )A .0.674×105B .6.74×106C .6.74×107D .67.4×1062.26.4亿用科学记数法表示为( )A .826.410⨯B .82.6410⨯C .926.410⨯D .92.6410⨯3.2的倒数是( )A .2B .12 C .12- D .-24.期中考试小明用计算器计算六科平均成绩为93.25614分,用四舍五入法按要求取近似值,其中错误的是( )A .93.3(精确到0.1)B .93.256(精确到千分位)C .93.25(小数点后两位)D .93.26(小数点后两位)5.月球离地球的距离约为38万千米,数38万用科学记数法可表示为( ) A .53.810⨯ B .43.810⨯ C .53810⨯ D .43810⨯6.将算式5(3)(4)---+-写成省略加号的和的形式,正确的是( )A .-53-4+B .-5-3-4C .534+-D .-5-34+7.北京冬奥会的预算规模为15.6亿美元,政府补贴6%(9400万美元).其中1 560 000 000用科学记数法表示为( )A .1.56×109B .1.56×108C .15.6×108D .0.156×10108.如图是一个运算程序,若x 的值为1-,则运算结果为( )A .4-B .2-C .2D .49.某景区同步设置的“我为祖国点赞”装置共收集约6390000个“赞”,这个数字用科学记数法可表示为( )A .6.39×106B .0.639×106C .0.639×105D .6.39×10510.已知||2,||5x y ==,且3x y +=-,则x y -等于( )A .7B .3-C .3D .7-二、填空题(本大题共6小题)11.大山包位于昭通市西部,距昭通城区65公里,平均海拔3100米,是国家一级保护动物黑颈鹤的越冬栖息地.请将数字3100用科学记数法表示为 .12.伴随“互联网+”时代的来临,预计到2025年,我国各类网络互助平台的实际参与人数将达到450000000人,将数据450000000科学记数法表示为 .13.已知甲地的海拔高度是300m ,乙地的海拔高度是-50m ,那么甲地比乙地高 m . 14.用四舍五入法将数3.14159精确到千分位的结果是 .15.根据第七次全国人口普查结果公布,全国人口已达14.11亿人.其中14.11亿用科学记数法表示为: .16.若▲表示最小的正整数,■表示最大的负整数,•表示绝对值最小的有理数,则=+•⨯(▲)■ .三、解答题(本大题共8小题)17.某钢材仓库9天内进出钢材的吨数如下:(“+”表示进库,“﹣”表示出库)+20,﹣25,﹣13,+18,﹣16,+16,﹣15,+22,﹣21(1)经过这9天,仓库里的钢材吨数是增加了还是减少了?增加或减少了多少吨? (2)如果进出仓库的钢材装卸费都是每顿15元,那么这9天要付多少元装卸费?18.计算:(1)()()()()23711---++-+;(2)137246812⎛⎫-⨯+- ⎪⎝⎭; (3)()32024116231-+÷-⨯--.19.先化简,再求值:(2xy 2﹣3x 3﹣1)﹣2(x 3﹣3xy 2+1),其中x =﹣2,y =﹣1.20.已知1cm 3的氢气质量约为0.00009g ,请用科学记数法表示下列计算结果. (1)求一个容积为8000000cm 3的氢气球所充氢气的质量;(2)一块橡皮重45g ,这块橡皮的质量是1cm 3的氢气质量的多少倍.21.计算:()()22021432412⎡⎤⎛⎫-+-⨯-+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦22.计算:(1)()()2324+-⨯--;(2)()()432121130.5233⎡⎤⎛⎫---÷--- ⎪⎢⎥⎝⎭⎣⎦.23.已知a b 、互为相反数,、c d 互为倒数,x 的绝对值是3,y 是最大的负整数,求()26x cd a b y -++-的值.24.某检修小组乘一辆汽车沿东西走向的公路检修线路,约定向东走为正,某天从A 地出发到收工时,行走记录如下(单位:km ):15,2,5,1,10,3,2,12,4,5,6+-+-+--++-+(1)收工时,检修小组在A 地的哪一边,距A 地多远?(2)若汽车每千米耗油2升,每升汽油6元,不计汽车的损耗,检修小组这天下午耗了多少钱的汽油?参考答案1.【答案】C2.【答案】D3.【答案】B4.【答案】C5.【答案】A6.【答案】A7.【答案】A8.【答案】A9.【答案】A10.【答案】A11.【答案】33.110⨯12.【答案】84.510⨯13.【答案】350;14.【答案】3.14215.【答案】91.41110⨯16.【答案】-117.【答案】(1)仓库里钢材减少了14吨;(2)2490元18.【答案】(1)3-(2)1(3)9-19.【答案】32583x xy -+-,2120.【答案】(1)7.2×102g ;(2)5×105倍.21.【答案】21-22.(1)解:原式264=-+0=;(2) 解:原式111127643⎡⎤⎛⎫=+÷--- ⎪⎢⎥⎝⎭⎣⎦ 11127612⎡⎤⎛⎫=+÷-- ⎪⎢⎥⎝⎭⎣⎦ 11274⎛⎫=+÷- ⎪⎝⎭1108=-107=-.23.【答案】4或8-24.【答案】(1)收工时,检修小组在A 地东边,距A 地39千米;(2)一共耗油780元。
中小学教育资源及组卷应用平台○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________第2章 有理数及其运算单元测试卷参考答案与试题解析一、选择题(共12小题,每小题3分,计36分)1.下列四个数中,是正整数的是( )A. ﹣ 1B. 0C.D. 1 解:A 、﹣1是负整数,不符合题意; B 、0是非正整数,不符合题意;C 、 是分数,不是整数,不符合题意;D 、1是正整数,符合题意. 故答案为:D .2.比-1小2的数是( )A. 3B. 1C. -2D. -3 解:比-1小2的数是:-1-2=-3. 故答案为:D.3.某地一天早晨的气温是-5℃,中午上升了10℃,午夜又下降了8℃,则午夜的气温是( ) A. -3℃ B. -5℃ C. 5℃ D. -9℃ 解:(-5)+10-8=5-8=-3(℃).答:午夜的气温是-3℃. 故答案为:A .4.的倒数是( )A.B. C. 5 D.解:∵(-5)×(- )=1,∴-5的倒数是- .故答案为:A .5.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,将这个数用科学记数法表示为( ) A.B.C.D.解: 用科学记数法表示为故答案为:C.6.2018的相反数是( )A. 2018B. ﹣2018C.D.解:因为2018与-2018只有符号不同,2018的相反数是-2018 故答案为:B.7.若数轴上点A 、B 分别表示数2、﹣2,则A 、B 两点之间的距离可表示为( ) A. 2+(﹣2) B. 2﹣(﹣2) C. (﹣2)+2 D. (﹣2)﹣2 解:A 、B 两点之间的距离可表示为:2﹣(﹣2). 故答案为:B .8.实数 , , 在数轴上的对应点的位置如图所示,则正确的结论是( )A. B.C. D.解:∵,∴,故A 不符合题意;数轴上表示 的点在表示 的点的左侧,故B 符合题意; ∵ , ,∴ ,故C 不符合题意; ∵,,,∴,故D 不符合题意.故答案为:B.9.计算-1 ÷(-3)×(-)的值为( )A. -1B. 1C. -D.解:-1÷(-3)×(-)=,故答案为:C10.如图,数轴上有三个点A ,B ,C ,若点A ,B 表示的数互为相反数,则图中点C 对应的数是( )A. ﹣2B. 0C. 1D. 4解:∵点A 、B 表示的数互为相反数,AB=6∴原点在线段AB 的中点处,点B 对应的数为3,点A 对应的数为-3, 又∵BC=2,点C 在点B 的左边,…○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…○…………内…………○…………装…………○…………订…………○…………线…………○…………∴点C 对应的数是1, 故答案为:C .11.下列各组数中,运算结果相等的是( )A. 34和43B. -32和(-3)2C. -53和(-5)3D.和解:A. 34=81,43 =64,不相等,故不符合题意; B. -32=-9,(-3)2 =9,不相等,故不符合题意; C. -53=-125,(-5)3 =-125,相等,符合题意; D.=,=,不相等,故不符合题意,故答案为:C.12.下列命题是真命题的是( )A. 如果一个数的相反数等于这个数本身,那么这个数一定是0B. 如果一个数的倒数等于这个数本身,那么这个数一定是1C. 如果一个数的平方等于这个数本身,那么这个数一定是0D. 如果一个数的算术平方根等于这个数本身,那么这个数一定是0解:A 、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题; B 、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题; C 、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题; D 、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题; 故答案为:A .二.填空题(共4小题,每小题3分,计12分)13.从数轴上表示的点开始,向右移动6个单位长度,再向左移动5个单位长度,最后到达的终点所表示的数是________。
第二章 有理数及其运算单元测试卷一.选择题(共10小题)1.(2023•路桥区二模)2023年第一季度,浙江省全省创造了约1900000000000元的生产总值,排名哲时排名全国第四位.数据1900000000000用科学记数法表示为( )A .111.910´B .121.910´C .111910´D .130.1910´【分析】科学记数法的表示形式为10n a ´的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10…时,n 是正整数;当原数的绝对值1<时,n 是负整数.【解答】解:数据1900000000000用科学记数法可以表示为121.910´.故选:B .2.(2023•抚松县模拟)下列各数中,最小的数是( )A .3-B .1-C .0D .3【分析】根据正数大于0,0大于负数,以及两个负数比较大小方法判断即可.【解答】解:3103-<-<<Q ,\最小的数为3-.故选:A .3.(2023•滨城区二模)2(2)3--的结果是( )A .7-B .1C .2-D .6【分析】先算乘方,再算减法.【解答】解:2(2)3--43=-1=.故选:B .4.(2023•新昌县模拟)|2023|(-= )A .2023B .2023-C .12023-D .12023【分析】根据负数的绝对值等于它的相反数,即可求解.【解答】解:|2023|(2023)2023-=--=.故选:A.5.(2023•乾县三模)如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为( )A.6B.6-C.0D.1 6【分析】根据数轴表示和相反数的定义进行求解.【解答】解:6-Q的相反数是6,\点B表示的数为6,故选:A.6.(2023•兰溪市模拟)一条数轴上有点A、B,点C在线段AB上,其中点A、B表示的数分别是8-,6,现以点C为折点,将数轴向右对折,若点A¢落在射线CB上,并且4A B¢=,则C点表示的数是( )A.1B.1-C.1或2-D.1或3-【分析】设点C表示的数为x,分两种情况:A¢在线段CB的延长线上或线段CB上分别计算即可.【解答】解:设点C表示的数为x,当A¢在线段CB的延长线上时,4A B¢=Q,\点A¢表示的数为6410+=,AC A C=¢Q,(8)10x x\--=-,解得:1x=;当A¢在线段CB上时,4A B¢=Q,\点A¢表示的数为642-=,AC A C=¢Q,(8)2x x\--=-,解得:3x=-;故选:D.7.(2023•河北模拟)将122135222555´´´´´´´{{L L 个个的计算结果用科学记数法可表示为( )A .12510´B .13110´C .12210´D .13210´【分析】先计算出结果,再根据科学记数法的表示形式进行解答即可.【解答】解:Q 1212213512251522255525255510´´´´´´´´=´´¼´´´=´{{{{L L 个个个个,故选:A .8.(2023•南关区校级四模)中国是最早采用正负数来表示相反意义的量的国家,如果盈利50元,记作“50+元”,那么亏损30元,记作( )A .30+元B .20-元C .30-元D .20+元【分析】根据正负数来表示相反意义,盈利50元,记作“50+元”,亏损30元,则记作“30-元”即可求解.【解答】解:Q 盈利50元,记作“50+元”,\亏损30元,记作“30-元”.故选:C .9.(2023•河东区二模)如图,数轴上A ,C 位于B 的两侧,且2AB BC =,若点B 表示的数是1,点C 表示的数是3,则点A 表示的数是( )A .0B .2-C .3-D .1-【分析】求出AB 线段的长度,因为点A 表示的数小于点B ,点B 表示1,推理出点A 表示的数.【解答】解:Q 点B 表示的数是1,点C 表示的数是3,2BC \=,2AB BC =Q ,4AB \=,有数轴可知:点A 表示的数小于点B 表示的数,143\-=-,即点A 表示的数为3-,故选:C .10.(2023春•武昌区期末)将1,2,3,4,5,6,7,8,9,10这个10个自然数填到图中的10个格子里,每个格子中只填一个数,使得田字形的4个格子中所填数字之和都等于m .则m 的最大值是( )A .23B .24C .25D .26【分析】图形中有3个“田”字形,其中重叠的有两个小格,设对应的数为a ,b ,则与a 与b 均被加了两次,根据“田“字形的4个格子中所填数字之和都等于m ,其总和为3m 根据3个“田”字形所填数的总和为1234567891055a h a b +++++++++++=++,列出不等式,求整数解即可.【解答】解:设每个“田”字格四个数的和为m ,共12个数的和为3m ,有两数重复,设这两数分别为a ,b ,所以3个“田”字形所填数的总和为:1234567891055a b a b +++++++++++=++.则有355m a b =++,要m 最大,必须a 、b 最大,而a b +最大值为91019+=,则355910m ++…,则2243m <,则m 最大整数值为24,故选:B .二.填空题(共6小题)11.(2023春•芝罘区期中)如图,数轴上有A 、B 、C 三点,A 、B 两点表示的有理数是分别是2-和8,若将该数轴从点C 处折叠后,点A 和点B 恰好重合,那么点C 表示的有理数是 3 .??【分析】由题意得点C 是线段AB 的中点,再进行求解.【解答】解:由题意得点C 是线段AB 的中点,\点C 表示的有理数是:(28)2-+¸62=¸3=,故答案为:3.12.(2023春•秦淮区期中)若44222a +=,5553333b ++=,则a b -的值为 1- .【分析】根据乘方的定义(求几个相同因数或因式的积的一种运算)解决此题.【解答】解:44222a +=Q ,5553333b ++=,452222a \=´=,563333b =´=.5a \=,6b =.561a b \-=-=-.故答案为:1-.13.(2023春•平谷区期末)某校要举办秋季运动会,初一(2)班有四名同学分别想参与100m ,200m ,400m ,和800m 的比赛,其中甲同学擅长跑100m 和200m ,乙同学擅长跑400m 和800m ,丙同学擅长跑100m 、200m 和400m ,丁同学最擅长跑100m .为了让班级取得好成绩,也让他们每个人都可以参加比赛,并且每人只能参加一项比赛,那么只能派 丙 参加400m 比赛.【分析】根据四名同学最擅长的项目分析即可得出答案.【解答】解:Q 甲同学擅长跑100m 和200m ,丁同学最擅长跑100m ,\让丁同学跑100m ,甲同学跑200m ,Q 乙同学擅长跑400m 和800m ,丙同学擅长跑100m 、200m 和400m ,\让乙同学跑800m ,丙同学跑400m ,故答案为:丙.14.(2023•甘州区校级模拟)ABC D 的三边长a ,b ,c 满足2|4|(2)0a b c +-+-=,则ABC D 的周长为 6 .【分析】直接利用非负数的性质得出a b +,c 的值,进而得出答案.【解答】解:2|4|(2)0a b c +-+-=Q ,40a b \+-=,20c -=,解得:4a b +=,2c =,ABC \D 的周长为:426a b c ++=+=.故答案为:6.15.(2023春•浦东新区期末)若|1|1a a -=-,则a 的取值范围是 1a … .【分析】根据||a a =-时,0a …,因此|3|3a a -=-,则30a -…,即可求得a 的取值范围.【解答】解:|1|1a a -=-Q ,10a \-…,解得:1a ….故答案为:1a ….16.(2023•随州)计算:2(2)(2)2-+-´= 0 .【分析】根据有理数的混合运算顺序,先计算乘方,再计算乘法,后计算加法即可.【解答】解:2(2)(2)2-+-´4(4)=+-0=.故答案为:0.三.解答题(共8小题)17.(2022秋•宝山区校级期末)计算:212.75136++.【分析】首先把小数化为分数,然后再通分,计算即可.【解答】解:原式32121436=++,98221121212=++,7412=.18.(2022秋•和平区校级期末)计算①111()24386-+´;②42211(2)(25(0.25326-¸-+´--.【分析】①根据乘法分配律计算即可;②先算乘方,再算乘除法,最后算加减法即可.【解答】解:①111(24386-+´111242424386=´-´+´834=-+9=;②42211(2)(25(0.25326-¸-+´--64111116()9264=¸+´--911116(64124=´+--27113()121212=+--1312=.19.(2023春•明水县期末)计算下面各题,能简便运算的要用简便方法算(1);(2);(3).【分析】(1)先算括号里的除法,然后括号外的乘法即可;(2)先变形,然后根据乘法分配律计算即可;(3)根据乘法分配律计算即可.【解答】解:(1)=×()=×=1×=;(2)=×88+×88=()×88=1×88=88;(3)=(27×+27×)×39=(+5)×39=×39+5×39=54+195=249.20.(2023春•海沧区期末)对有序数对(,)x y 定义“f 运算”: 11(,)(,)22f x y x a y b =-+,其中a ,b 为常数.(1)若(2f ,4)(1-=-,3),求a ,b 的值;(2)当4a =,3b =-时,有序数对(,)m n 经过“f 运算”后结果是(,)n c .若4m n …,求c 的最大值.【分析】(1)根据新定义“f 运算”,将(2f ,4)(1-=-,3)代入,解一元一次方程即可;(2)当4a =,3b =-,序数对(,)m n 代入“f 运算”得28m n =+,4m n …得c 的取值范围,进而作答.【解答】解:(1)Q 11(,)(,)22f x y x a y b =-+,(2f ,4)(1-=-,3),(2f \,14)(22a -=´-,14)2b -´+,11a \-=-,23b -+=,解得:2a =,5b =;(2)当4a =,3b =-时,(,)1(42x y f x =-,11)2y -,(,)1(42m n f m \=-,11)2n -,\142132m n n c ì-=ïïíï-=ïî①②,由①得:28m n =+,4m n Q …,284n n \+…,解得:4n …,\1312n --…,1c \-…,c \的最大值为1-.21.(2022秋•寻乌县期末)卓越中学为提高中学生身体素质,积极倡导“阳光体育”运动,开展一分钟跳绳比赛.七年级某班10名参赛代表成绩以160次为标准,超过的次数记为正数,不足的次数记为负数,成绩记录如下(单位:次):18+,1-,22+,2-,5-,12+,8-,1,8+,15+.(1)求该班参赛代表最好成绩与最差成绩相差多少?(2)求该班参赛代表一分钟平均每人跳绳多少次?(3)规定:每分钟跳绳次数为标准数量,不加分;超过标准数量,每多跳1个加1分;未达到标准数量,每少跳1个,扣0.5分,若班级跳绳总积分超过60分,便可得到学校的奖励,请通过计算说明该班能否得到学校奖励?【分析】(1)用记录中的最大数减去最小数即可;(2)根据平均数的意义,可得答案;(3)根据题意列式计算求出该班的总积分,再与60比较即可.【解答】解:(1)22(8)22830+--=+=(次),答:该班参赛代表最好成绩与最差成绩相差30次;(2)160(18122251281815)10+-+--+-+++¸1606010=+¸1606=+166=(次),答:该班参赛代表一分钟平均每人跳绳166次;(3)(1822121815)1(1258)0.5+++++´-+++´768=-68=(分),6860>,答:该班能得到学校奖励.22.(2022秋•徐闻县期末)为体现社会对老师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师,如果规定向东为正,向西为负,出租车的行程如下(单位:千米):5+,4-,3+,10-,3+,9-.(1)最后一名老师送到目的时,小王距出租车出发点的距离是多少千米;(2)若汽车耗油量为0.4升/千米,则这天上午小王的汽车共耗油多少升?【分析】(1)把记录的数字相加得到结果,即可做出判断;(2)求出各数绝对值之和,乘以0.4即可得到结果.【解答】解:(1)根据题意得:543103912+-+-+-=-(千米),则后一名老师送到目的时,小王距出租车出发点的距离是12千米;(2)根据题意得:0.4(5431039)13.6´+++++=(升),则这天上午小王的汽车共耗油13.6升.23.(2023春•长宁区期末)小明表演魔术,从一副除去大小王的扑克中请观众随机选择了4张牌,并让观众每次取其中三张牌,将牌面数字相加,牌面数字之和分别为18,24,25,26.小明立刻说出了观众随机选择的4张扑克牌面的数字.这4张牌牌面的数字都是几呢?你能尝试用数学原理去揭秘这个魔术吗?(A 表示1,J表示11,Q表示12,K表示13)【分析】设这4张牌牌面的数字分别为a,b,c,d,根据题意可得:18a b c++=,24a b d++=,25a c d++=,26b c d++=,从而可得333318242526a b c d+++=+++,进而可得31a b c d+++=,然后分别进行计算,即可解答.【解答】解:设这4张牌牌面的数字分别为a,b,c,d,由题意得:18a b c++=,24a b d++=,25a c d++=,26b c d++=,333318242526a b c d\+++=+++,31a b c d\+++=,31()311813d a b c\=-++=-=,31()31247c a b d=-++=-=,31()31256b ac d=-++=-=,31()31265a b c d=-++=-=,\这4张牌牌面的数字分别为5,6,7,13.24.(2023春•南岗区期中)阅读下面材料,然后回答问题.计算12112 ()() 3031065 -¸-+-解法一:原式12111112 ()()()(3033010306305 =-¸--¸+-¸--¸1111203512 =-+-+16=.解法二:原式12112 ()[()()]3036105 =-¸-+-113()()30210 =-¸-1530=-´16=-.解法三:原式的倒数为21121 ()() 3106530-+-¸-2112()(30)31065=-+-´-2112(30)(30(30)(30) 31065=´--´-+´--´-203512=-+-+10=-故原式110=-.(1)上述得出的结果各不同,肯定有错误的解法,但是三种解法中有一种解法是正确的,请问:正确的解法是解法 解法三 ;(2)根据材料所给的正确方法,计算:11322 ((4261437-¸-+-.【分析】(1)上述得出的结果不同,肯定有错误的解法,我认为解法一和解法二是错误的.在正确的解法中,我认为解法三最简捷;(2)利用乘法分配律求出原式倒数的值,即可求出原式的值.【解答】解:(1)根据除法没有分配律可知解法一错误;根据加法的交换律可知,交换加数的位置时应连同符号一起交换,故解法二也错误;(2)Q13221 (() 6143742-+-¸-1322()(42)61437=-+-´-1322(42)(42)(42)(42) 61437=´--´-+´--´-792812 =-+-+14=-,\113221 ((426143714-¸-+-=-.。
人教版七年级数学上册《第二章有理数的运算》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.根据有关数据,目前全球稀土资源储量为1.2亿吨,而中国储量为4400万吨,居世界第一位,请用科学记数法表示44000000为( )A .0.04×109B .0.04×107C .4.4×107D .44×1062.用四舍五入法按要求对1.8040分别取近似值,其中错误的是( )A .1.8(精确到0.1)B .1.80(精确到0.01)C .1.80(精确到千分位)D .2(精确到个位)3.甲、乙、丙三地的海拔高度分别为30米,-25米和-10米,那么最高的地方比最低的地方高( )A .25米B .40米C .15米D .55米4.已知a =|5|,|b|=8,且满足a+b <0,则a ﹣b 的值为( )A .13或3B .11或3C .3D .﹣35.如果|a +2|+(b −1)2=0,那么(a +b )2023的值是( )A .3B .1C .−1D .−1或16.有理数a,b 在数轴上对应的位置如图所示,则下列选项错误的是( )A .a +b <0B .a −b >0C .−b a >0D .ab <07.一根1m 长的绳子,第1次剪去一半,第2次剪去剩下绳子的一半.如此剪下去,剪第8次后剩下的绳子的长度是( )A .(12)6mB .(12)7mC .(12)8mD .(12)12m 8.|13−12|+|14−13|+|15−14|+⋅⋅⋅+|110−19|的值是( )A .−23B .23C .−25D .25 9.根据以下程序,当输入x =1时,输出的结果为( )A .﹣3B .﹣1C .2D .810.规定一种运算:aΨb =a (b +a )(a −b ),如2Ψ3=2×(3+2)×(2−3)=−10,则3Ψ4=( )A .7B .12C .−16D .−21 二、填空题11.比较大小:−(−5)2 −|−62|.12.近似数7.200万精确到 位.13.若|x|=|−2|,|y −3|=2且|x −y|=y −x 则x +y = .14.根据“二十四点”游戏的规则,用仅含有加、减、乘、除及括号的运算式(每个数字只能用一次),使12,−12,3,−1的运算结果等于24: (只要写出一个算式即可 )15.数学家发明了一个魔术盒,当任意数对(a ,b )放入其中时,会得到一个新的数:a 2+b +1.将数对(﹣3,2)放入其中得到数m = .16.已知a 、b 、c 都是有理数,其中a 为正数,若代数式abc |abc|的值为−1,则代数式|a|a +|b|b +|c|c 的值为 .17.进制也就是进位计数制,是人为定义的带进位的计数方法.我们常用的十进制是逢十进一,如4652可以写作4×103+6×102+5×101+2×100,数要用10个数字组成:0、1、2、3、4、5、6、7、8、9.在小型机中引入了八进制,只要八个数字:0、1、2、3、4、5、6、7,如八进制中174可以写作1×82+7×81+4×80等于十进制的数124.将八进制中的数1234等于十进制中数应为 .(请直按写结果)三、解答题18.计算:(1)(−38)×(−112)÷(−214); (2)(−2)2×5−(−2)3÷4;(3)2×(−3)3−4×(−3)+15; (4)−14+(−5)×[(−1)3+2]−(−3)2÷(−12).19.元朝时期人们已经把正负数作为一个专门的数学研究科目,朱世杰在《算学启蒙》一书中还写出了正负数的乘法法则,这是人们对正负数研究迈出的新的一步.小云学习了有理数的运算后,在计算(−5)−(−5)×110÷110×(−5)时,她的解法如下:解:原式=−5−(−12)÷(−12)① =−5−1①=−6①请回答:(1)小云的解法有错误,错误处是______(填序号),错误原因是__________________;(2)请写出正确的解答过程.20.一只小虫从某点O 出发在一条直线上爬行. 规定向右爬行为正,向左为负. 小虫共爬行5次,小虫爬行的路程依次为:(单位:厘米)−5,−3,+10,−4,+8.(1)小虫最后在出发点的左边还是右边?离出发点多少厘米?(2)若小虫爬行速度保持不变,共用了6分钟,请问小虫的爬行速度是多少?21.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中,最接近25千克的那筐白菜为千克;(2)以每筐25千克为标准,这8筐白菜总计超过多少千克或不足多少千克?(3)若白菜每千克售价26元,则出售这8筐白菜可卖多少元?22.金秋,学校的劳动实践果园里苹果挂满枝头,老师组织七年级同学一共采摘了10袋苹果,每袋质量各不相同,为了计算简便,以每袋5千克为标准,超过标准质量的记作正数,不足的记作负数,所做记录如下表:袋子编号12345678910记录结果+0.8−1−0.3+1.1+0.7+0.2−0.4+1−0.7−1.3(1)在摘得的10袋苹果中,质量最多和最少的一袋各是多少千克?(2)七年级同学共摘得苹果多少千克?23.概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(−3)÷(−3)÷(−3)÷(−3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”(−3)÷(−3)÷(−3)÷(−3)记作(−3)④,读作“−3的圈4次方”,一般地,把a÷a÷a⋅⋅⋅÷a(n个a)(a≠0)记作aⓝ,读作“a的圈n次方”.初步探究(1)直接写出计算结果:2③=________,(−12)③=________;(2)关于除方,下列说法错误的是________:A.任何非零数的圈2次方都等于1;B.对于任何正整数n,1的圈n次方都等于1;C.3④=4③;D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.深入思考:我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式(−3)的圈4次方=________5的圈5次方=________;(−12)的圈6次方=________(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于________;(3)算一算:24÷23+(−8)×2③.参考答案1.C2.C3.D4.A5.C6.B7.C8.D9.C10.D11.>12.十13.7或3或−114.3×(−12)×(−1)−12=2415.1216.117.668.18.(1)−14;(2)22;(3)-27;(4)1219.运算顺序错误20.(1)右边,6厘米(2)5厘米/分钟21.(1)24.5(2)这8筐白菜总计不足5.5千克.(3)出售这8筐白菜可卖5057元.22.(1)质量最多的一袋是6.1千克,最少的一袋是3.7千克;(2)七年级同学共摘得苹果50.1千克.23.初步探究(1)12,−2;(2)C;深入思考(1)(−13)2,(15)3,(−2)4;(2)(1a)n−2(3)−1.。
第2章有理数的运算(2.1-2.4)单元评估(时间90分钟,满分100分)一、选择题(本题有10小题,每小题3分,共30分)1. 若 a 比10大–3,则a =( )A. 13B.7C. 8D. 122.下列计算正确的是( )A.(-2)- (-5)=-7B.- 3+2=-5C.(- 2)×(-5)=10D.(- 12)÷(-2)=-63. 如果两个有理数的和是负数,则这两个数是 ( )A. 都是负数B. 一定是一正一负;C. 一定是0和负数;D. 至少一个是负数4.计算:)322()1(-÷-的结果是( )A.322- B.322 C.213 D.83 5.计算:- 1.99×17的结果是( )A.33.83B.- 33.83C.- 32.836. │a │=7 ,b 的相反数是2,则a +b 的值是 ( )A.-9B.-9或+9C.+5或-5D.+5或-97. 若M +|–20|=|M |+|20|,则M 一定是( )A 、任意一个有理数B 、任意一个非负数C 、任意一个非正数D 、任意一个负数8.下列结论:①零加一个数等于这个数,②零减一个数等于这个数的相反数,③1除以一个数等于这个数的倒数,④-1乘以一个数等于这个数的相反数.正确的个数有( )A.1个B.2个C.3个9. 定义运算:对于任意两个有理数a 、b ,有a ▲b =(a –1)(b+1) 则计算–3▲4的值是( )A.12B.–12C.20D.–2010.如果两个有理数的积小于零,和大于零,则这两个有理数( )B.符号相反且负数的绝对值大二、填空题(本题有6小题,每小题3分,共18分)11. a + b =0 时,a 、b 的关系是 .12. (–8), 45 ,(–7)这三个数相乘的积的符号是 ,积的绝对值是_______.13.将算式写成去掉括号的形式:(+16)+(-29)-(-7)-(+11)+(+9)=_ ___.14. 绝对值不大于2005的所有整数的和是 ,积是 .15.-1减去65-与61的和,所得的差是_________. 16. 若|a +5|+|b –2|+|c +4|=0,则,abc – b a +c b = . 三、解答题(本题有7小题,共52分)17.计算:(1)(+30)+(–17.5)+(–20)+(+17.5) (2)(–331)–(+21)+(+443)–(–132)18.计算: (1) 321×(–75)–(–75)×221–75×(–21); (2) –150×(–81)–25×0.125+50×(–41)19.计算: (1) )24()4312581(-⨯-+-(2) 75.0)431(852)522(4.0--÷--÷20.在数轴上表示–2和10两点之间插入三个点,使这5个点每相邻两点之间的距离相等,求这三个点所表示的数。
第2章有理数的运算检测题
【本试卷满分100分,测试时间90分钟】
一、选择题(每小题3分,共30分)
1.有理数a、b在数轴上对应的位置如图所示,则()
A.a+b<0
B.a+b>0
C.a-b=0
D.a-b>0
2.下列运算正确的是()
A. B. C. D.=8
3.计算的值是()
A.0
B.-54
C.-72
D.-18
4.下列说法中正确的有()
①同号两数相乘,符号不变;②异号两数相乘,积取负号;
③互为相反数的两数相乘,积一定为负;
④两个有理数的积的绝对值,等于这两个有理数的绝对值的积.
A.1个
B.2个
C.3个
D.4个
5.气象部门测定发现:高度每增加1 km,气温约下降5 ℃.现在地面气温是15 ℃,那么
4 km高空的气温是()
A.5 ℃
B.0℃
C.-5 ℃
D.-15 ℃
6.计算等于()
A.-1
B.1
C.-4
D.4
7.小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是()
A.90分
B.75分
C.91分
D.81分
8.若规定“!”是一种数学运算符号,且1!=1,2!=1×2=2,3!=3×2×1=6,4!=4×3×2×1=24,⋯,
则
!
98!
100的值为( ) A.
49
50
B.99!
C.9 900
D.2! 9.已知,,且,则
的值为( )
A.-13
B.+13
C.-3或+13
D.+3或-13
10.若
,则a 与b 的大小关系是( )
A.a =b =0
B.a 与b 不相等
C.a ,b 异号
D.a ,b 互为相反数 二、填空题(每小题3分,共24分) 11.若规定
,则
的值为 .
12.如图所示,在数轴上将表示-1的点向右移动3个单位长度后,对应点表示的数是_________.
13.甲、乙两同学进行数字猜谜游戏.甲说:一个数的相反数就是它本身,乙说:一个数的倒数也等于它本身,请你猜一猜_______. 14.计算:
_________.
15.某次数学测验共20道选择题,规则是:选对一道得5分,选错一道得-1分,不选得零分,王明同学的卷面成绩是:选对16道题,选错2道题,有2道题未做,他的得分是 .
16.讲究卫生要勤洗手,人的一只手上大约有28 000万个看不见的细菌,用科学记数法表示
两只手上约有 个细菌.
17.某年级举办足球循环赛,规则是:胜一场得3分,平一场得1分,输一场得-1分,某班
比赛结果是胜3场平2场输4场,则该班得 分.
18.如图是一个数值转换机的示意图,若输入x 的值为3,的值为-2,则输出的结果为 .
三、解答题(共46分) 19.(12分)计算:
(1); (2);
(3)2
1
1; (4).
20.(5分)已知:,
,且
,求
的值.
21.(5分)某工厂本周内计划每日生产300辆电动车,由于每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数):
星期一二三四五六日
增减-5 +7 -3 +4 +10 -9 -25 (1)本周三生产了多少辆电动车?
(2)本周总生产量与计划生产量相比,是增加还是减少?
(3)产量最多的一天比产量最少的一天多生产了多少辆?
22.(6分)为节约用水,某市对居民用水规定如下:大户(家庭人口4人及4人以上者)每月用水15 m3以内的,小户(家庭人口3人及3人以下者)每月用水10 m3以内的,按每立方米收取0.8元的水费;超过上述用量的,超过部分每立方米水费加倍收取.某用户5口人,本月实际用水25 m3,则这户本月应交水费多少元?
23.(6分)出租车司机老王某天上午营运全是在东西走向的解放路上进行,如果规定向东为正,向西为负,他这天上午行车里程(单位:)如下:
(1)将第几名乘客送到目的地时,老王刚好回到上午出发点?
(2)将最后一名乘客送到目的地时,老王距上午出发点多远?
(3)若汽车耗油量为0.4/,这天上午老王耗油多少升?
24.(6分)李强靠勤工俭学的收入维持上大学费用,表中是李强某一周的收支情况表,记收入为正,支出为负(单位:元):
星期一二三四五六日
收入+15 +18 0 +16 0 +25 +24
支出10 14 13 8 10 14 15 (1)到这个周末,李强有多少节余?
(2)照这个情况估计,李强一个月(按30天计算)能有多少节余?
(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?
25.(6分)观察下列各式:
….
猜想:
(1)的值是多少?
(2)如果为正整数,那么的值是多少?
参考答案
一、选择题
1.A 解析:由数轴可知是负数,是正数,离原点的距离比离原点的距离大,所以
,故选A.
2.B 解析:,A 错;
,C 错;
,D 错.只有B 是正
确的. 3.B 解析:
.
4.B 解析: ①错误,如(-2)×(-3)=6,符号改变; ③错误,如0×0,积为0;②④正确.
5.C 解析:15-5×4=-5(℃).
6.C 解析:
.
7.C 解析:小明第四次测验的成绩是
故选C.
8.C 解析:根据题意可得:100!=100×99×98×97×…×1,98!=98×97×…×1, ∴
1
97981
98×99×100!98!100⨯⨯⨯⨯⨯= =100×99=9 900,故选C . 9.C 解析:因为,
,所以
,
.又
,所以
.
故
或
.
10.A 解析:因为,又
,所以
. 二、填空题 11.
解析:
.
12.2 解析:
.
13.1 解析:因为相反数等于它本身的数是,倒数等于它本身的数是,
所以,所以
14.
解析:
.
15.78分 解析:(分).
16.
17.7 解析:(分).
18.5 解析:将代入
得
.
三、解答题 19.解:(1)
.
(2)
.
(3)2
1
1
.
(4)
.
20.解:因为,所以.因为,所以.
又因为,所以
. 所以或
.
21.分析:(1)明确增加的车辆数为正数,减少的车辆数为负数,依题意列式,再根据有理数的加减法法则计算;
(2)首先求出总生产量,然后和计划生产量比较即可得到结论;
(3)根据表格可以知道产量最多的一天和产量最少的一天各自的产量,然后相减即可得到结论.
解:(1)本周三生产的电动车为:(辆).
(2)本周总生产量为
(辆),
计划生产量为:300×7=2 100(辆),2 100-2 079=21(辆),
所以本周总生产量与计划生产量相比减少21辆.
或者由,
可知本周总生产量与计划生产量相比减少21辆.
(3)产量最多的一天比产量最少的一天多生产了(辆),
即产量最多的一天比产量最少的一天多生产了35辆.
22.解:因为该用户是大户,所以应交水费(元).
答:这户本月应交水费28元.
23.解:(1)因为,
所以将第6名乘客送到目的地时,老王刚好回到上午出发点.
(2)因为
,
所以将最后一名乘客送到目的地时,老王距上午出发点.
(3)因为
,,
所以这天上午老王耗油.
24.分析:(1)七天的收入总和减去支出总和即可;
(2)首先计算出一天的节余,然后乘30即可;
(3)计算出这7天支出的平均数,即可作为一个月中每天的支出,乘30即可求得.
解:(1)由题意可得:(元). (2)由题意得:14÷7×30=60(元).
(3)根据题意得:10+14+13+8+10+14+15=84,
84÷7×30=360(元).
答:(1)到这个周末,李强有14元节余.
(2)照这个情况估计,李强一个月(按30天计算)能有60元节余.
(3)按以上的支出水平,李强一个月(按30天计算)至少有360元收入才能维持正常开支.
25.解:(1).
(2).。