焊接机械手毕业设计
- 格式:docx
- 大小:18.67 KB
- 文档页数:13
焊接机器人毕业设计.doc焊接机器人的毕业设计焊接机器人的毕业设计是研究焊接机器人的机构结构、控制方式、实现机构和智能控制系统,以及进行焊接功能的实现,最终达到产品的性能和功能指标。
焊接机器人的主要结构包括机器人本体、焊接驱动机构、焊接控制机构、焊接功率机构、焊接探头等。
其中机器人本体由关节、机械结构以及用于关节激活的驱动装置组成,一般采用六维机械机构,由六个球拍轴组成,具有高精度、高速度和大负载量的特点。
焊接驱动机构由电机、减速机以及传动部件组成,主要作用是将焊接机器人关节的控制信号转换成机械运动。
焊接控制机构以及焊接功率机构由电源、变压器、调速器、油门调节器等组件共同构成,实现对焊接电源的控制和调节,以确保焊接的质量。
焊接探头负责将焊接电源与工件接触,其可以有自动换枪装置进行更换,以满足能焊接不同材料和不同部位的需求。
焊接机器人的控制方法主要采用传统的离散结构控制、模糊控制、模型预测控制等系统方法。
传统的离散结构控制是将控制任务分解为几个独立的控制单元,主要由运动控制器、支撑控制器、护盾控制器等组件构成,通过联合每个控制器完成整个控制任务。
模糊控制是采用模糊逻辑原理,根据实际情况,对焊接机器人的运动、位置,进行智能化控制。
模型预测控制是将焊接机器人复杂的焊接模型分解成若干个子模型,使用一定的算法对其进行建模,然后根据焊接机器人的输出信号,生成合适的控制信号,用以调整焊接机器人的动作。
独有的智能控制系统能够实时跟踪焊接机器人的运行状态,进行实时诊断和调节,以保证焊接机器人的运行质量,减少不正常状况引发的焊接痕迹。
在实际的工作过程中,根据任务的要求,可以进行容错处理,考虑到焊接参数的变化,根据实际要求及时调整焊接参数,保证焊接质量。
一种焊接机器人毕业设计标题:基于六轴焊接机器人的自动焊接系统设计与实现一、引言焊接机器人是当前工业自动化领域的重要设备之一,它具备高效、精确的特性,广泛应用于金属加工、汽车制造、航空航天等领域。
本设计旨在基于六轴焊接机器人实现一种自动焊接系统,提高焊接质量和生产效率。
本文将从系统需求分析、机器人选型、系统设计、控制策略和实验验证等方面进行阐述。
二、系统需求分析1.硬件需求系统应选用能够满足焊接需求的六轴焊接机器人。
同时,还需要焊接头部、摇臂、控制系统和传感器等硬件设备。
2.软件需求系统设计应具备焊接路径规划和控制算法、运动方案生成和优化算法、实时监控与调整算法等功能。
3.功能需求系统应具备焊点检测、焊缝跟踪、焊接参数调整等功能,适应不同焊接需求。
三、机器人选型在六轴焊接机器人中,应首选与焊接操作相匹配的工作负载能力和尺寸。
同时,需考虑机器人的控制精度和可编程性,以达到对焊接路径的精确控制和实现不同焊接需求的灵活性。
四、系统设计1.焊接路径规划根据焊接物体的三维模型,将焊点转化为坐标系上的位置,确定焊缝的路径。
采用快速逼近算法生成规划路径,并实现对路径的优化。
2.控制策略设计并实现适应给定焊接路径的控制策略,包括PID控制、反馈控制和前馈控制等。
通过调整焊接参数,提高焊接质量。
3.传感器集成通过集成视觉传感器,实现焊点检测和焊缝跟踪,并利用传感器数据对焊接路径进行调整,维持焊接的准确性。
五、实验验证在实验中,通过焊接机器人完成一系列焊接任务,并对焊接质量进行评估。
通过实时监控焊接过程中的参数和数据,验证系统的性能和可靠性。
六、结论本设计基于六轴焊接机器人,通过软硬件设备的配合,实现了一种自动焊接系统。
该系统具备焊接路径规划、控制策略设计、传感器集成等功能,并通过实验验证了系统的可行性。
未来可以在该系统的基础上进一步优化焊接路径规划算法和控制策略,提高系统的自动化水平和焊接质量。
机械手毕业设计机械手毕业设计在现代工业领域中,机械手作为一种重要的自动化设备,广泛应用于各个领域。
它能够完成各种复杂的操作任务,如装配、搬运、焊接等,极大地提高了生产效率和质量。
因此,机械手的设计和研发成为了许多工程师和学生的热门课题之一。
在本文中,我将分享我在大学期间进行的机械手毕业设计的经历和心得。
首先,我选择了一个六自由度的机械手作为我的毕业设计项目。
这个机械手由六个关节组成,能够模拟人手的动作,实现精准的抓取和放置。
为了完成这个设计,我进行了大量的研究和学习。
我深入了解了机械手的结构和工作原理,学习了相关的机械设计和控制理论。
通过阅读专业书籍和论文,我逐渐掌握了机械手的设计和控制方法。
接下来,我开始进行机械手的具体设计。
我使用了CAD软件进行三维建模,并进行了强度和运动学分析。
通过这些分析,我能够确定机械手的结构参数和关节运动范围,以确保其能够满足设计要求。
在设计过程中,我还考虑了机械手的可制造性和可维修性,以提高其实用性和可靠性。
在机械手的设计完成后,我开始进行控制系统的设计。
我选择了基于微控制器的控制方案,使用编程语言编写了相应的控制程序。
通过传感器和编码器的反馈,我能够实时监测机械手的位置和力量,并进行相应的控制。
为了提高机械手的控制精度和稳定性,我还进行了PID控制器的调试和优化。
在整个设计过程中,我遇到了许多挑战和困难。
例如,机械手的关节运动范围和力量要求的平衡,以及控制系统的稳定性和响应速度等。
为了解决这些问题,我进行了大量的实验和测试。
通过不断地调整和改进,我最终成功地完成了机械手的设计和调试。
通过这个毕业设计项目,我不仅学到了许多机械设计和控制理论,还提高了自己的问题解决和团队合作能力。
在整个设计过程中,我与我的导师和同学们进行了积极的讨论和交流,从他们的经验和建议中受益匪浅。
此外,我还学会了如何进行科学研究和实验,如何撰写科技论文和报告等。
总结起来,机械手毕业设计是一项充满挑战和乐趣的任务。
机械手毕业设计1. 引言机械手,也称为机器手臂,是一种用于辅助、自动执行一系列工业任务的机械装置。
随着科技的不断发展,机械手在生产制造领域得到了广泛应用。
本文旨在介绍一个关于机械手的毕业设计项目,包括设计背景、目标、可行性分析,以及具体的设计方案和实施计划。
2. 设计背景目前,各个行业的生产制造过程中都需要使用机械手来完成繁重、危险或精密的工作。
为了提高工作效率和质量,设计与开发一个高效、精确的机械手成为迫切需求。
3. 设计目标本毕业设计旨在设计一个具有以下特点的机械手:•稳定性:机械手必须能够在不同工作环境下保持稳定,并且能够承受合适的负荷。
•灵活性:机械手需要具备足够的灵活性和适应性,能够完成不同种类的任务。
•精度:机械手在执行任务时需要具备较高的定位精度,以确保工作的准确性。
•自动化:机械手需要具备一定的自主决策和自动化能力,能够根据任务需要进行自主操作。
4. 可行性分析在设计过程中,我们进行了可行性分析来评估设计方案的可行性。
可行性分析包括以下几个方面:•技术可行性:通过相关的技术研究和实验,我们确定设计方案具备可行性。
•经济可行性:我们评估了设计和制造机械手所需要的成本,并进行了成本效益分析,确认项目的经济可行性。
•时间可行性:我们制定了详细的项目计划,并评估了完成设计和制造所需要的时间,确认项目的时间可行性。
基于可行性分析的结果,我们确定了毕业设计的可行性,并继续进行了后续工作。
5. 设计方案基于设计目标和可行性分析的结果,我们提出了下面的设计方案:•选择适当的机械结构:根据任务的特点和要求,我们选择了合适的机械结构,包括关节式和平行式机械手臂。
•配置合适的传感器:为了提高机械手的反馈控制能力,我们配置了合适的传感器,例如位置传感器、力传感器和视觉传感器等。
•开发控制系统:我们设计和开发了机械手的控制系统,包括硬件和软件部分。
控制系统能够实现机械手的运动控制、力控制和视觉控制等功能。
机械手毕业设计说明书一、设计目的本毕业设计旨在设计一种机械手,能够根据预先设定的程序自动执行各种操作。
通过该设计,可以提高工作效率,减少人力成本,同时具备高精度和高可靠性。
二、设计背景近年来,随着工业自动化的不断发展,机械手在工业生产中的应用越来越广泛。
机械手凭借其高速、高精度、高可靠性等优势,成为工厂生产线上的重要设备之一。
因此,设计一种功能强大的机械手对于工业生产的提升具有重要意义。
三、设计内容1.机械结构设计本设计采用七自由度机械手结构,包括基座、旋转关节、摇摆关节、剪切关节以及爪子等部分。
结构设计中要考虑刚性、稳定性以及重量平衡等因素,确保机械手能够准确地执行各种操作。
2.传感器系统设计为了使机械手具备自主感知能力,本设计将配备多种传感器,如力传感器、视觉传感器等。
通过传感器系统的设计,机械手可以根据实时的反馈信息进行运动控制,提高操作的准确性和安全性。
3.运动控制系统设计运动控制系统是机械手的核心部分,本设计将采用PLC (可编程逻辑控制器)作为控制器,结合伺服驱动器实现机械手的精确定位和协调运动。
通过编写程序,机械手可以根据预先设定的路径和信号执行各种操作。
四、设计过程1.需求分析针对机械手的应用场景和功能需求,进行需求分析。
确定机械手所需执行的任务类型、速度要求、负载能力等。
2.机械结构设计根据需求分析,设计机械手的结构,包括基座、旋转关节、摇摆关节、剪切关节和爪子等。
进行力学分析和模拟,确保结构设计的合理性和可靠性。
3.传感器系统设计根据需求分析,确定机械手所需的传感器类型和数量。
选择合适的传感器并安装在机械手上,设计传感器的接口电路和数据处理算法。
4.运动控制系统设计选择合适的PLC和伺服驱动器,进行硬件选型和连接。
编写控制程序,实现机械手的位置控制、速度控制和力控制等功能。
5.整体集成与测试将机械结构、传感器系统和运动控制系统进行整体集成。
进行系统测试,检验机械手的功能和性能是否满足设计要求。
机械手设计的毕业论文机械手设计机械手是现代工业中常见的机器人之一,由于其具有多自由度、高精度、高速度和高可靠性等优点,已被广泛应用于各个领域,如汽车制造、电子工业、医药行业等。
本文旨在设计一款具有5自由度的机械手,并通过实验验证其性能。
1. 设计目标本文设计的机械手需要满足以下要求:1)5自由度,能够完成物体的抓取、放置等动作。
2)控制系统采用开放式控制系统,便于后期升级和维护。
3)运动精度高,误差小于0.1mm。
4)机械手材料要轻、耐用、适应各种环境。
2. 设计方案2.1 机械手结构本文设计的机械手采用5自由度结构,由机座、立柱、机械臂、手腕和手爪组成。
其中,机座为底部固定部分,立柱为支撑机械臂的部分,机械臂由两节横臂和一个竖臂组成,手腕部分由旋转机构和电机驱动,手爪部分采用夹爪结构。
2.2 机械手控制系统本文设计的机械手控制系统采用开放式控制系统,主要由运动控制器和电机驱动器组成。
其中,运动控制器采用嵌入式控制器,可以实现机械手的位置控制、速度控制和力控制等功能;电机驱动器采用步进电机或直流电机,可以实现机械手各关节的转动。
2.3 机械手传感器为了实现机械手的精准控制,本文设计了多种传感器。
其中,位置传感器用于测量机械臂和手腕的位置关系;压力传感器和力传感器用于测量机械手的终端执行器上施加的力,以实现力控制;光电传感器用于检测物体的位置和大小,以实现对物体的抓取和放置。
3. 实现过程3.1 机械手结构制作本文设计采用了轻质的铝合金材料制作机械手结构,可轻松实现多种姿态和拓扑结构的改变。
通过平面布局和实体设计,确保各组件作用协调,避免机械手扭曲变形和故障。
3.2 控制系统设计机械手采用基于嵌入式控制器的现代控制技术,集成多种运动控制和检测传感器的系统,实现了可编程控制和高速运动。
3.3 实现性能测试机械手的运动精度、速度和力度可以用基本测试方法测量,主要通过控制器的调整和传感器测量来实现。
通过实验验证,本文设计的机械手成功实现了5自由度控制、精度达到0.1mm、速度达到30m/min、负载能力大于5kg的要求。
VI1.1论文的选题意义第1章绪论自动化的焊接机器人能提供稳定地焊接质量,减轻人的劳动强度,提高工作效率,降低生产成本,在工业领域得到了广泛的应用。
但应用于工业生产中的焊接机器人大多是固定的,主要通过机械臂的活动来工作,又由于空间的限制使得机器人的工作范围、工作对象大大受到限制。
在大型工件,如:石化工业中的大型储油罐、球罐、管道的焊接,多在现场作业,焊接位置手工作业难以达到,恶劣的工作环境不仅增大了工人的劳动强度,而且影响焊接质量.工程应用中亟待开发出能够取代工人手工操作的低成本自动化的焊接设备,以减少生产过程中人为因素的影响,提高焊接质量,这些情况都对移动焊接机器人的研究和应用提出了迫切的要求。
现在,国外在这方面的技术基本成熟,但国内各单位对这些技术的了解有相当部分还停留在文献上或局部上。
所以应该从基本做起,开展一些基础技术研究作为机器人课题的主要研究与开发内容之一。
1.2焊接机器人的发展历程自从世界上第一台工业机器人UMMATE于1959年在美国诞生以来,机器人的应用和技术发展经历了三个阶段:第一代是示教再现型机器人.这类机器人操作简单,不具备外界信息的反馈能力,难以适应工作环境的变化,在现代化工业生产中的应用受到很大限制。
第二代是具有感知能力的机器人.这类机器人对外界环境有一定的感知能力,具备如听觉、视觉、触觉等功能,工作时借助传感器获得的信息,灵活调整工作状态,保证在适应环境的情况下完成工作.第三代是智能型机器人。
这类机器人不但具有感觉能力,而且具有独立判断、行动、记忆、推理和决策的能力,能适应外部对象、环境协调地工作,能完成更加复杂的动作,还具备故障自我诊断及修复能力.焊接机器人就是在焊接生产领域代替焊工从事焊接任务的工业机器人。
早期的焊接机器人缺乏“柔性",焊接路径和焊接参数须根据实际作业条件预先设置,工作时存在明显的缺点。
随着计算机控制技术、人工智能技术以及网络控制技术的发展,焊接机器人也由单一的单机示教再现型向以智能化为核心的多传感、智能化的柔性加工单元(系统)方向发展¨。
机械手毕业设计范文首先,机械手的结构设计是整个毕业设计的核心。
机械手通常由多个关节组成,每个关节通过电机驱动实现运动。
在设计关节结构时,需要考虑到工作负载、运动范围以及速度等因素。
一般来说,机械手的关节应该具备足够的承重能力,能够灵活地移动,并且能够在不同的工作环境下保持稳定。
此外,关节之间的连接采用合适的联接方式,如球接头或者滑动联接,以保证机械手的灵活度。
其次,控制系统是机械手设计中不可或缺的一部分。
控制系统负责接收用户输入的指令,并通过编程转化为机械手的运动。
在设计控制系统时,需要选择合适的控制器和传感器。
控制器可以是单片机、PLC或者计算机等,其根据输入的指令来控制关节的运动。
传感器则用于获取机械手与环境之间的信息,包括位置、力度和重量等。
这些信息能够帮助机械手实时地调整、适应不同的工作环境。
最后,操作便捷性也是机械手设计中需要考虑的因素之一、机械手的操作界面应该设计得简单易用,以便用户能够快速上手。
操作界面可以是一个触摸屏或者物理按钮等。
此外,机械手的操作也可以通过编程实现自动化,将一定的动作和指令存储在内存中,可以实现重复操作,提高工作效率。
为了验证机械手设计的可行性和性能,可以进行实验验证。
可以设计一些标准化的任务,如拾取物体、拧紧螺丝等,通过不同参数的调整以及不同工作环境下的实验来评估机械手的性能。
综上所述,机械手的毕业设计需要综合考虑结构设计、控制系统和操作便捷性等因素。
设计一个稳定、高效、易用的机械手可以提高工业生产效率和质量,具有广阔的应用前景。
通过实验验证可以得到机械手设计的可行性和性能,同时也可以为未来的研究提供基础。
总结一下,机械手的毕业设计需要考虑结构设计、控制系统和操作便捷性等因素。
合理选择关节结构和联接方式,设计适合的控制系统和传感器,以及简单易用的操作界面。
通过实验验证可以评估机械手的性能。
机械手的设计具有重要的意义和应用前景,可以提高工业生产的效率和质量。
┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊专用焊接机器人设计[摘要]焊接机器人具有焊接质量稳定、改善工人劳动条件、提高劳动生产率等特点,广泛应用于汽车、工程机械、通用机械、金属结构和兵器工业等行业。
据不完全统计,全世界在役的工业机器人中大约有一半用于各种形式的焊接加工领域。
机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术。
从国内外研究现状来看,焊接机器人技术研究主要集中在焊缝跟踪技术、离线编程与路径规划技术、多机器人协调控制技术、专用弧焊电源技术、焊接机器人系统仿真技术、机器人用焊接工艺方法、遥控焊接技术七个方面。
本次设计所用的焊接机器人主要用于客车车窗焊缝的焊接。
目的是减少人力劳动强度、提高工作效率,可以在一些人工焊接不方便的位置工作,同时减少焊接时的火花及烟雾对人体造成的伤害。
设计主要是决定机器人的类型、自由度数、工作的范围。
根据设计要求计算缸体、轴、齿轮等部件选用是否合理,能否完成所需工作。
[关键词]焊接机器人齿轮轴经济┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊Special welding robot design[Abstract]Welding robot has the stable welding quality, improve labor condition, improve labor productivity and other characteristics, widely used in automobile, engineering machinery, general machinery, metal structure and weapon industry and other industries. According to incomplete statistics, in service of the world's industrial robots for about half of all kinds of welding processing field.Robotics is a combination of computer, information, cybernetics, agencies and sensing technology, artificial intelligence, bionics and other multi-disciplinary and formation of the new and high technology. From the research status at home and abroad, welding robot technology research mainly concentrated in the seam tracking technology, off-line programming and path planning technology, multi-robot coordinated control technology, special technology, welding robot arc welding power source system simulation technology, robot welding method, welding technology in seven aspects.The design used in the welding robot is mainly used for passenger car window seam welding. Purpose is to reduce human labor intensity, improve work efficiency, and can work in some manual welding are not convenient location, at the same time reduce the welding sparks and smoke when the damage to the human body.Design is mainly the type of robot, the degrees of freedom, the scope of work. According to the requirement of design calculation cylinder body, shaft, gear and other components to choose whether reasonable, whether the work needed to complete.[Keywords]The welding robot gear shaft economic┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊目录前言 (1)第1章焊接机器人概述 (2)1.1 焊接机器人概念 (2)1.2 国内外研究状况及发展趋势 (2)1.2.1 焊接机器人的发展历程 (2)1.2.2 焊接机器人国内外应用现状 (2)1.2.3 我国焊接机器人的应用状况 (3)1.3 焊接机器人技术的研究现状 (4)1.3.1 焊缝跟踪技术 (4)1.3.2 离线编程与路径规划技术 (5)1.3.3 多机器人协调控制技术 (5)1.3.4 专用弧焊电源 (6)1.3.5 仿真技术 (6)1.3.6 机器人用焊接工艺方法 (6)第2章焊接机器人信息及选型 (8)2.1技术指标 (8)2.1.1 技术参数 (8)2.1.2 设计要求 (9)2.2 机器人的选择 (9)2.2.1 圆柱坐标型 (9)2.2.2 极坐标型 (9)2.2.3 直角坐标型 (10)2.2.4 多关节型 (10)第3章拟定总体方案 (11)3.1基本设计依据 (11)3.2 方案选定 (11)3.3 总体设计 (11)3.3.1 选择机型 (12)3.3.2 确定总体性能参数 (12)3.3.3 总体布局及各部件的结构形式 (12)第4章设计计算 (13)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊4.1.臂部伸缩油缸的设计计算 (13)4.1.1 确定活塞杆的材料 (13)4.1.2 按强度条件确定活塞杆的直径 (13)4.2 垂直升降油缸的计算 (14)4.2.1 活塞杆的直径 (14)4.3 腕部回转力矩的计算 (15)4.3.1 腕部回转支撑的摩擦力矩 (15)4.3.2 惯性力矩 (15)4.4 手臂回转后液压缸的设计计算 (15)4.4.1 手臂回转时所需的驱动力矩 (15)4.4.2 驱动力矩的计算 (16)4.4.3 回转缸内径的计算 (16)4.5 工作台驱动器缸设计计算 (16)4.6 调整电机选择 (17)4.7 焊接机械手的驱动系统设计及计算 (17)4.7.1 驱动系统概况 (17)4.7.2 计算参数 (18)4.7.3 由已知参数绘制工况图 (19)4.7.4 拟定液压回路 (21)4.7.5 编制程序 (21)4.8 齿轮的计算及校核 (23)4.8.1 总传动比的确定 (23)4.8.2 设计准则 (24)4.8.3 计算基本尺寸 (25)4.8.4 校核齿根弯曲疲劳强度 (25)4.9 轴的计算及校核 (26)4.9.1 轴材料选择 (26)4.9.2 轴的校核 (26)第5章经济技术分析 (28)5.1 技术评价 (28)5.2 产品的经济评价 (28)结论 (30)致谢 (32)参考文献 (33)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊前言工业机器人是二十世纪五十年代发展起来的机电一体化产品,他是新型独立的自动化装置,他在生产中的应用标志着世界工业技术的发展。
毕业设计-机械手毕业论文机械手毕业设计目录摘要.............................. 错误!未定义书签。
第1章绪论 (1)1.1 课题背景 (1)1.2 机械手的定义与分类 (2)1.3 机械手应用及组成结构 (2)1.4 机械手的发展趋势 (3)1.5 总体设计要求 (4)第2章 PLC的介绍与选择 (5)2.1 PLC的特点 (5)2.2 PLC的选型 (6)2.3 三菱FX系列的结构功能 (7)第3章各功能实现形式与控制方式 (9)3.1 本机械手模型的机能和特性 (9)3.2 夹紧机构 (9)3.3 躯干 (10)3.4 旋转编码盘 (10)第4章控制系统设计 (11)4.1 控制系统硬件设计 (11)4.1.1 PLC梯形图中的编程元件 (12)4.1.2 PLC的I/O分配 (12)4.1.3 机械手控制系统的外部接线图 (14)4.2 控制系统软件设计 (15)4.2.1 公用程序 (15)4.2.2 自动操作程序 (17)4.2.3手动单步操作程序 (22)4.2.4 回原位程序 (24)4.3 PLC程序的上载和下载......... 错误!未定义书签。
4.3.1 PLC程序的上载........ 错误!未定义书签。
4.3.2 PLC程序的下载........ 错误!未定义书签。
第5章设计小结...................... 错误!未定义书签。
致谢 (28)参考文献 (29)第1章绪论1.1 课题背景随着现代工业技术的发展,工业自动化技术越来越高,生产工况也有趋于恶劣的态势,这对一线工人的操作技能也提出了更高的要求,同时操作工人的工作安全也受到了相应的威胁。
工人工作环境和工作内容也要求理想化简单化,对于一些往复的工作由机械手远程控制或自动完成显得非常重要。
这样可以避免一些人不能接触的物质对人体造成伤害,如冶金、化工、医药、航空航天等。
在机械制造业中,机械手应用较多,发展较快。
焊接机器人毕业设计焊接机器人毕业设计随着科技的不断发展,机器人技术在各个领域得到了广泛应用。
其中,焊接机器人作为一种自动化设备,已经在工业生产中发挥了重要作用。
本文将探讨焊接机器人毕业设计的相关内容,包括设计目标、工作原理、技术难点和未来发展趋势等。
一、设计目标焊接机器人毕业设计的首要目标是设计一种能够自动完成焊接任务的机器人系统。
该系统应具备高效、精确、稳定的焊接能力,并能根据不同的焊接要求进行灵活调整。
此外,设计过程中还应考虑到成本、安全性和可维护性等因素。
二、工作原理焊接机器人的工作原理主要包括以下几个方面:1. 传感器控制:通过激光传感器、视觉传感器等感知设备,获取焊接目标的位置和形状信息,从而实现自动对焊接路径的规划和调整。
2. 运动控制:通过电机和伺服系统控制机器人的运动,使其按照预定的路径和速度进行焊接操作。
运动控制系统需要具备高精度和高速度的特点,以确保焊接质量和效率。
3. 焊接控制:通过焊接电源和焊接枪等设备,控制焊接参数,如电流、电压和焊接速度等,以实现焊接过程中的熔化和固化。
三、技术难点焊接机器人毕业设计中的技术难点主要包括以下几个方面:1. 路径规划:如何根据焊接目标的形状和尺寸,确定机器人的运动路径,使其能够在焊接过程中保持一定的速度和稳定性,是一个关键问题。
2. 焊接参数控制:如何根据不同焊接材料和焊接要求,调整焊接参数,以实现焊接质量的稳定和一致性,是一个具有挑战性的任务。
3. 感知与反馈:如何通过传感器获取焊接过程中的实时信息,并及时反馈给控制系统,以实现对焊接过程的实时监控和调整,是一个关键技术。
四、未来发展趋势随着科技的不断进步,焊接机器人毕业设计在未来有着广阔的发展前景。
以下是一些可能的发展趋势:1. 智能化:随着人工智能技术的发展,焊接机器人将更加智能化,能够根据不同的焊接任务和环境条件,自动调整焊接参数和路径,提高焊接质量和效率。
2. 多功能化:焊接机器人将不仅仅局限于焊接任务,还能够完成其他相关工作,如拆卸、装配和检测等,提高生产线的灵活性和多样化。
焊接机器人设计毕业论文摘要[0001]本发明涉及一种用来电阻焊工作的焊接机器人,它包括一个焊钳(21),一个焊接电流发生器(1),发生器连接在焊钳上的焊接电极(24,25),在电阻焊工作中为焊接电极提供电能,一个工业机器人。
工业机器人包括机器人手臂(2)和用于控制手臂移动的机械手控制装置(9)。
焊钳被连接到机器人手臂上,机械手控制装置被连接到焊接电流发生器和一个焊钳的钳驱动器上。
描述:本发明涉及一种焊接机器人。
[0002]DE 31 15 840 A1中介绍了焊接所用电阻,其特征在于,在焊接过程中,两焊接电极之间的电阻以参考电阻曲线为基准,随着电焊条接触力的变化而自动调整,此外,焊接电极所用的电压亦被调整至参考电位曲线上。
[0003]EP 1 508 396 B1 中介绍了焊接所用机器人,包括工业机器人和连接在机器人手臂上的焊钳。
焊钳,跟随机器人手臂移动,包含有两个电极臂,一个用来驱动电极臂的电动机,还有用于测量电机臂施加的接触力大小的力传感器。
该焊接装置还包括一个校正装置,根据实际接触力与理论接触力的偏差值,确定一个合适的变量来校正电动马达的位置。
[0004]本发明的目的是提供一种改善的焊接机器人。
[0005]本发明旨在创造一种用于电阻焊的新型焊接机器人,它包含以下几个方面:[0006]焊钳,由钳驱动器和两焊接电极构成,由钳驱动器驱动,在焊接机器人工作中,对至少两个要进行电阻焊接的材料加压。
[0007]焊接电流发生器,连接到焊机电极上,电阻焊工作中为焊接电极提供电能。
[0008]工业机器人,由机械手臂、机械手控制装置构成,控制装置用于控制机械手臂的移动,其中机器人手臂配置有为数众多的相互连接的肢,驱动连接到控制装置,焊钳连接到焊接电流发生器和钳驱动器上,在控制平台运行的电脑程序控制机械手臂的移动驱动器,钳驱动器也被设定好的模式控制着,使得在进行电阻焊作业时,预期的电位可以应用于焊接电极上,同时,也可以使得焊接电流发生器为焊接电极提供预期的电能。
机械手毕业设计论文机械手毕业设计论文引言:机械手作为一种重要的工业自动化装备,广泛应用于制造业、医疗领域和科学研究等多个领域。
本篇论文将探讨机械手的设计和应用,以及在毕业设计中的具体应用案例。
一、机械手的设计原理和结构机械手的设计原理基于机械、电气和控制等多学科的知识。
机械手的结构通常包括机械臂、末端执行器和控制系统。
机械臂由多个关节连接而成,通过电机驱动实现运动。
末端执行器可以是夹爪、吸盘或其他形式的装置,用于完成具体的任务。
控制系统通过传感器获取环境信息,并通过算法和控制器实现对机械手的控制。
二、机械手在制造业中的应用机械手在制造业中扮演着重要的角色。
它可以代替人工完成重复性、危险或繁琐的任务,提高生产效率和产品质量。
例如,在汽车制造过程中,机械手可以完成零件的搬运、焊接和喷涂等工作。
在电子产品制造中,机械手可以完成元件的装配和检测等工作。
机械手的应用不仅提高了生产效率,还减少了人力成本和劳动强度。
三、机械手在医疗领域中的应用机械手在医疗领域中的应用也日益广泛。
它可以用于手术辅助、康复治疗和医疗器械的研发等方面。
例如,在微创手术中,机械手可以通过微小的切口进入人体,完成精确的手术操作,减少手术创伤和恢复时间。
在康复治疗中,机械手可以模拟人体运动,帮助患者进行康复训练。
机械手在医疗领域的应用为患者提供了更安全、准确和有效的治疗手段。
四、机械手在科学研究中的应用机械手在科学研究中也发挥着重要的作用。
它可以用于实验室中的样品处理和实验操作,提高实验的自动化程度和准确性。
例如,在生物学研究中,机械手可以自动完成细胞培养、药物筛选和基因测序等实验操作。
在物理学研究中,机械手可以用于材料测试和器件制备等实验。
机械手的应用为科学研究提供了更高效、精确和可重复的实验手段。
结论:机械手作为一种重要的工业自动化装备,广泛应用于制造业、医疗领域和科学研究等多个领域。
通过对机械手的设计和应用进行论述,可以看出机械手在提高生产效率、改善医疗治疗和推动科学研究等方面具有重要的意义。
学士学位毕业论文(设计)基于SolidWorks六自由度焊接机械手三维运动模拟学生姓名:学号:指导教师:所在学院:工程学院专业:机械设计制造及其自动化摘要本文以六自由度焊接机械手部的三维运动仿真为背景。
介绍了国内外焊接机器人的发展状况并着重分析了六自由度焊接机械手运动原理和三维制图软件SolidWorks的应用,在此软件基础上对手部进行了绘制,运动分析和动画模拟。
对于SolidWorks制图软件主要介绍了其产生和发展的历史以及应用前景,具体介绍了零件三维制图的操作方法和运动过程,展示了SolidWorks强大的运动仿真功能。
重点分析了六自由度机械手的三维建模和建模后运动轨迹规划的实现关键词:SolidWorks ; cosmosmotion ; 三维运动模拟; 动画模拟AbstractIn this paper, welding robot of six degrees of freedom of hand motion simulation for the three-dimensional background. Welding robot at home and abroad and focus on the development of analysis of the welding robot of six degrees of freedom of hand movement and three-dimensional mapping principle SolidWorks software applications based on this software in the department of drawing opponents, motion analysis and animation simulation. Mapping software for SolidWorks introduces the emergence and development of its history and application specific parts introduced the method of operation of three-dimensional graphics and motion simulation of the operation of plug-ins COSMOSMotion process, demonstrated the powerful movement SolidWorks simulation. Analysis focused on the six degrees of freedom robot armmodeling of three-dimensional modeling and trajectory planning, after the realization of Key words::SolidWorks ; cosmosmotion ; simulation of 3D motion ; Animated Simulation目录摘要 (Ⅰ)前言 (1)第1章焊接机器人概述 (2)1.1 焊接机器人的发展 (2)1.1.1 国外焊接机器人的发展 (2)1.1.2 国内焊接机器人研究的历史及现状 (3)1.1.3 焊接机器人应用现状 (3)1.1.4 焊接机器人的发展趋势 (4)1.2 焊接机械手的组成、分类 (4)1.2.1 组成 (4)1.2.2 分类 (6)1.3 基本型式 (7)1.3.1 直角坐标式机械手 (7)1.3.2 圆柱坐标式机械手 (7)1.3.3 关节式机械手 (8)第2章计算机辅助设计和SolidWorks软件的发展 (9)2.1 计算机辅助设计的发展 (9)2.2 软件的特点及前景 (9)2.3 COSMOSMotion的应用及特点 (10)第3章焊接机械手的设计思想 (12)3.1 机械手特性方程式 (12)3.2 手臂的设计计算 (14)3.2.1 驱动力的计算 (14)3.2.2 水平回转时驱动力矩的计算 (14)3.2.3 偏重力矩的计算 (15)3.2.4焊接机械手各零部件的设计 (16)第4章三维实体建模 (25)4.1 模拟方案的确定 (25)4.2 仿真实体的绘制 (26)4.3 简单数学模型的建立 (26)4.4 模拟加载与仿真 (28)4.4.1 仿真模拟的实现 (28)4.4.2 进行运动校核 (30)4.4.3 结语 (30)总结 (31)致谢 (33)前言机械手是能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。
摘要随着科技的发展和工业需求的增加,焊接技术在工业生产中所占据的分量越来越大,而且焊接技术的优良程度直接影响着零件或产品的质量。
国内焊接机器人应用虽已具有一定规模,但与我国焊接生产总体需求相差甚远。
因此,大力研究并推广焊接机器人技术势在必行。
本设计的重点是运用机械原理和机械制造装备设计方法设计焊接机器人的实践和方法。
本次设计,是在了解焊接机器人在国内外现状的基础上,进而掌握焊接机器人内部结构和工作原理,并对手臂和腕部进行结构设计。
合理布置了液压缸。
同时了解机器人机械系统运动学及运动控制学。
为工业上焊接机器人的设计提供理论参考、设计参考和数据参考,为工业设计者提供设计理论和设计实践的参考。
该机器人具有刚性好,位置精度高、运行平稳的特点。
关键字:焊接机器人液压系统机械机构设计AbstractWith the development of technology and the increase in industrial demand, welding in industrial production occupied more and more weight, and excellent welding technology directly affects the degree of the quality of parts or products.Although the domestic application of welding robot with a certain scale, but falls far short of the overall demand for welding.Therefore, great efforts to study and promote the welding robot technology is imperative.The focus of this design is the use of mechanical theory and design of machinery and equipment design and methods of practice welding robot.The design of the welding robot in understanding the basis of the status quo at home and abroad, and then grasp the welding robot and working principle of the internal structure, and structural design of the arm and wrist.Rational arrangement of the hydraulic cylinder.At the same time understand the robot mechanical system kinematics and motion control study.For the design of industrial welding robots to provide a theoretical reference, reference and data reference design for industrial designers and design practice, design theory reference.The robot has a good rigidity, high precision location, stable characteristics.Keyword:Welding robot;hydraulic system;mechanical structure design目录摘要 (I)Abstract (II)目录.................................................................................................................. I II 第1章引言. (1)第2章焊接机器人的总体方案 (3)2.1 总体设计的思路 (3)2.2 自由度和坐标系的选择 (3)2.3 传动方案论证 (4)2.4 焊接机器人的组成 (6)2.4.1执行机构 (6)2.4.2控制系统分类 (8)2.5 焊接机器人的技术参数 (8)2.6 本章小结 (8)第3章腕部结构的设计及计算 (10)3.1 腕部设计的基本要求 (10)3.2 腕部结构及选择 (10)3.2.1典型的腕部结构 (10)3.2.2腕部结构和驱动结构的选择 (10)3.3 腕部结构设计计算 (11)3.3.1腕部驱动力计算 (11)3.3.2腕部驱动液压缸的计算 (11)3.4 液压缸盖螺钉的计算 (12)3.5 动片和输出轴间的连接螺钉 (13)3.6 本章小结 (13)第4章臂部结构的设计及计算 (15)4.1 臂部设计的基本要求 (15)4.2 手臂的典型机构以及结构的选择 (16)4.2.1手臂的典型运动机构 (16)4.2.2手臂运动机构的选择 (16)4.3 手臂直线运动的驱动力计算 (17)4.3.1手臂摩擦力的分析与计算 (17)4.3.2手臂惯性力的计算 (18)4.3.3密封装置的摩擦阻力 (18)4.4 液压缸工作压力和结构的确定 (18)4.5活塞杆的计算校核 (19)4.6 本章小结 (20)第5章机身结构的设计及计算 (21)5.1机身的整体设计 (21)5.2机身回转机构的设计计算 (22)5.3 机身升降机构的计算 (23)5.3.1 手臂偏重力矩的计算 (23)5.3.2 升降不自锁条件分析计算 (24)5.3.3 手臂做升降运动的液压缸驱动力的计算 (24)5.4 轴承的选择分析 (25)5.5 本章小结 (25)总结 (26)致谢 (27)参考文献 (28)第1章引言焊接机器人是从事焊接(包括切割与喷涂)的工业机器人。
焊接机器人毕业设计说明书一、引言二、设计目标本设计的主要目标是设计并实现一台能够完成焊接任务的机器人,具有以下特点:1.理论基础:基于焊接工艺学与自动化技术的基础,完成焊接机器人的设计。
2.结构合理:设计机器人的结构,使其能够适应不同的焊接作业,提高工作稳定性和精度。
3.控制系统完善:设计并实现相应的控制系统,使机器人能够精确地执行预定的焊接路径和动作。
4.安全可靠:考虑到焊接环境的特殊性,确保机器人在工作过程中满足相关的安全要求和标准。
三、设计思路1.结构设计:根据焊接任务的要求,设计机器人的结构,包括机械臂、焊枪、运动轨迹、夹具等,确保机器人能够完成焊接作业。
2.控制系统设计:设计机器人的控制系统,包括运动控制、焊接参数控制和人机界面等,使机器人能够精确、可靠地执行焊接任务。
3.安全设计:考虑机器人在焊接作业中的安全性,设计相应的安全装置和措施,预防事故发生。
4.自动化设计:设计机器人的自动化功能,如自动识别焊接位置、调整焊接参数等,提高焊接效率和质量。
四、设计步骤1.研究焊接工艺学和自动化技术的基本原理,了解焊接机器人的相关知识。
2.设计机器人的结构,确定机械臂的数量和长度、焊接枪的种类和参数等。
3.设计机器人的运动控制系统,包括电机驱动、传感器安装和运动轨迹规划等。
4.设计机器人的焊接参数控制系统,包括控制电路、控制算法和参数设置等。
5.设计机器人的人机界面,包括显示屏、按键和通信接口等。
6.设计机器人的安全系统,包括安全装置、急停开关和安全间隔等。
7.测试机器人的性能,包括焊接精度、稳定性和可靠性等。
8.完善机器人设计,解决存在的问题,并进行优化和改进。
五、预期成果1.完成一台能够实现焊接任务的机器人。
2.设计说明书、设计图纸和工作原理图。
3.相关测试数据和性能评估报告。
六、时间计划完成本设计需要大约12个月的时间,按下面的计划进行:1.理论学习和调研:2个月2.结构设计与优化:3个月3.控制系统设计与实现:3个月4.安全系统设计与测试:2个月5.性能测试与优化:2个月七、结论本设计说明书介绍了焊接机器人的设计目标、思路、步骤和预期成果。
机械手总体方案毕业设计引言:机械手是一种能够模拟人手动作的自动化装置,广泛应用于工业生产、医疗领域、科研实验等。
本总体方案旨在设计一台能够实现多自由度运动、具备灵活性和精确性的机械手。
一、设计目标:1.实现多自由度运动:机械手设计应具备足够的关节自由度,能够在不同方向和角度进行运动,适应不同工作场景的需求。
2.提高操作灵活性:机械手应具备灵活的手指和手腕,能够适应各种尺寸和形状的物体抓取,而不会因为形变而导致抓取失败。
3.实现精确控制:机械手的运动应具备高精度,并能够实现准确定位和精确操控。
4.提高安全性:机械手设计应考虑安全性,具备防护装置和自动停机等功能,确保操作人员的安全。
二、机械结构设计:1.关节设计:机械手应由多个关节组成,每个关节由电动机驱动,实现灵活的运动。
关节设计应具备足够的承载能力和稳定性,以确保机械手长时间运行的可靠性。
2.手指设计:机械手手指应具备可调节的灵活性,能够适应不同尺寸和形状的物体抓取。
手指可以采用弹性材料或具有可伸缩性的结构,以增加抓取的稳定性。
3.手腕设计:机械手腕部分应具备多自由度运动,既能够实现水平方向的旋转,又能够实现垂直方向的上下移动,以适应不同工作场景的需求。
4.传动系统设计:机械手的传动系统应选择合适的传动方式,如齿轮传动、链条传动等,以确保精确的位置控制和运动控制。
三、控制系统设计:1.电路设计:机械手的控制系统应包括电源、电机驱动器和数据传输装置。
电路设计应考虑供电稳定性、电磁干扰等因素,以确保机械手的正常运行。
2.传感器设计:机械手应搭载合适的传感器,用于感知物体的位置、形状和力度等参数,以实现对物体的准确抓取和操控。
3.控制算法设计:机械手的控制算法应具备实时性和精确性,能够根据传感器信息实现对机械手的准确控制。
常见的控制算法包括PID控制、模糊控制等。
4.用户界面设计:机械手的控制系统应提供友好的用户界面,使操作人员能够方便地操作机械手,并获取相关信息。
焊接机械手毕业设计【篇一:自动焊接机械手设计(毕业设计)】自动焊接机械手设计1 绪论1.1 技术概述工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作、自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。
特别适合于多品种、变批量的柔性生产。
它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。
机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域。
机器人应用情况,是一个国家工业自动化水平的重要标志。
机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上说它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设备,也是先进制造技术领域不可缺少的自动化设备。
1.2 现状及国内外发展趋势国外机器人领域发展近几年有如下几个趋势:(1)工业机器人性能不断提高(高速度、高精度、高可靠性、便于操作和维修),而单机价格不断下降,平均单机价格从91年的10.3万美元降至97年的6.5万美元。
(2)机械结构向模块化、可重构化发展。
例如关节模块中的伺服电机、减速机、检测系统三位一体化;由关节模块、连杆模块用重组方式构造机器人整机;国外已有模块化装配机器人产品问市。
(3)工业机器人控制系统向基于pc机的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,控制柜日见小巧,且采用模块化结构;大大提高了系统的可靠性、易操作性和可维修性。
(4)机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,装配、焊接机器人还应用了视觉、力觉等传感器,而遥控机器人则采用视觉、声觉、力觉、触觉等多传感器的融合技术来进行环境建模及决策控制;多传感器融合配置技术在产品化系统中已有成熟应用。
(5)虚拟现实技术在机器人中的作用已从仿真、预演发展到用于过程控制,如使遥控机器人操作者产生置身于远端作业环境中的感觉来操纵机器人。
(6)当代遥控机器人系统的发展特点不是追求全自治系统,而是致力于操作者与机器人的人机交互控制,即遥控加局部自主系统构成完整的监控遥控操作系统,使智能机器人走出实验室进入实用化阶段。
美国发射到火星上的“索杰纳”机器人就是这种系统成功应用的最著名实例。
(7)机器人化机械开始兴起。
从94年美国开发出“虚拟轴机床”以来,这种新型装置已成为国际研究的热点之一,纷纷探索开拓其实际应用的领域。
解决产业化前期的关键技术,对产品进行全面规划,搞好系列化、通用化、模化设计,积极推进产业化进程。
我国的智能机器人和特种机器人在“863”计划的支持下,也取得了不少成果。
其中最为突出的是水下机器人,6000米水下无缆机器人的成果居世界领先水平,还开发出直接遥控机器人、双臂协调控制机器人、爬壁机器人、管道机器人等机种;在机器人视觉、力觉、触觉、声觉等基础技术的开发应用上开展了不少工作,有了一定的发展基础。
但是在多传感器信息融合控制技术、遥控加局部自主系统遥控机器人、智能装配机器人、机器人化机械等的开发应用方面则刚刚起步,与国外先进水平差距较大,需要在原有成绩的基础上,有重点地系统攻关,才能形成系统配套可供实用的技术和产品,以期在“十五”后期立于世界先进行列之中。
1.3 “十五”目标及主要研究内容1.3.1目标中国工业机器人现在的总装机量约为1200台,其中国产机器人占有量约为1/3,即400多台。
与世界机器人总装机台数75万台相比,中国总装机量仅占万分之十六。
对中国这样一个12亿人口的大国来说,差距是很明显的。
装机数量少,说明了我国的工业化程度与工业发达国家的差距大。
因为工业机器人的诞生和应用发展是以工业生产高度自动化和柔性化为大背景的。
除数量外,差距还表现在已有的机器人的利用率不高,以进口的弧焊机器人为例,据调查,完全正常运转,充分发挥效益效益的只占1/3;另外1/3处于负荷不满或不能安全正常运转状态,原因是生产管理及使用维护存在不合理现象或问题;还有1/3不能正常使用,这是由于机器人质量问题或缺乏备件,以及请不起外方维修人员造成的。
机器人应用效果不理想,直接影响了用户使用更多机器人的信心。
我国有组织有计划地发展机器人事业,应该说是从“七五”期间的科研攻关及实施“863计划”开始的,经过十几年来的研制、生产、应用,从纵向看,有了长足的进步。
目前在一些机种方面,如喷涂机器人、弧焊机器人、点焊机器人、搬运机器人、装配机器人、特种机器人(水下、爬壁、管道、遥控等机器人),基本掌握了机器人操作机的设计制造技术,解决了控制,驱动系统的设计和配置、软件的设计和编制等关键技术,还掌握了自动化喷漆线、弧焊自动线(工作站)及其周边配套设备的全线自动通信、协调控制技术;在基础元件方面,谐波减速器、机器人焊接电源、焊缝自动跟踪装置也有了突破;于此同时造就了一支具有一定水平的技术队伍。
无疑,从技术方面来说,我国的机器人技术在世界机器人界已有一席之地,奠定了独立自主发展中国机器人事业的基础;从社会经济角度来看,我国机器人技术的发展,为中、外机器人产品打开中国市场准备了物质和人员条件。
根据国内外机器人发展的经验、现状及近几年的动态,结合当前国内经济发展的具体情况,“十五”期间机器人技术应重点开展智能机器人、机器人化机械及其相关技术的开发及应用;开展以机器人为基础的重组装配系统及其相关技术的开发研究及加强多传感器融合及决策、控制一体化技术及应用的研究。
重点解决我国已研制应用多年的示教再现型工业机器人的产业化前期关键技术,大力推进其产业化进程,力争在“十五”末期实现喷涂、焊接、装配等机器人的产业化。
1.3.2主要研究内容(1)示教再现型工业机器人产业化技术研究①关节式、侧喷式、顶喷式、龙门式喷涂机器人产品标准化、通用化、模块化、系列化设计。
②柔性仿形喷涂机器人开发:柔性仿形复合机构开发,仿形伺服轴轨迹规划研究,控制系统开发,整机安全防爆、防护技术开发,高速喷杯喷涂工艺研究。
③焊接机器人(把弧焊与点焊机器人作为负载不同的一个系列机器人,可兼作弧焊、点焊、搬运、装配、切割作业)产品的标准化、通用化、模块化、系列化设计。
④弧焊机器人用激光视觉焊缝跟踪装置的开发:激光发射器的选用,ccd成象系统,视觉图象处理技术,视觉跟踪与机器人协调控制。
⑤焊接机器人的离线示教编程及工作站系统动态仿真。
⑥电子行业用装配机器人产品标准化、通用化、模块化、系列化设计。
⑦批量生产机器人所需的专用制造、装配、测试设备和工具的研究开发。
(2)智能机器人开发研究①遥控加局部自主系统构成和控制策略研究包括建模-遥控机器人模型,人行为模型,人控制动态建模,图形仿真建模,虚拟工具和虚拟传感器建模;以人为主体的人机共享规划与控制;局部自治控制;多传感融合技术;双向力反应控制;知识库的建立,学习与推理方法;人机交互的高级控制技术;虚拟现实(vr)控制与真实世界控制的相互关系;监控系统的结构。
②智能移动机器人的导航和定位技术研究包括导航和定位系统的系统结构;在结构环境或非结构环境中导航和定位方法研究;感知系统的传感器和信息处理系统的构成;根据传感器数据建立环境模型的方法;模糊逻辑的推理方法用于移动机器人导航的研究。
③面向遥控机器人的虚拟现实系统包括人机交互图形生成及其程序设计;遥控机器人(载体和机械手)几何动态图形建模;遥控操作环境图形建模;遥控机器人操作与数据的获取;虚拟传感器及基于虚拟传感器的双向力反应、反馈控制;面向任务的虚拟工具;基于虚拟现实的遥控操作的理论与方法;基于vr模型操作和真实世界操作的可切换、相容性和可交换性;vr监控系统。
④人机交互环境建模系统包括cad建模中的人机交互技术;求知模型工件的反示过程中的交互技术;机器人与环境的布局及功能验证中的交互技术;传感器数据处理中的交互技术;机器人标定、运动学建模、动力学建模中的交互技术。
⑤基于计算机屏幕的多机器人遥控技术包括三维立体视觉建模;模型的计算机显示;遥控机器人模型的控制;人机接口;网络通讯。
(3)机器人化机械研究开发①并联机构机床(vmt)与机器人化加工中心(rmc)开发研究包括vmt与rmc智能化结构实现技术;vmt与rmc关键传动实现技术;vmt与rmc加工、装配、摆放、涂胶、检测作业技术;vmt与rmc监控检测技术开发;vmt与mrc智能化开式cmc控制系统开发;系统软件和应用软件开发;智能化机构、材料机电一体化技术;作业状态变量智能化传感技术;机电一体化的多功能及灵巧作业终端;通用智能化开式cnc控制硬软件系统;并联机构运动学及动力学理论;rmc智能控制理论;vmt与rmc典型应用工程开发。
②机器人化无人值守和具有自适应能力的多机遥控操作的大型散料输送设备包括散料输送系统监控和遥控操作的传感器融合和配置技术;采用智能传感器的现场总线技术;机器人运动规划在等量堆取料、自主操作中的应用;基于广域网的远程实时通讯;具有监测和管理功能的故障诊断系统。
(4)以机器人为基础的重组装配系统①开放式模块化装配机器人包括通用要素的提取;专用件标准化;装配机器人模块cad设计;通用主流计算机构造的控制器;人机界面方式;网络功能。
②面向机器人装配的设计技术【篇二:焊接机械手的结构毕业设计】焊接机械手的结构设计摘要本设计为焊接机械手的结构设计,主要研究内容:腰部回转机构的设计;大、小臂和腕部回转的结构设计。
本设计由整体布局入手,参考现有关节型机械臂的相关设计,初步确定腰部的转动惯量,从而确定电机的选型,安装等相关设计。
在机械臂的灵活和精度的前提下完成总体结构的设计,然后根据总体结构,从而确定本设计的机械臂各个主要零部件的设计。
在主要零部件的设计中,主要包括腰部壳体的设计、轴的结构设计、轴承的选择、电机的设计计算、大小臂的结构和固定等。
本设计整体在现有关节型机械臂的结构上做了修改,使得它能够更好的满足本设计的设计要求。
本设计结构简单、重量轻、外形尺寸小、设备费用低、运转安全、操作方便、便于维修和管理。
关键词:机械手;谐波减速器;结构设计abstractthe design for the design of welding structure of the manipulator, the main research contents: the design of the waist turning mechanism; structure design of large, small arm and wrist rotation.this design by the overall layout with reference to the relevant design, the existing joint type manipulator, preliminary determine the moment of inertia of the waist, so as to determine the motor selection, installation and other related design. complete the design of the overall structure of the flexible manipulator based on precision and the next, and then based on the overall structure, design of mechanical arm to determine the design of all the major components of the.the design of the main components, including the housing design, structural design of shaft, bearing selection, design and calculation of the size of motor, arm structure and fixed.the design of the whole made changes in the existing joint type manipulator structure, so that it can better meet the design requirement of this design. the design has simple structure, light weight, small size, low cost of equipment, operation safety, convenient operation, easy to repair and management.keywords:robot arm;harmonic drive;structure design目录1 绪论 ....................................................................................................... . (1)1.1 机器人简介 ....................................................................................................... .. 11.1.1 机器人的发展及应用 (2)1.1.2 点焊机器人介绍及其研究意义 (4)1.1.3 机器人的组成 (6)1.2 机械手的组成 (8)1.3 本文主要研究工作 ........................................................................................... 11 2 机械手的总体结构 (12)2.1 机械手总体结构的类型 (12)2.2 设计具体采用方案 ........................................................................................... 13 3 机械手腰部机座 (15)3.1 机械手腰部机座结构的设计 (15)3.2 机械手腰部机座设计的具体采用方案 (15)3.3 电动机的选择 (16)3.4 减速器的选择 (17)3.5 键的选择 ....................................................................................................... .... 18 4 机械手手臂的结构设计 (20)4.1 设计具体采用方案 (21)4.2 大臂电动机的选择 (21)4.3 大臂减速器的相关计算 (22)4.4 小臂电动机的选择 (23)4.5 小臂减速器的相关计算 ................................................................................... 24 5 机械手腕部的结构方案设计 (27)5.1 腕部电动机的选择 (27)5.2 腕部减速器的选择 ........................................................................................... 27 6轴承的选用与校核 ......................................................................................... 29 7 结论 ....................................................................................................... .............. 39 参考文献 ................................................................................... 错误!未定义书签。