八年级上数学答题卡(机改版含答题卡)
- 格式:docx
- 大小:3.01 MB
- 文档页数:2
2024—2025学年最新人教新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、已知△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2=b2﹣c2B.a=6,b=8,c=10C.∠A=∠B+∠C D.∠A:∠B:∠C=3:4:52、下列命题正确的是()A.对角线相等的四边形是平行四边形B.对角线相等且互相平分的四边形是菱形C.对角线垂直且互相平分的四边形是矩形D.对角线垂直、相等且互相平分的四边形是正方形3、在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4B.1:2:2:1C.1:2:1:2D.1:1:2:2 4、直线y=3x+1向下平移2个单位,所得直线的解析式是()A.y=3x+3B.y=3x﹣2C.y=3x+2D.y=3x﹣15、一次函数y=﹣2x﹣4的图象上有两点A(﹣3,y1)、B(1,y2),则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.无法确定6、演讲比赛中,有11名学生参加比赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的()A.众数B.方差C.平均数D.中位数7、我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭生其中,出水一尺.引葭赴岸,适与岸齐.问水深几何.”(丈、尺是长度单位,1丈=10尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度是多少?则水深为()A.10尺B.11尺C.12尺D.13尺8、一次函数y=ax+b的自变量和函数值的部分对应值如下表所示:x05y35则关于x的不等式ax+b>x的解集是()A.x<5B.x>5C.x<0D.x>09、如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN若MN=2,则OM=()A.3B.4C.5D.610、如图,矩形ABCD被直线OE分成面积相等的两部分,BC=2CD,CD=11DE,若线段OB,BC的长是正整数,则矩形ABCD面积的最小值是()A.B.81C.D.121二、填空题(每小题3分,满分18分)11、要使式子有意义,则a的取值范围是.12、已知一次函数y=(2﹣m)x﹣3m+9的图象经过第一、二、四象限,则m的取值范围为.13、如图,将矩形纸片ABCD沿AE折叠,顶点B落在CD边上点F处,若AB =3,BC=2,则DF=.14、如图是“赵爽弦图”,其中△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,AH=6,那么EF等于.15、已知四边形ABCD是菱形,周长是40,如果AC=16,那么菱形ABCD的面积为.16、如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,P为AB上任意一点,PF⊥AC于F,PE⊥BC于E,则EF的最小值是.2024—2025学年最新人教新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:()﹣1+|2﹣|﹣(﹣1)2024.18、主题演讲比赛,比赛的成绩分为A、B、C、D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,校团委随机抽取部分学生的比赛成绩,并将结果绘制成如图所示的两幅不完整的统计图.根据统计图中的信息,解答下列问题:(1)被抽取的学生共有人,B等级的学生有人;(2)本次演讲成绩的中位数落在等级,扇形图中D组对应扇形的圆心角为度;(3)若该校共有100名同学参加了此次演讲比赛,请估计比赛成绩不低于90分的学生共有多少名?19、如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交AB和AC于点D,E,并且BE平分∠ABC.(1)求∠A的度数;(2)若CE=1,求AB的长.20、如图,在Rt△ABC中,∠ABC=90°,AB<BC,D是AC的中点,过点D作DE⊥AC交BC于点E,延长ED至F,使DF=DE,连接AE,AF,CF.(1)求证:四边形AECF是菱形;(2)若BE=1,EC=4,求EF的长.21、如图,在直角坐标系中,点A(2,m)在直线y=2x﹣上,过点A的直线交y轴于点B(0,3).(1)求m的值和直线AB的函数表达式;(2)若点P(t,y1)在线段AB上,点Q(t﹣1,y2)在直线y=2x﹣上,求y1﹣y2的最大值.22、如图,O为坐标原点,一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点,半径为2的⊙O经过A、B两点.(1)写出A、B两点的坐标;(2)求此一次函数的解析式;(3)求圆心O到直线AB的距离.23、当排球和足球纳入中招考试体育加试后,这两种球的销量逐步提升.某体育用品商店看准时机,第一次购入30个排球和70个足球共花费4550元.第二次购入60个排球和40个足球共花费4100元.商店将排球和足球以50元/个和70元/个的价格出售,前两次进货很快销售一空.(1)求每个排球和足球的进价.(2)该商店准备第三次购入排球和足球共200个,根据市场需求,排球的购买个数不少于40个且不超过100个.购买时生产厂家对排球进行了优惠,规定购买排球不超过50个时保持原价,超过50个时超过的部分打八折.设第三次进货销售完的总利润为W元(利润=销售额﹣成本),其中购进排球x个.①求W与x的函数关系式.②商店为了回馈顾客,开展促销活动.将其中的m(m为正整数)个排球按30元/个,3m个足球按50元/个进行销售.若第三次进货销售完后,获得的最大利润不能低于3000元,求m的最大值.24、如图,在平面直角坐标系xOy中,四边形OABC的顶点是O(0,0),A(2,2),B(4,2),C(4,0),点P是x轴上一动点,连接OB,AP.(1)求直线OB的解析式;(2)若∠P AO=∠AOB,求点P的坐标;(3)当点P在线段OC(点P不与点C重合)上运动时,设P A与线段OB 相交于点D,以DA,DC为边作平行四边形ADCE,连接BE,求BE的最小值.25、如图,点E是正方形ABCD边BC上一动点(不与B、C重合),CM是外角∠DCN的平分线,点F在射线CM上.(1)当∠CEF=∠BAE时,判断AE与EF是否垂直,并证明结论;(2)若在点E运动过程中,线段CF与BE始终满足关系式CF=BE.①连接AF,证明的值为常量;②设AF与CD的交点为G,△CEG的周长为a,求正方形ABCD的面积.八年级下学期数学期末考试(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟11、a≥﹣112、2<m<3 13、14、2 15、96 16、4.8三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、2+218、(1)20,5 (2)C,72 (3)4019、(1)30°;(2).20、(1)证明略(2)21、(1)m=AB的表达式为y=﹣x+3 (2)22、(1)A(2,0),B(0,2);(2)y=﹣x+2;(3)圆心O到直线AB的距离为.23、(1)排球的进价为每个35元,足球的进价为每个50元;(2)①W=;②m的最大值为10.24、(1)直线OB的解析式为.(2)点P的坐标为(1,0)或(﹣2,0).(3)BE的最小值为.25、(1)AE⊥EF;(2)①=;②.。
2023-2024学年江苏省苏州市姑苏区八年级(上)期末数学试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将答案填涂在答题卡相应位置上)1.(2分)下列四个实数中,最大的数是( )A.﹣1B.1C.D.2.(2分)在平面直角坐标系中,点P(﹣1,2)位于( )A.第一象限B.第二象限C.第三象限D.第四象限3.(2分)下列二次根式中,与是同类二次根式的是( )A.B.C.D.4.(2分)将函数y=2x+1的图象向下平移2个单位长度,所得图象对应的函数表达式是( )A.y=2x﹣1B.y=2x+3C.y=4x﹣3D.y=4x+55.(2分)分式的值为0,则x的值是( )A.0B.﹣1C.1D.0或16.(2分)用直尺和圆规作一个角等于已知角,如图,能得出∠A'O'B'=∠AOB的依据是( )A.SAS B.ASA C.AAS D.SSS7.(2分)如图,是中国象棋棋盘的一部分,已知“车”所在位置的坐标为(﹣2,2),“马”所在位置的坐标为(1,2),则“炮”所在位置的坐标为( )A.(3,1)B.(1,3)C.(3,2)D.(2,3)8.(2分)现代物流的高速发展,为乡村振兴提供了良好条件.某物流公司的汽车在城市道路上匀速行驶30km 后进入高速路,在高速路上匀速行驶一段时间后,再在乡村道路上匀速行驶30km到达目的地.已知汽车在城市道路的行驶速度是乡村道路行驶速度的2倍.汽车行驶的时间x(单位:h)与行驶的路程y(单位:km)之间的关系如图所示.以下说法正确的是( )①汽车在乡村道路上行驶时间为1h②汽车在乡村道路上行驶速度为40km/h③汽车在高速路上行驶时间为2.5h④汽车在高速路上行驶速度为85km/hA.①③B.①④C.②③D.②④二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(2分)实数8的立方根是 .10.(2分)已知一个正比例函数的图象经过点(﹣2,3),则这个正比例函数的表达式是 .11.(2分)化简:﹣的结果为 .12.(2分)如图,AD=DE,AB=BE,∠CED=110°,则∠A= °.13.(2分)计算:= .14.(2分)已知点A(x1,y1),B(x2,y2)是函数y=﹣x+2图象上的两个点,若x1﹣x2<0,则y1 y2.(请用“>”,“<”或“=”填空)15.(2分)如图,△ABC中,∠ACB=90°,分别以△ABC的边AC,BC,AB为一边向外作正三角形,记三个正三角形的面积分别为S1,S2,S3.若S1=2,S3=6,则S2= .16.(2分)如图,△ABC三个顶点坐标分别为A(﹣6,0),B(0,8),C(9,0),M是线段OB上的一点,连接AM并延长交BC于点N.若AM平分∠BAC,则点N的坐标是 .三、解答题(本大题共11小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(4分)计算:.18.(5分)若x+y=,xy=1﹣,求代数式(x+1)(y+1)的值.19.(5分)解方程:﹣5=.20.(6分)如图,已知△ABC中,∠B=50°,∠C=60°.将△ABC绕点A按逆时针方向旋转得到△ADE,AC与DE交于点F.(1)若AC⊥DE,求∠DAC的度数;(2)若AD平分∠BAC,求∠CFE的度数.21.(6分)如图,在某条笔直的公路l的同侧有两座村庄A,B,为方便居民出行,政府决定在公路l上修建一个公交站台C,使得村庄A,B到公交站台C的距离相等,请用尺规作图的方法确定公交站台C的位置.(保留作图痕迹,并在图形上标注点C,不要求写出作法)22.(6分)如图,已知AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为E,F.求证:AD垂直平分EF.23.(6分)如图,A,B为海中的两座小岛,C为海岸上的信号塔.已知小岛A在信号塔C的北偏西54°方向80海里处,小岛B在信号塔C的南偏西36°方向60海里处.(1)求小岛A与小岛B之间的距离;(2)一艘轮船从小岛A出发,沿直线向小岛B航行.若信号塔的信号有效覆盖半径为50海里,问:轮船在航行过程中,能否收到信号塔C的信号?24.(7分)如图,CD是△ABC的AB边上的中线,且CD=AB.(1)求证:△ABC 是直角三角形;(2)若AC =2,CD =3,求△ABC 的面积.25.(7分)一个“数值转换机”的工作原理如图所示,已知这个“数值转换机”转换部分数据的结果如表格所示.输入x…﹣4﹣2024…输出y …10861632…根据以上信息,解答下列问题:(1)求k ,b 的值;(2)若输出值y =20,求输入值x .26.(8分)如图,在平面直角坐标系中,直线h :与直线l 2;y =﹣2x +b 交于点,直线l 1与l 2分别与x 轴交于A ,B 两点.(1)求b 的值和A ,B 两点的坐标;(2)点P 是直线l 1上一动点,过点P 作x 轴的垂线交l 2于点Q ,若S △APQ =2S △CPQ ,求点P 的坐标.)1(21+-=x y 34,35(-C27.(8分)在平面直角坐标系中,P(a,b)是第一象限内一点,给出如下定义:k1=和k2=两个值中的最大值叫做点P的“倾斜系数”k.(1)求点P(4,2)的“倾斜系数”k的值;(2)已知点P(a,b)的“倾斜系数”k=2,且a+b=3,求OP的长;(3)如图,边长为2的正方形ABCD在第一象限内,对角线AC在直线y=x上,对于正方形ABCD边上任意一点P(a,b)都有“倾斜系数”k≤,则实数a的取值范围是 .2023-2024学年江苏省苏州市姑苏区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将答案填涂在答题卡相应位置上)1.(2分)下列四个实数中,最大的数是( )A.﹣1B.1C.D.【解答】解:∵,,正数大于负数,∴,∴这四个数中,最大的数是,故选:D.2.(2分)在平面直角坐标系中,点P(﹣1,2)位于( )A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:在平面直角坐标系中,点P(﹣1,2)位于第二象限,故选:B.3.(2分)下列二次根式中,与是同类二次根式的是( )A.B.C.D.【解答】解:A、=3与被开方数不同,故不是同类二次根式;B、=3与被开方数相同,故是同类二次根式;C、=与被开方数不同,故不是同类二次根式;D、不是二次根式,与被开方数不同,故不是同类二次根式.故选:B.4.(2分)将函数y=2x+1的图象向下平移2个单位长度,所得图象对应的函数表达式是( )A.y=2x﹣1B.y=2x+3C.y=4x﹣3D.y=4x+5【解答】解:将函数y=2x+1的图象向下平移2个单位长度,所得函数图象的表达式是y=2x+1﹣2=2x﹣1,故选:A.5.(2分)分式的值为0,则x的值是( )A.0B.﹣1C.1D.0或1【解答】解:∵分式的值为0,∴x2﹣x=0且x﹣1≠0,解得:x=0,故选:A.6.(2分)用直尺和圆规作一个角等于已知角,如图,能得出∠A'O'B'=∠AOB的依据是( )A.SAS B.ASA C.AAS D.SSS【解答】解:由作图痕迹得OC=OD=O′C′=O′D′,CD=C′D′,所以△C'O'D'≌△COD(SSS),所以∠A'O'B'=∠AOB.故选:D.7.(2分)如图,是中国象棋棋盘的一部分,已知“车”所在位置的坐标为(﹣2,2),“马”所在位置的坐标为(1,2),则“炮”所在位置的坐标为( )A.(3,1)B.(1,3)C.(3,2)D.(2,3)【解答】解:“炮”所在的横坐标是3,纵坐标是1,∴“炮”的坐标为(3,1),故选:A.8.(2分)现代物流的高速发展,为乡村振兴提供了良好条件.某物流公司的汽车在城市道路上匀速行驶30km 后进入高速路,在高速路上匀速行驶一段时间后,再在乡村道路上匀速行驶30km到达目的地.已知汽车在城市道路的行驶速度是乡村道路行驶速度的2倍.汽车行驶的时间x(单位:h)与行驶的路程y(单位:km)之间的关系如图所示.以下说法正确的是( )①汽车在乡村道路上行驶时间为1h②汽车在乡村道路上行驶速度为40km/h③汽车在高速路上行驶时间为2.5h④汽车在高速路上行驶速度为85km/hA.①③B.①④C.②③D.②④【解答】解:由图可知,前30km的行驶时间为0.5h,∴汽车在城市道路上行驶速度是30÷0.5=60km/h,∵汽车在城市道路的行驶速度是乡村道路行驶速度的2倍,∴汽车在乡村道路上行驶速度为30km/h,∴汽车在乡村道路上行驶时间为=1(h),故①正确,②错误;汽车在高速路上行驶时间为2.5﹣0.5=2(h),故③错误;汽车在高速路上行驶速度为=85(km/h),故④正确.故选:B.二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(2分)实数8的立方根是 2 .【解答】解:∵23=8,∴8的立方根是2.故答案为:2.10.(2分)已知一个正比例函数的图象经过点(﹣2,3),则这个正比例函数的表达式是 y=﹣x .【解答】解:设函数解析式为y=kx,将(﹣2,3)代入函数解析式,得﹣2k=3.解得k=﹣,函数解析式为y=﹣x,故答案为:y=﹣x.11.(2分)化简:﹣的结果为 2 .【解答】解:原式===2,故答案为:2.12.(2分)如图,AD=DE,AB=BE,∠CED=110°,则∠A= 70 °.【解答】解:在△ABD和△EBD中,,∴△ABD≌△EBD(SSS),∴∠A=∠DEB=180°﹣∠DEC∵∠CED=110°,∴∠A=70°,故答案为:70.13.(2分)计算:= 3 .【解答】解:原式=+==3.故答案为:3.14.(2分)已知点A(x1,y1),B(x2,y2)是函数y=﹣x+2图象上的两个点,若x1﹣x2<0,则y1 > y2.(请用“>”,“<”或“=”填空)【解答】解:y=﹣x+2经过一、二、四象限,∴y随x的增大而减小,∵x1﹣x2<0,即x1<x2,∴y1>y2,故答案为:>.15.(2分)如图,△ABC中,∠ACB=90°,分别以△ABC的边AC,BC,AB为一边向外作正三角形,记三个正三角形的面积分别为S1,S2,S3.若S1=2,S3=6,则S2= 4 .【解答】解:设AC=a,BC=b,AB=c,∵△ABC是直角三角形,∴a2+b2=c2,∴a2+b2=c2,又∵S1=×sin60°a•a=a2,S2=b2,S3=c2,∴S1+S2=S3,∴S2=S3﹣S1=6﹣2=4,故答案为:4.16.(2分)如图,△ABC三个顶点坐标分别为A(﹣6,0),B(0,8),C(9,0),M是线段OB上的一点,连接AM并延长交BC于点N.若AM平分∠BAC,则点N的坐标是 .【解答】解:过点M作AB的垂线,垂足为N,∵MN⊥AB,∠AOM=90°,且AM平分∠BAC,∴MN=MO.∵A(﹣6,0),B(0,8),∴OA=6,OB=8.在Rt△AOB中,AB=.令MO=MN=m,∵S△ABO=S△ABM+S△AOM,∴,则x=3,∴点M的坐标为(0,3).令直线AM的函数表达式为y=k1x+b1,则,解得,所以.同理可得,,则,解得,所以点N的坐标为().故答案为:.三、解答题(本大题共11小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(4分)计算:.【解答】解:原式=4﹣4+1=1.18.(5分)若x+y=,xy=1﹣,求代数式(x+1)(y+1)的值.【解答】解:∵x+y=,xy=1﹣,∴(x+1)(y+1)=xy+x+y+1=1﹣++1=2.19.(5分)解方程:﹣5=.【解答】解:去分母得:4+x﹣5x+5=2x,移项合并得:6x=9,解得:x=1.5,经检验x=1.5是分式方程的解.20.(6分)如图,已知△ABC中,∠B=50°,∠C=60°.将△ABC绕点A按逆时针方向旋转得到△ADE,AC与DE交于点F.(1)若AC⊥DE,求∠DAC的度数;(2)若AD平分∠BAC,求∠CFE的度数.【解答】(1)证明:∵将△ABC绕点A按逆时针方向旋转得到△ADE,∴∠B=∠D=50°,∵AC⊥DE,∴∠AFD=90°,∴∠DAC=90°﹣50°=40°;(2)解:∵∠B=50°,∠C=60°,∴∠BAC=70°,∵AD平分∠BAC,∴∠BAD=∠CAD=35°,∴∠AFE=85°,∴∠CFE=180°﹣85°=95°.21.(6分)如图,在某条笔直的公路l的同侧有两座村庄A,B,为方便居民出行,政府决定在公路l上修建一个公交站台C,使得村庄A,B到公交站台C的距离相等,请用尺规作图的方法确定公交站台C的位置.(保留作图痕迹,并在图形上标注点C,不要求写出作法)【解答】解:点C即为所求.22.(6分)如图,已知AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为E,F.求证:AD垂直平分EF.【解答】证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,又DE=DF,∴AD垂直平分EF(到线段两端点的距离相等的点一定在线段的垂直平分线上).23.(6分)如图,A,B为海中的两座小岛,C为海岸上的信号塔.已知小岛A在信号塔C的北偏西54°方向80海里处,小岛B在信号塔C的南偏西36°方向60海里处.(1)求小岛A与小岛B之间的距离;(2)一艘轮船从小岛A出发,沿直线向小岛B航行.若信号塔的信号有效覆盖半径为50海里,问:轮船在航行过程中,能否收到信号塔C的信号?【解答】解:(1)由题意得:∠ACM=54°,∠BCN=36°,∴∠ACB=180°﹣54°﹣36°=90°,∵AC=80海里,BC=60海里,∴AB==100(海里),∴小岛A与小岛B之间的距离是100海里;(2)过C作CH⊥AB于H,∵△ABC的面积=AB•CH=AC•BC,∴100CH=60×80,∴CH=48海里,∵信号塔的信号有效覆盖半径为50海里,∴轮船在航行过程中,能收到信号塔C的信号.24.(7分)如图,CD是△ABC的AB边上的中线,且CD=AB.(1)求证:△ABC是直角三角形;(2)若AC=2,CD=3,求△ABC的面积.【解答】(1)证明:∵CD是△ABC的中线,∴AD=BD=AB,∵CD=AB,∴AD=CD=BD,∴∠A=∠ACD,∠B=∠BCD,在△ABC中,∠A+∠B+∠ACD+∠BCD=180°,∴∠ACD+∠BCD+∠ACD+∠BCD=180°,∴∠ACD+∠BCD=90°,∴∠ACB=90°,∴△ABC为直角三角形;(2)解:∵CD=AB,∴AB=2CD=2×3=6,在Rt△ABC中,BC===4,∴△ABC的面积=AC•BC=×2×4=4.25.(7分)一个“数值转换机”的工作原理如图所示,已知这个“数值转换机”转换部分数据的结果如表格所示.输入x…﹣4﹣2024…输出y…10861632…根据以上信息,解答下列问题:(1)求k,b的值;(2)若输出值y=20,求输入值x.【解答】解:(1)根据“数值转换机”的工作原理,当x=﹣4时,y=10;当x=﹣2时,y=8代入y=kx+b 得:,解得k=﹣1,b=6.(2)∵k=﹣1,b=6.∴y=﹣x+6,当y=20时,﹣x+6=20,解得x=﹣14;当y=20时,8x=20,解得x=,综上分析,y=20时,x=﹣14或.26.(8分)如图,在平面直角坐标系中,直线h :与直线l 2;y =﹣2x +b 交于点,直线l 1与l 2分别与x 轴交于A ,B 两点.(1)求b 的值和A ,B 两点的坐标;(2)点P 是直线l 1上一动点,过点P 作x 轴的垂线交l 2于点Q ,若S △APQ =2S △CPQ ,求点P 的坐标.【解答】解:(1)将点代入y =﹣2x +b 得,﹣=﹣2×+b ,∴b =2,∴直线l 2为y =﹣2x +2,把y =0代入得,﹣,解得x =﹣1,把y =0代入y =﹣2x +2得,﹣2x +2=0,解得x =1,∴A (﹣1,0),B (1,0);(2)设P (x ,﹣),则AP ==|x +1|,CP ==|x ﹣|,∵S △APQ =2S △CPQ ,∴AP =2CP ,∴|x +1|=2×|x ﹣|,即|x +1|=2|x ﹣|,解得x =或x =,∴点P 的坐标为(,﹣)或(,﹣).27.(8分)在平面直角坐标系中,P (a ,b )是第一象限内一点,给出如下定义:k 1=和k 2=两个值中的)1(21+-=x y 34,35(-C )34,35(-C )1(21+-=x y最大值叫做点P的“倾斜系数”k.(1)求点P(4,2)的“倾斜系数”k的值;(2)已知点P(a,b)的“倾斜系数”k=2,且a+b=3,求OP的长;(3)如图,边长为2的正方形ABCD在第一象限内,对角线AC在直线y=x上,对于正方形ABCD边上任意一点P(a,b)都有“倾斜系数”k≤,则实数a的取值范围是 a≥3+ .【解答】解:(1)由题意,k==2,即点P的”倾斜系数“k的值为2,故答案为:2.(2)∵P(a,b)的“倾斜系数”k=2,∴=2或=2,即a=2b或b=2a,又∵a+b=3,∴或,∴OP=,故答案为:.(3)由题意知,满足条件的P点在直线y=x和直线y=x之间,①当P点与D点重合时,且k=时,P点在直线y=x上,a有最小临界值,此时a<b,连接OD,延长DA交x轴与E,如图:此时=,则,解得a=+1,此时B点坐标为(),且,故a>;②当P点与B点重合时,且k=时,P点在直线y=x上,a有最小临界值,此时a>b,连接OB,延长CB交x轴与F,如图:此时=,则,解得a=+3,此时D点坐标为(),且,故a≥,综上所述,若点P的“倾斜系数”k,则a,故答案为:a≥.。
2024-2025学年度第一学期学业质量阶段性检测八年级数学试题(A 卷)(满分分值:150分 考试时间:100分钟)一、选择题(本大题共8小题,每小题3分,共24分。
在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填写在答题卡相应位置上)1.《国语・楚语》记载:“夫美也者,上下、内外、大小、远近皆无害焉,故曰美.”这一记载充分表明传统美的本质特征在于对称和谐。
下列四个图案中,是轴对称图形的是( )A. B. C. D.2.下列说法中正确的是( )A.面积相等的两个图形是全等图形B.周长相等的两个图形是全等图形C.所有正方形都是全等图形D.能够完全重合的两个图形是全等图形3.有下列说法:(1)线段是轴对称图形;(2)成轴对称的两个图形中,对应点的连线被对称轴垂直平分;(3)成轴对称的两个图形一定全等;(4)轴对称图形的对称点一定在对称轴的两侧。
其中正确的有( )A.1个B.2个C.3个D.44.如图,已知,那么添加下列一个条件后,不能判定的是( )A. B. C. D.5.如图,若,四个点B 、E 、C 、F 在同一直线上,,,则CF 的长是( )A.2 B.3 C.5 D.76.如图,两个三角形是全等三角形,x 的值是( )A.30B.45C.50D.857.如图,在中,,平分交边BC 于点,若,,则的面积是()AB AD =ABC ADC ≅△△CB CD=BAC DAC ∠=∠BCA DCA ∠=∠90B D ︒∠=∠=ABC DEF ≅△△7BC =5EC =ABC △90C ∠=︒AD BAC ∠D 3CD =8AB =ABD △A.36B.24C.12D.108.如图,已知,为的平分线,、、…为的平分线上的若干点.如图1,连接BD 、CD ,图中有1对全等三角形;如图2,连BD 、CD 、BE 、CE ,图中有3对全等三角形;如图3,连接BD 、CD 、BE 、CE 、BF ,CF ,图中有6对全等三角形,依此规律,第2025个图形中全等三角形的对数是( )图1 图2 图3A.2049300 B.2051325 C.2068224 D.2084520二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置上)9.如图,,则AD 的对应边是________。
2018—2019学年(上)期末学业水平监测六年级数学(模板)(本试卷满分100分 在100分钟内完成)姓名 学校 班级 座位号2、选择你喜欢的方法计算。
(每式2分,计12分) 0.125×43+81×8.25+12.5% 1.25×0.25×32 4.75-97+41-91141÷(3-135-138) 3.14×102 (3.2+0.56)÷0.8请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效。
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效。
3、求未知数x 。
(每式2分,计6分) 1-43x =35% (23+x)×9=16.2 x6.3=6 : 15 4、列式计算。
(每小题3分,计6分) (1)、6除1.5的商加上3,再乘3,积是多少?(2)、x 与43的比等于最小合数与最小两位数的比。
(列出比例并解比例)五、操作题。
(本大题共计8分)请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效。
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效。
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效。
六、解决问题。
(每小题4分,本大题共计28分)1、学校有一圆柱形游泳池,底面直径是20米,池深1.6米。
(1)在池底和内壁贴瓷砖,贴瓷砖的面积是多少?(2)在游泳池内壁1.2米高度处画一条水位线,按水位线进水,游泳池内存水多少吨?(每立方米的水重1吨)5、王爷爷以均匀速度在人行道上散步,从第一根电线杆走到第12根用了22分钟;王爷爷如果走36分钟,应走到第几根电线杆?请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效。
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效。
2、实验小学五年级有学生150人,六年级比五年级少51,两个年级的学生人数正好占全校学生总数的30%,全校学生有多少人?6、在边长是4cm 的正方形内画一个最大的圆,求图中阴影部分的周长。
2024-2025学年八年级数学上学期第一次月考卷(考试时间:120分钟 满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版八上第十一章~第十二章(三角形+全等三角形)。
5.难度系数:0.65。
第一部分(选择题 共30分)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.以下列各组线段为边,能组成三角形的是( )A .2cm ,3cm ,5cm B .4cm ,4cm ,10cm C .3cm ,1cm ,3cmD .3cm ,4cm ,9cm2.下列是四个同学画△ABC 的高,其中正确的是( )A .B .C .D .3.如图,将三角形纸片沿折叠,点落在点处,已知,则的度数为( )A .B .C .D.以上都不对ABC DE A F 12100∠+∠=°A ∠80︒100︒50︒4.如图,已知AO =CO ,那么添加下列一个条件后,仍无法判定△ABO ≌△CDO 的是( )A .∠A =∠CB .BO =DOC .AB =CD D .∠B =∠D5.如图,在△AB C 中,,,,,BD 是的平分线,设和的面积分别为,,则的值为( )A .5:2B .2:5C .1:2D .1:56.将一副三角板按如图所示的方式摆放,,与交于点,则的度数为( )A .B .C .D .7.一个多边形的内角和比四边形的外角和多,并且这个多边形的各内角相等,则这个多边形的一个外角是( )A .B .C .D .8.如图所示,在中,已知点,,分别为边,,的中点,且面积为,则阴影部分的面积等于()90A ∠=︒2AB =5BC =1AD =ABC ∠ABD △BDC V 1S 2S 12:S S AC DE ⊥BC DF G CGF ∠15︒20︒25︒720︒30︒45︒60︒135︒ABC V D E F BC ABC V 24cmA .B .C .D .9.已知的三边长x ,y ,z,化简的结果是( )A .B .C .D .10.如图,,点为的平分线上的一个定点,点A ,B 分别为边,上的动点,且,则以下结论中:①;②为定值;③四边形的面积为定值;④四边形的周长为定值.正确的个数为( )A .4B .3C .2D .1第二部分(非选择题 共90分)二、填空题:本题共5小题,每小题3分,共15分。
喀什市第十中学2023-2024学年第一学期期中考试八年级数学试卷(本试卷满分100分,考试时间90分钟)请将试卷答案书写在答题卡上,认真答题,书写工整,祝同学们考试顺利!一、选择题(每小题3分,共30分)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A .B .C .D .2.下列长度的三条线段能组成三角形的是( )A .3,4,8B .5,6,11C .5,6,10D .4,4,93.如图,已知,添加下列条件不能判定的是( )A .B .C .D .4.已知图中的两个三角形全等,则∠α的度数为( )A .105°B .75°C .60°D .45°5.一个多边形的每一个外角都等于45°,那么这个多边形的内角和为( )DAB CAB ∠=∠DAB CAB ≌△△DBE CBE∠=∠D C ∠=∠DA CA =DB CB=A .1260°B .1080°C .1620°D .360°6.如图,小明试卷上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与试卷原图完全一样的三角形,那么两个三角形完全一样的依据是( )A.ASA B.SAS C .AAS D .SSS7.如图,已知∠1+2+∠3+∠4=280°,那么∠5的度数为( )A .70°B .80°C .90°D .100°8.如图所示,在△ABC 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于E ,DE =4,BC =9,则BD 的长为( )A .6B .5C .4D .39.形沿对角线折叠,使点落在点处,若,则( )A .44°B .58°C .64°D .84°10.如图,在Rt AEB 和Rt AFC 中,∠E =∠F =90°,BE =CF ,BE 与AC 相交于点M ,与CF 相交于点D ,AB 与CF 相交于点N ,∠EAC =∠FAB .有下列结论:①∠B =∠C ;②CD =DN ;③CM =BN ;④ACN ≌ABM .其中正确结论的个数是( )ABCD AC B B '158∠=︒2∠=12.如果一个多边形的内角和是外角和的13.一个三角形的三条高线的交点在三角形的外部,则这个三角形是三、解答题(共5大题,共43分)19.如图,和交于点O ,.AC BD A D ∠=∠ABC DCB △≌△20.如图,三个顶点坐标分别为、、.(1)画出将向右平移5个单位长度得到的图形;(2)画出关于轴的对称图形,并写出的坐标.21.如图,要在街道旁修建一个奶站,向居民区提供牛奶,牛奶站应建在什么地方,才能使到它的距离之和最短,作图并说明.22.如图,在中,,是高,,.则的长为.23.如图,点A 、B 、C 、D 在同一直线上,,,.ABC ()4,4A -()3,1B -()1,2C -ABC 111A B C △111A B C △x 222A B C △2B ,A B ,A B ABC 90ACB ∠=︒CD 30A ∠=︒4AB =BD ACE DBF ≌△△8AD =2BC =(1)求的长;(2)求证:.参考答案与解析1.B 【分析】结合轴对称图形的概念进行求解即可.【详解】解:根据轴对称图形的概念可知:A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项正确.故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,得,A 、3+4=7<8,不能组成三角形,该选项不符合题意;B 、5+6=11,不能够组成三角形,该选项不符合题意;C 、5+6=11>10,能够组成三角形,该选项符合题意;D 、4+4=8<9,不能够组成三角形,该选项不符合题意.故选:C .AC AE DF ∥【点睛】本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.D【分析】根据题意已知 ,是公共边,选项A 可利用全等三角形判定定理“角边角”可得,选项B 可利用全等三角形的判定定理“角角边”可得;选项C 可利用全等三角形判定定理“边角边”可得,唯有选项D 不能判定.【详解】选项A ,∵∴ 即∵ ,是公共边,,∴(角边角),故选项A 不符合题意;选项B ,∵,,是公共边,∴(角角边),故选项B 不符合题意;选项C ,∵,,是公共边,∴(边角边)故选项C 不符合题意;添加DB=CB 后不能判定两个三角形全等,故选项D 符合题意;故选D【点睛】本题旨在考查全等三角形判定定理,熟练掌握此知识点是解题的关键.4.B【分析】因为两三角形全等,对应边相等,对应角相等,根据全等三角形的性质进行求解即可求出.【详解】∵两个三角形全等,∴故选:B.【点睛】本题主要考查全等三角形的性质,解决本题的关键是要熟练掌握全等三角形的性质.5.B【分析】用360°除以45°求出该多边形的边数,再根据多边形的内角和公式(n -2)•180°列式计算即可得解.【详解】解:多边形的边数是:360°÷45°=8,则多边形的内角和是(8-2)×180°=1080°.故选:B .【点睛】本题考查多边形的内角与外角,根据多边形的外角和求出边数是解题的关键.6.ADAB CAB ∠=∠AB DAB CAB ≌△△DBE CBE ∠=∠180180DBE CBE ︒-∠=︒-∠DBA CBA ∠=∠DAB CAB ∠=∠AB DBA CBA ∠=∠DAB CAB ≌△△D C ∠=∠DAB CAB ∠=∠AB DAB CAB ≌△△DA CA =DAB CAB ∠=∠AB DAB CAB ≌△△180456075α∠=︒-︒-︒=︒,【分析】本题考查了全等三角形的判定,由图可知,三角形的两角和它们的夹边是完整的,即可得到答案.【详解】解:由图可知,三角形的两角和它们的夹边是完整的,可以利用“ASA”画出完全一样的三角形.故选:A .7.B【分析】根据任意多边形内角和都等于360°,进行计算即可解答.【详解】解:由题意得:∠1+2+∠3+∠4+∠5=360°,∵∠1+2+∠3+∠4=280°,∴∠5=360°﹣280°=80°,故选:B .【点睛】本题考查了多边形的内角与外角,熟练掌握任意多边形内角和都等于360°是解题的关键.8.B【分析】利用角平分线性质定理可得,角平分线上的点到角两边的距离相等,通过等量代换即可得.【详解】解:∵AD 平分∠BAC ,DE ⊥AB ,DC ⊥AC ,∴DC =DE =4,∴BD =BC ﹣CD =9﹣4=5.故选:B .【点睛】掌握角平分线的性质为本题的关键.9.C【分析】先求出∠CAB 的度数,然后根据折叠的性质得出∠EAB =2∠CAB ,最后根据平行线的性质可求∠2=∠EAB .【详解】解:∵四边形ABCD 是矩形,∴∠B =90°,,又∠1=58°,∴∠CAB =32°,∵将矩形沿对角线折叠,使点落在点处,AB CD ∥ABCD AC B B∴∠EAC =∠BAC =32°,∴∠EAB =2∠CAB =64°,∵,∴∠2=∠EAB =64°,故选:C .【点睛】本题考查了折叠问题,矩形的性质,平行线的性质等知识,判断出∠2=∠EAB =2∠CAB 是解题的关键.10.C【分析】只要证明△ABE ≌△ACF ,△ACN ≌△ABM 即可判断.【详解】解:∵∠EAC =∠FAB ,∴∠EAB =∠CAF ,在△ABE 和△ACF ,,∴△ABE ≌△ACF (AAS ),∴∠B =∠C .AE =AF ,故①正确;由△AEB ≌△AFC 知:∠B =∠C ,AC =AB ;在△ACN 和△ABM ,,∴△ACN ≌△ABM (ASA ),故④正确;∴AN =AM .∵AC =AB ,∴CM =BN ,故③正确;由于条件不足,无法证得②CD =DN ;AB CD ∥E F EAB FAC BE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩BAC CAB CA BAB C ∠=∠⎧⎪=⎨⎪∠=∠⎩综上所述,正确的结论是①③④,共有3个.故选:C.【点睛】本题考查了全等三角形的判定和性质,解题的关键是证明三角形全等.11.21:05【分析】根据镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【详解】解:根据镜面对称的性质,题中所显示的时刻与20:15成轴对称,所以此时实际时刻为21:05,故答案为:21:05.【点睛】本题考查镜面反射的原理与性质,解决此类题应认真观察,注意技巧.12.九【分析】多边形的内角和比外角和的3倍多180°,而多边形的外角和是360°,则内角和是1260度.n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【详解】解:设这个多边形的边数为n,根据题意,得(n-2)•180=360×3+180,解得:n=9.故答案为:九.【点睛】考查了多边形内角与外角,此题要结合多边形的内角和公式寻求等量关系,构建方程即可求解.13.钝角三角形【分析】锐角三角形的三条高线交于三角形的内部,直角三角形的三条高线交于三角形的直角的顶点,钝角三角形的三条高线交于三角形的外部.【详解】解:由题意知,如果一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是钝角三角形.故答案为:钝角三角形.【点睛】本题考查的知识点是三角形的角平分线、中线、高,主要考查了三角形的三条高线交点的位置与三角形的形状的关系.14.1【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即可求出答案.【详解】解:∵点,关于x 轴对称,∴,∴.故答案为.【点睛】此题主要考查了关于x 、y 轴对称点的坐标特点,关键是熟练掌握坐标的变化规律.15.10【分析】根据全等三角形的性质求出x ,y ,故可求解.【详解】∵这两个三角形全等,∴x =6,y =4∴x +y =10故答案为:10.【点睛】此题主要考查全等三角形的性质,解题的关键是熟知全等三角形的对应边相等.16.10【分析】根据垂直的定义求出∠ACB =∠ECF =90°,然后利用“角角边”证明△ABC 和△EFC 全等,再根据全等三角形对应边相等可得AC =CE ,BC =CF ,然后根据CE =BE -BC 代入数据进行计算即可得解.【详解】解:∵AC ⊥BE ,∴∠ACB =∠ECF =90°,在△ABC 和△EFC 中,,∴△ABC ≌△EFC (AAS ),∴AC =CE ,BC =CF =8,∵CE =BE −BC =18−8=10,∴AC =10故答案为10.【点睛】本题考查了全等三角的判定与性质,熟练掌握三角形全等的判定方法是解题的关(,4)A a (3,)B b 3a =4b =-()a b 341+=+-=-1-90A E ACB ECF AB EF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩键.17.或【分析】分两种情况讨论:①当角为顶角;②当为底角,根据三角形内角和定理求解即可.【详解】解:①当角为顶角时,顶角度数为;②当为底角时,顶角:,故答案为:或.【点睛】本题考查了等腰三角形的性质及三角形内角和定理,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.18. ##35度 6【分析】本题主要考查了全等三角形的性质,根据全等三角形的对应边相等得,再根据得出答案,先根据三角形内角和定理求出,再根据全等三角形的对应角相等得,得出答案.【详解】∵≌,∴,.∵,,∴,∴.故答案为:,6.19.见解析【分析】本题考查的是全等三角形的判定,利用直接证明三角形全等即可,熟记全等三角形的判定方法是解本题的关键.【详解】证明:在与中,∵,,,∴.20.(1)见解析;(2)见解析,B 2的坐标为(2,-1).【分析】(1)根据平移与坐标变化的规律即可画出将△ABC 向右平移5个单位长度得到的图形△A 1B 1C 1;(2)根据轴对称与坐标变化的规律即可画出△A 1B 1C 1关于x 轴的对称图形△A 2B 2C 2,进而可20︒80︒80︒80︒80︒80︒80︒18028020︒-⨯︒=︒20︒80︒35︒=8A B D E =DH DE EH =-ACB ∠=F A CB ∠∠ABC DEF =8A BDE =826DH D E E H =-=-=85A ∠=︒=60B ∠︒=180856035A CB ∠︒-︒-︒=︒35F ACB ∠=∠=︒35︒AAS ABC DCB △90AD ∠=∠=︒ACB DBC ∠=∠BC CB =()AAS ABC DCB ≌得出B 2的坐标.【详解】解:(1)如图,△A 1B 1C 1即为所求;(2)如图,△A 2B 2C 2即为所求,B 2的坐标为(2,-1).【点睛】本题考查了平移与轴对称变换,掌握平面直角坐标系中图形的平移及依据轴对称的性质得出对称点的位置是解决问题的关键.21.图见解析,说明见解析【分析】如图,作点A 关于街道得对称点C ,连接CB ,交街道与点D ,则点D 即为所求的牛奶站的位置.【详解】解:如图,作点A 关于街道得对称点C ,连接CB ,交街道与点D ,则点D 即为所求的牛奶站的位置.由轴对称的性质可知AD =CD ,则AD +BD =CD +BD =BC ,在街道上任取一点不同于D 点的E ,连接CE ,BE ,根据两点之间线段最短可知BE +CE >BC ,则点D 即为所求;【点睛】本题主要考查了最短路径问题,熟知相关知识是解题的关键.22.的长为1【分析】利用含角的直角三角形的性质即可得到答案.【详解】解:在中,,,,BD 30︒ Rt ABC △90ACB ∠=︒30A ∠=︒4AB =。
2020-2021八年级数学上册数学试题一.选择题(每题3分,共10题共30分)1、下列图案中既是中心对称图形,又是轴对称图形的是()A .B .C .D .2.下列因式分解正确的是()A.a2b﹣2a3=a(ab﹣2a2)B.x2﹣x +=C.x2+2x+1=x(x+2)+1D.4x2﹣y2=(4x+y)(4x﹣y)3.下列分式中,最简分式是()A .B .C .D .4.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDE 5.某市举行中学生“好书伴我成长”演讲比赛,某同学将所有选手的得分情况进行统计,绘成如图所示的成绩统计图.思考下列四个结论:①比赛成绩的众数为6分;②成绩的极差是5分;③比赛成绩的中位数是7.5分;④共有25名学生参加了比赛,其中正确的判断共有()A.1个B.2个C.3个D.4个6.一艘轮船顺水航行40km所用的时间与逆水航行30km所用的时间相同,若水流速度为3km/h,求轮船在静水中的速度.设轮船在静水中的速度为xkm/h,根据题意列方程得()A .=B .=C .=D .=7、如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论不一定正确的是()A.∠BDO=60°B.∠BOC=25°C.OC=4D.CD∥OA8.如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α的值是()第8题图第9题图A.30°B.40°C.80°D.不存在9.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC 的外角∠ACM的平分线于点F,则线段DF的长为()A.7B.8C.9D.1010.若关于x 的分式方程+=1有增根,则m的值是()A.m=0B.m=﹣1C.m=0或m=3D.m=3二.填空题(共9小题,11-14题每题3分,15-19题每题4分共32分)11、因式分解:(3x+y)2 - (x+3y)2 =_____________12、将分式与通分后的结果是.13、若x2+2(3﹣m)x+25可以用完全平方式来分解因式,则m的值为.14、经过多边形的一个顶点共有5条对角线,若这个多边形是正多边形,则它的每一个外角度数是________。
2023年秋季期中教学质量监测初二年级数学 注意事项:1.满分150分,答题时间为120分钟。
2.请将各题答案填写在答题卡上。
一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.下列各数中,是无理数的是A 9B .117C .0.101001D 22.下列等式成立的是A 1=1B .3-27=3C .(-1)2023=2023D .914=3123.下列从左到右的变形为因式分解的是A .a (x-y )=ax-ayB .x 2-2x+3=x (x-2)+3C .x 2-4y 2=(x+2y )(x-2y )D .xy-1=xy (1-1xy )4.下列运算正确的是A .4a-a=4B .a 4·a 2=a 6C .(-3ab 2)2=6a 2b 4D .(-2a 2)3=8a 65.下列命题中,是假命题的是A .无理数包括正无理数、零和负无理数B .算术平方根不可能是负数C .如果a<0,那么a 2=-a ,(-a )2=-aD .同旁内角互补,两直线平行6.如图,已知△ABC ≌△DEF ,点B ,F ,C ,E 在同一条直线上,若CE=3,则BF 的长为A.5B.4C.3D.27.若计算(x-2m)(x+1)的结果中不含x的一次项,则m的值为C.1D.2A.0B.128.已知n是一个整数的平方,则满足要求的正整数n的个数为20-nA.1B.2C.3D.49.已知416-1可以被10到20之间的某两个整数整除,则这两个数是A.12,14B.13,15C.14,16D.15,1710.已知实数a,b,c皆为正数,且满足方程a(b+c)=152,b(c+a)=162,c(a+b)=170,则abc的值为A.672B.688C.720D.750二、填空题:本题共6小题,每小题4分,共24分.11.计算:8x3÷2x= .12.把命题“全等三角形的对应边相等”改写成“如果……,那么……”的形式是 .13.如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠AEC= °.14.已知对任意实数x,y,定义运算:x♥y=(x+y)(x-y),则3♥(4♥5)的值为 .15.已知22023-22022-22021+22020=k·22020,则k的值为 .16.为求1+2+22+23+…+22023的值,可设S=1+2+22+23+…+22023,则2S=2+22+23+…+22024.两式相减可得2S-S=22024-1,即S=22024-1.仿照以上方法,可得1+5+52+53+…+52023= .三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分8分)计算:3-8+25-(-3)2.18.(本小题满分8分)分解因式:x3y-xy3.19.(本小题满分8分)如图,点E,F在线段BC上,AB∥CD,AB=CD,BE=CF.求证:△ABE≌△DCF.20.(本小题满分8分)已知2a+b的算术平方根为3,3a-b的立方根为2.(1)求a,b的值.(2)5a-5b+10的平方根.21.(本小题满分8分)先化简,再求值:[(x-3y)(x+3y)-(x-3y)2]÷(-3y),其中x=3,y=-2.22.(本小题满分10分)2是无理数,即无限不循环小数.2的小数部分,小宇想了一个办法,他发现2的整数部分是1, 2减去其整数部分,差就是小数部分.于是小宇用2-1来表示2的小数部分.根据以上内容,解答下列问题:21的整数部分是 ,小数部分是 .(2)5的小数部分为a,15的整数部分为b,求(a+2)2+b2的值.23.(本小题满分10分)已知2m=a,2n=b,3m=c,请用含a,b,c的式子表示下列代数式:(1)2m+n.(2)42m+3n.(3)36m.24.(本小题满分12分)如图1,这是一个长为4a ,宽为b 的长方形,沿图中虚线用剪刀平均剪成四块小长方形,然后拼成如图2所示的正方形.(1)图2中阴影部分的边长为 ;观察图2,请你写出(a+b )2,(a-b )2,ab 之间的等量关系: .(2)根据(1)中的等量关系,直接写出a+1a 与a-1a 之间的关系.(3)根据(2)中的等量关系解决如下问题:若a 2-3a+1=0,求a-1a 的值.25.(本小题满分14分)如图1,已知AC=BC ,DC=EC ,∠ACB=∠DCE=90°,连接AD ,BE.(1)求证:AD=BE.(2)将△DCE 绕点C 旋转到如图2所示的位置,F 为BE 的中点,连接CE ,AE ,BD.①求证:AE=BD.②探究CF 与AD 的数量关系和位置关系,并说明理由.2023年秋季期中教学质量监测初二年级数学参考答案1.D2.A3.C4.B5.A6.C7.B8.C9.D10.C 提示:由题意,得ab+ac=152①,bc+ab=162②,ac+bc=170③,①+②+③,得2(ab+bc+ac )=484,∴ab+bc+ac=242④.由④-①,得bc=90,由④-②,得ac=80,由④-③,得ab=72,∴bc ·ac ·ab=(abc )2=90×80×72=7202,∴abc=720.11.4x 2 12.如果两个三角形是全等三角形,那么它们的对应边相等 13.75 14.-72 15.316.52024-1417.解:原式=-2+5-3..........................................................................................6分=0....................................................................................................................8分18.解:原式=xy (x 2-y 2)......................................................................................4分=xy (x+y )(x-y ).................................................................................................8分19.证明:∵AB ∥CD ,∴∠B=∠C........................................................................................................3分在△ABE 和△DCF 中,AB =CD ∠B =∠C BE =CF,∴△ABE ≌△DCF (SAS)......................................................................................8分20.解:(1)由题意,得2a +b =93a -b =8,.....................................................................2分解得a =175b =115.....................................................................................................4分(2)∵a=175,b=115,5a-5b+10=17-11+10=16=4............................................................6分∵4的平方根为2或-2,....................................................................................7分5a-5b+10的平方根为2或-2..................................................................8分21.解:原式=[x2-9y2-(x2-6xy+9y2)]÷(-3y)=(x2-9y2-x2+6xy-9y2)÷(-3y)=(-18y2+6xy)÷(-3y)=6y-2x.............................................................................................................5分当x=3,y=-2时,原式=6×(-2)-2×3=-18.........................................................8分22.解21-4..........................................................................................4分(2)由题意,得a=5-2,b=3,..............................................................................8分将a=5-2,b=3代入,得(a+2)2+b2=(5-2+2)2+32=14......................................10分23.解:(1)2m+n=2m·2n=ab..................................................................................2分(2)42m+3n=(22)2m+3n=24m+6n=24m·26n=(2m)4·(2n)6=a4b6........................................6分(3)36m=(62)m=(6m)2=[(2×3)m]2=(2m·3m)2=(ac)2=a2c2....................................10分24.解:(1)b-a;.................................................................................................2分(a+b)2-(a-b)2=4ab...........................................................................................5分(2)(a+1a )2-(a-1a)2=4.........................................................................................8分(3)∵a2-3a+1=0,且a≠0,∴a-3+1a=0,∴a+1a=3..........................................................................................................10分∵(a+1a )2-(a-1a)2=4,∴(a-1a )2=(a+1a)2-4=32-4=5,∴a-1a=±5....................................................................................................12分25.解:(1)证明:∵AC=BC,DC=EC,∠ACB=∠DCE=90°,∴△ACD≌△BCE(SAS),∴AD=BE...........................................................................................................4分(2)①证明:∵∠ACB=∠DCE=90°,∴∠ACB+∠BCE=∠DCE+∠BCE ,∴∠ACE=∠BCD.在△ACE 和△BCD 中,AC =BC ∠ACE =∠BCD CE =CD,∴△ACE ≌△BCD (SAS),∴AE=BD...........................................................................................................8分②CF=12AD ,CF ⊥AD.............................................................................................9分理由:如图,延长CF 至点P ,使PF=CF ,连接BP ,延长FC 交AD 于点M.∵F 为BE 的中点,∴BF=FE.在△BFP 和△EFC 中,BF =EF ∠BFP =∠EFC FP =FC,∴△BFP ≌△EFC (SAS),∴BP=CE ,∠BPF=∠ECF ,∴CE ∥BP ,∴∠CBP+∠BCE=180°.∵∠BCE+∠ACD=360°-∠ACB-∠DCE=180°,∴∠CBP=∠ACD.又∵CE=CD=BP ,AC=BC ,∴△PBC ≌△DCA (SAS),∴CP=AD.∵PF=CF ,∴CF=12CP=12AD.................................................................................................12分∵△PBC≌△DCA,∴∠BCP=∠CAD.又∵∠BCP+∠ACB+∠ACM=180°,∠ACB=90°,∴∠BCP+∠ACM=90°,∴∠CAD+∠ACM=90°,∴∠AMC=90°,∴CF⊥AD.AD,CF⊥AD...............................................................................14分综上所述,CF=12。
2023~2024学年上学期期末调研试卷八年级数学注意事项:1.本试卷分试题卷和答题卡两部分,试题卷共4页,三个大题,满分120分,考试时间100分钟.2.试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效.3.答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置.一、选择题(每小题3分,共30分)1.下列计算正确的是( )AB .CD .2.在坐标平面内,点所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限3.下列各组数据中,属于勾股数的一组数据是()A .12,35,36B .2,3C .0.3,0.4,0.5D .6,8,104.数学老师计算同学们一学期的总评成绩时,将平时、期中和期末的成绩按计算,若小红平时、期中和期末的成绩分别是90分、85分、95分,则小红一学期的数学总评成绩是( )A .89分B .91分C .92分D .93分5.如图,,,,则的度数是()第5题图A .30°B .27°C .25°D .20°6.下列四组值中,是方程组的解的是( )A .B .C .D .7.对于一次函数,下列说法正确的是( )A .这个函数的图象不经过第一象限.=3+=-=2523-=-=()2,3P -2:3:5a b ∥170∠=︒340∠=︒2∠521x y x y +=⎧⎨-=⎩14x y =⎧⎨=⎩01x y =⎧⎨=-⎩5x y =⎧⎨=⎩23x y =⎧⎨=⎩132y x =-B .若点和点在这个函数图象上,则.C .点在这个函数图象上.D .这个函数的图象与坐标轴围成的图形面积是18.8.我们知道,“方差”是描述一组数据离散程度的统计量,老师想了解学生对于“方差”概念的掌握情况,给出了一组样本数据方差的计算公式:由公式提供的信息,请同学们判断下列说法错误的是( )A .样本的总数B .样本的众数是6C .样本的中位数是4D .样本的方差值9.图1是长方形纸条,,将纸条沿折叠成图2,则图中的的度数是( )第9题图A .B .C .D .10.,两地相距,甲、乙两辆汽车都从地出发到地,匀速行驶,甲出发1小时后,乙出发沿同一路线行驶,设甲、乙两车相距,甲行驶的时间为,与的关系如图所示,下列说法:①车行驶的速度是,乙车行驶的速度是;②乙出发后追上甲;③甲比乙晚到;④甲车行驶或,甲,乙两车相距;其中正确的个数是()第10题图A .1个B .2个C .3个D .4个A a ⎛ ⎝7,11B b ⎛⎫- ⎪⎝⎭a b <()4,1P -()()()()22222113426s x x x x n ⎡⎤=-+-+-+-⎣⎦4n =2185s =DEF α∠=EF GFC ∠2α902α︒+1802α︒-90α︒+A B 640km A B ()km s ()t h s t 60km h 80km h 4h 53h 8h 193h 80km二、填空题(每小题3分,共15分)11.点关于轴对称的点的坐标是______.12有意义,则的取值范围是______.13.命题“如果一个三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形”的条件是______.14.如图,一次函数和的图象相交于点,则关于、的方程组:的解是______.第14题图15.如图,平分,交于点,若,,,则的度数为______.第15题图三、解答题(共8题,75分)16.解答题(每小题5分,共10分)(1(2)解方程组:17.(9分)近年来网约车给人们的出行带来了便利,小明和数学兴趣小组的同学对甲、乙两家网约车公司司机的月收入进行了抽样调查,两家公司分别抽取了10名司机的月收入(单位:千元)如图所示:()2,5A -yB x 2y x =-y kx b =+()2,4A -x y 020kx y b x y -+=⎧⎨+=⎩CE ACD ∠AB E 40A ∠=︒30B ∠=︒110BDC ∠=︒BEC ∠-()314231x y x y ⎧-=+⎨+=⎩第17题图根据以上信息,整理分析数据如下:平均月收入/千元中位数众数方差甲公司66乙公司47.6(1)填空:______,______,______,______.(2)小明的叔叔计划从两家公司中选择一家去做网约车司机,如果你是小明,你建议他叔叔选哪家公司?请说明理由.18.(9分)在平面直角坐标系中,的位置如图所示,已知点的坐标是.第18题图(1)点的坐标为______,点的坐标为______.(2)的面积是______.(3)作点关于轴的对称点,连接,计算、两点之间的距离.19.(9分)已知,的立方根是2,与是某数的两个平方根.(1)求与的值;(2)求的算术平方根.cda ba =b =c =d =ABC △A ()4,3-B C ABC △C y C 'BC 'B C '21x y +-x y +3y -x y x y +20.(9分)如图,,点在上,点和分别在和上,且.求证:.第20题图21.(9分)某商店销售3台型和5台型电脑的利润为3000元,销售5台型和3台型电脑的利润为3400元.(1)求每台型电脑和型电脑的销售利润各多少元?(2)该商店计划一次购进两种型号的电脑共50台,设购进型电脑台,这50台电脑的销售总利润为元.请写出关于的函数关系式,并判断总利润能否达到26000元,请说明理由.22.(10分)“漏壶”是一种古代计时器,在社会实践活动中,某小组同学根据“漏壶”的原理制作了如图①所示的液体漏壶,漏壶是由一个圆锥和一个圆柱组成的,中间连通,液体可以从圆锥容器中匀速漏到圆柱容器中,实验开始时圆柱容器中已有一部分液体.第22题图【实验观察】(1)下表是实验记录的圆柱体容器液面高度(厘米)与时间(小时)关系的数据,请根据表中数据在图②中画出函数的图象.时间(小时)12345圆柱体容器液面高度(厘米)610141822【探索发现】(2)请你根据图象的特征,确定与之间的函数关系式;AB EF ∥E AC P Q AB CD 90PEQ ∠=︒190APE ︒∠+∠=AB CD ∥A B A B A B A n w w n y x x y y x【结论应用】(3)如果本次实验记录的开始时间是上午8:30,那么当圆柱体容器液面高度达到12厘米时是几点?23.(10分)在中,平分交于点,点是线段上的动点(不与点重合),过点作交射线于点,的平分线所在直线与射线交于点.第23题图(1)如图,点在线段上运动.①若,,则的度数是______;的度数是______.②探究与之间的数量关系,并说明理由;(2)若点在线段上运动时,请在备用图中补全图形,并直接写出与之间的数量关系.2023~2024学年上学期期末试卷参考答案八年级数学一、选择题(每小题3分,共30分)1—5:CBDBC 6—10:DBACC二、填空题(共5小题,每小题3分,共15分)11.12.13.三角形两边的平方和等于第三边的平方14.15.60°三、解答题(共75分)16.(每小题5分,共10分)解:(1)原式(2)解方程组:由①得:③ABC △BD ABC ∠AC D E AC D E EF BC ∥BD F CEF ∠BD G E AD 40ABC ∠=︒70C ∠=︒A ∠EFB ∠BGE ∠A ∠E DC BGE ∠A ∠()2,5--3x ≤24x y =-⎧⎨=⎩=+1=-()314231x y x y ⎧-=+⎨+=⎩①②37x y -=把③得:④把得:∴把代入②得:∴原方程组的解是:17.(9分)(1)填空;,,,.(2)选甲公司,理由如下:因为平均数相同,中位数、众数甲公司均大于乙公司,且甲公司方差小,更稳定,所以选甲公司.18.(9分)(1)解:(1)点的坐标为,点的坐标为(2)的面积是:(3)如图、两点之间的距离是19.(9分)解:(1)由题意得:化简得:∴3⨯9321x y -=+②④1122x =2x =2x =1y =-21x y =⎧⎨=-⎩6a = 4.5b =6c = 1.2d =B ()3,0C ()2,5-ABC △11175372255222⨯-⨯⨯-⨯⨯-⨯⨯3510.5212.5=---10=BC BC =='()()21830x y x y y +-=⎧⎨++-=⎩2923x y x y +=⎧⎨+=⎩51x y =⎧⎨=-⎩(2)20.(9分)证明:∵∴又∵∴∵即:∴∴又∵∴21.(9分)解:(1)设每台型电脑的销售利润为元,每台型电脑的销售利润为元,根据题意得:解这个方程组得:答:每台型电脑的销售利润为500元,每台型电脑的销售利润为300元;(2)∵该商店计划一次购进两种型号的电脑共50台,且购进型电脑台,∴购进型电脑台.根据题意得:,即∴关于的函数关系式是.∵,∴随的增大而增大,且为整数,∴当时,取得最大值,最大值(元),x y +2==AB EF ∥2APE ∠=∠190APE ∠+∠=︒2190∠+∠=︒90PEQ ∠=︒2390∠+∠=︒13∠=∠EF CD ∥AB EF ∥AB CD∥A x B y 353000533400x y x y +=⎧⎨+=⎩500300x y =⎧⎨=⎩A B A n B ()50n -()50030050w n n =+-2001500w n =+w n 20015000w n =+2000>w n n 050n ≤≤50n =w 200501500025000=⨯+=∵,∴总利润不能达到26000元.22.(10分)解:(1)描出各点,并连接,如图所示:(2)解:由(1)中图象可知该函数为一次函数,设该函数的表达式为,∵点,在该函数上,∴解得:∴与的函数表达式为(3)解:当时,即解得:答:那么当圆柱体容器液面高度达到12厘米时是上午11点23.(10分)(1)的度数是70°;的度数是20°②∵平分,平分∴,∵∴在和中:即2500026000<元元y kx b =+()1,6()2,106210k b k b +=⎧⎨+=⎩42k b =⎧⎨=⎩y x 42y x =+12y =4212x +=2.5x =8.5 2.511+=A ∠EFB ∠GE DEF ∠FB ABC ∠12CBD ABC ∠=∠12DEG DEF ∠=∠EF BC ∥DEF C ∠=∠BCD △EGD △DGE DEG C CBD∠+∠=∠+∠1122C DEG C ABC ∠+∠=∠+∠∴(2)如图所示.()111222DEG C ABC C ABC ∠=∠+∠=∠+∠()11802A ︒=-∠1902A=︒-∠12BGE A ∠=∠。
2024-2025学年八年级数学上学期期中模拟卷(沪教版)(考试时间:90分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:沪教版第16章二次根式+第17章一元二次方程+18.2正比例函数。
5.难度系数:0.7。
第一部分(选择题共12分)一、选择题(本大题共6小题,每小题2分,满分12分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.下列各式中属于最简二次根式的是().A B C D【答案】A属于最简二次根式,故正确;==故选:A.2x的值可以是()A.3-B.2C.1D.0.5【答案】A【详解】解:由题意得02xx -≥,∴020x x ³ìí->î或020x x £ìí-<î,∴2x >或0x £,故选A .3.如果2a b ==,那么a 与b 的关系是( )A .a >b 且互为倒数 B .a >b 且互为相反数C .ab =-1D .ab =1【答案】B【详解】解:∵b ==(2-0<,20a =>,a b =-,∴a >b 且互为相反数.故选B .4.下列方程中是关于x 的一元二次方程的是( )A .()()130x x -+=B .20ax bx c ++=(其中a 、b 、c 是常数)C .2211x x-=D .()()2321x x x --=-【答案】A【详解】解:A .()()130x x -+=,整理,得2230x x +-=,是一元二次方程,故符合题意;B .当a=0时,20ax bx c ++=(其中a 、b 、c 是常数)不是一元二次方程,故不符合题意;C .2211x x-=不是整式方程,所以不是一元二次方程,故不符合题意;D .()()2321x x x --=-,整理,得570x -=,不是一元二次方程,故不符合题意.故选A .5.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( )A .100×80﹣100x ﹣80x =7644B .(100﹣x )(80﹣x )+x 2=7644C .(100﹣x )(80﹣x )=7644D .100x +80x =356【答案】C【详解】设道路的宽应为x 米,由题意有(100-x )(80-x )=7644,故选:C .6.如图,在同一直角坐标系中,正比例函数1y k x =,2y k x =,3y k x =,4y k x =的图象分别为1l ,2l ,3l ,4l ,则下列关系中正确的是( )A .1234k k k k <<<B .2143k k k k <<<C .1243k k k k <<<D .2134k k k k <<<【答案】B【详解】解:根据直线经过的象限,知20k <,10k <,40k >,30k >,根据直线越陡k 越大,知21k k >,43k k <,所以2143k k k k <<<.故选B .第二部分(非选择题 共88分)二、填空题(本大题共12小题,每小题3分,满分36分)7-= .【详解】解:原式﹣.8m = .【答案】3【详解】解:=又∵可以合并,∴215m -=解得:3m =.故答案为:3.9.函数 ()36f x x =-,则 14f æö=ç÷èø【答案】32【详解】解:∵()36f x x =-,∴11333634422f æö=-´=-=ç÷èø;故答案为:32.10.解不等式:x <的解集是 .【答案】x >【详解】x <,移项,得:x <合并同类项,得:(1x <系数化为1,得:x >即x >.11.当x =3420252022x x --的值为 【答案】1-【详解】解:∵x =∴()2212022x -=,∴24420210x x --=,∴()()3224202520224420214412023x x x x x x x --=--+-+-()2212023x =--20222023=-1=-.故答案为:1-.12.若()22230m m x ---=是关于x 的一元二次方程,则m 的值是.【答案】2-【详解】解:∵()22230m m x ---=是关于x 的一元二次方程,∴222m -=且20m -¹,解得:2m =-.故答案为:2-13.方程 ()22x x x +=+ 的解是 .【答案】11x =,22x =-【详解】解:()22x x x +=+,∴()()220x x x +-+=,∴()()120x x -+=,∴10x -=,20x +=,解得:11x =,22x =-;故答案为:11x =,22x =-14.方程(a -1)x 2+2(a +1)x +a +5=0有两个实根,则正整数a 的值为 .【答案】2或3【详解】解:方程(a -1)x 2+2(a +1)x +a +5=0有两个实根,所以:a -1≠0,故当a ≠1时,原方程为一元二次方程,∵(a -1)x 2+2(a +1)x +a +5=0有两个实根,∴△=[2(a +1)]2-4(a -1) (a +5)≥0,解得:a ≤3∴此时a ≤3且a ≠1故正整数a 的值为:a =2或者3故答案为:2或3.15.一元二次方程29200x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为 【答案】13或14【详解】解:29200x x -+=,(4)(5)0x x --=,所以4x =或5x =,当4为腰,5为底时,周长=4+4+5=13,当5为腰,4为底时,周长=5+5+4=14,故答案为13或14.16.在实数范围内因式分解:222x x --= .【答案】(11x x --【详解】解:对于方程2220x x --=,24212´-△()=,1x ==所以,222x x --=(11x x =--+.故答案为:(11x x --+ .17.已知函数23(1)m y m x -=+是正比例函数,且y 随x 的增大而减小,则m = .【答案】-2【详解】解:由题意得:m 2-3=1,且m +1<0,解得:m =-2,故答案为:-2.18.如图,已知直线:a y x =,直线1:2b y x =-和点(1,0)P ,过点P 作y 轴的平行线交直线a 于点1P ,过点1P 作x 轴的平行线交直线b 于点2P ,过点2P 作y 轴的平行线交直线a 于点3P ,过点3P 作x 轴的平行线交直线b 于点4,P L ,按此作法进行下去,则点2024P 的横坐标为.【答案】10122【详解】解:Q 点(1,0)P ,1P 在直线y x =上,1(1,1)P \,12PP x Q P 轴,2P \的纵坐标1P =的纵坐标1=,2Q P 在直线12y x =-上,112x \=-,2x \=-,2(2,1)P \-,即2P 的横坐标为122-=-,同理,3P 的横坐标为122-=-,4P 的横坐标为242=,252P =,362P =-,372P =-,482P =¼,242n n P \=,2020P \的横坐标为2505101022´=,2021P \的横坐标为10102,2022P \的横坐标为10112-,2023P \的横坐标为10112-,∴点2024P 的横坐标为2506101222´=故答案为:10122三、解答题(本大题共9小题,满分52分.解答应写出文字说明,证明过程或演算步骤)19.(5分)【详解】解:原式=+..................................2分=..................................5分20.(5分)计算:æ÷çè【详解】æ÷çè(=................................2分(=÷=-................................5分21.(5分)解方程:()2326x x +=+.【详解】解:∵()2326x x +=+,∴()()2323x x +=+,∴()()23230x x +-+=,∴()()3230x x +-+=,................................2分∴320x +-=或30x +=,解得1231x ,x =-=-.................................5分22.(5分)用配方法解方程24720-+=x x ;【详解】解:∵24720-+=x x ,∴2472x x -=-∴27424x x æö-=-ç÷èø,................................1分∴22277742488x x ⎡⎤æöæö-+-=-⎢⎥ç÷ç÷èøèø⎢⎥⎣⎦,∴274942816x æö--=-ç÷èø∴2717864x æö-=ç÷èø................................3分∴78x -=,∴127788x x =+=................................5分23.(5分)先化简,再求值:222444+2x x x x x x x æö-+÷ç÷-èø,其中11=12x -æö---ç÷èø.【详解】解:222444+2x x x x x x x æö-+÷ç÷-èø()()()222442x x x x x x x +-æö++=÷ç÷-èø()222x x x x +=×+12x =+, ................................2分当)11=1212112x -æö---=--+=-+=ç÷èø时,原式12x =+1====.................................5分24.(5分)已知3y -与2x -成正比例,且当1x =时,6y =,求y 与x 之间的函数解析式.【详解】解:Q 3y -与2x -成正比例,\设()32y k x -=-,................................1分Q 当1x =时,6y =,()6321k \-=-,解得:3k =, ................................2分()332y x -=-\,整理得:39y x =-+,\y 与x 之间的函数关系式为:39y x =-+.................................5分25.(7分)甲骑摩托车从A 地去B 地,乙开汽车从B 地去A 地,同时出发,匀速行驶,各自到达终点后停止,甲、乙两人间的距离为s (km )与甲行驶的时间为t (h )之间的关系如图所示.(1)结合图象,在点M、N、P三个点中,点_____代表的实际意义是乙到达终点.(2)求甲、乙各自的速度;(3)当乙到达终点时,求甲、乙两人的距离;(4)甲出发多少小时后,甲、乙两人相距180千米.【详解】(1)解:由图象可得,在点M时,0s=,此时两人相遇,点N之后,两人的距离增加速度减少,此时乙先到达终点,点P表示两人距离为240s=,此时甲到达终点;故答案为:N;................................1分(2)解:由图象可得,A、B两地相距240千米,甲走完全程需要6小时,∴甲的速度为240640÷=(千米/时)................................2分∵当2t=时,两人相遇,∴两人的速度之和为2402120÷=/时)∴乙的速度为1204080-=(千米/时)................................3分(3)解:当乙到达终点A地时,甲离开出发地A地有403120´=(千米),∴当乙到达终点时,求甲乙两人的距离是120千米;................................5分(4)解:相遇前,甲乙两人相距180千米,则()12401801202-÷=(小时),相遇后,甲乙两人相距180千米,则∵当乙到达终点时,求甲乙两人的距离是120千米,之后两人距离逐渐增大,∴()93180120402+-÷=(小时),综上所述,甲出发12小时或92小时时,甲、乙两人相距180千米.................................7分26.(7分)商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由.【详解】(1)解:设每套拖把降价x 元,则每天销售量增加2x 套,即每天销售()202x +套,每套拖把盈利()1208040x x --=-元.故答案为:()40x -,()202x +;................................2分(2)解:设每套拖把降价x 元,则每套的销售利润为()40x -元,平均每天的销售量为()202x +套,依题意得:()()402021242x x -+=,整理得:2302210x x -+=,解得:121317x x ==,.又∵需要尽快减少库存,∴17x =.................................5分答:每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元;(3)解:商家不能达到平均每天盈利1400元,理由如下:设每套拖把降价y 元,则每套的销售利润为()12080y --元,平均每天的销售量为()202y +套,依题意得:()()120802021400y y --+=,整理得:2303000y y -+=.∵()22Δ43041300300<0b ac =-=--´´=-,∴此方程无实数解,即不可能每天盈利1400元.................................7分27.(8分)已知正比例函数y kx =经过点A ,点A 在第四象限,过点A 作AH x ^轴,垂足为点H ,点A 的横坐标为3,且AOH △的面积为3.(1)求正比例函数的解析式;(2)在x 轴上能否找到一点P ,使AOP V 的面积为5.若存在,求点P 的坐标;若不存在,请说明理由(3)在(2)的条件下,是否在正比例函数y kx =上存在一点M ,且M 在第四象限,使得2.3APM OPM S S D D =若存在,请求出点M 的坐标;若不存在,请说明理由【详解】(1)解:∵点A 的横坐标为3,且AOH △的面积为3∴1332AH ´´=,解得,2AH =,∴点A 的坐标为()3,2-,∵正比例函数y kx =经过点A ,∴32k =-,解得23k =-,∴正比例函数的解析式是23y x =-;................................2分(2)解:存在.设(),0P t ,∵AOP V 的面积为5,点A 的坐标为()3,2-,∴1252t ´´=,∴5t =或5t =-,∴P 点坐标为()5,0或()5,0-.................................4分(3)解:设2,3M x x æö-ç÷èø,如图,①点M 在OA 上时,当()5,0P 时,5OP =,又()3,2A -,若23APM OPM S S D D =时,11212232A M M OP y OP y OP y ´´-´´=´´´,∴1122125255223323x x ´´-´´=´´´,解得,95x =,∴296355y =-´=-,∴M 点的坐标为96,55æö-ç÷èø;同理,当点()5,0P -时,也可求出M 点的坐标也为96,55æö-ç÷èø;................................6分②点M 在OA 的延长线上时,当()5,0P 时,5OP =,若23APM OPM S S D D =时,11212232M A M OP y OP y OP y ´´-´´=´´´,∴1212125525232323x x ´´-´´=´´´,解得,9x =,∴2963y =-´=-,∴M 点的坐标为()9,6-;当点()5,0P -时,5OP =,若23APM OPM S S D D =时,同理可得,M 点的坐标为()9,6-;综上,点M 的坐标为96,55æö-ç÷èø或()9,6-.................................8分。
2023-2024学年江苏省泰州市泰兴市八年级第一学期期中数学试卷一、选择题(本大题共6小题,每小题3分,共18分.在每小题所给出的四个选项中,只有一个是正确的,请把正确选项前的字母代号填涂在答题卡相应位置上)1.下列公众号的图案中,是轴对称图形的是( )A.泰兴发布B.智慧泰兴C.泰州发布D.泰州微视听2.已知正方形的面积为1,该正方形的下列几何量的数值中,是无理数的是( )A.边长B.周长C.面积D.对角线3.人的眼睛可以看见的红光的波长为0.000077cm,将数据0.000077精确到0.00001,并用科学记数法表示为( )A.8×10﹣5B.7×10﹣5C.8×10﹣4D.7×10﹣44.等腰三角形中,有一个内角为100°,则该等腰三角形的底角为( )A.50°B.40°C.50°或40°D.100°5.在平面内有A、B两点,以相同的单位长度建立不同的直角坐标系,若以点A为坐标原点,点B的坐标为(a,b);若以点B为坐标原点,则点A的坐标为( )A.(b,a)B.(﹣a,﹣b)C.(﹣a,b)D.(a,﹣b)6.在△ABC中,AB=AC=5,BC=6,点D是AC上一点,将点B绕点D逆时针旋转60°得到点B′,连接BB′,则BB′的最小值为( )A.4B.4.5C.4.8D.5二、填空题(本大题共10小题,每小题3分,共30分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置上)7.23的算术平方根是 .8.若一个等腰三角形的两边长分别为2、4,则其周长为 .9.比较大小: 2.10.已知x,y为实数,且,则xy= .11.点A(﹣1,﹣2)到原点的距离是 .12.已知点P(a﹣1,a﹣3)在第四象限,则整数a的值为 .13.如图,BD是△ABC的角平分线,DE⊥AB,DE=2,AB=8,BC=6,则△ABC的面积为 .14.如图,C、D、E在∠AOB的两边上,连接CD、DE,当OC=CD=DE,∠BDE=α时,则∠CDE= (用含α的代数式表示).15.在平面直角坐标系中,点A的坐标为(3,0),点B的坐标为(0,4),点C是线段AB 上一点,连接坐标原点O和点C,当时,则AC= .16.如图,将长方形ABCD沿EF折叠得到两个全等的小长方形,AB=12,BC=10,点G 在AB上运动,当点A关于DG的对称点A′落在右侧长方形BCEF内部(含边界)时,则AG的长度m的取值范围为 .三、解答题(本大题共10小题,共102分。
2024-2025学年八年级数学上学期第一次月考卷01(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版八年级上册第十一章~第十二章。
5.难度系数:0.85。
一、选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列长度的三条线段能组成三角形的是()A.6,2,3B.3,3,3C.4,3,8D.4,3,72.如图,生活中都把自行车的几根梁做成三角形的支架,这是利用三角形的()A.全等形B.稳定性C.灵活性D.对称性3.如图,CM是△ABC的中线,AB=10cm,则BM的长为()A.7cm B.6cm C.5cm D.4cm4.画△AAAAAA的AAAA边上的高AAAA,下列画法中正确的是()A.B.C.D.5.一个多边形的内角和等于540°,则它的边数为()A.4 B.5 C.6 D.86.请仔细观察用直尺和圆规作一个角∠AA′OO′AA′等于已知角∠AAOOAA的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠AA′OO′AA′=∠AAOOAA的依据是()A.SAS B.ASA C.AAS D.SSS7.如图,△ABE≌△ACF,若AB=5,AE=2,则EC的长度是()A.2 B.3 C.4 D.58.如图,若要用“HL”证明Rt△AAAAAA≌Rt△AAAAAA,则还需补充条件()A.∠AAAAAA=∠AAAAAA B.∠AA=∠AA C.AAAA=AAAA D.AAAA=AAAA9.如图,在Rt△AAAAAA中,∠AA=90°,∠AAAAAA的平分线AAAA交AAAA于点D,AAAA=3,则点D到AAAA的距离是()A.6 B.2 C.3 D.410.如图,已知△AAAAAA为直角三角形,∠AA=90°,若沿图中虚线剪去∠AA,则∠1+∠2的度数为()A.210°B.250°C.270°D.300°11.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②③去12.如图1,∠AADDDD=20°,将长方形纸片AAAAAAAA沿直线DDDD折叠成图2,再沿折痕为AADD折叠成图3,则∠AADDDD的度数为()A.100°B.120°C.140°D.160°二、填空题(本题共6小题,每小题2分,共12分.)13.在Rt△ABC中,∠C=90°,∠A=40°,则∠B= .14.如图,AAAA是△AAAAAA的高,∠AAAAAA=90°.若∠AA=35°,则∠AAAAAA的度数是.15.如图所示的两个三角形全等,则∠1的度数是.16.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是.17.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=15°,∠ACP=50°,则∠P= °.18.如图,在射线OOAA,OOAA上分别截取OOAA1=OOAA1,连接AA1AA1,在AA1AA1、AA1AA上分别截取AA1AA2=AA1AA2,连接AA2AA2,…按此规律作下去,若∠AA1AA1OO=αα,则∠AA2023AA2023OO=.三、解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:|−2|−6×�−12�+(−4)2+8.20.(6分)解不等式组�2xx+1>xx−123xx−1≤5,并写出它的所有正整数解.21.(8分)如图,AC和BD相交于点0,OA=OC,OB=OD,求证:DC//AB.22.(8分)如图△AAAAAA中,∠AA=40°,∠AAAAAA=∠AA.(1)作∠AAAAAA的平分线,交AAAA于点AA(用直尺和圆规按照要求作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求∠AAAAAA的大小.23.(10分)某校学生处为了了解全校1200名学生每天在上学路上所用的时间,随机调查了30名学生,下面是某一天这30名学生上学所用时间(单位:分钟):20,20,30,15,20,25,5,15,20,10,15,35,45,10,20,25,30,20,15,20,20,10,20,5,15,20,20,20,5,15.通过整理和分析数据,得到如下不完全的统计图.根据所给信息,解答下列问题:(1)补全条形统计图;(2)这30名学生上学所用时间的中位数为______ 分钟,众数为______ 分钟;(3)若随机问这30名同学中其中一名学生的时间,最有可能得到的回答是______ 分钟;(4)20分钟及以下的人数.24.(10分)中央大街工艺品店销售冰墩墩徽章和冰墩墩摆件,若购买4个冰墩墩徽章和2个冰墩墩摆件需要130元,购买3个冰墩墩徽章和5个冰墩墩摆件需要220元.(1)求每个冰墩墩徽章和每个冰墩墩摆件各需要多少钱?(2)若某旅游团计划买冰墩墩徽章和冰墩墩摆件共50个,所用钱数不超过1150元,则该旅游团至少买多少个冰墩墩徽章?25.(12分)如图,已知△AAAAAA中,AAAA=AAAA=20cm,AAAA=16cm,点AA为AAAA的中点.(1)如果点P在线段AAAA上以6cm/s的速度由A点向B点运动,同时,点Q在线段AAAA上由点B向C点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△AAAAAA与△AABBAA是否全等?说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△AAAAAA与△AABBAA全等?(2)若点Q以②中的运动速度从点B出发,点P以原来的运动速度从点A同时出发,都逆时针沿△AAAAAA三边运动,求经过多长时间点P与点Q第一次在△AAAAAA的哪条边上相遇?26.(12分)如图,在△AAAAAA中,∠AAAAAA=90°,AAAA=AAAA,点D为AAAA的中点.点E是直线AAAA上的一动点,连接AADD,作AADD⊥AADD交直线AAAA于点F.(1)如图1,若点E与点A重合时,请你直接写出线段AADD与AADD的数量关系;(2)如图2,若点E在线段AAAA上(不与A、B重合)时,请判断线段AADD与AADD的数量关系并说明理由;(3)若点E在AAAA的延长线上时,线段AADD与AADD的数量关系是否仍然满足上面(2)中的结论?请利用图3画图并说明理由.2024-2025学年八年级数学上学期第一次月考卷01(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2023—2024学年度第一学期期末学情分析样题八年级数学注意事项:1.本试卷共6页.全卷满分100分.考试时间为100分钟.考生答题全部答在答题纸上,答在本试卷上无效.2.请认真核对监考教师在答题纸上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题纸及本试卷上.3.答选择题必须用铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题纸上的指定位置,在其他位置答题一律无效.4.作图必须用铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列垃圾分类的标志中,是轴对称图形的是()A .B .C .D .2.在平面直角坐标系中,在第二象限的点是()A .B .C .D .3.下列长度的三条线段能组成直角三角形的是()A.,,B .2,3,4C .7,24,25D .9,37,384的值()A .在1到2之间B .在2到3之间C .在3到4之间D .在4到5之间5.如图,若,则下列结论不一定正确的是()(第5题)A .B .C .D .6.如图,在三角形纸片中,.把沿着翻折,点落在点处,连接.若,则的度数为()2B 2B ()3,1()3,1--()3,1-()3,1-131415ABC FED ≌△△EC BD =EF AB ∥DF BD =AC FD∥ABC AC BC =ABC △AC B D BD 40BAC ∠=︒CBD ∠(第6题)A .9°B .10°C .20°D .30°7.如图,在和中,,,,交于点,交于点.下列结论:①;②;③.其中所有正确结论的序号是()A .①②B .②③C .①③D .①②③8.已知一次函数,函数值随自变量的增大而增大,且,则该函数的大致图像可以是()A .B .C .D .二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.4的平方根是______.10.将3.142精确到0.1,结果是______.11.在实数,中,无理数的个数有______个.12.将的图像向下平移4个单位长度,所得图像对应的函数表达式是______.AEB △AFC △90E F ∠=∠=︒B C ∠=∠AE AF =EB AC M AB FC N 12∠∠=ACN ABM ≌△△MA MB =y kx k b =-+y x k b <-2272π23y x =+13.一次函数()的图像过点,,则______(填“>”、“”或“=”).14.如图,在中,的垂直平分线交于点,交于点,连接.若的周长为,则的周长为______.(第14题)15.如图,在平面直角坐标系中,、两点的坐标分别为、,则点在此坐标系中的第______象限.(第15题)16.如图,在中,,,,平分交于点.则的长为______.(第16题)17.如图,在四边形中,.、分别是对角线,的中点.若,.则的长为______.(第17题)18.如图,和是等腰直角三角形,,连接、.若,,则四边形面积的最大值为______.y kx b =+0k <()12,A y -()21,B y 1y 2y <ABC △AC BC D AC E AD ABC △13,2AE =ABD △A B (),7a ()5,b ()6,10C a b --Rt ABC △90C ∠=︒3AC =4BC =AD BAC ∠BC D CD ABCD 90BAD BCD ∠=∠=︒M N BD AC 6AC =8BD =MN AOB △COD △90AOB COD ∠=∠=︒AD BC 1OA =2OD =ABCD(第18题)三、解答题(本大题共9小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、说理过程或演算步骤)19.(5.20.(6分)求下列各式中的:(1);(2).21.(6分)如图,.求证:.(第21题)22.(8分)如图,在平面直角坐标系中,,,.(1)画出关于轴的对称图形;(2)画出沿轴向下平移4个单位长度后得到的;(3)若线段上有一点经过上述两次变换,则对应的点的坐标是______.2x 22180x -=3(1)8x -=-,B C AD AE ∠=∠=BD CE =()3,4A ()4,2B ()1,1C ABC △y 111A B C △111A B C △y 222A B C △BC (),M a b 2M(第22题)23.(8分)已知某种毛线玩具的销售单价(元)与它的日销售量(个)之间的关系如下表.355055…352015…若日销售量是销售单价的一次函数.(1)求与之间的函数表达式;(2)当销售单价为58元时,它的日销售量是多少?(3)若销售单价提高7元,则它的日销售量减少______个.24.(6分)已知为直线外一点,利用直尺和圆规在上作点、,分别满足下列条件.(保留作图痕迹,不写作法)①②(1)在图①中,,(2)在图②中,,.25.(8分)一辆货车和一辆轿车先后从地出发沿同一直道去地.已知、两地相距180km 轿车的速度为120km/h ,图中分别表示货车、轿车离地的距离(km )与时间(h )之间的函数关系.(1)货车的速度是______km/h ;(2)求两车相遇时离地的距离;(3)在轿车行驶过程中,当______h 时,两车相距20km .(第25题)26.(8分)在中,,(1)如图①,为边上一点,连接,以为边作,,,连接.求证:,(2)如图②,为外一点.若,,.则的长为______.x y xy y x y x P A B PA PB =90APB ∠=︒PA PB =60APB ∠=︒A B A B OC DE 、A s A t =ABC △90BAC ∠=︒AB AC=D BC AD AD ADE △90DAE ∠=︒AD AE =EC BD CE =BD CE⊥D ABC △45ADC ∠=︒13BD =5CD =AD①②27.(9分)若一个函数,对于自变量的不同取值范围,该函数有不同的表达式,则这样的函数称为“分段函数”.当时,;当时,,可以记作分段函数.(1)若时,画出与之间的函数图像,并写出该函数两条不同类型的性质.(2)正比例函数的图像与函数的图像的一个交点坐标为,当时,的取值范围是______;(3)已知点,函数的图像与线段的交点个数随的值的变化而变化,直接写出交点个数及对应的的取值范围.0x ≥12y kx =+0x <12y kx =-()1202(0)kx x y kx x ⎧+≥=⎨-<⎩1k =1y x 22y kx =1y ()2,4--12y y >x ()()2,1,1,1A B --1y AB k k2023-2024学年度第一学期期末学情分析样题八年级数学参考答案说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共8小题,每题2分,共16分)题号12345678答案B D C B C B A D二、填空题(本大题共10小题,每小题2分,共20分)9. 10.3.1 11.1 12. 13.>14.9 15.四16.1718.三、解答题(本大题共9小题,共64分)19.(5分)解:原式20.(6分)解:(1);,(2),21.(6分)证明:在和中,(AAS ),...22.(8分)(1)如图;(2)如图;(3).2±21y x =-3292()2334=+--=-2218x =29x =3x =±12x -=-3x =ABE △ACD △B CA AAD AE∠=∠⎧⎪∠=∠⎨⎪=⎩ABE ACD ∴≌△△AB AC ∴=AB AD AC AE ∴-=-BD CE ∴=(),4a b --23.(8分)解:(1)设一次函数表达式为,将和代入,得解得,所以一次函数表达式为;用其他点代入,或其他方法,结果正确均给4分(2)当时,,所以日销售量是12个;(3)724.(6分)(1)(2)方法一:方法二:y kx b =+()35,35()50,2035355020k b k b +=⎧⎨+=⎩170k b =-⎧⎨=⎩70y x =-+58x =587012y =-+=说明:每种作法3分;其他情况酌情给分.25.(8分)解:(1)60;(2)设的函数表达式为,将代入得,,,设的函数表达式为,将,代入得,,,,解得,此时.相遇时离地.(3)或.26.(8分)(1)证明:即在和中,,,即27.(9分)解:(1)OC 1s mt =()3,18060m =160s t ∴=180120 1.5÷=(2.5,180)E ∴DE 2s kt b =+()1,0()2.5,180120k =120b =-2120120s t ∴=-60120120t t ∴=-2t =120km s =∴A 120km 537390BAC DAE ∠=∠=︒ BAC DAC DAE DAC ∴∠-∠=∠-∠BAD CAE∠=∠ABD △ACE △,,,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩()SAS ABD ACE ∴≌△△,BD CE B ACE∴=∠=∠90,BAC AB AC ∠=︒= 45B BCA ACE ∴∠=∠=︒=∠90BCE BCA ACE ∴∠=∠+∠=︒BD CE⊥图像正确性质1:当时,随的增大而增大;性质2:当时,函数有最小值2.答案不唯一;性质正确1个1分(2)或(3)当时,没有交点当时,1个交点当时,2个交点0x ≥y x 0x ≥2x <-02x ≤<12k >-112k -<≤-1k ≤-。
2024-2025学年八年级数学上学期第一次月考卷(贵州专用)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版八年级上册第十一章~第十二章。
5.难度系数:0.8。
第一部分(选择题共36分)一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某校九年级学生计划前往贵州省博物馆开展一天的研学活动,出发前每班需要准备一个三角形形状的队旗,下列给出的三边长规格中,可以实现三角形队旗制作的是( )A.6dm,6dm,12dm B.8dm,4dm,2dmC.6dm,3dm,10dm D.6dm,8dm,7dm【答案】D【详解】解:A、6+6=12,不符合三角形的三边规则,两边之和大于第三边,不能组成三角形,所以本选项不符合题意;B、2+4=6<8,不符合三角形的三边规则,两边之和大于第三边,不能组成三角形,所以本选项不符合题意;C、6+3<10,不符合三角形的三边规则,两边之和大于第三边,不能组成三角形,所以本选项不符合题意;D、6+7>8,符合三角形的三边规则,两边之和大于第三边,能组成三角形,所以本选项符合题意.故选:D.2.如图,∠C=∠D,添加下列条件,能使△ABC≌△BAD的是( )A.AC=BD B.∠1=∠2C.AD=BC D.以上都可以【答案】D【详解】解:∵∠C=∠D,AB=BA,∠CEA=∠DEB,添加AC=BD时,则可利用AAS证明△ECA≌△EDA,∴AE=BE,∠CAE=∠DBE,∴∠1=∠2,∠1+∠CAE=∠2+∠DBE,即∠CAB=∠DBA,∴△ABC≌△BAD(AAS),故A正确,符合题意;添加∠1=∠2时,可得AE=BE,∴△ECA≌△EDA(AAS),∴AC=BD,∴△ABC≌△BAD(AAS),故B添加AD=BC时,如图,延长AC,BD交于点F,∵∠ACB=∠ADB,∴∠FCB=∠FDA,∵∠A=∠A,AD=BC,∴△FAD≌△FBC(AAS),∴FA=FB,∴∠CAB=∠DBA,∵AB=BA,∴△CAB≌△DBA(AAS),故C正确,符合题意;故选:D.3.如图,在△ABC 中,AD 是高,AE 是角平分线,AF 是中线,则下列说法中错误的是( )A .BF =CFB .∠C +∠CAD =90°C .∠BAF =∠CAFD .S △ABC =2S △ABF【答案】C【详解】解:∵AF 是△ABC 的中线,∴BF =CF ,A 说法正确,不符合题意;∵AD 是高,∴∠ADC =90°,∴∠C +∠CAD =90°,B 说法正确,不符合题意;∵AE 是角平分线,∴∠BAE =∠CAE ,而∠BAF 与∠CAF 不一定相等,C 说法错误,符合题意;∵BF =CF ,∴S △ABC =2S △ABF ,D 说法正确,不符合题意;故选:C .4.一副含30°角和45°角的直角三角板如图摆放,则∠1的度数为( )A .60°B .65°C .75°D .70°【答案】C【详解】解:在图中标记∠2,∠3,∠4,如图所示.∵∠2=45°,∠3=∠2,∴∠3=45°,又∵∠1=∠3+∠4,∠4=30°,∴∠1=45°+30°=75°.故选:C.5.如图,七边形ABCDEFG中,AB,ED的延长线交于点O,若∠1,∠2,∠3,∠4的外角和等于215°,则∠BOD的度数为( )A.20°B.35°C.40°D.45°【答案】B【详解】解:∵∠1、∠2、∠3、∠4的外角的角度和为215°,∴∠1+∠2+∠3+∠4+215°=4×180°,∴∠1+∠2+∠3+∠4=505°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣505°=35°,故选:B.6.如图,将五边形ABCDE沿虚线裁去一个角,得到六边形ABCDGF,则下列说法正确的是( )A.外角和减少180°B.外角和增加180°C.内角和减少180°D.内角和增加180°【答案】D【详解】解:将五边形ABCDE沿虚线裁去一个角,得到六边形ABCDGF,则五边形ABCDE的内角和为:(5﹣2)×180°=540°,六边形ABCDGF的内角和为:(6﹣2)×180°=720°,∴720°﹣540°=180°,∵五边形ABCDE六边形ABCDGF的外角和都是360°,∴将五边形ABCDE沿虚线裁去一个角,得到六边形ABCDGF,内角和增加180°,外角和不变.故选:D.7.a、b、c是三角形的三边,其中a、b两边满足|a﹣3|+(b﹣2)2=0,那么这个三角形的第三边可以是( )A.1B.3C.5D.7【答案】B【详解】解:∵|a﹣3|+(b﹣2)2=0,∴a﹣3=0,b﹣2=0,解得:a=3,b=2,∵a、b、c是三角形的三边,∴3﹣2<c<3+2,即1<c<5,∴这个三角形的第三边可以是3.故选:B.8.如图,由9个完全相同的小正方形拼接而成的3×3网格,图形ABCD中各个顶点均为格点,设∠ABC=α,∠BCD=β,∠BAD=γ,则α﹣β﹣γ的值为( )A.30°B.45°C.60°D.75°【答案】B【详解】解:如图,BE=AG,∠BEC=∠AGB=90°,EC=GB,∴△BEC≌△AGB(SAS),∴∠ECB=∠GBA,∵∠ECB+∠EBC=90°,∴∠GBA+∠EBC=90°,∴∠ABC=90°=α,∵∠β+∠CBD=90°,∠CBD+∠ABD=90°,∴∠ABD=β,∵∠ADF=∠ABD+∠BAD=45°,∴β+γ=45°,∴α﹣β﹣γ=90°﹣45°=45,故选:B.9.如图,小明与小红玩跷跷板游戏,如果跷跷板的支点O(即跷跷板的中点)至地面的距离是60cm,当小明从水平位置CD上升15cm时,这时小红离地面的高度是( )A.35cm B.40cm C.45cm D.50cm【答案】C【详解】解:在△OCF与△ODG中,,∴△OCF≌△ODG(AAS),∴CF=DG=15(cm),∴小明离地面的高度是60﹣15=45(cm),故选:C.10.画∠AOB的平分线的方法有多种,嘉嘉和淇淇的方法如图所示,下列判断正确的是( )①利用直尺和三角板画CD∥OB;①利用圆规截取OM=ON,OC=OD;A.只有嘉嘉对B.只有淇淇对C.两人都对D.两人都不对【答案】C【详解】解:对于嘉嘉的方法:∵CD∥OB,∴∠CPO=∠BOP,∵CO=PC,∴∠AOP=∠CPO,∴∠AOP=∠BOP,∴OP平分∠AOB,∴嘉嘉的方法正确;对于淇淇的方法:∵OM=ON,OC=OD,∠CON=∠DOM,∴△CON≌△DOM(SAS),∴∠OCP=∠ODP,∵OM=ON,OC=OD,∴OC﹣OM=OD﹣ON,∴CM=DN,∵∠CPM=∠DPN,∴△CPM≌△DPN(AAS),∴CP=DP,∵OP=OP,∴△OCP≌△ODP(SSS),∴∠COP=∠DOP,∴OP平分∠AOB,∴淇淇的方法正确;综上所述:两人都对,故选:C.11.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD.四个结论中成立的是( )A.①②④B.①②③C.②③④D.①③【答案】A【详解】解:过E作EF⊥AD于F,如图,∵AB⊥BC,AE平分∠BAD,∴BE=EF,在Rt△AEF和Rt△AEB中,,∴Rt△AEF≌Rt△AEB(HL),∴AB=AF,∠AEF=∠AEB,∵点E是BC的中点,∴EC=EF=BE,故③错误;在Rt△EFD和Rt△ECD中,,∴Rt△EFD≌Rt△ECD(HL),∴DC=DF,∠FDE=∠CDE,故②正确;∴AD=AF+FD=AB+DC,故④正确;∴∠AED=∠AEF+∠FED=∠BEC=90°,故①正确.因此正确的有①②④,故选:A.12.如图,已知△ABC的内角∠A=α,分别作内角∠ABC与外角∠ACD的平分线,两条平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;……以此类推得到∠A2018,则∠A2018的度数是( )A.B.C.D.90°+【答案】B【详解】解:∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,∴∠A1BC=∠ABC,∠A1CD=∠ACD,又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,∴(∠A+∠ABC)=∠ABC+∠A1,∴∠A1=∠A,∵∠A=α,∴∠A1=;同理可得∠A2=∠A1=•α=,∴∠A n=,∴∠A2018=.故选:B.第二部分(非选择题共114分)二、填空题:本题共4小题,每小题4分,共16分。
2022—2023学年度第一学期期末质量监测试卷八年级数学注意事项1.本试卷共8页,三大题,23个小题,满分120分,考试时间100分钟.请用黑色水笔或2B 铅笔在答题卡上作答.2.答卷前将相关信息在答题卡上准确填涂.一二三题号1~1011~151617181920212223总分得分一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填涂在答题卡上.1.下列图形中,是轴对称图形的是( )A. B. C. D.2.科学家在实验中检测出新型冠状病毒直径约为0.000000018米.将数0.000000018用科学记数法表示为( )A. B. C.D.3.已知三角形的两边长分别为和,则第三边的长可以是()A. B. C. D.4.下列运算正确的是( )A. B. C. D.5.如图所示,已知,用尺规在线段上确定一点P ,使得,则符合要求的作图痕迹是( )A. B.C. D.6.已知点与点关于x 轴对称,则( )A. B. C. D.461.810-⨯81.810-⨯71.810-⨯71810-⨯5cm 8cm 2cm3cm6cm13cm326a aa ⋅=2ab bab ÷=()222m n m n -=-()239239x yx y -=()AC AB B C C AB <<△BC PA PC BC +=(),2A a ()3,B b 2a b +=4-1-2-7.如果代数式,那么代数式的值是( )A.22B.18C. D.8.定义运算“※”: ,若3※,则x 的值为( )A.1B.5C.1或5D.5或79.如图,在中,,以为底边在外作等腰,过点D 作的平分线分别交,于点E ,F .若,,点P 是直线上的一个动点,则周长的最小值为( )A.15B.17C.18D.2010.如图,在中,,的平分线与的平分线交于点,得,的平分线与的平分线交于点,得的平分线与的平分线交于点,得,则( )A.B. C. D.二、填空题(每小题3分,共15分)11.如图所示,第四套人民币中菊花1角硬币.则该硬币边缘镌刻的正九边形的一个外角的度数为 .12.如图,在和中,,,要使,还需添加一个条件,这个条件可以是 .2317y y --=2662y y +-8-10-2,2,a b a ba b a b b a ⎧>⎪⎪-=⎨⎪<⎪-⎩※1x =ABC △90ACB ∠=︒AC ABC △ACD △ADC ∠AB AC 5BC =30CAB ∠=︒DE PBC △ABC △αA ∠=ABC ∠ACD ∠1A 1A ∠1A BC ∠1D A C ∠2A 22022,,A A BC ∠∠ 2022D A C ∠2023A 2023A ∠2023A ∠=α2022α20232022α22023α2ABC △DFE △90A D ∠=∠=︒AC DE =ABC DFE △≌△13.“数理世界”展厅的WiFi 的密码被设计成如图的数学问题.小东在参观时认真思索,输入密码后顺利地连接到了网络,则他输入的密码是 .14.如图,在三角形中,点分别是的中点,且的面积为8,则阴影部分的面积是 .15.如图,在直角三角形中,,,点D 是边上的一点,连接,将沿折叠,使点C 落在点E 处,当是直角三角形时,的度数为 .三、解答题(本大题共8个小题,共75分)16.(每小题5分,共10分)(1)计算:;(2)解方程:.17.(9分)如图,在边长为1个单位长度的小正方形组成的网格中,按要求作图.ABC D E F 、、BC AD CE 、、ABC △ABC 90C ∠=︒60BAC ∠=︒BC AD ACD △AD BDE △CAD ∠()12022112 3.143π-⎛⎫---+--- ⎪⎝⎭4322x x x x--=--(1)利用尺规作图:在边上找一点,使点到的距离相等.(不写作法,保留作图痕迹)(2)在网格中,的下方,直接画出,使与全等.18.(9分)先化简,再求值:,其中,且a 是整数.19.如图,用10块高度都是的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(,),点C 在上,点A 和B 分别与木墙的顶端重合.(1)求证:(2)求两堵木墙之间的距离.20.为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了25%,生产300万剂疫苗比原来要少用1天,求现在每天生产疫苗多少万剂?21.如图,在中,,,.将三角板中角的顶点D 放在边上移动,使这个角的两边分别与的边相交于点E ,F ,且使始终与垂直.(1)求证:是等边三角形.(2)设,,则 .(用含x 的式子表示y )(3)当移动点D 使时,求AD 的长.22.阅读并解答:对于三次多项式,我们把代入多项式,发现,由此可以推断多项式中有因式,设另一个因式为,多项式可以表示成,整理得,可得到,,所以,,把求出的a ,b 代入,就可以把多项式因式分解.以上这种因式分解的方法叫“试根法”.对于多项式,用“试根法”分解因式.23.(1)问题:如图1,在四边形中,对角线平分,.求证:.思考:“角平分线对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在上截取,连接,得到全等三角形,进而解决问题;方法2:延长到点N ,使得,连接,得到全等三角形,进而解决问题.结合图1,在方法1AC D D AB BC 、ABC △EBC △EBC △ABC △322293344a a a a a a -⎛⎫÷++ ⎪--+⎝⎭15a <<2cm AC BC =90ACB ∠=︒DE ADC CEB △≌△Rt ABC △90ACB ∠=︒30A ∠=︒1BC =30︒AB 30︒ABC △AC BC ,DE AB BDF △AD x =CF y =y =//EF AB 3233x x x --+1x =32330x x x --+=()1x -()2x ax b ++()()322331x x x x x ax b --+=-++()()3232331x x x x a x a b x b --+=-----11a -=3b =-0a =3b =-3233x x x --+324318x x x +--ABCD BD ABC ∠180A C ∠+∠=︒DA DC =+BC BM BA =DM BA BN BC =DN和方法2中任选一种,添加辅助线并完成证明.(2)问题解决:如图2,在(1)的条件下,连接,当时,探究线段,,之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形中,,,过点D 作,垂足为点E ,请直接写出线段、、之间的数量关系:.AC 60DAC ∠=︒AB BC BD ABCD 180A C ∠+∠=︒DA DC =DE BC ⊥AB CE BC2022—2023学年度第一学期期末质量监测试卷八年级数学参考答案与评分标准一、选择题(每小题3分,共30分)题号12345678910答案ABCBABDCAD二、填空题(每小题3分,共15分)题号1112131415答案(答案不唯一)20222或三、解答题(本大题共8个小题,满分75分)16.解:(1)原式(2)去分母,得:去括号,得:移项,得:合并同类项,得:系数化为1,得:检验:把代入,得:所以是增根,原分式方程无解.17.解:(1)如图点D 即为所求;(2)或即为所求(画出一个即可得4分)18解:原式,且,a 是整数.可以取4当时,原式40︒BC EF =30︒45︒1213=--++1=()432x x x +-=-436x x x +-=-364x x x +-=-+2x -=-2x =2x =2x -20x -=2x =EBC △E BC '△()()()()22233932a a a a a a -+-+=÷--2232a a a a-=⨯-32a a -=-()()230a a a --≠ 15a <<a ∴4a =431422-==-19.(1)证明:由题意得:,,,,,,,在和中(2)解:由题意得:,,,,答:两堵木墙之间的距离为20cm.20.解:设原来每天生产疫苗x 万剂,则现在每天生产疫苗万剂根据题意得:解得:经检验得:是原方程的解答:现在每天生产疫苗75万剂21.(1)证明:,,,,,,,是等边三角形(2)(3)当时,,,,,,,即22.解:当时,,AC BC =90ACB ∠=︒AD DE ⊥BE DE ⊥90ADC CEB ∴∠=∠=︒90ACD BCE ∠+∠=︒∴90ACD DAC ∠+∠=︒BCE DAC∴∠=∠ADC △CEB △ADC CEB DAC ECBAC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADC CEB AAS ∴△≌△236cm AD =⨯=7214cmBE =⨯=ADC CEB △≌△6cm EC AD ==∴14cm DC BE ==()20cm DE DC CE ∴=+=()125%x +()1300300125%x x =++60x =60x =()125% 1.256075x ∴+=⨯=ED AB ⊥ 30EDF ∠=︒60FDB ∴∠=︒30A ∠=︒ 90ACB ∠=︒60B ∴∠=︒60DFB ∠=︒∴BDF ∴△1x -//EF AB 30CEF ∠=︒90FED EDA ∠=∠=︒12E CF F ∴=12EF DF =1DF BF y ==- ()114y y ∴=-15y ∴=615x y =+=65AD =2x =3243188166180x x x +--=+--=多项式有因式,设另一个因式为,,,,,23.解:(1)方法1:在上截,连接,如图.平分,.在和中,,.,.,.方法2:延长到点N ,使得,连接,如图.平分,.在和中,.,.∴()2x -()2x ax b ++()()32243182x x x x ax b x ∴+--=-++()()32324318222x x x a x a b x bx ∴+--=+----24a ∴-=218b -=-6a ∴=9b =()()()()2322431826923x x x x x x x x +--=∴-++=-+BC BM BA =DM BD ABC ∠ABD CBD ∴∠=∠ABD △MBD △BD BD ABD MBD BA BM =⎧⎪∠=∠⎨⎪=⎩ABD MBD∴△≌△A BMD ∴∠=∠AD MD =180BMD CMD +∠=︒∠ 180C A ∠+∠=︒C CMD ∴∠=∠DM DC ∴=DA DC ∴=BA BN BC =DN BD ABC ∠NBD CBD ∠=∠∴NBD △CBD △BD BD NBD CBDBN BC =⎧⎪∠=∠⎨⎪=⎩NBD CBD ∴△≌△BND C ∴∠=∠ND CD =,..,.(2)之间的数量关系为:.(或者:,)理由:延长CB 到点P ,使,连接AP ,如图所示.由(1)可知,.为等边三角形.,.,..,为等边三角形.,.,,即.在和中,,.,,.(3)(或者:,)(解:连接BD ,过点D 作于F ,如图所示.,..180NAD BAD ∠+∠=︒ 180C BAD ∠+∠=︒BND NAD ∴∠=∠DN DA ∴=DA DC ∴=AB BC BD 、、AB BC BD +=BD CB AB -=BD AB CB -=BP BA =AD CD =60DAC ∠=︒ ADC ∴△AC AD ∴=60ADC ∠=︒180BCD BAD ∠+∠=︒ 36018060120ABC ∴∠=︒-︒-︒=︒18060PBA ABC ∴∠=︒-∠=︒BP BA = ABP ∴△60PAB ∠=︒∴AB AP =60DAC ∠=︒ PAB BAC DAC BAC ∴∠+∠=∠+∠PAC BAD ∠=∠PAC △BAD △PA BA PAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩PAC BAD ∴△△≌PC BD ∴=PC BP BC AB BC =+=+ AB BC BD +=∴2BC AB CE -=2BC CE AB -=2AB CE BC +=DF AB ⊥180BAD C ∠+∠=︒ 180BAD FAD ∠+∠=︒FAD C ∴∠=∠在和中,,,,.在和中,.,,.DFA △DEC △DFA DEC FAD C DA DC ∠=∠⎧⎪∠=∠⎨⎪=⎩DFA DEC ∴△≌△DF DE ∴=AF CE =Rt BDF △Rt BDE △BD BD DF DE=⎧⎨=⎩Rt Rt BDF BDE ∴△≌△BF BE ∴=2BC BE CE BA AF CE BA CE ∴=+=++=+2BC BA CE ∴-=。
广东省广州市越秀区广州大学附属中学2023-2024学年八年级上学期10月月考(数学)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 下列六个实数:022π73,,,3.14159265,0.101001000100001⋅⋅⋅,其中无理数的个数是()A 2 个 B. 3 个 C. 4 个 D. 5 个【答案】B【解析】【分析】根据无理数的定义和常见无理数的特点去判断即可.2 ==2=,π3,0.101001000100001⋅⋅⋅是无理数,故选B.【点睛】本题考查了无理数即无限不循环小数,化为最简二次根式,熟练掌握定义是解题的关键.2. 若单项式2x2y a+b与﹣13x a﹣2b y5的和仍然是一个单项式,则a﹣5b的立方根为()A. ﹣1B. 1C. 0D. 2【答案】A【解析】【分析】根据题意得到两单项式为同类项,利用同类项定义列出方程组,求出方程组的解得到a与b的值,即可确定出原式的立方根.【详解】∵单项式2x2y a+b与13−x a﹣2b y5的和仍然是一个单项式,∴225a ba b−=+=,解得:41ab==,则a﹣5b=4﹣5=﹣1,﹣1的立方根为﹣1.故选A.【点睛】本题考查了立方根,合并同类项,熟练掌握立方根定义是解答本题的关键.3. 下列数组中,能构成勾股数的是().A. 1,1B. 6,8,10C. 2,4,6D. 13,14,15【答案】B【解析】 【分析】根据勾股数的定义逐项判断即可得到答案.【详解】解:A 不是正整数,故1,1不能构成勾股数,故此选项不符合题意;B 、6,8,10是正整数,且22268366410010 ,故6,8,10能构成勾股数,故此选项符合题意;C 、2,4,6是正整数,但22224416206+=+=≠,故2,4,6不能构成勾股数,故此选项不符合题意;D 、13,14,15不是正整数,故13,14,15不能构成勾股数,故此选项不符合题意; 故选:B .【点睛】本题考查了勾股数的定义,满足222+=a b c 的三个正整数,称为勾股数,熟练掌握此定义是解题的关键.4. 在平面直角坐标系中,若将一次函数26y x =−+的图象向下平移(0)n n >个单位长度后恰好经过点(1,2)−−,则n 的值为( )A. 10B. 8C. 5D. 3【答案】A【解析】 【分析】先得出向下平移后一次函数的解析式,再将点(1,2)−−代入求解即可得.【详解】将一次函数26y x =−+的图象向下平移(0)n n >个单位长度后的函数解析式为26y x n =−+− 将点(1,2)−−代入26y x n =−+−得:262n +−=−解得10n =故选:A .【点睛】本题考查了一次函数图象的平移规律,掌握一次函数图象的平移规律是解题关键.5. 若k k+1(k 是整数),则k=( )A. 6B. 7C. 8D. 9【答案】D【解析】【分析】找到90.【详解】本题考查二次根式的估值.∵8190100<<,∴910<<,∴9k =.一题多解:可将各个选项依次代入进行验证.如下表: 选项 逐项分析正误 A若6,369049k =<> × B若7,499064k =<> × C若8,649081k =<> × D 若9,8190100k =<< √【点睛】本题考查二次根式的估算,找到被开方数左右两边相邻的两个平方数是关键.6. 一架2.5m 长的梯子斜立在一竖直的墙边,梯脚距墙底0.7m ,这时梯子达到的高度是( )A. 2.5mB. 2.4mC. 2mD. 1.8m 【答案】B【解析】【分析】根据勾股定理求出梯子达到的高度,进而可得出结论.【详解】解:∵一架2.5m 长的梯子斜立在一竖直的墙边,梯脚距墙底0.7m ,(m ). 故选:B .【点睛】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7. )A. 是无理数B. =±C. 23<<D. 2÷=【答案】B【解析】8的算术平方根,而算术平方根是求一个非负数的正的平方根,据此可以得到结果.【详解】A 是无理数,故A 正确.B 、表示求8的算术平方根,而算术平方根是求一个非负数的正的平方根,.故B 错误.C 、23<<∴<<.故C 正确.D 2÷.故D 正确.故选B .【点睛】本题考查了算术平方根的定义、二次根式的除法及无理数的有关概念,正确的理解算术平方根是解决此题的关键.8. 已知关于x 的一次函数y =(2﹣m )x +2+m 的图象上两点A (x 1,y 1),B (x 2,y 2),若x 1<x 2时,y 1>y 2,则m 的取值范围是( )A. m >2B. m >﹣2C. m <2D. m <﹣2 【答案】A【解析】【分析】当x 1<x 2时,y 1>y 2,则y 随x 的增大而减小,根据一次函数的性质得: 2﹣m <0,即可得出答案.【详解】解:∵当x 1<x 2时,y 1>y 2∴y 随x 的增大而减小,∴2﹣m <0,∴m >2.故选:A .【点睛】本题考查一次函数的图像与性质,根据函数的增减性得到系数的范围,属于一般题型. 9. 如图所示,将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,设筷子露在杯子外面的长度cm h ,则h 的取值范围是( )A. 17cm h ≤B. 8cm h ≥C. 15cm 16cm h ≤≤D. 7cm 16cm h ≤≤【答案】D【解析】【分析】当筷子的底端在A 点时,筷子露在杯子外面的长度最短,当筷子的底端在D 点时,筷子露在外面的长度最长,然后分别利用已知条件根据勾股定理即可求出h 的取值范围.【详解】解:如图,当筷子的底端在D 点时,筷子露在外面的长度最长,∴24816cm h −,当筷子的底端在A 点时,筷子露在杯子外面的长度最短,在Rt ABD 中,15AD =,8BD =,∴17AB =,此时24177cm h =−=,所以h 取值范围是7cm 16cm h ≤≤,故选:D .【点睛】本题考查正确运用勾股定理,善于观察题目的信息是解题的关键.10. 如图,已知圆柱的底面直径BC =6π,高AB =3,小虫在圆柱表面爬行,从C 点爬到A 点,然后再沿另一面爬回C 点,则小虫爬行的最短路程为( )A.B. C. D. 【答案】D【解析】 【详解】试题解析:把圆柱侧面展开,展开图如右图所示,点A 、C 的最短距离为线段AC 的长.在RT △ADC 中,∠ADC =90°,CD =AB =3,AD 为底面半圆弧长,AD =3,所以AC=C 点爬到A 点,然后再沿另一面爬回C 点,则小虫爬行的最短路程为2AC=D .二、填空题(本大题4小题,每小题5分,共20分)请将下列各题的正确答案填写在答题卡的位置上.11. 1的相反数是_____,绝对值是_______,倒数是_______1−11−【解析】【详解】1的相反数=-(1)-11的绝对值=︱1︱=-︱1︱1−1的倒数=1÷(1)=(1)÷()=1−1−112. _______.【答案】3【解析】9=,在计算9的算术平方根即可得出答案.【详解】9=,9算术平方根为3∴3.故答案为:3.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.13. 如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为_____.的【答案】7【解析】【分析】根据勾股定理求得BC ,再根据折叠性质得到AE =CE ,进而由三角形周长=AB +BC 求解即可.【详解】∵在△ABC 中,∠B =90°,AB =3,AC =5,∴BC4=.∵△ADE 是△CDE 翻折而成,∴AE =CE ,∴AE +BE =BC =4,∴△ABE 的周长=AB +BC =3+4=7.故答案是:7.【点睛】本题考查勾股定理、折叠性质,熟练掌握勾股定理是解答的关键.14. 如图是一个三级台阶,它的每一级的长、宽、高分别为100cm ,15cm 和10cm ,A 和B 是这个台阶的两个端点,A 点上有一只蚂蚁想到B 点去吃可口的食物,则它所走的最短路线长度为_________cm .【答案】125【解析】【分析】把立体几何图展开得到平面几何图,如图,然后利用勾股定理计算AB ,则根据两点之间线段最短得到蚂蚁所走的最短路线长度.【详解】解:展开图为:的则AC=100cm ,BC=15×3+10×3=75cm ,在Rt △ABC 中,=125cm .所以蚂蚁所走的最短路线长度为125cm .故答案为:125.【点睛】本题考查了勾股定理的应用,把立体几何图中的问题转化为平面几何图中的问题是解题的关键.三、计算题(本大题2小题,每小题6分,共12分)15. 计算:(1计算:(2. 【答案】(1)0.1;(2【解析】【分析】(1)先计算算术平方根,再合并即可;(2)把分子、分母都乘以【详解】解:(11.2 1.10.1=−=; (2; 【点睛】本题考查的是求解算术平方根,分母有理化,掌握相应的运算法则是解本题的关键.四、解答题(本大题4小题,共38分)16. 三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C 在FD 的延长线上,点B 在ED 上,AB CF ,90F ACB ∠=∠=°,45E∠=°,60A ∠=°,2AC =,则CD 的长度是___________.【答案】3【解析】【分析】过点B 作BM FD ⊥于点M ,根据题意可求出BC 的长度,然后在EFD △中可求出45EDF ∠=°,进而可得出答案.【详解】解:过点B 作BM FD ⊥于点M ,在ACB △中,90ACB ∠=°,60A ∠=°,2AC =, 30ABC ∴∠=°,24AB AC ∴==.BC ∴∵AB CF ,BM ∴,3CM =,在EFD △中,90F ∠=°,45E ∠=°,45EDF =∴∠°,MD BM ∴==,3CD CM MD ∴=−=−.故答案为:3−【点睛】本题考查了勾股定理和含30度角的直角三角形,根据题意构造直角三角形,利用直角三角形的性质进行解答是解题的关键.17. △ABC 在平面直角坐标系中的位置如图所示.(1)画出△ABC 关于y 轴的对称图形△DEF (点A ,B ,C 分别与点D ,E ,F 对应),并直接写出D ,E ,F 三点的坐标;(2)连接CF、CD,则△DFC的面积为.【答案】(1)画图见解析;D(﹣4,6)、E(﹣5,2)、F(﹣2,1)(2)10【解析】【分析】(1)分别作出点A、B、C关于y轴的对称点D、E、F,再首尾顺次连接即可;(2)利用三角形的面积公式求解可得答案.【详解】解:(1)如图所示,△DEF即为所求,D(﹣4,6)、E(﹣5,2)、F(﹣2,1).×4×5=10,(2)△DFC的面积为:12故答案为:10.【点睛】本题主要考查作图——轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.18. A 城有化肥200 吨,B 城有化肥300 吨,现要把化肥运往牛家、红旗两农村,如果从A 城运往牛家村、红旗村运费分别是20 元/吨与30 元/吨,从B 城运往牛家村、红旗村运费分别是15 元/吨与22 元/吨,现已知牛家村需要220 吨化肥,红旗村需要280 吨化肥.(1)如果设从A 城运往牛家村x 吨化肥,求此时所需的总运费y(元)与x(吨)之间的函数关系式(直接写出自变量x 的取值范围).(2)如果你承包了这项运输任务,算一算怎样调运花钱最少,并求出最少运费.【答案】(1)y=-3x+11060(0≤x≤200);(2)从A城运往牛家村200吨,从B城运往牛家村肥料20吨,则从B 城运往红旗村280吨时总运费最少,最少运费是10460元.【解析】【分析】(1)设从 A 城运往牛家村 x 吨化肥,用含x 的代数式分别表示出从A 运往运往红旗村的肥料吨数,从B 城运往牛家村化肥吨数,及从B 城运往红旗村化肥吨数,根据:运费=运输吨数×运输费用,得一次函数解析式;(2)利用一次函数的性质即得结论.【详解】(1)∵从 A 城运往牛家村 x 吨化肥,∴从A 城运往红旗村(200-x )吨化肥,从B 城运往牛家村化肥(220-x )吨,则从B 城运往红旗村(80+x )吨.∴根据题意,得:y=20x+30(200-x )+15(220-x )+22(80+x )=-3x+11060(0≤x ≤200)(2)由于y=-3x+11060是一次函数,k=-3<0,∴y 随x 增大而减小.因为x ≤200,所以当x=200时,运费最少,最少运费是10460元.∴当从A 城运往牛家村200吨,从B 城运往牛家村肥料20吨,则从B 城运往红旗村280吨时总运费最少,最少运费是10460元.【点睛】本题考查了一次函数的应用,根据题意列出一次函数解析式是关键.19. 如图,在平面直角坐标系xOy 中,直线y =43−x +4与x 轴、y 轴分别交于点A 、点B ,点D (0,﹣6)在y 轴的负半轴上,若将△DAB 沿直线AD 折叠,点B 恰好落在x 轴正半轴上的点C 处,直线CD 交AB 于点E .(1)求点A 、B 、C 的坐标;(2)求△ADE 的面积;(3)y 轴上是否存在一点P ,使得PAD S ∆=12ADE S ∆,若存在,请直接写出点P 的坐标;若不存在,请说明理由.的【答案】(1)点A 的坐标为(3,0),点B 的坐标为(0,4),点C 的坐标为(8,0)(2)9 (3)y 轴上存在一点P (0,﹣3)或(0,﹣9),使得PAD S ∆=12ADE S ∆ 【解析】【分析】(1) 直线y =43−x +4中,分别令x =0、y =0,确定B 、A 坐标,运用勾股定理计算AB ,根据折叠性质,AC =AB ,确定OC 的长即可确定点C 的坐标.(2)证明Rt △AOD ≌Rt △AED ,根据ADE AOD S S ∆∆=计算即可.(3)设点P 的坐标为(0,m ),则DP =|m +6|.根据9|6|221m AO += ,计算m 的值即可. 【小问1详解】当x =0时,y =43−x +4=4, ∴点B 的坐标为(0,4);当y =0时,43−x +4=0, 解得:x =3,∴点A 的坐标为(3,0).在Rt △AOB 中,OA =3,OB =4,∴AB5.由折叠的性质,可知:∠BDA CDA ,∠D =∠C ,AC =AB =5,∴OC =OA +AC =8,∴点C 的坐标为(8,0).小问2详解】∵∠B =∠C ,∠OAB =∠EAC ,∠B +∠AOB +∠OAB =180°,∠C +∠AEC +∠EAC =180°,∴∠AEC =∠AOB =90°=∠AED =∠AOD .又∵∠BDA =∠CDA ,在Rt △AOD 和Rt △AED 中,【90AOD AED ODA EDA DA DA ∠=∠= ∠=∠ =∴Rt △AOD ≌Rt △AED , ∴1136922ADE AOD O S A S OD ∆∆===××= . 【小问3详解】存在点P ,且坐标为(0,-3)或(0,-9),理由如下:设点P 的坐标为(0,m ),则DP =|m +6|. ∵PAD S ∆=12ADE S ∆, ∴1113|6|9222OA PD m =××+=× , ∴|m +6|=3,解得:m =﹣3或m =﹣9,∴y 轴上存在点P (0,﹣3)或(0,﹣9),使得PAD S ∆=12ADE S ∆. 【点睛】本题考查了一次函数与坐标轴的交点,解析式的确定,折叠的性质,一次函数与几何图形的综合,熟练掌握待定系数法,折叠性质,一次函数与几何图形的综合是解题的关键.。