课程设计报告,列管式换热器设计
- 格式:doc
- 大小:343.00 KB
- 文档页数:12
一、设计题目:列管式换热器设计二、设计任务及操作条件1、设计任务处理能力:3000吨/日设备型式:固定管板式换热器2、操作条件(1)苯:入口温度80.1℃出口温度40℃(2)冷却介质:循环水入口温度25℃出口温度35℃(3)允许压降:管程不大于30kPa壳程不大于30kPa三、设计内容(一)、概述目前板式换热器产品达到了一个成熟阶段,凭借其高效、节能、环保的优势,在各行业领域中被频繁使用, 并被用以替换原有管壳式和翅片式换热器,取得了很好的效果。
板式换热器的优点(1) 换热效率高,热损失小在最好的工况条件下, 换热系数可以达到6000W/ m2K, 在一般的工况条件下, 换热系数也可以在3000~4000 W/ m2K左右,是管壳式换热器的3~5倍。
设备本身不存在旁路,所有通过设备的流体都能在板片波纹的作用下形成湍流,进行充分的换热。
完成同一项换热过程, 板式换热器的换热面积仅为管壳式的1/ 3~1/ 4。
(2) 占地面积小重量轻除设备本身体积外, 不需要预留额外的检修和安装空间。
换热所用板片的厚度仅为0. 6~0. 8mm。
同样的换热效果, 板式换热器比管壳式换热器的占地面积和重量要少五分之四。
(3) 污垢系数低流体在板片间剧烈翻腾形成湍流, 优秀的板片设计避免了死区的存在, 使得杂质不易在通道中沉积堵塞,保证了良好的换热效果。
(4) 检修、清洗方便换热板片通过夹紧螺柱的夹紧力组装在一起,当检修、清洗时, 仅需松开夹紧螺柱即可卸下板片进行冲刷清洗。
(5) 产品适用面广设备最高耐温可达180 ℃, 耐压2. 0MPa , 特别适应各种工艺过程中的加热、冷却、热回收、冷凝以及单元设备食品消毒等方面, 在低品位热能回收方面, 具有明显的经济效益。
各类材料的换热板片也可适应工况对腐蚀性的要求。
当然板式换热器也存在一定的缺点, 比如工作压力和工作温度不是很高, 限制了其在较为复杂工况中的使用。
同时由于板片通道较小,也不适宜用于杂质较多,颗粒较大的介质。
列管式换热器设计列管式换热器是一种常见的换热设备,广泛应用于化工、石油、制药等行业中。
本文将从列管式换热器的设计原理、设计步骤和设计考虑因素三个方面进行详细介绍。
一、设计原理列管式换热器是通过管内的换热流体和管外的换热流体之间的换热传递来实现热量的传递。
它的基本原理是利用换热流体在管内和管外的对流,通过管壁的传导传热作用,使热量从高温流体传递给低温流体。
二、设计步骤1.确定换热器的使用条件:包括换热流体的性质、入口温度、出口温度等。
2.确定换热器的换热面积:根据换热流体的热负荷和传热系数来计算所需的换热面积。
3.选择管子的尺寸和材料:根据换热流体的性质和流量来选择合适的管子尺寸和材料。
4.确定管子的数量和布置方式:根据换热面积和换热流体的流量来确定管子的数量和布置方式,一般采用多行多列的方式。
5.设计管束的尺寸:根据换热面积和管子的数量来确定管束的尺寸,包括管束的直径、长度和布置方式等。
6.计算换热器的传热系数:根据换热面积、流体的性质和传热方式来计算换热器的传热系数。
7.计算换热器的压降:根据流体的流量、管束的阻力和流体的性质来计算换热器的压降。
8.进行换热器的热力学计算:包括换热器的热力学效率、有效传热面积和温差效益等。
三、设计考虑因素1.热负荷:根据换热流体的热负荷来确定换热器的换热面积和管子的数量。
2.材料选择:根据换热流体的性质和工艺要求来选择合适的材料,包括管子的材料和管壳的材料。
3.温度差:根据换热流体的温度差来确定管束的数量和换热器的传热系数。
4.流体压降:根据流体的流量和管束的阻力来计算换热器的压降,并确定合适的管束布置方式和管束的尺寸。
5.清洗和维护:考虑到换热器的清洗和维护,要选择易于清洗和维护的结构设计。
综上所述,列管式换热器的设计是一个复杂的工程,需要考虑多个因素。
设计者需要根据具体的使用条件和要求来确定换热器的换热面积、管子的尺寸和材料、管束的数量和布置方式等。
同时,还需要计算换热器的传热系数、压降和热力学参数等。
设计(论文)题目:列管式换热器的设计目录1 前言 (3)2 设计任务及操作条件 (3)3 列管式换热器的工艺设计 (3)换热器设计方案的确定 (3)物性数据的确定 (4)平均温差的计算 (4)传热总系数K的确定 (4)传热面积A的确定 (6)主要工艺尺寸的确定 (6)管子的选用 (6)管子总数n和管程数Np的确定 (6)校核平均温度差 t m及壳程数Ns (7)传热管排列和分程方法 (7)壳体内径 (7)折流板······························· (7)核算换热器传热能力及流体阻力 (7)热量核算 (7)换热器压降校核 (9)4 列管式换热器机械设计 (10)壳体壁厚的计算 (10)换热器封头选择 (10)其他部件 (11)5 课程设计评价 (11)可靠性评价 (11)个人感想 (11)6 参考文献 (11)附表换热器主要结构尺寸和计算结果 (12)1 前言换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。
换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。
在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。
换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。
列管式换热器工业上使用最广泛的一种换热设备。
其优点是单位体积的传热面积、处理能力和操作弹性大,适应能力强,尤其在高温、高压和大型装置中采用更为普遍。
列管式换热器主要有以下几个类型:固定管板式换热器、浮头式换热器、U形管式换热器等。
化工原理课程设计---列管式换热器的设计列管式换热器是一种常用的换热器类型,其结构简单、传热效率高、维修方便等优点使其在工业生产中得到广泛应用。
该换热器由多个平行排列的管子组成,热流体和冷流体分别流过管内外,通过管壁传递热量,实现热量交换。
根据不同的流体流动方式,列管式换热器又可分为纵向流式和横向流式两种形式。
其中,横向流式换热器传热效率更高,但结构较为复杂,维修难度较大,因此在实际应用中需要根据具体情况进行选择。
浮头式换热器的特点是管板和壳体之间没有固定连接,只有一个浮头,管束和浮头相连。
浮头可以在壳体内自由移动,以适应管子和壳体的热膨胀。
这种结构适用于温差较大或壳程压力较高的情况。
但是,由于管束和浮头的连接是松散的,因此需要注意防止泄漏。
U型管式换热器:U型管式换热器的管子呈U形,两端分别焊接在管板上,形成一个U型管束。
壳体内的流体从一端进入,从另一端流出,管内的流体也是如此。
这种结构适用于流体腐蚀性较强的情况,因为管子可以很容易地更换。
多管程换热器:多管程换热器是将管束分成多个组,每组管子单独连接到管板上,形成多个管程。
这种结构可以提高传热效率,但也会增加流体阻力。
因此,需要根据具体情况来选择多管程的数量。
总之,列管式换热器是一种广泛应用于化工及酒精生产的换热器。
不同的结构适用于不同的工艺条件,需要根据具体情况来选择合适的换热器。
在使用过程中,需要注意保养和维护,及时清洗和更换损坏的部件,以保证换热器的正常运行。
换热器的一块管板与外壳用法兰连接,另一块管板不与外壳连接,这种结构称为浮头式换热器。
浮头式换热器的优点是管束可以拉出以便清洗,管束的膨胀不受壳体约束,因此在两种介质温差大的情况下,不会因管束与壳体的热膨胀量不同而产生温差应力。
但其缺点是结构复杂,造价高。
填料式换热器的管束一端可以自由膨胀,结构比浮头式简单,造价也较低。
但壳程内介质有外漏的可能,因此不应处理易挥发、易燃、易爆和有毒的介质。
目录§一.任务书 (2)1.1.化工原理课程设计的重要性1.2.课程设计的基本内容和程序1.3.列管式换热器设计内容1.4.设计任务和操作条件1.5.主要设备结构图1.6.设计进度1.7.设计成绩评分体系§二.概述及设计要求 (4)2.1.换热器概述2.2.固定管板式换热器2.3.设计要求§三.设计条件及主要物理参数 (5)3.1.初选换热器的类型3.2.确定物性参数3.3.计算热流量及平均温差3.4.管程安排(流动空间的选择)及流速确定3.5.计算总传热系数3.6.计算传热面积§四. 工艺设计计算 (9)4.1.管径和管内流速4.2.管程数和传热管数4.3.平均传热温差校正及壳程数4.4.换热管选型汇总4.5.换热管4.6.壳体内径4.7.折流板4.8.接管4.9.壁厚的确定、封头4.10.管板§五.换热器核算 (14)5.1.热量核算5.2.壁温核算5.3.流动阻力核算§六. 设计结果汇总 (18)§七. 设计评述 (19)§八. 工艺流程图 (19)§.九.符号说明 (21)§.十.参考资料 (22)§一.化工原理课程设计任务书1.1.化工原理课程设计的重要性化工原理课程设计是学生学完基础课程以及化工原理课程以后,进一步学习工程设计的基础知识,培养学生工程设计能力的重要教学环节,也是学生综合运用化工原理和相关选修课程的知识,联系生产实际,完成以单元操作为主的一次工程设计的实践。
通过这一环节,使学生掌握单元操作设计的基本程序和方法,熟悉查阅技术资料、国家技术标准,正确选用公式和数据,运用简洁文字和工程语言正确表述设计思想和结果;并在此过程中使学生养成尊重实际问题向实践学习,实事求是的科学态度,逐步树立正确的设计思想、经济观点和严谨、认真的工作作风,提高学生综合运用所学的知识,独立解决实际问题的能力。
第一章列管式换热器的设计1.1概述列管式换热器是一种较早发展起来的型式,设计资料和数据比较完善,目前在许多国家中已有系列化标准。
列管式换热器在换热效率,紧凑性和金属消耗量等方面不及其他新型换热器,但是它具有结构牢固,适应性大,材料范围广泛等独特优点,因而在各种换热器的竞争发展中得以继续应用下去。
目前仍是化工、石油和石油化工中换热器的主要类型,在高温高压和大型换热器中,仍占绝对优势。
例如在炼油厂中作为加热或冷却用的换热器、蒸馏操作中蒸馏釜(或再沸器)和冷凝器、化工厂中蒸发设备的加热室等,大都采用列管式换热器[3]。
1.2列管换热器型式的选择列管式换热器种类很多,目前广泛使用的按其温度差补偿结构来分,主要有以下几种:(1)固定管板式换热器:这类换热器的结构比较简单、紧凑,造价便宜,但管外不能机械清洗。
此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。
通常在管外装置一系列垂直于管束的挡板。
同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。
因此,当管壁与壳壁温度相差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或使管子从管板上松脱,甚至毁坏整个换热器。
为了克服温差应力必须有温度补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。
(2)浮头换热器:换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以便管子受热或冷却时可以自由伸缩,但在这块管板上来连接有一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。
这种型式的优点为:管束可以拉出,以便清洗;管束的膨胀不受壳体的约束,因而当两种换热介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。
其缺点为结构复杂,造价高。
(3)填料函式换热器:这类换热器管束一端可以自由膨胀,结构与比浮头式简单,造价也比浮头式低。
但壳程内介质有外漏的可能,壳程终不应处理易挥发、易爆、易燃和有毒的介质。
列管式换热器课程设计报告书列管式换热器是一种常见的换热设备,其结构简单、效率高,广泛应用于石化、电力、制药等工业领域。
为了进一步了解列管式换热器的工作原理和设计方法,本课程设计以列管式换热器的设计与优化为主题,旨在培养学生运用所学知识解决实际工程问题的能力。
一、课程设计的目标与任务本课程设计的目标是通过学习列管式换热器的设计原理和方法,培养学生的设计能力和创新思维,使其掌握列管式换热器的设计与优化方法。
具体任务如下:1.研究列管式换热器的原理和结构,了解其工作过程和基本参数;2.学习换热器设计的基本原理和方法,包括换热面积计算、传热系数估算等;3.进行列管式换热器的设计计算和优化分析;4.编写课程设计报告书,总结设计过程和结果。
二、课程设计的内容和方法1.理论学习通过教材、参考书籍和互联网资源,学习列管式换热器的基本原理、结构和工作过程。
学生还需深入了解换热器的传热理论和设计方法,了解不同种类的换热器。
2.设计计算学生根据教师提供的设计要求和实际工况数据,进行列管式换热器的设计计算。
包括换热面积的计算、传热系数的估算、管束的选择等。
学生可以借助计算机软件进行设计计算,加深对设计原理和方法的理解。
3.优化分析学生在设计计算的基础上,进行列管式换热器的优化分析。
通过调整设计参数,寻求更优的设计方案。
优化目标可以包括换热效率、压降、材料成本等。
学生需要运用数学方法和工程经验,进行综合评价和决策。
4.报告撰写学生根据设计计算和优化分析的结果,撰写课程设计报告书。
报告需要包括设计计算的过程和结果、优化分析的方法和结果、结论和建议等。
同时,学生还需要附上设计过程中的数据、图表和计算公式,以便他人理解和复现设计过程。
三、评价方法和标准1.设计计算和优化分析的准确性和合理性;2.报告书的内容完整、结构合理、文字准确、图表清晰;3.学生对设计中关键问题的分析和讨论;4.学生对设计过程的理解程度和设计思路的合理性。
列管式换热器设计列管式换热器设计⼀、概述1.概述与设计⽅案简介1.1换热器在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。
在换热器中⾄少要有两种温度不同的流体,⼀种流体温度较⾼,放出热量;另⼀种流体则温度较低,吸收热量。
在⼯程实践中有时也会存在两种以上流体参加换热的换热器,但它的基本原理与上述情形并⽆本质上的差别。
换热器是化学⼯业、⽯油⼯业及其它⼀些⾏业中⼴泛使⽤的热量交换设备,它不仅可以单独作为加热器、冷却器等使⽤,⽽且是⼀些化⼯单元操作的重要附属设备,因此在化⼯⽣产中占有重要地位。
由于⽣产中的换热⽬的不同,换热器的类型很多,不同类型的换热器各有优缺点,性能各异。
特别是随着化⼯⼯艺的不断发展,新型换热器不断出现。
在换热器设计中,⾸先应根据⼯艺要求选择适⽤的类型然后计算换热所需传热⾯积,并确定换热器的结构尺⼨。
虽然列管式换热器在传热效率、紧凑性和⾦属耗量等⽅⾯不及某些新型换热器,但它具有结构简单、坚固耐⽤、适应性强、制造材料⼴泛等独特的优点,因⽽在换热设备中仍占有重要的地位。
特别是在⾼温、⾼压和⼤型换热设备中仍占绝对优势。
1.2列管式换热器的选择列管式换热器的应⽤已有很悠久的历史,在化⼯⽣产中主要作为加热(冷却)器,冷凝器、蒸发器和再沸器使⽤。
现在,它被当作⼀种传统的标准换热设备在很多⼯业部门中⼤量使⽤,尤其在⽯油、化⼯、能源设备等部门所使⽤的换热设备中,列管式换热器仍处于主导地位。
按材质分为碳钢列管换热器,不锈钢列管换热器和碳钢与不锈钢混合列管换热器三种。
按结构分为单管程、双管程和多管程,传热⾯积1~500m2。
列管式换热器按结构特点,主要分为以下四种:①固定管板式换热器;②浮头式换热器;③U形管式换热器;④填料函式换热器。
列管换热器主要特点:1.耐腐蚀性:聚丙烯具有优良的耐化学品性,对于⽆机化合物,不论酸,碱、盐溶液,除强氧化性物料外,⼏乎直到100℃都对其⽆破坏作⽤,对⼏乎所有溶剂在室温下均不溶解,⼀般烷、径、醇、酚、醛、酮类等介质上均可使⽤。
化工原理课程设计列管式换热器设计化工原理课程设计是化学专业的重要课程,课程的主要目的是让学生深入了解化学工程的原理和实践,为未来的工作打下坚实的基础。
化工原理课程设计包括很多内容,其中列管式换热器设计是一个重要的环节。
本文将围绕这个话题展开讨论。
列管式换热器是化学工程中常用的一种设备,它主要是用来进行温度控制和物质传热。
在化工流程中,温度的控制非常关键,可以有效地控制化学反应的速率和反应体系的稳定性。
换热器则可以将热量从一个物质传递到另一个物质中,从而实现温度的调节。
因此,列管式换热器在化工工程中非常重要。
列管式换热器的设计中有几个主要的环节,分别是热传递面积、传热系数、管子数量、管子长度和热传递系数。
下面我们将分析这些方面的设计。
首先是热传递面积。
热传递面积越大,传热效率就越高。
因此,在设计中应该尽量增加热传递面积。
一般来说,在热交换器中管子的数量和长度是确定的,而直径可以调整。
因此,如果要增加热传递面积,就要增加管子的数量或长度,或通过增加多级或换热器面积。
接下来是传热系数。
传热系数决定了传热的效率,对于流体的传热系数和热传递系数是在化工原理课程中讲解的,这里就不赘述了。
在列管式换热器中,传热系数主要决定于流体的粘性、密度和流量,以及管子的尺寸和布局。
在设计中应该优化这些参数,以获得尽可能高的传热系数。
然后是管子数量和长度。
管子数量和长度也是影响热传递的重要参数。
一般来说,更多的管子和更长的管子可以提高热传递面积和传热系数,从而提高热传递效率。
但是,管子数量和长度也会影响流体的流动性能和系统的压降,因此在确定这些参数时也要考虑到这些因素。
最后是热传递系数。
热传递系数是指单位时间内热量从一个管子通过换热器传递到另一个管子的能力。
热传递系数的大小受到流体、管子材料和流量等因素的影响。
在设计中应该根据实际情况选择合适的管子材料和流量,以获得最佳的热传递效果。
在列管式换热器的设计中,还要考虑到安装和维护的便捷性。
列管式换热器-课程设计一、概述列管式换热器是一种将多个平行管道嵌入到圆柱形壳体中、同时将流体分别流过内、外两侧实现热量传递的设备。
本次课程设计将要探讨的是该设备的设计过程。
二、设计过程1. 确定设计参数设计前需要先确定所需的设计参数,如换热器的设计热负荷、流量、压力等,这些参数将决定换热器的尺寸和布局,为后续设计提供基础。
2. 换热器类型选择根据设计参数、使用场景、材料成本等因素选择适合的换热器类型,如单相流、双相流、冷凝器、蒸发器等。
3. 确定材料和尺寸选择适合的材料和尺寸以满足设计参数,同时考虑生产和运输的成本和实际情况。
4. 确定管束参数确定管束长度、管束密度、管道直径和布局等参数,保证管束的压力和流速符合设计要求,并达到最佳热传导效果。
5. 热传导计算进行热传导计算,以确定管束长度和直径,根据流动状态和温度场计算出换热系数、平均温差和热效率等参数。
6. 设计壳体结构设计壳体的结构和尺寸,确定支撑方式和绝热方式,同时考虑安全和易于维护的因素。
7. 流体力学分析进行流体力学分析,确定流体在管道中的流动状态,以保证衬里的材料和厚度设计得足够坚固,以避免漏泄和磨损。
8. 设计精度分析进行精度分析和优化,以确定设备的运行效率和稳定性,并满足设计和生产的要求。
9. 制造和安装根据设计图纸制造和安装换热器,并进行预试运行和调试,最终达到设计要求。
三、总结以上是列管式换热器的设计过程,该过程需要深入掌握流体力学、热传导学、结构力学等知识,同时也需要掌握计算机辅助设计软件的使用,以提高效率和质量。
设计合理的列管式换热器能够提高生产效率,降低能耗,并为工业生产的可持续发展提供支持。
列管式换热器的设计首先,列管式换热器的设计需要考虑所要处理的流体特性。
这包括流体的物性参数(如密度,粘度,热容量等)以及流体的腐蚀性和腐蚀程度。
根据流体的特性,设计人员可以选择合适的材料来制造换热器,以确保其能够承受流体的作用。
其次,设计人员需要考虑换热器的换热面积。
换热面积是决定换热器传热效率的重要因素。
对于需要大量传热的应用,设计人员可以采用多个并联的换热管束来增加换热面积。
此外,通过增加流体的流速,也可以增加换热面积。
第三,设计人员需要考虑流体的流动方式。
列管式换热器有两种基本的流动方式:并流和逆流。
在并流方式下,热量从一个流体传递到另一个流体,两种流体在整个换热过程中保持相同的流动方向。
而在逆流方式下,两种流体在换热器中相向而流。
逆流方式通常具有更高的换热效率,但并流方式在一些情况下也可以获得更好的效果。
另外,设计人员还需要考虑换热器的结构设计。
列管式换热器通常由一个或多个垂直安装的管束和一个水平放置的壳体组成。
设计人员需要确定管束和壳体的尺寸和布局,以确保流体可以在换热器中流动,并且能够实现足够的传热。
此外,列管式换热器的设计还需要考虑管束的支撑和固定,以及防止管道堵塞和泄漏的措施。
设计人员还需要考虑换热器的安全性,包括防止爆炸和压力过高的措施。
最后,设计人员还需要考虑列管式换热器的清洁和维护。
由于换热器内部易积聚污垢,因此需要定期清洗和维护以确保其正常运行。
设计人员可以考虑在换热器内部设置清洗装置,以便进行清洗和维护。
综上所述,列管式换热器的设计需要综合考虑多个因素,包括流体特性、换热面积、流动方式、结构设计、安全性等。
只有在考虑到这些因素的前提下,设计人员才能设计出高效、可靠且安全的列管式换热器。
列管式换热器 课程设计一、课程目标知识目标:1. 让学生掌握列管式换热器的基本结构和工作原理,理解换热过程中的热量传递机制。
2. 使学生了解列管式换热器的类型、特点及应用场景,能够区分不同类型的换热器。
3. 引导学生掌握换热器设计的基本原则和步骤,学会运用相关公式计算换热器的传热系数和换热面积。
技能目标:1. 培养学生运用所学知识分析实际换热问题,具备解决换热器设计问题的能力。
2. 提高学生运用计算工具(如Excel、计算器等)进行换热器相关计算的速度和准确性。
3. 培养学生团队合作意识,提高沟通与协作能力,通过小组讨论、汇报等形式,共同完成换热器设计任务。
情感态度价值观目标:1. 培养学生对换热器设计及工程应用的兴趣,激发创新意识和探索精神。
2. 引导学生关注换热器在能源、环保等领域的重要性,培养节能环保意识和社会责任感。
3. 培养学生严谨、踏实的科学态度,养成认真负责的工作作风。
本课程针对高年级学生,结合学科特点和教学要求,将目标分解为具体的学习成果。
课程注重理论与实践相结合,以实际工程案例为载体,引导学生通过自主学习、小组合作等方式,掌握换热器设计的基本知识和技能。
在教学过程中,关注学生的个体差异,鼓励提问和讨论,以提高学生的思维能力和解决问题的能力。
通过本课程的学习,使学生能够具备独立设计换热器的能力,为未来从事相关工作打下坚实基础。
二、教学内容1. 列管式换热器的基本概念:介绍换热器的作用、分类及其在工业中的应用。
教材章节:第二章 换热器的基本概念与分类2. 列管式换热器的工作原理:讲解列管式换热器中的热量传递过程,包括对流传热和导热。
教材章节:第三章 列管式换热器的工作原理与热量传递3. 列管式换热器的设计原则与步骤:阐述换热器设计的基本原则,介绍设计步骤及注意事项。
教材章节:第四章 列管式换热器的设计原则与步骤4. 列管式换热器传热系数的计算:分析影响换热器传热系数的因素,介绍相关计算公式。
第一章 列管式换热器的设计1.1概述列管式换热器是一种较早发展起来的型式,设计资料和数据比较完善,目前在许多国家中已有系列化标准。
列管式换热器在换热效率,紧凑性和金属消耗量等方面不及其他新型换热器,但是它具有结构牢固,适应性大 ,材料范围广泛等独特优点,因而在各种换热器的竞争发展中得以继续应用下去。
目前仍是化工、石油和石油化工中换热器的主要类型,在高温高压和大型换热器中,仍占绝对优势。
例如在炼油厂中作为加热或冷却用的换热器、蒸馏操作中蒸馏釜(或再沸器)和冷凝器、化工厂中蒸发设备的加热室等,大都采用列管式换热器[3]。
1.2列管换热器型式的选择列管式换热器种类很多,目前广泛使用的按其温度差补偿结构来分,主要有以下几种:(1)固定管板式换热器:这类换热器的结构比较简单、紧凑,造价便宜,但管外不能机械清洗。
此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。
通常在管外装置一系列垂直于管束的挡板。
同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。
因此,当管壁与壳壁温度相差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或使管子从管板上松脱,甚至毁坏整个换热器。
为了克服温差应力必须有温度补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。
(2)浮头换热器:换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以便管子受热或冷却时可以自由伸缩,但在这块管板上来连接有一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。
这种型式的优点为:管束可以拉出,以便清洗;管束的膨胀不受壳体的约束,因而当两种换热介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。
其缺点为结构复杂,造价高。
(3)填料函式换热器:这类换热器管束一端可以自由膨胀,结构与比浮头式简单,造价也比浮头式低。
但壳程内介质有外漏的可能,壳程终不应处理易挥发、易爆、易燃和有毒的介质。
化工原理课程设计-列管式换热器(热水冷却器)化工原理课程设计任务书课题名称列管式换热器(热水冷却器)课题性质工程设计类班级应用化学(一)班学生姓名 XXXXXX学号 20090810030117指导教师 XXXXXX目录目录 ------------------------------------------------------ 2 任务书---------------------------------------------------- 4一(设计题目 ------------------------------------------ 4二(设计的目的 ---------------------------------------- 4三(设计任务及操作条件 -------------------------------- 4四(设计内容 ------------------------------------------ 5 符号说明 -------------------------------------------------- 5 确定设计方案---------------------------------------------- 61.选择换热器类的 -------------------------------------- 62.流程的安排 ------------------------------------------ 6 确定物性数据---------------------------------------------- 6估算换热面积 ------------------------------------------ 81. 热流量 ----------------------------------------- 8 工艺结构尺寸---------------------------------------------- 91. 管径和管内流速 ------------------------------------ 92. 管程数和传热管数 ---------------------------------- 93.平均传热温差校正及壳程数 ---------------------------- 94.传热管排列和分程方法 ------------------------------- 105.壳体内径 ------------------------------------------- 106.折流板---------------------------------------------- 117.其它附件 ------------------------------------------- 118.接管------------------------------------------------ 11 换热器核算----------------------------------------------- 121.热流量核算 ----------------------------------------- 12(1)壳程表面传热系数 ----------------------------- 12(2)关内表面传热系数 ------------------------------- 13(3)污垢热阻和管壁热阻 --------------------------- 13(4)传热系数Kc ------------------------------------- 14(5) 传热面积裕度 -------------------------------- 142.壁温核算 ------------------------------------------- 15换热器内流体的流动阻力 ------------------------------- 16(1)管程流体阻力 --------------------------------- 16(2)壳程阻力 ------------------------------------- 17 换热器主要结构尺寸和计算结果表 -------------------------- 18 参考文献 ------------------------------------------------- 19 设计结果评价--------------------------------------------- 20 总结 ----------------------------------------------------- 22任务书一(设计题目热水冷却器的设计二(设计的目的通过对热水冷却器的列管式换热器设计,达到让学生了解该换热器的结构特点,并能根据工艺要求选择合适的类型,同时还能根据传热的基本原理,选择流程,确定换热器的基本尺寸,计算传热面积以及计算流体阻力。
列管式换热器设计说明书设计者:班级:姓名:学号:日期:指导教师设计成绩日期目录一、方案简介 (3)二、方案设计 (4)1、确定设计方案 (4)2、确定物性数据 (4)3、计算总传热系数 (4)4、计算传热面积 (5)5、工艺结构尺寸 (5)6、换热器核算 (7)三、设计结果一览表 (10)四、对设计的评述 (11)五、附图(主体设备设计条件图)(详情参见图纸)·································六、参考文献 (12)七、主要符号说明 (12)附图··········································································一、方案简介本设计任务是利用冷流体(水)给硝基苯降温。
设计(论文)题目:列管式换热器的设计目录1 前言 (3)2 设计任务及操作条件 (3)3 列管式换热器的工艺设计 (3)3.1换热器设计方案的确定 (3)3.2 物性数据的确定 (4)3.3 平均温差的计算 (4)3.4 传热总系数K的确定 (4)3.5 传热面积A的确定 (6)3.6 主要工艺尺寸的确定 (6)3.6.1 管子的选用 (6)3.6.2 管子总数n和管程数Np的确定 (6)3.6.3 校核平均温度差 t m及壳程数Ns (7)3.6.4 传热管排列和分程方法 (7)3.6.5 壳体径 (7)3.6.6 折流板 (7)3.7 核算换热器传热能力及流体阻力 (7)3.7.1 热量核算 (7)3.7.2 换热器压降校核 (9)4 列管式换热器机械设计 (10)4.1 壳体壁厚的计算 (10)4.2 换热器封头选择 (10)4.3 其他部件 (11)5 课程设计评价 (11)5.1 可靠性评价 (11)5.2 个人感想 (11)6 参考文献 (11)附表换热器主要结构尺寸和计算结果 (12)1 前言换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。
换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。
在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。
换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。
列管式换热器工业上使用最广泛的一种换热设备。
其优点是单位体积的传热面积、处理能力和操作弹性大,适应能力强,尤其在高温、高压和大型装置中采用更为普遍。
列管式换热器主要有以下几个类型:固定管板式换热器、浮头式换热器、U形管式换热器等。
设计一个比较完善的列管式换热器,除了能满足传热方面的要求外,还应该满足传热效率高、体积小、重量轻、消耗材料少、制造成本低、清洗维护方便和操作安全等要求。
列管式换热器的设计,首先应根据化工生产工艺条件的要求,通过化工工艺计算,确定换热器的传热面积,同时选择管径、管长,确定管数、管程数和壳程数,然后进行机械设计。
2 设计任务及操作条件2.1 设计题目:用水冷却甲苯的列管式换热器设计 2.2 设计任务及操作条件某生产过程中,用循环冷却水冷却柴油。
1、甲苯入口温度: 80 ℃,出口温度: 50 ℃ 2、甲苯流量: 33125 kg/h ,压力: 0.4~0.6 MPa3、循环冷却水压力: 0.4~0.6 MPa ,入口温度: 30 ℃,出口温度: 40 ℃ 已知甲苯的有关物性数据:密度ρ1=867kg/m 3;定压热比容c p ,1=1.85kJ/(kg ·℃);热导率λ1=0.126W/(m ·℃);黏度μ1=3.75×10-4 Pa ·s3 列管式换热器的工艺设计3.1 换热器设计方案的确定甲苯入口温度80℃,出口温度50℃,冷却水入口温度30℃,出口温度40℃。
壳体和管束壁温差较大,且考虑到冷却水易结垢,需要清洗,故选用浮头式换热器。
冷却水走管程,甲苯走壳程。
因逆流时的平均温度差最小,传热推动力大,可节省冷却介质的用量,操作无特殊要求,故流动方式选逆流。
选用φ25×2.5的碳钢管,管流速设为u i =1.5m/s 。
3.2 物性数据的确定定性温度:可取流体进口温度的平均值。
壳程甲苯的定性温度:6525080T =+=℃管程冷却水的定性温度:3524030T =+=℃ 壳程甲苯65℃物性数据: 密度 ρ1=867kg/m 3; 定压热比容 c p ,1=1.85kJ/(kg ·℃); 热导率 λ1=0.126W/(m ·℃); 黏度 μ1=3.75×10-4 Pa ·s管程冷却水35℃时物性数据:查《化工原理》附表可知 密度 ρ2=994.3kg/m 3; 定压热比容 c p ,2=4.174kJ/(kg ·℃); 热导率 λ2=0.62W/(m ·℃);黏度 μ2=7.43×10-4 Pa ·s3.3 平均温差的计算1、对于逆流换热过程,其平均温差可按式(3-1)进行计算:2121ln t t t t t m ∆∆∆-∆=∆ (3-1) 式中,Δt 1、Δt 2分别为大端温差与小端温差。
当Δt 1/Δt 2<2时,可用算术平均值:()221t t t m ∆+∆=∆Δt 1=80-40=40℃ Δt 2=50-30=20℃ Δt 1/Δt 2=2℃△△△△△85.282040ln 2040ln 2121=-=-=t t t t t m 3.4 传热总系数K的确定用式(3-2)进行K值核算。
(3-2)式中:α-给热系数,W/m 2·℃; R -污垢热阻,m 2·℃/W ; δ-管壁厚度,mm ;λ-管壁导热系数,W/m ·℃; 下标i、o、m分别表示管、管外和平均。
A 0=4πd 02=4π×252=490.63mm 2A i =4πd i 2=4π×202=314.16mm 2 K=1++++10000αδλαR d d R d d dd m i i i i40.402216.31463.4902A A A o i m =+=+=mm 2 查《化工原理》附表可知 R si =5.16×10-4 m 2·℃/W R so =1.72×10-4 m 2·℃/Wλ=50 W/m ·℃管程Re=μρdu =00743.00.3994.512.00⨯⨯=40146.6管程传热系数αi 可由公式(3—3)计算αi =Re d 23.00iλ0.8)c p λμ(n (3—3)冷却水被加热,取n=0.4 αi =0.0232.002.60×40146.60.8×)(2.6000743.007.14⨯0.4=412.6W/(m 2·℃)假设取壳程传热系数为600W/(m 2·℃) 用公式(3—4)对K 计算K=1++++10000αδλαR d d R d d dd m i i i i(3—4)式中:α-给热系数,W/m 2.℃;R -污垢热阻,m 2.℃/W ; δ-管壁厚度,mm ;λ-管壁导热系数,W/m.℃;下标i、o、m分别表示管、管外和平均。
20.006.41225.0020.0025.0000516.00225.005025.00025.00000172.060011K ⨯++⨯⨯++==179.5W/m 2.℃3.5 传热面积A 的确定换热器的传热量Q=W h c ph (T 1-T 2)=33125×1.85×(80-50)=1.84×106kJ/h=511kw68.9885.285.179511000K Q A =⨯==m t △m 2考虑15%的面积裕度,A=1.15×98.68=113.48m 23.6 主要工艺尺寸的确定3.6.1 管子的选用选用φ25×2.5传热管(碳钢),取管流速u i =1.5m/s3.6.2 管子总数n 和管程数Np 的确定先按单管程计算单程传热管数n s ,由式(3-5)进行计算。
u d V n i ss 24π= (3-5)式中V s -管程流体体积流量,m 3/s ; d i -管子径,m ;u -管适宜流速,m/s 。
冷却水用量h kg t c Q i pi /44125)3040(17.41840000W 0C =-⨯==△ 根272.265.102.002.014.33.994/3600/441254≈=⨯⨯⨯⨯=s n按单程管计算,所需的传热管长度 m n d A s o 54.5327025.014.3113.48l 0=⨯⨯==π 管长l 过长则采用多管程,此时管长一般多选6m (L=6m )。
该换热器管程数为99.8654.53N p ≈===L l 传热管总根数n=n s ×N p =27×9=243(根)3.6.3 校核平均温度差∆t m 及壳程数NsP=2.030803040=--R=330405080=--按单壳程多管程(Np )查图得ϕΔt =0.93 ,ϕΔt ﹥0.8 符合要求m t m t t '∆=∆∆ϕ=0.93×28.85=26.83℃3.6.4 传热管排列和分程方法采用组合排列法,即每程均按正三角形排列,隔板两侧采用正方形排列。
取管心距o d t 25.1=,则t=1.25×25=31.25mm mm 32≈ 横过管束中心线的管数n c =1.19196.18243≈=(根)3.6.5 壳体径采用多管程结构,取管板利用率7.0=η,则壳体径mm N t D 6267.0/2433205.1/05.1=⨯⨯==η圆整可取mm D 700=3.6.6 折流板采用弓形折流板,取弓形折流板圆缺高度为壳体径的%25,则切去的圆缺高度为mm h 17570025.0=⨯= 取折流板间距D B 4.0=,则 mm 2807000.4.3D 0B =⨯== 取B=300mm(根)折流板数为191-30060001-B L N B ===折流板圆缺水平装配。
3.7 核算换热器传热能力及流体阻力3.7.1 热量核算(1)壳程对流传热系数对圆缺形折流板,可采取克恩公式14.03/155.0Pr Re 36.0⎪⎪⎭⎫ ⎝⎛=w o o e oo d μμλα当量直径,由正三角形排列得m 020.0025.014.3025.0414.3032.0234d d 4t 234d 22o 2o 2e =⨯⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯=π⎪⎪⎭⎫ ⎝⎛π-=壳程流通截面积20m043.0032.0025.017.0.2801A =⎪⎭⎫ ⎝⎛-⨯⨯=⎪⎭⎫ ⎝⎛-=t d BD o 壳程流体流速及其雷诺数分别为sm u o /247.0043.0)8673600/(33125=⨯=6.9419000375.0867215.002.0Re =⨯⨯=o普兰特准数51.5126.0000375.01085.1Pr 3=⨯⨯= 粘度校正14.0⎪⎪⎭⎫ ⎝⎛W μμ=1.035)·/(556035.151.56.994102.0126.036.023/155.0℃m W o =⨯⨯⨯⨯=α (2)管程传热系数管程Re=μρdu =00743.00.3994.512.00⨯⨯=40146.7管程传热系数αi 可由公式(3—6)计算αi =Re d 23.00iλ0.8)c p λμ(n (3—6)冷却水被加热,取n=0.4 αi =0.0232.002.60×40146.70.8×)(2.6000743.007.14⨯0.4=412.57W/(m 2·℃) 管程流体流通截面积:p i i N n d S 24π==01325.092430.0250.02543.14=⨯⨯⨯m 2(3)传热面积校核 计算传热面积A′:mt K QA ∆='=98.68m 2实际传热面积A :L d n n A o c π)(-==105.5m 2 A/A′=105.5/98.68=1.07 换热器设计合理3.7.2 换热器压降校核(1)管程阻力()∑∆+∆=∆p s t i N N F p p p 211=s N4=P N 4.1=t F221ud l P iρλ=∆传热管相对粗糙度005.02001.0=查莫狄图得)C ·m /(W 036.0i ︒=λ,流速s m u i /931.0=,3m /kg 994=ρ,所以)(4.46522931.099402.06036.021Pa P =⨯⨯⨯=∆)(34.12922931.0994322Pa P =⨯=∆kPa Pa P i 100)(40688414.1)34.12924.4652(<=⨯⨯⨯+=∆∑ 管程流动阻力在允许围之。