六年级奥数题 (1)
- 格式:doc
- 大小:90.50 KB
- 文档页数:5
小学六年级经典奥数题(一)1、这2005个自然数依次写下来自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?2、A和B是小于100的两个非零的不同自然数。
求A+B分之A-B的最小值。
3、已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少?4、一个三位数的各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数。
5、一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数。
6、把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少?7、一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数。
8、有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数。
9、有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数。
10、如果现在是上午的10点21分,那么再经过28799┈99(共20个9)分钟之后是几点几分?小学六年级经典奥数题(二)1.今天是星期六,再过1000天是星期几?2.已知两个自然数a和b(a>b),已知a和b除以13的余数分别是5和9,求a+b,a-b,a×b,a的平方-b平方各自除以13的余数。
3.2100除以一个两位数得到的余数是56,求这个两位数。
4.被除数、除数、商与余数之和是903,已知除数是35,余数是2,求被除数。
5.用一个整数去除345和543所得的余数相同,且商相差9,求这个数。
6.有一个整数,用它去除312,231,123得到的三个余数之和是41,求这个数。
小学六年级奥数题(六篇)整理的《小学六年级奥数题(六篇)》相关资料,希望帮助到您。
【篇一】小学六年级奥数题 1、哥哥今年18岁,弟弟今年12岁。
当两人的年龄和是40岁时,兄弟两人各多少岁?2、甲、乙、丙三人各有若干本故事书,甲拿出自己的一部分书给乙、丙,例乙、丙两人的书增加一倍,乙拿出一部分书给甲、丙,使甲、丙两人的书增加一倍,丙也拿出一部分书给甲、乙,使甲、乙两人的书也增加一倍,这时甲、乙、丙三人的书都是16本。
甲、乙、丙原来各有多少本故事书?3、有一只水桶装满了8千克水,如果把这桶水平均分装在两只水桶内,两只水桶分别可装5千克与3千克。
最少需要倒多少次?4、甲、乙、丙三校在体育用品商店买了不同数目的足球,共48个。
第一次从甲校的足球中拿出与乙校个数相同的足球并入乙校;第二次再从乙校现有的足球中拿出与丙校个数相同的足球并入丙校;第三次又从丙校现有的’足球中拿出与这时甲校个数相同的足球并入甲校。
经过这样的变动后,三校足球的个数正好相等。
已知每个足球的售价是12元,问三校原来买的足球各值多少元?5、甲、乙两个油桶各装了15千克油,售货员卖了14千克。
后来,售货员从剩下较多油的甲桶倒一部分给乙桶,使乙桶的油增加一倍;然后又从乙桶倒一部分给甲桶,使甲桶的油也增加一倍;这时甲桶的油恰好是乙桶油的3倍。
问售货员从两个油桶里各卖了多少千克油?【篇二】小学六年级奥数题 1、求下列时刻的时针与分针所形成的角的度数。
(1)9点整(2) 2点整(3)5点30分(4)10点20分(5)7点36分2、从时针指向4点开始,再经过多少分钟,时针正好与分针重合?3、某人下午6点多外出时,看手表上两指针的夹角为1100,下午7点前回家时发现两指针夹角仍为1100,问:他外出多长时间?4、一点到两点之间,分针与时针在什么时候成直角?5、在3点至4点之间的什么时刻,钟表的时针和分针分别相互重合和相互垂直。
【篇三】小学六年级奥数题 1、小明和小英各自在公路上往返于甲、乙两地。
1.把33,51,65,77,85,91六个数分为两组,每组三个数,使两组的积相等,则这两组数之差为______.2.有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%,那么,这堆糖中有奶糖______块.3.某地区水电站规定,如果每月用电不超过24度,则每度收9分;如果超过24度,则多出度数按每度2角收费.若某月甲比乙多交了9.6角,则甲交了______角______分.4.某人工作一年酬金是1800元和一台全自动洗衣机.他干了7个月,得到490元和一台洗衣机,问这台洗衣机为多少元?5.一个长方体的体积为2009立方厘米,如果长、宽、高均为整数厘米,求几种长方体满足条件?6.2009的平方的约数有多少个?(看清楚是2009的”平方”的约数有多少个。
)7.某人从甲地到乙地,计划8点出发9点到达,在距中点2000米的地方修车10分钟,又提速1/4前进最后提前两分钟到达终点。
求原速度?8.有一项工程,按原计划甲、乙合作120天可以完工,后因特殊原因,甲队的工效提高20%,乙队的工效则下降了20%,因此比计划多用5天完成。
求甲队单独完成全部工程要用多少天?问题补充:是按原工效完成全部工程哦~!9.营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?10.有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?11.有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?12.用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?13.一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?14.运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?15.甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?16.某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?答案:1.(16)把各数因数分解.33=11×3;51=17×3;65=13×5;77=11×7;85=17×5;91=13×7,所以33×85×91=77×51×65故差为91+85+33-77-65-51=16.2.(9块)45%3.27角6分不妨设甲家用电x度,乙家用电y度,因为96既不是20的倍数,也不是9的倍数.所以必然甲家用电大于24度,乙家小于24度.即x>24≥y.由条件得.24×9+20(x-24)=9y+96,20x-9y=360,由9y=20x-360,20|9y,又(9,20)=1,所以|20y.当0≤y≤24时,y=20或0.而y=0即x=18<24,矛盾,故y=20,x=27.甲应交24×9+20×(27-24)=276(分)=27.6(角).4.(1344)设洗衣机x元,则每月应得报酬为:5.2009=1×7×7×41长宽高可以是:2009,1,1;1,7,287;1,41,49;7,7,416.20092有6个不同的约数:1、7、41、49、287、20097.解:设原速度为x千米/时,则甲乙两地相距x千米(60-2)/60=29/30(小时),10/60=1/6(小时)(1)在中点前2000米的地方修车则(0.5x-2)/x+1/6+(0.5x+2)/(1.25x)=29/30解得x=4(2)在中点后2000米的地方修车则(0.5x+2)/x+1/6+(0.5x-2)/(1.25x)=29/30解得x=-4不符题意,舍去答:原速度为4千米/时8.甲+乙=1/1204甲+4乙=1/30(1)1.2甲+0.8乙=1/125 6甲+4乙=1/25(2)(2)-(1)得:1.营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?2.有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?3.有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?4.用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?5.一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?6.运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?7.甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?8.某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?1.解:设有1元的x张,1角的(28-x)张x+0.1(28-x)=5.50.9x=2.7x=328-x=25答:有一元的3张,一角的25张。
一、分数的巧算(一) 年级 班 姓名 得分一、填空题1.计算:=÷-⨯+⨯2582.432.02588.6 . 2.=⨯÷⎪⎭⎫ ⎝⎛++1919989898199800980019001900980980190190989898191919 . 3.1000减去它的一半,再减去余下的三分之一,再减去余下的四分之一,依此下去,直到余下的五百分之一,最后剩下 .4.计算:=⨯+⋅⋅⋅+⨯+⨯+⨯100991431321211 . 5.计算:=+++++++496124811241621311814121 . 6.计算:=+--+3121131211 . 7.计算:=⨯+⨯+⨯655161544151433141 . 8.计算:=++⋅⋅⋅+++++⋅⋅⋅+++199719953991199619943989537425313199719961995199619951994543432321 . 9.计算:=⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫ ⎝⎛+⨯+⎪⎭⎫ ⎝⎛-⨯761231537615312353123176 . 10.计算:⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛+++20115110151161121814112191613181614121 = .二、解答题11.尽可能化简427863887116690151. 12.计算:⎪⎭⎫ ⎝⎛+⋅⋅⋅+-+-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛-+914637281941322314312213211211. 13.计算:1999321132112111+⋅⋅⋅++++⋅⋅⋅++++++. 14.计算: ⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-9997319896317531643153314231.———————————————答 案—————————————————————— 1. 513. 原式()12.48.62582582.42582588.6-+=-⨯+⨯= 51351610258==⨯=. 2. 19915. 原式101191019898191000198001000119001001980100119010101981010119⨯⨯⨯÷⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯+⨯⨯= 19981998981998199819⨯⨯⎪⎭⎫ ⎝⎛++= 19915192941998199898193==⨯⨯⨯=.3. 2 1000减去它的一半,余下⎪⎭⎫ ⎝⎛-⨯2111000,再减去余下的31, 余下⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯3112111000,再减去余下的41, 余下⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯4113112111000,…,直到减去余下的五百分之一,最后剩下: ⎪⎭⎫ ⎝⎛-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯500114113112111000 5004994332211000⨯⋅⋅⋅⨯⨯⨯⨯= 2=4. 10099. 原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=100199199198141313121211 1009910011=-=. 5. 1615. 原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=124162162131131181414121211 ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+4961248124811241 4961311311811-++-= 163131187161231187⨯+=⎪⎭⎫ ⎝⎛-⨯+=161516187=+=. 6. 542. 原式5425144758745873153116311631==⨯==-+=+--+=.7. 123. 原式655660544550433440⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛+= 123150140130=+++++=.8. 21. 原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=19972399219962399052842632419971199619961199551441331221=.9. 1原式=()()()532376123765315376231+⨯+-⨯--⨯ 1111=+-=. 10. 14465. 原式⎪⎭⎫ ⎝⎛+++⨯-⎪⎭⎫ ⎝⎛+++⨯+⎪⎭⎫ ⎝⎛+++⨯-⎪⎭⎫ ⎝⎛+++⨯=413121151413121141413121131413121121 ⎪⎭⎫ ⎝⎛-+-⨯⎪⎭⎫ ⎝⎛+++=514131214131211 1446560131225201611234612=⨯=⎪⎭⎫ ⎝⎛+⨯+++=.11. 分子数字之和等于30,故它可以被3整除,分母奇位上数字之和与偶位上数字之和的差为32-21=11,所以它可以被11整除,把这此因数提出,得:1131138896717338896717=⨯⨯.12.原式=⎪⎭⎫ ⎝⎛+⋅⋅⋅++-⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⎪⎭⎫ ⎝⎛+⋅⋅⋅++-⎪⎭⎫ ⎝⎛+⋅⋅⋅++++4642413732312822211914131211 91828173727164636261555251+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛+⋅⋅⋅+++ 9183761061265512764128731298212109+-+⨯-⨯⨯+⨯⨯-⨯⨯+⨯⨯-⨯=9183763534213281845+-+-+-+-=91837641532730+-+-+= 504533=.13.因为2)1(21+=+⋅⋅⋅++n n n ,所以 原式=200019992432322212⨯+⋅⋅⋅+⨯+⨯+⨯ ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=2000119991413131212112 100099912000112=⎥⎦⎤⎢⎣⎡-=.14.因为()()()()()()()()()11311131111312+---=+--+-=+--K K K K K K K K K ()()()()()()112211222+-+-=+--=K K K K K K K ,所以 原式()()()()()()()()()()()()()()()()()()()()198198298298197197297297151525251414242413132323+-+-⨯+-+-⨯⋅⋅⋅⨯+-+-⨯+-+-⨯+-+-= 99971009698969995647353624251⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⨯⨯⨯⨯=97259710041=⨯=.一、分数的巧算(二) 年级 班 姓名 得分一、填空题1.计算:13471711613122374⨯+⨯+⨯= . 2.计算:⎪⎭⎫ ⎝⎛⨯+÷⨯⎪⎭⎫ ⎝⎛+-25.1522546.79428.0955= . 3.计算:25114373611125373185444.4⨯+÷+÷= . 4.计算:()()015.06.32065.022.0013.000325.0⨯÷-÷= . 5.计算:⎪⎭⎫ ⎝⎛-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+9115113111011611411211= . 6.计算:222345567566345567+⨯⨯+= . 7.计算:322131433141544151655161766171⨯+⨯+⨯+⨯+⨯= . 8.计算:4513612812111511016131+++++++= . 9.计算:()()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++293112831133112311311312913029132912291291= . 10.计算:217665544332217665544332212⨯⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+++++ ⎪⎭⎫ ⎝⎛++++⨯⎪⎭⎫ ⎝⎛++++++-76655443327665544332211= .二、问答题11.用简便方法计算:421330112091276523-+-+-.12.计算:()1999119981997199919985.19935.1995÷⨯÷-.(得数保留三位小数) 13.计算:⋅⋅⋅+++⋅⋅⋅+++++++++1999219991313233323121222111 1999119992199919981999199919991998++⋅⋅⋅++++. 14.计算:299810001299799912001312000211999111999119981199714131211++++⋅⋅⋅+++++++-+⋅⋅⋅+-+-.———————————————答 案——————————————————————1. 16 原式162874131413122374=⨯=⎪⎭⎫ ⎝⎛++⨯=.2. 90 原式⎪⎭⎫ ⎝⎛⨯+⨯⨯⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+=45522455378.0942955 ()⎪⎭⎫ ⎝⎛+⨯⨯-=522537458.08 90457210452.7=⨯=⨯⨯=.3. 9. 原式25114373625114373137825114⨯+⨯+⨯= ⎪⎭⎫ ⎝⎛++⨯=37363731378251149377525114=⨯=.4. 1 原式1100131351536325=⨯⨯⨯⨯=.5. 1.1 原式1.110119854321011674523==⨯⋅⋅⋅⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯=6. 1.原式()2223455663455663455672223451566566345567++⨯⨯+=+⨯+⨯+=1567566345566345567=+⨯⨯+=.7. 205. 原式322330433440544550655660766770⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛+= 205120130140150160=+++++++++=.8. 54 原式1092542432322⨯+⋅⋅⋅+⨯+⨯+⨯= ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=101915141413131212 54101212=⎪⎭⎫ ⎝⎛-=.9. 1. 原式2960285933423313231603059332231130⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯= 13130321605934333229283216059323130=⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯=. 10.21. 令a =+++++766554433221,则 原式⎪⎭⎫ ⎝⎛-⨯+-⨯+=21)1(212a a a a222222=⎪⎭ ⎝-+-+=a a a a .11. 原式767665655454434332322121⨯+-⨯++⨯+-⨯++⨯+-⨯+= ⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=71616151514141313121211 76711=-=.12. 原式199919981200019982⨯⎪⎭⎫ ⎝⎛-⨯= 199811998199824000+⨯⎪⎭⎫ ⎝⎛-= ⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-=199811199824000 1998199821998240004000⨯--+= 1998199821998224000⨯-++= 001.4002≈.13. 因为kk k k k k k k k k k k k k k -+⋅⋅⋅+++=+++⋅⋅⋅+-++-+⋅⋅⋅+++)321(212311321 k kk k k =-+=)1(,所以, 原式19990002200019991999321=÷⨯=+⋅⋅⋅+++=. 14. 分子⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⨯-⎪⎭⎫ ⎝⎛+++⋅⋅⋅++++=1998161412121999119981199714131211 ⎪⎭⎫ ⎝⎛+⋅⋅⋅+++-⎪⎭⎫ ⎝⎛+⋅⋅⋅+++=9991312111999131211 199911001110001+⋅⋅⋅++= 分母3998139961200412002120001++⋅⋅⋅+++=⎪⎭ ⎝+⋅⋅⋅++⨯=1999100110002 原式211999110011100012199911001110001=⎪⎭⎫ ⎝⎛+⋅⋅⋅++⨯+⋅⋅⋅++=.二、估计与估算(一)年级 班 姓名 得分 一、填空题1.有若干个小朋友,他们的年龄各不相同.将他们的年龄分别填入下式的□中,都能使不等式成立.这些小朋友最多有 个. 215<43.2.010000000009999999999100099910099109+⋅⋅⋅⋅⋅⋅+++的整数部分是 .3.10971939719297199719⨯+⋅⋅⋅+⨯+⨯+=A ,与A 最接近的整数是 .4.有24个偶数的平均数,如果保留一位小数的得数是15.9,那么保留两位小数的得数是 .5.1995003这个数,最多可以拆成 个不同的自然数相加的和.6.有一列数,第一个数是105,第二个数是85,从第三个数开始,每个数都是它前面两个数的平均数.那么第19个数的整数部分是 .7.有一长3米的线段,第一次把这条线段三等分后去掉中间一部分,第二次再把剩下的两线段中的每一段都三等分后都去掉中间一部分,第三次再把剩下的所有线段的每一段都三等分后都去掉中间一部分.继续这一过程,这样至少连续 次后,才使剩下的所有线段的长度的和小于0.4米.8.已知199711982119811198011+⋅⋅⋅+++=S ,那么S 的整数部分是 .9.1009987654321⨯⋅⋅⋅⨯⨯⨯⨯与101相比较,较大的哪个数是 .10.某工厂有三个车间,共有75人报名参加冬季长跑,其中第一车间人数最多,第三车间人数最少.如果第一车间报名人数是第三车间报名人数的212倍,那么第二车间报名人数是第三车间报名人数的 倍.二、解答题11.已知1006915681467136612651170156914681367126611⨯⨯+⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯+⨯=a ,问a 的整数部分是 .12.四个连续自然数的倒数之和等于2019,求这四个自然数的两两乘积之和.13.用四舍五入的方法计算三个分数的和,得近似值为35.1875≈++cb a ,试求c b a ,,的值.(c b a ,,是三个自然数)14.国际象棋比赛的奖金总数为10000元,发给前五名.每一名的奖金都不一样,名次在前的钱数要比名次在后的钱数多.每份奖金钱数都是100元的整数倍.现在规定,第一名的钱数是第二、第三名两人之和,第二名的钱数是第四、第五名两人之和,那么第三名最多能得多少元?———————————————答 案——————————————————————1. 3.依题意,得320326=<□<10,所以□=7,8,9.2. 9.原式>9999=+⋅⋅⋅++, 原式<10,所以原式的和的整数部分是9.3. 11.()97751010219719=+⋅⋅⋅++⨯=A ,因此与A 最接近的整数是11.4. 15.92设这24个偶数之和为S .由S >15.85×24=380.4和S <15.95×24=382.8,以及S 是偶数,推知S =382,所求数为92.1524382≈÷.5. 1997.若要拆成的不同自然数尽量多,应当从最小的自然数1开始,则2)1(321+=+⋅⋅⋅+++n n n ≤1995003. 所以 )1(+n n ≤3990006当1997=n 时,正好有)1(+n n ≤3990006, 所以最多可以拆成1997个不同自然数的和.6. 91.根据题设条件,这列数依次是105,85,95,90,92.5, 91.25, 91.875, …, 显然,从第六项起后面每个数的整数部分都是91,所以,第19个数的整数部分是91.7. 5.这一过程每进行一次,剩下所有线段的和等于上次剩下的322716323232323=⨯⨯⨯⨯>0.4, 813232323232323=⨯⨯⨯⨯⨯<0.4, 所以至少进行5次.8. 110.分母>11011819801=⨯,分母<11111819981=⨯, 所以110<S <111,即S 的整数部分等于110.9. 101.证9998765432,10099654321⨯⋅⋅⋅⨯⨯⨯=⋅⋅⋅⨯⨯⨯=B A , 则2101100110099999854433221⎪⎭⎫ ⎝⎛==⨯⨯⋅⋅⋅⨯⨯⨯⨯=⨯B A .因为A 的前49项的对应项都小于B , A 的最后一项10099<1, 所以A <B , 再由B A ⨯=⎪⎭⎫⎝⎛2101>A ×A , 推知, 101>A .10. 761或1631.设第二和第三车间报名人数分别为a 和b ,则第一车间b b 25212=⨯,依题意,得 b a b a b 272575+=++=因为b ≤a ≤b 25,所以b 29≤b a 27+≤6b ,即b 29≤75≤6b ,所以2112≤b ≤3216,又b 为偶数,所以b =14或16.(1) 当b =14时, a =26, 761=b a ;(2) 当b =16时, a =19, 1631=b a .11. 1006915661265111512111⨯⎪⎭⎫⎝⎛⨯+⋅⋅⋅+⨯+⨯+⋅⋅⋅+++=a691566126511100151001210011100⨯+⋅⋅⋅+⨯+⨯⨯+⋅⋅⋅+⨯+⨯+=6915661265113115341235111100⨯+⋅⋅⋅+⨯+⨯⨯+⋅⋅⋅+⨯+⨯++=最后一个分数小于1,所以a 的整数部分是101.12. 设这四个连续自然数分别为a ,a +1,a +2, a +3,则 20193121111=++++++a a a a ,所以 31211112019++++++=a a a a <a a a a a 41111=+++, a <1944. 易知a =1,2,4均不合题意,故a =3,这四个自然数为3,4,5,6,其两两乘积之和为:119656454635343=⨯+⨯+⨯+⨯+⨯+⨯.13. 依题意,得 1.345≤875cb a ++<1.355,所以 376.6≤56a +40b +35c <379.4又a ,b ,c 为自然数,因此, 56a +40b +35c =377 ① 或56a +40b +35c =378 ② 或56a +40b +35c =379 ③考虑不定方程①,由奇偶分析,知c 为奇数,所以40b +35c 的个位为5, 因此56a 的个位为2,a 的个位为2或7.又a <5643656379=,故a =2, 因此8b +7c =53,易知b =4, c =3.同法可知不定方程②无解,方程③的解为a =4, b =3, c =1.14. 设第i 名的奖金为100ai 元(i =1,2,3,4,5).依题意,得 1000010010010010010054321=++++a a a a a , 且542321,a a a a a a +=+=,整理 1002332=+a a ① 所以 3223100a a +=<222523a a a =+,故2a >20, 由①易知2a 必为偶数,所以2a ≥22.故 ()23310021a a -=≤()1722310021=⨯-. 即第三名最多能得1700元.二、估计与估算(二)年级 班 姓名 得分 一、填空题1. 将六个分数215,94,12011,451,83,358分成三组,使每组的两个分数的和相等,那么与451分在同一组的那个分数是 .2. 数151311197535232129171551719212321357911131÷的十分位到十万分位的数字为 .3. 满足下式的n 最小等于 . )1(1431321211+⨯+⋅⋅⋅+⨯+⨯+⨯n n >19981949.4. 已知1101011102103101102100101+⋅⋅⋅+++=A ,则A 的整数部分是 .5. 小明计算17个自然数的平均数所得的近似值是31.3,老师指出小明少取了一位有效数字,则老师要求的平均数应该是 .6.有三十个数:,302964.1,,30364.1,30264.1,30164.1,64.1+⋅⋅⋅+++如果取每个数的整数部分,并将这些整数相加,那么其和是 .7.将奇数1,3,5,7,…,由小到大按第n 组有2n -1个奇数进行分组 (1), (3,5,7), (9,11,13,15,17), … 第一组 第二组 第三组 那么1999位于第 组的第 个数.8. 22.103.823.102.824.101.8⨯+⨯+⨯的整数部分是 .9. 数222⨯⋅⋅⋅⨯⨯写成小数时的前两位小数是 .10. 有甲、乙、丙、丁四个同学去林中采蘑菇.平均每人采得的蘑菇的个数的整数部分是一个十位数为3的两位数.又知甲采的数量是乙的54,乙采的数量是丙的23倍.丁比甲多采3个蘑菇.那么,丁采蘑菇 个. 二、解答题11.两个连续自然数的平方之和等于365,又有三个连续自然数的平方之和也等于365.试找出这两个连续自然数和那三个连续自然数.12.如图所示,方格表包括A 行B 列(横向为行,纵向为列),其中依次填写了自然数1至B A ⨯ ,现知20在第3行,41在第5行,103在最后一行,试求A 和B .13.求分数1611514131211++⋅⋅⋅++++=A 的整数部分.14.甲、乙、丙三个班向希望工程捐赠图书.已知甲班1人捐6册,有2人各捐7册,其余人各捐11册;乙班有1人捐6册,3人各捐8册,其余人各捐10册;丙班有2人各捐4册,6人各捐7册,其余人各捐9册.已知甲班捐书总数比乙班多28册,乙班比丙班多101册.各班捐书总数都在400册与550册之间.问:每班各有多少人?———————————————答 案——————————————————————1.94. 注意到451是六个分数中的最小数,因此与451在同一组的分数,必须是这六个分数中的最大数(否则,六个数不能分成三组,每组的两个分数的和相等),因此所求数为94.2. 2,5,9,5,3.设题中所述式子为B A ÷,由于题中所涉及的数太大,不太可能通过直接计算来确定前五位数(否则计算量太大),下面利用估值方法来求:因为2.05313,3.05214>÷>÷<÷<÷B A B A , 所以此数的第一位数字为2.又因为259.052331357,2597.05238.135>÷>÷<÷<÷B A B A , 所以此数的第一、二、三位数字为2,5,9. 又因为,25954.0523212135792<÷<÷B A25953.0523********1>÷>÷B A , 所以此五位数字是2,5,9,5,3.3. 40.原式左端等于111+-n ,可得不等式199********>+-n ,所以19984911<+n , 解得493839>n ,故n 最小等于40.4. 67.⎪⎭⎫ ⎝⎛+⋅⋅⋅+++++⋅⋅⋅+++=11010102101011010010)11321(A⎪⎭⎫ ⎝⎛+⋅⋅⋅++++=1101010210101101001066所以 1016711100106611110106667=⨯+<<⨯+=A 因此, A 的整数部分为67.5. 31.29.设17个自然数的和为S ,由3.3117≈S ,得31.25≤35.3117<S. 所以531.25≤S <532.95,又S 为整数,所以S =532,则29.311753217≈=S6. 49.关键是判断从哪个数开始整数部分是2,因为2-1.64=0.36,我们就知⋅⋅⋅==33.0301031, 故先看3011,3011=⋅⋅⋅66.036.0>,这说明“分界点”是301164.1+,所以前11个数整数部分是1,后19个数整数部分为2,其和为4921911=⨯+.7. 32, 39.第n 组的最后一个奇数为自然数中的第2)12(531n n =-+⋅⋅⋅+++个奇数, 即122-n .设1999位于第n 组,则19991)1(22<--n ≤122-n . 由 223222047199919211312⨯=<<=-⨯1-知n=32. 所以1999在第32组第39312119992=-+个数.8. 29.当两个数的和不变时,两数越接近(即差越小)它们的积越大. 所以24.101.823.102.822.103.8⨯<⨯<⨯,从而30325.18324.101.822.103.823.102.824.101.8=⨯⨯<⨯⨯<⨯+⨯+⨯.52.2969.38)22.123.124.1(822.103.823.102.824.101.8=⨯=++⨯>⨯+⨯+⨯,所以22.103.823.102.824.101.8⨯+⨯+⨯的整数部分是29.9. 0.01注意到35327322=>=,所以6992332132,2132>>,所以01.01001961321322132561010=>=⨯=⨯> 又443818025=<=⨯,所以25132,51328844<<.所以02.0501212513225132221010==⨯<⨯<. 故数222⨯⋅⋅⋅⨯⨯写成小数时的前两位小数是0.01.10. 39.设丙采蘑菇数为x 个,则乙采x 23个,甲采x x 562354=⋅个,丁采⎪⎭⎫⎝⎛+356x 个,四人合采蘑菇数为:310493565623+=++++x x x x x . 依题意,得:30≤⎪⎭⎫⎝⎛+3104941x <40解得 4910117494323⨯=≤492324910157=⨯<x又x 1049必须为整数, x 为10的倍数,因此只能x =30, 从而丁采39356=+x (个).11. 用估值法,先求两个连续自然数,因为5.1822365=÷,所以在两个连续自然数中,一个的平方小于182.5,另一个的平方大于182.5.由132=169,142=196得到,这两个连续自然数是13和14.类似地,3365÷32121=,最接近32121的自然数的平方是112=121,所以这三个连续自然数应是10,11,12.经验证,符合题意.12. 依题意,得2B <20≤3B ,4B <41≤5B ,所以326≤B <10,518≤B <4110,故518≤B <10,因此, B =9.由103在最后一行,得9(A -1)<103≤9A ,所以, 9411≤A <9412,故A =12.13.⎪⎭⎫ ⎝⎛+⋅⋅⋅++++⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+++=16111110191817151416131211A⎪⎭⎫ ⎝⎛+⋅⋅⋅++++⎪⎭⎫ ⎝⎛++++=16111110191817151412又因为14148171514181421=⨯<+++<⨯= 181816111110191161821=⨯<+⋅⋅⋅+++<⨯= 所以 4112212123=++<<++=A故A 的整数部分是3.14.由题目条件,甲班捐书最多,丙班最小,甲班比丙班多捐28+101=129(册). 因为丙班捐书不少于400册,所以甲班捐书在529~550册之间.甲班人数不少于11349311)776529(=+÷---(人),不多于11251311)776550(=+÷---(人),即甲班人数是50人或51人.如果甲班有50人,则甲班共捐书6+7+7+11×(50-3)=537(册),推知乙班捐书537-28=509(册),乙班有10951410)386509(=+÷⨯--(人),人数是分数,不合题意.所以甲班有51人,甲班共捐书548)351(11776=-⨯+++(册),推知乙班捐有53÷+⨯--(人),-(=548104)38628丙班有49⨯÷+-⨯-(人).-(=548)697212948三、定义新运算(一) 年级 班 姓名 得分一、填空题1.规定a ☉b =ab b a -,则2☉(5☉3)之值为 .2.规定“※”为一种运算,对任意两数a ,b ,有a ※b 32b a +=,若6※x 322=,则x =.3.设a ,b ,c ,d 是自然数,定义bc ad d c b a +>=<,,,.则<><><<,3,2,1,4,4,3,2,13, 4, 1, 2>>=<>1,4,3,2, .4.[A ]表示自然数A 的约数的个数.例如,4有1,2,4三个约数,可以表示成[4]=3.计算:]7[])22[]18([÷+= .5.规定新运算※:a ※b=3a -2b .若x ※(4※1)=7,则x= .6.两个整数a 和b ,a 除以b 的余数记为a ☆b .例如,13☆5=3,5☆13=5,12☆4=0.根据这样定义的运算,(26☆9) ☆4= .7.对于数a ,b ,c ,d 规定d c ab d c b a +->=<2,,,.如果7,5,3,1>=<x , 那么x = .8.规定:6※2=6+66=72,2※3=2+22+222=246,1※4=1+11+111+1111=1234.7※5= .9.规定:符号“△”为选择两数中较大数,“☉”为选择两数中较小数.例如:3△5=5,3☉5=3.那么,[(7☉3)△5]×[5☉(3△7)]= .10.假设式子b a a ⨯#表示经过计算后,a 的值变为原来a 与b 的值的积,而式子b a b -#表示经过计算后,b 的值为原来a 与b 的值的差.设开始时a =2,b =2,依次进行计算b a a ⨯#,b a b -#,b a a ⨯#,b a b -#,则计算结束时,a 与b 的和是 .二、解答题11.设a ,b ,c ,d 是自然数,对每两个数组(a ,b ),(c ,d ),我们定义运算※如下: (a ,b )※(c ,d )= (a+c ,b +d );又定义运算△如下: (a ,b )△(c ,d )= (ac+bd ,ad+bc ).试计算((1,2) ※(3,6))△((5,4)※(1,3)).12.羊和狼在一起时,狼要吃掉羊,所以关于羊及狼,我们规定一种运算,用符号△表示羊△羊=羊;羊△狼=狼;狼△羊=狼;狼△狼=狼.运算意思是羊与羊在一起还是羊,狼与狼在一起还是狼,但是狼与羊在一起便只剩下狼了.小朋友总是希望羊能战胜狼,所以我们规定另一种运算,用符号☆表示为羊☆羊=羊;羊☆狼=羊;狼☆羊=羊;狼☆狼=狼.运算意思是羊与羊在一起还是羊,狼与狼在一起还是狼,由于羊能战胜狼,当狼与羊在一起时,它便被羊赶走而只剩下羊了.对羊或狼,可用上面规定的运算作混合运算,混合运算的法则是从左到右,括号内先算.运算的结果是羊,或是狼.求下式的结果:羊△(狼☆羊)☆羊△(狼△狼).13.22264⨯⨯=222⨯⨯⨯表示成()664=f ;33333243⨯⨯⨯⨯=表示成()5243=g .试求下列的值:(1)()=128f ; (2))()16(g f =; (3)6)27()(=+g f ;(4)如果x , y 分别表示若干个2的数的乘积,试证明:)()()(y f x f y x f +=⋅.14.两个不等的自然数a 和b ,较大的数除以较小的数,余数记为a ☉b ,比如5☉2=1,7☉25=4,6☉8=2.(1)求1991☉2000,(5☉19)☉19,(19☉5)☉5;(2)已知11☉x =2,而x 小于20,求x ;(3)已知(19☉x )☉19=5,而x 小于50,求x .———————————————答 案—————————————————————— 1. 120411. 5☉3=15165335=-,2☉(5☉3)=2☉12041112016121516151621516==-=.2. 8.依题意,6※326x x +=,因此322326=+x ,所以x=8.3. 280.;1421343,2,1,4;1032414,3,2,1=⨯+⨯>=<=⨯+⨯>=<.1443121,4,3,2;1014232,1,4,3=⨯+⨯>=<=⨯+⨯>=< 原式2801014141014,10,14,10=⨯+⨯>==<.4. 5.因为23218⨯=有6)12()11(=+⨯+个约数,所以[18]=6,同样可知[22]=4,[7]=2.原式52)46(=÷+=.5. 9.因为4※1=101243=⨯-⨯,所以x ※(4※1)= x ※10=3x -20.故3x -20=7,解得x =9.6. 0.89226+⨯=,26☆9=8,又428⨯=,故(26☆9)☆4=8☆4=0.7. 6.因为x x x +=+-⨯⨯>=<15312,5,3,1,所以71=+x ,故6=x .8. 86415.7※5=7+77+777+7777+77777=86415.9. 25.原式=[3△5]×[5☉7]=5×5=25.10. 14.第1次计算后,422=⨯=a ;第2次计算后,224=-=b ;第3次计算后,824=⨯=a ;第4次计算后,628=-=b .此时1468=+=+b a .11. (1,2)※(3,6)=(1+3,2+6)=(4,8),(5,4)※(1,3)=(5+1,4+3)=(6,7). 原式=(4,8)△(6,7)=(4×6+8×7,4×7+8×6)=(80,76).12. 原式=羊△羊☆羊△狼=羊☆羊△狼=羊△狼=狼.13. (1)()72)128(7==f f ;(2)()())81(342)16(44g g f f ====;(3)因为()())8(233636)27(633f f g g ===-=-=-,所以6)27()8(=+g f ; (4)令,2,2n m y x ==则n y f m x f ==)(,)(.()())()(222)(y f x f n m f f y x f n m n m +=+==⋅=⋅+.14. (1)1991☉2000=9;由5☉19=4,得(5☉19)☉19=4☉19=3;由19☉5=4,得(19☉5)☉5=4☉5=1.(2)我们不知道11和x 哪个大(注意,x ≠11),即哪个作除数,哪个作被除数,这样就要分两种情况讨论.1) x <11,这时x 除11余2, x 整除11-2=9.又x ≥3(因为x 应大于余数2),所以x =3或9.2) x >11,这时11除x 余2,这说明x 是11的倍数加2,但x <20,所以x =11+2=13.因此(2)的解为x =3,9,13.(3)这个方程比(2)又要复杂一些,但我们可以用同样的方法来解.用y 表示19☉x ,不管19作除数还是被除数,19☉x 都比19小,所以y 应小于19.方程y ☉19=5,说明y 除19余5,所以y 整除19-5=14,由于y ≥6,所以y =7,14.当y =7时,分两种情况解19☉x =7.1)x <19,此时x 除19余7,x 整除19-7=12.由于x ≥8,所以x =12.2) x >19,此时19除x 余7, x 是19的倍数加7,由于x <50,所以x =19+7=26或7219+⨯=x =45.当y =14时,分两种情况解19☉x =14.1) x <19,这时x 除19余14, x 整除19-14=5,但x 大于14,这是不可能的.2)x >19,此时19除x 余14,这就表明x 是19的倍数加14,因为x <50,所以x =19+14=33.总之,方程(19☉x )☉19=5有四个解,x =12,26,33,45.三、定义新运算(二) 年级 班 姓名 得分一、填空题1.规定:a ※b =(b+a )×b ,那么(2※3)※5= .2.如果a △b 表示b a ⨯-)2(,例如3△444)23(=⨯-=,那么,当a △5=30时, a= .3.定义运算“△”如下:对于两个自然数a 和b ,它们的最大公约数与最小公倍数的和记为a △b .例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12= .4.已知a ,b 是任意有理数,我们规定: a ⊕b = a +b -1,2-=⊗ab b a ,那么[]=⊗⊕⊕⊗)53()86(4 .5.x 为正数,<x >表示不超过x 的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是 .6.如果a ⊙b 表示b a 23-,例如4⊙5=3×4-2×5=2,那么,当x ⊙5比5⊙x 大5时, x = .7.如果1※4=1234,2※3=234,7※2=78,那么4※5= .8.我们规定:符号○表示选择两数中较大数的运算,例如:5○3=3○5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3.请计算:=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∙∙25.210623799343.03323625.026176.0 .9.规定一种新运算“※”: a ※b =)1()1(++⨯⋅⋅⋅⨯+⨯b a a a .如果(x ※3)※4=421200,那么x = .10.对于任意有理数x , y ,定义一种运算“※”,规定:x ※y=cxy by ax -+,其中的c b a ,,表示已知数,等式右边是通常的加、减、乘运算.又知道1※2=3,2※○ △ △ ○3=4,x ※m=x (m ≠0),则m 的数值是 .二、解答题11.设a ,b 为自然数,定义a △b ab b a -+=22.(1)计算(4△3)+(8△5)的值;(2)计算(2△3)△4;(3)计算(2△5)△(3△4).12.设a ,b 为自然数,定义a ※b 如下:如果a ≥b ,定义a ※b=a -b ,如果a <b ,则定义a ※b= b - a .(1)计算:(3※4)※9;(2)这个运算满足交换律吗?满足结合律吗?也是就是说,下面两式是否成立?①a ※b= b ※a ;②(a ※b )※c= a ※(b ※c ).13.设a ,b 是两个非零的数,定义a ※b ab b a +=. (1)计算(2※3)※4与2※(3※4).(2)如果已知a 是一个自然数,且a ※3=2,试求出a 的值.14.定义运算“⊙”如下:对于两个自然数a 和b ,它们的最大公约数与最小公倍数的差记为a ⊙b . 比如:10和14,最小公倍数为70,最大公约数为2,则10⊙14=70-2=68.(1)求12⊙21,5⊙15;(2)说明,如果c 整除a 和b ,则c 也整除a ⊙b ;如果c 整除a 和a ⊙b ,则c 也整除b ;(3)已知6⊙x =27,求x 的值.———————————————答 案——————————————————————1. 100.因为2※3=(3+2)×3=15,所以(2※3)※5=15※5=(5+15)×5=100.2. 8.依题意,得305)2(=⨯-a ,解得8=a .3. 42.18△12=(18,12)+[18,12]=6+36=42.4. 98.原式]1313[4)]253()186[(4⊕⊗=-⨯⊕-+⊗=982254254]11313[4=-⨯=⊗=-+⊗=5. 11.<19>为不超过19的质数,有2,3,5,7,11,13,17,19共8个.<93>为不超过的质数,共24个,易知<1>=0,所以原式=<<19>+<93>>=<8+24>=<32>=11.6. 6.x ⊙5-5⊙x=(3 x -2×5)-(3×5-2 x )=5 x -25,由5 x -25=5,解得x=6.7. 45678.8. 21. 因为∙6.0○322617=○322617=,0.625△853323=△853323=, ∙3.0△319934=△319934=,106237○10623725.2=○4949=, 所以,原式2149318532=++=.9. 2.令x ※3=y ,则y ※4=421200,又4212002726252413532244⨯⨯⨯=⨯⨯⨯=,所以y=24,即x ※3=24.又24=432323⨯⨯=⨯,故x =2.10. 4.由题设的等式x ※y=cxy by ax -+及x ※m=x (m ≠0),得000=⋅⋅-+⋅m c bm a ,所以bm=0,又m ≠0,故b=0.因此x ※y=ax -cxy.由1※2=3,2※3=4,得⎩⎨⎧=-=-46232c a c a 解得a =5,c =1. 所以x ※y =5x -xy ,令x =1,y=m 得5-m=1,故m =4.11. (1)原式()()62585834342222=⨯-++⨯-+=;(2)原式()323222⨯-+=△4=7△4=37474722=⨯-+;(3)原式()525222⨯-+=△()19434322=⨯-+△132831319131922=⨯-+=.12. (1)原式=(4-3)※9=1※9=9-1=8;(2)因为表示a ※b 表示较大数与较小数的差,显然a ※b= b ※a 成立,即这个运算满是交换律,但一般来说并不满足结合律,例如:(3※4)※9=8,而3※(4※9)=3※(9-4)=3※5=5-3=2.13. (1)按照定义有2※36132332=+=,3※412253443=+=. 于是(2※3)※4613=※4=3127451324241361344613=+=+. 2※(3※4)=2※60012012425252421225122521225=+=+=. (2)由已知得233=+aa ① 若a ≥6,则3a ≥2,从而233>+aa 与①矛盾.因此a ≤5,对a =1,2,3,4,5这5个可能的值,一一代入①式中检查知,只有a =3符合要求.14. (1)为求12⊙21,先求出12与21的最小公倍数和最大公约数分别为84,3,因此12⊙21=84-3=81,同样道理5⊙15=15-5=10.(2)如果c 整除a 和b ,那么c 是a 和b 的公约数,则c 整除a ,b 的最大公约数,显然c 也整除a ,b 最小公倍数,所以c 整除最小公倍数与最大公约的差,即c 整除a ⊙b .如果c 整除a 和a ⊙b ,由c 整除a 推知c 整除a ,b 的最小公倍数,再由c 整除a ⊙b 推知, c 整除a ,b 的最大公约数,而这个最大公约数整除b ,所以 c 整除b .(3)由于运算“⊙”没有直接的表达式,解这个方程有一些困难,我们设法逐步缩小探索范围.因为6与x 的最小公倍数不小于27+1=28,不大于27+6=33,而28到33之间,只有30是6的倍数,可见6和x 的最小公倍数是30,因此它们的最大公约数是30-27=3.由“两个数的最小公倍数与最大公约数的积=这两个数的积”,得到x ⨯=⨯6330.所以15=x .四、工程问题(1)年级 班 姓名 得分 一、填空题1.一项工程,甲、乙两队合作20天完成,乙丙两队合作60天完成,丙丁两队合作30完成,甲丁合作 天完成?2.甲乙两队合作一项工程,计划在24天内完成.如果甲队做6天,乙队做4天,只能做完全工程的20%,两队单独做完全工程各需要 天.3.一条公路,甲队独修24天完成,乙队独修30天完成.甲乙两队合修若干天后,乙队停工休息,甲队继续修了6天完成,乙队修了 天.4.某市举办菊展,新建一个喷水池.单开甲管1小时可将喷水池注满,单开乙管40分钟可将水注满,两管同时齐开5210分钟后,共注水314吨.喷水池能装水吨.5.一项工作,两个师傅和三个徒弟合作需922天完成,如果三个师傅2个徒弟合作需要712天完成,如果一名师傅单独做需 天完成.6.加工一批零件,甲独做需3天完成,乙独做需4天完成,两人同时加工,完成任务时,甲比乙多做24个,这批零件共有 个.7.一项建筑工程,由甲建筑队单独承建要一年半,乙建筑队单独承建要一年零三个月,现在两队合作半年,剩下的由乙队继续完成还要 个月.(假设每月实际工作天数一样)8.甲、乙、丙三人合修一围墙.甲、乙合修6天修好围墙的31,乙、丙合修2天修好余下的41,剩下的三人又合修了5天才完成.共得工资180元,按各人所完成的工作量的多少来合理分配,每人应得 元.9.原计划用24个工人挖一定数量的土方,按计划工作5天后,因为调走6人,于是剩下的工人每天比原定工作量多挖1方土才能如期完成任务,原计划每人每天挖土 方.10.一个水池,底部安有一个常开的排水管,上部安有若干个同样粗细的进水管,当打开4个进水管时,需要5小时才能注满水池,当打开2个进水管时,需要15小时才能注满水池;现在需要在2小时内将水池注满,那么至少要打开 个进水管.二、解答题11.抄一份书稿,甲每天的工作效率等于乙、丙二人每天的工作效率的和;丙每天的工作效率相当于甲、乙二人每天工作效率之和的51;如果三人合抄只需8天就完成了,那么乙一人单独抄需多少天才能完成?12.一项工程,甲独做需10天,乙独做需15天,如果两人合作,甲的工作效率就要降低,只能完成原来的54,乙只能完成原来的109,现在要8天完成这项工程,两人合作天数尽可能少,那么两人要合作多少天?13.一空水池有甲、乙两根进水管和一根排水管.单开甲管需5分钟注满水池,单开乙管需10分钟注满水池,满池水如果单开排水管需6分钟流尽.某次池中没有水,打开甲管若干分钟后,发现排水管未关上,随即关上排水管,同时打开乙管,又过了同样长的时间,水池的1/4注了水.如果继续注满水池,前后一共要花多少时间?14.有一个蓄水池装有9根水管,其中一根为进水管,其余8根为相同的出水管,进水管以均匀的速度不停地向这个蓄水池注水.后来有人想打开出水管,使池内的水全部排光(这时池内已注入一些水).如果把8根出水管全部打开,需3小时把池内的水全部排光;如果仅打开5根出水管,需6小时把池内的水全部排光.问要想在4.5小时内把池内的水全部排光,需同时打开几根出水管?———————————————答 案——————————————————————1. 156********1=⎪⎭⎫ ⎝⎛-+÷(天).2. 乙的工作效率为()()40116244%201=-÷⨯-, 甲的工作效率为601401241=-. 故甲做60天完成,乙做40天完成.3. 1030124162411=⎪⎭⎫ ⎝⎛+÷⎪⎭⎫ ⎝⎛⨯-(天).4. 104016015210314=⎪⎭⎫ ⎝⎛+÷⎪⎭⎫ ⎝⎛÷(吨)5. 一个师傅与一个徒弟工作效率之和为:()60112371219221=+÷⎪⎪⎪⎪⎭⎫⎝⎛+, 故师傅的工作效率是101601127121=⨯-,即一名师傅单独做10天完成.6. 16841311413124=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⨯⎪⎭⎫ ⎝⎛-÷(个).7. 415161511811=÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛+-(月).8. 甲分得的钱为:()3356241311541311311180=+⨯⎭⎬⎫⎩⎨⎧÷⨯⎪⎭⎫ ⎝⎛--÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛---⨯(元);丙分得的钱为:()5652631541311311180=+⨯⎭⎬⎫⎩⎨⎧÷-÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛---⨯(元);乙分得的钱为:180-33-56=91(元).9. 36)624(=÷-(方).10. 进水管一小时进水量为:()()[]15124541521=-÷⨯-⨯÷; 排水管一小时排水量为:1515120151=÷⎪⎭⎫⎝⎛-⨯.故只开一进水管、一排水管池中无水,多开进水管数为5.71521=÷,取整为8 个,至少要打开9个进水管.11. 24281511811=⎥⎦⎤⎢⎣⎡÷-⎪⎭⎫ ⎝⎛+÷÷(天).12. 设两人要合作x 天,依题意得:()15078101=+-x x ,故x =5(天).13. 设注满池中41的水需x 分钟,故有23,412615126151==⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛-x x x .继续注满池中水的43411=-需要251015143=⎪⎭⎫ ⎝⎛+÷(分), 共需时间42523=+(分).14. 将每根进水管每小时的进水量看作单位1,则每根出水管每小时的排水量为2)36()3865(=-÷⨯-⨯,而池中原有水量为186265=⨯-⨯,从而要想在4.5小时内把池中水抽干,需要打开65.4182=÷+(根)出水管.四、工程问题(2)年级 班 姓名 得分一、填空题1.一项工作,甲乙两队合作9天完成,乙丙两队合作12天完成,甲丙两队合作需18天完成,现在三队合作需 天完成.2.某工程先由甲单独做63天,再由乙单独做28天即可完成.如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么还需要做 天.3.甲、乙两队合作20天可以完成一项工程.如果两队合作8天后,乙队再独做4天,还剩这项工程的158没有完成.甲、乙两队工作效率之比为: .4.一份稿件,甲单独打字需6小时完成,乙单独打字需10小时完成.现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时,那么甲打字用了 小时.5.有批机器零件,甲单独制作需要218天,比乙单独制作多用了21天,两人合作4天后,剩下210个零件由甲单独去做,自始至终甲共制作了 零件.6.一个水池子,甲、乙两管同时开,5小时灌满,乙、丙两管同时开,4小时灌满,如果乙管先开6小时,还需要甲、丙两管同时开2小时才能注满(这时乙管关闭).那么乙管单独灌满水池需要 小时.7.一个水池,地下水从四壁渗入,每小时渗入该水池的水量是固定的.当这个水池水满时,打开A 管,8小时可将水池排空;打开B 管,10小时可将水池排空;打开C 管,12小时可将水池排空.如果打开A 、B 两管,4小时可将水池排空,那么打开B 、C 两管,将水池排空需要 小时.8.一件工作,如果单独做,甲按规定时间可提前2天完成,乙则要超过规定时间3天才完成.现在,甲乙二人合做2天后,剩下的继续由乙单独做,刚好在规定的日期内完成.若甲乙二人合做,完成这件工作需要 天.9.有一水池,装有甲、乙两个注水管,下面装有丙管放水.池空时,单开甲管5分钟可注满;单开乙管10分钟可注满.水池装满水后,单开丙管15分钟可将水放完.如果在池空时,将甲、乙、丙三管齐开,2分钟后关闭乙管,还要 分钟可以注满水池.10.放满一个水池的水,如果同时开放①、②、③号阀门,7.5小时可以完成;如果同时开放①、③、⑤号阀门,5小时可以完成;如果同时开放①③④号阀门,6小时可以完成;如果同时开放②④⑤号阀门,4小时可以完成.问同时开放这五个阀门, 小时可以放满这个水池.二、解答题11.师徒三人合作承包一项工程,4天能够全部完成.已知师傅单独做所需天数与两个徒弟合作所需天数相等;而师傅与乙徒弟合作所需天数的2倍与甲徒弟单独做完所需的天数相等.那么甲徒弟单独做,完成这项工程需要多少天?乙徒弟单独做,完成这项工程需要多少天?12.甲、乙、丙三人从三月一日开始合作一项工程,甲每天的工作量是乙每天工作量的3倍,乙每天的工作量是丙每天工作量的2倍.三人合作5天完成全工程的31后,甲休3天,乙休2天,丙没有休息,问这项工程是在几月几日完成的?13.一个蓄水池装了一根进水管和三根放水速度一样的出水管.单开一根进水管20分钟可注满空池.单开一根出水管,45分钟可以放完满池水.现有32池的水,如果四管齐开,多少分钟后池水还剩52?14.蓄水池有甲、丙两条进水管,和乙丁两条排水管.要灌满一池水,单开甲管需要3小时,单开丙管需要5小时,要排光一池水,单开乙管需要4小时,单开丁管需要6小时.现在池内有61池水.如果按甲、乙、丙、丁、甲、乙……的顺序,轮流各开一小时,多少时间后水开始溢出水池?———————————————答 案——————————————————————1. 82181121911=⎥⎦⎤⎢⎣⎡÷⎪⎭⎫ ⎝⎛++÷(天).2. 甲乙合做28天,完成任务的1274828=÷, 故甲的工作效率为()84128631271=-÷⎪⎭⎫ ⎝⎛-,乙的工作效率为1121841481=-, 于是乙还需做56112184421=÷⎪⎭⎫ ⎝⎛-(天).3. 乙的工作效率为601482011581=÷⎪⎭⎫⎝⎛⨯--,甲的工作效率为301601201=-, 甲乙工作效率之比为1:2601:301=.4. 5.41016171011=⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛⨯-(小时).5. 35702102184421218121811210=+⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⎪⎪⎪⎪⎭⎫ ⎝⎛-+-÷(个).6. 20)46(5141211=⎭⎬⎫⎩⎨⎧-÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⨯-÷(小时).7. B 管每小时排水量为81421=÷(池)水. 每小时渗水量为4011011081=÷⎪⎭⎫⎝⎛-⨯(池).C 管每小时排水量为1201312124011=÷⎪⎭⎫⎝⎛⨯+(池).从而B 、C 两管排一池水,需8.440112013811=⎪⎭⎫ ⎝⎛-+÷(小时).8. 甲与乙工作效率之比为3:2,甲独做要101235=⎪⎭⎫⎝⎛-÷(天),乙独做需10+5=15(天),甲乙合做要61511011=⎪⎭⎫⎝⎛+÷(天).9. 4151512151101511=⎪⎭⎫⎝⎛-÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-+-(分钟).10. 434134161515.711=⎥⎦⎤⎢⎣⎡+÷⎪⎭⎫ ⎝⎛-++÷(小时).11. 243412411=⎪⎭⎫⎝⎛÷-÷÷(天).12. 甲的工作效率为4522616151=++⨯,乙的工作效率为13522612151=++⨯, 丙的工作效率为13512611151=++⨯.乙丙三天干了151313511352=⨯⎪⎭⎫ ⎝⎛+,甲丙二天干了1351421351452=⨯⎪⎭⎫ ⎝⎛+. 整个工作剩下13567135********=---.由甲乙丙合干还要9471351135245213567=⎪⎭⎫ ⎝⎛++÷(天), 完成此项工作共需9417947235=+++(天),即3月18日完成.13. 1620134515232=⎪⎭⎫ ⎝⎛-⨯÷⎪⎭⎫ ⎝⎛-(分).14. 按甲、乙、丙、丁顺序各开一小时水池中进水60761514131=-+-.这样5个周期(即20小时)后,池中有水43560761=⨯+,再开甲管注满水池需时4331431=÷⎪⎭⎫ ⎝⎛-(小时),故一共要43204320=+(小时)开始溢出.五、分数应用题(1)年级 班 姓名 得分 一、填空题1.有一个分数,它的分母比分子多4.如果把分子、分母都加上9,得到的分数约分后是97,这个分数是 .2.甲、乙两数是自然数,如果甲数的65恰好是乙数的41.那么甲、乙两数之和的最小值是 .3.商店的书包降价41后,又提价51,最后的价格是8元1角一个,那么最初是元钱一个.4.小萍今年的年龄是妈妈的31,二年前母子年龄相差24岁,四年后小萍的年龄是 .5.甲、乙、丙三人共同加工一批零件.甲比乙多加工零件20个,丙加工零件是乙加工零件的54,甲加工零件是乙丙两人加工零件总数的65.甲、乙、丙各加工零件 个.6.六一班男生的一半和女生的41共16人,女生的一半和男生的41共14人,这个班男、女生各 人.7.在4点多钟时,时钟的时针和分针在一直线上且方向相反,这时是4点 分.8.甲、乙两人各有钱若干元,已知甲的钱数是乙的4倍,当甲花去31后,又花去余下的31,如果这时甲给乙7元钱,甲、乙两人的钱数正好相等.甲原来有_____元钱.9.A 、B 、C 三根木棒插在水池中,(如图)三根捧长度和是360厘米,A 棒有43露出水面外,B 棒有4露出水面外.C 棒有2露出水面外.水池有 厘米深.。
六年级奥数题及答案(五篇)六年级奥数题及答案 1某造纸厂在100天里共生产2024吨纸,开始阶段,每天只能生产10吨纸.中间阶段由于改进了技术,每天的产量提高了一倍.最后阶段由于购置了新设备,每天的产量又比中间阶段提高了一倍半.已知中间阶段生产天数的2倍比开始阶段多13天,那么最后阶段有几天?中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天六年级奥数题及答案 2从花城到太阳城的公路长12公里.在该路的2千米处有个铁道路口,是每关闭3分钟又开放3分钟的.还有在第4千米及第6千米有交通灯,每亮2分钟红灯后就亮3分钟绿灯.小糊涂驾驶电动车从花城到太阳城,出发时道口刚刚关闭,而那两处交通灯也都刚刚切换成红灯.已知电动车速度是常数,小糊涂既不刹车也不加速,那么在不违反交通规则的情况下,他到达太阳城最快需要多少分钟?答案与解析:画出反映交通灯红绿情况的s-t图,可得出小糊涂的行车图像不与实线相交情况下速度最大可以是0.5千米/分钟,此时恰好经过第6千米的红绿灯由红转绿的点,所以他到达太阳城最快需要24分钟.六年级奥数题及答案 3分母不大于60,分子小于6的'最简真分数有____个?答案与解析:分类讨论:(1)分子是1,分母是2~60的最简真分数有59个:(2)分子是2,分母是3~60,其中非2、的倍数有58-58÷2=29(个);(3)分子是3,分母是4~60,其中非3的倍数有57-57÷3-38(个);(4)分子是4,分母是5~60,其中非2的倍数有56-56÷2-28c个);(5)分子是5,分母是6~60,其中非5的倍数有55-55÷5―44(个).这样,分子小于6,分母不大于60的最简真分数一共有59+29+38+28+44=198(个).六年级奥数题及答案 4甲、乙、丙三人依次相距280米,甲、乙、丙每分钟依次走90米、80米、72米.如果甲、乙、丙同时出发,那么经过几分钟,甲第一次与乙、丙的距离相等?答案与解析:甲与乙、丙的距离相等有两种情况:一种是乙追上丙时;另一种是甲位于乙、丙之间.⑴乙追上丙需:280(80-72)=35(分钟).⑵甲位于乙、丙之间且与乙、丙等距离,我们可以假设有一个丁,他的速度为乙、丙的速度的*均值,即(80+72)2=76(米/分),且开始时丁在乙、丙之间的中点的位置,这样开始时丁与乙、丙的距离相等,而且无论经过多长时间,乙比丁多走的路程与丁比丙多走的路程相等,所以丁与乙、丙的距离也还相等,也就是说丁始终在乙、丙的中点.所以当甲遇上丁时甲与乙、丙的距离相等,而甲与丁相遇时间为:(280+2802)(90-76)=30(分钟).经比较,甲第一次与乙、丙的距离相等需经过30分钟.六年级奥数题及答案 5王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?答案与解析:本题相当于去的时候速度为每小时50千米,而整个行程的*均速度为每小时60千米,求回来的时候的速度.根据例题中的分析,可以假设甲地到乙地的路程为300千米,那么往返一次需时间__*2=10(小时),现在从甲地到乙地花费了时间__=6(小时),所以从乙地返回到甲地时所用的时间是10-6=4(小时).如果他想按时返回甲地,他应以3004=75(千米/时)的速度往回开.。
六年级奥数题及答案11、如图,长方形ABCD中,E为的AD中点,AF与BE、BD分别交于G、H,OE垂直AD于E,交AF于O,已知AH=5cm,HF=3cm,求AG.2阴影面积:(高等难度)如右图,在以AB为直径的半圆上取一点C,分别以AC和BC为直径在△ABC外作半圆AEC和BFC.当C点在什么位置时,图中两个弯月型(阴影部分)AEC和BFC的面积和最大。
3、巧克力豆:(高等难度)甲、乙、丙三人各有巧克力豆若干粒,要求互相赠送.先由甲给乙、丙,甲给乙、丙的豆数依次等于乙、丙原来各人所有豆数.依同办法,再由乙给甲、丙,所给豆数依次等于甲、丙各人现有的豆数.最后由丙给甲、乙,所给的豆数依次等于甲、乙各人现有的豆数.互赠后每人恰好各有豆32粒,问原来三人各有豆多少粒?4、得奖人数:(高等难度)六年级举行一次数学竞赛,共有若干名同学得奖,其中得一等奖的同学比余下的得奖人数的五分之一少三名,得二等奖的占领奖人数的三分之一,得三等奖的人数比二等奖的人数同学多21名,问得奖人数是多少?粮食问题:(高等难度)5、甲仓有粮80吨,乙仓有粮120吨,如果把乙仓的一部分粮调入甲仓,使乙仓存粮是甲仓的60%,需要从乙仓调入甲仓多少吨粮食?6、分苹果:(高等难度)有一堆苹果平均分给幼儿园大、小班小朋友,每人可得6个,如果只分给大班每人可得10个,问只分给小班时,每人可得几个?、7、巧算:(中等难度)计算:8、四位数:(中等难度)某个四位数有如下特点:①这个数加1之后是15的倍数;②这个数减去3是38的倍数;③把这个数各数位上的数左右倒过来所得的数与原数之和能被10整除,求这个四位数.9跑步狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
问:狗再跑多远,马可以追上它?、10排队有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有()、11路程A,B,C三地的距离(单位:千米)如左下图所示。
A (1)4.互质的两个合数。
它们的最小公倍数是702,这两个数是( , )。
A (1) 7.若(1525-口)×15+44=80,口中应是( )A (1) 10.小明前5次考试的平均成绩为90分,他暗下决心,争取尽快将平均分提高到94分以上,若他每次考试都得100分,那么他至少还要考( )次A (2)2.5、已知A ×150%=B ÷112==C ÷13,那么A 、B 、C 三个数从大到小的排列顺序是( )A 、A>B>CB 、B>A>C C 、C>B>AD 、A>C>BA (2)3.如果数a 除以数b,商是8,那么( )。
A 、a 一定能被b 整除B 、a 能被b 除尽C 、a 一定不能被b 整除D 、a 一定是b 的倍数A (2)1.甲乙两辆汽车同时从两地相向而行,甲车每小时行45千米,乙车每小时行42千米。
两车在距离中点12千米处相遇。
两车同时开出后经过多少小时相遇A (2)2.在一次数学竞赛中,有5位同学成绩分别为98分,86分,78分,89分,94分。
小明的成绩比小明在内的这6位同学的平均成绩比要高7.5分,小明的数学竞赛成绩是多少分A (2)3.一批学生,女生走了15名,这时的男生与女生的人数的比是2:1,此后,男生走了45名,余下的男生与女生的比是1:5,女生原来共有多少名A (3)计算: 1245÷45 –[667+178×(2720−214)] A (3)24.下列判断中正确的有( )个A 、0个B 、1个C 、2个D 、3个①在0.1和0.01之间的小数有9个。
② 三个连续自然数的和必定是3的倍数。
③两个面积相等的三角形,一定能拼成一个平行四边形。
④半圆的周长不等于圆周长的一半。
⑤两个小数,位数多的那个数一定较大。
A (4)4.甲乙两个两位数,甲数是乙数的75%,它们的最小公倍数是48。
一、拓展提优试题1.如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有个点.2.(15分)一个棱长为6的正方体被切割成若干个棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的倍,求切割成小正方体中,棱长为1的小正方体的个数?3.如图,六边形ABCDEF的周长是16厘米,六个角都是120°,若AB=BC =CD=3厘米,则EF=厘米.4.若一个十位数是99的倍数,则a+b=.5.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用天.6.一根绳子,第一次剪去全长的,第二次剪去余下部分的30%.若两次剪去的部分比余下的部分多0.4米,则这根绳子原来长米.7.在救灾捐款中,某公司有的人各捐200元,有的人各捐100元,其余人各捐50元.该公司人均捐款元.8.如图,一个直径为1厘米的圆绕边长为2厘米的正方形滚动一周后回到原来的位置.在这个过程中,圆面覆盖过的区域(阴影部分)的面积是平方厘米.(π取3)9.若将算式9×8×7×6×5×4×3×2×1中的一些“×”改成“÷”使得最后的计算结果还是自然数,记为N,则N最小是.10.一次智力测试由5道判断对错的题目组成,答对一道得20分,答错或不答得0分.小花在答题时每道题都是随意答“对”或“错”,那么她得60分或60分以上的概率是%.11.快车和慢车同时从甲、乙两地相对开出,快车每小时行33千米,相遇行了全程的,已知慢车行完全程需要8小时,则甲、乙两地相距千米.12.等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是度.13.已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x=.14.小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有道.15.将浓度为40%的100克糖水倒入浓度为20%的a克糖水中,得到浓度为25%的糖水,则a=.16.请你想好一个数,将它加上5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是.17.2015减去它的,再减去余下的,再减去余下的,…,最后一次减去余下的,最后得到的数是.18.已知两位数与的比是5:6,则=.19.如图,向装有水的圆柱形容器中放入三个半径都是1分米的小球,此时水面没过小球,且水面上升到容器高度的处,则圆柱形容器最多可以装水188.4立方分米.20.如图,一个长方形的长和宽的比是5:3.如果长方形的长减少5厘米,宽增加3厘米,那么这个长方形边长一个正方形.原长方形的面积是平方厘米.21.一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是.22.定义新运算“*”:a*b=例如3.5*2=3.5,1*1.2=1.2,7*7=1,则=.23.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是cm.24.从12点开始,经过分钟,时针与分针第一次成90°角;12点之后,时针与分针第二次成90°角的时刻是.25.有一个温泉游泳池,池底有泉水不断涌出,要想抽干满池的水,10台抽水机需工作8小时,9台抽水机需工作9小时,为了保证游泳池水位不变(池水既不减少,也不增多),则向外抽水的抽水机需台.26.若一个长方体,长是宽的2倍,宽是高的2倍,所有棱长之和是56,则此长方体的体积是.27.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).28.某次数学竞赛,甲、乙、丙3人中只有一人获奖,甲说:“我获奖了.”乙说:“我没获奖.”丙说:“甲没有获奖.”他们的话中只有一句是真话,则获奖的是.29.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.30.12013+22013+32013+42013+52013除以5,余数是.(a2013表示2013个a相乘)31.如图是根据鸡蛋的三个组成部分的质量绘制的扇形统计图,由图可知,蛋壳重量占鸡蛋重量的%,一枚重60克的鸡蛋中,最接近32克的组成部分是.32.如图1是一个正方体的展开图,图2的四个正方体中只有一个是和这个展开图对应的,这个正方体是.(填序号)33.图中的三角形的个数是.34.从1,2,3,4,…,15,16这十六个自然数中,任取出n个数,其中必有这样的两个数:一个是另一个的3倍,则n最小是.35.某工程队修建一条铁路隧道,当完成任务的时,工程队采用新设备,使修建速度提高了20%,同时为了保养新设备,每天工作时间缩短为原来的,结果,前后共用185天完工,由以上条件可推知,如果不采用新设备,完工共需天.36.对任意两个数x,y规定运算“*”的含义是:x*y=(其中m是一个确定的数),如果1*2=1,那么m=,3*12=.37.如图所示的“鱼”形图案中共有个三角形.38.李华在买某一商品的时候,将单价中的某一数字“7”错看成了“1”,准备付款189元,实际应付147元,已知商品的单价及购买的数量都是整数,则这种商品的实际单价是元,李华共买了件.39.如图,已知AB=40cm,图中的曲线是由半径不同的三种半圆弧平滑连接而成,那么阴影部分的面积是cm2.(π取3.14)40.如图,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是.【参考答案】一、拓展提优试题1.解:根据分析得出的规律我们可以得到:图⑩中有3+(4+6+8+10+12+14+16+18+20)=3+(4+20)×9÷2=111;故答案为:111.2.解:大正方体表面积:6×6×6=216,体积是:6×6×6=216,切割后小正方体表面积总和是:216×=720,假设棱长为5的小正方体有1个,那么剩下的小正方体的棱长只能是1,个数是:(63﹣53)÷13=91(个),这时表面积总和是:52×6+12×6×91=696≠720,所以不可能有棱长为5的小正方体.(1)同理,棱长为4的小正方体最多为1个,此时,不可能有棱长为3的小正方体,剩下的只能是切割成棱长为2的小正方体或棱长为1的小正方体,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,则解得:(2)棱长为3的小正方体要少于(6÷3)×(6÷3)×(6÷3)=8个,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,棱长为3的小正方体有c个,化简:由上式可得:b=9c+24,a=,当c=0时,b24=,a=24,当c=1时,b=33,a=19.5,(不合题意舍去)当c=2时,b=42,a=15,当c=3时,b=51,a=10.5,(不合题意舍去)当c=4时,b=60,a=6,当c=5时,b=69,a=28.5,(不合题意舍去)当c=6时,b=78,a=﹣3,(不合题意舍去)当c=7时,a=负数,(不合题意舍去)所以,棱长为1的小正方体的个数只能是:56或24或42或60个.答:棱长为1的小正方体的个数只能是:56或24或42或60个.3.解:如图延长并反向延长AF,BC,DE,分别相交与点G、H、N,因六边形ABCDEF的每个角是120°所以∠G=∠H=∠N=60°所以△GHN,△GAB,△HCD,△EFN都是等边三角形AB=BC=CD=3厘米,△GHN边长是3+3+3=9(厘米)AN=9﹣3=6(厘米)AN=AF+EFDE=六边形ABCDEF的周长﹣AB﹣BC﹣CD﹣(AF+EF)=16﹣3﹣3﹣3﹣6=1(厘米)EF=EN=9﹣3﹣1=5(厘米)答:EF=5厘米.故答案为:5.4.解:根据99的整除特性可知:20+16++20+17=99..a+b=8.5.解:依题意可知:甲乙丙的工作效率分别为:,,;甲乙工作总量为:×2+×4=;丙的工作天数为:(1﹣)=3(天);共工作2+4+3=9故答案为:96.解:第二次剪求的占全长的:(1)×30%==,0.4÷[(1)]=0.4÷[]==0.4×15=6(米);答:这根绳子原来长6米.故答案为:6.7.解:捐50元人数的分率为:1﹣=,(200×+100×+50×)÷1=(20+75+7.5)÷1=102.5(元)答:该公司人均捐款102.5元.故答案为:102.5.8.解:2×1×4+3×12=8+3=11(平方厘米)答:阴影部分的面积是11平方厘米.9.解:根据分析,先分解质因数9=3×3,8=2×2×2,6=2×3,故有:9×8×7×6×5×4×3×2×1=(3×3)×(2×2×2)×7×(3×2)×5×(2×2)×3×2×1,所以可变换为:9×8×7÷6×5÷4÷3×2×1=70,此时N最小,为70,故答案是:70.10.解:有答对一题,两题,三题,四题,五题,全错六种情况,答对三题是60分,四题是80分,五题是100分,她得60分或60分以上的概率是:=50%.答:她得60分或60分以上的概率是50%.故答案为:50%.11.解:1﹣=×8=(小时)×33=(千米)÷=198(千米)答:甲、乙两地相距198千米.故答案为:198.12.解:180°×=180°×=90°答:角度最大可以是 90度.故答案为:90.13.解:设原来的分数x是,则:=则:b=3(c+a)=3c+3a①=则:4c=a+b②①代入②可得:4c=a+3c+3a4c=4a+3c则:c=4a③③代入①可得:b=3c+3a=3×4a+3a=15a所以==即x=.故答案为:.14.解:24÷(1﹣)÷(1﹣)÷(1﹣)=24÷=60(道)答:这份练习题共有 60道.故答案为:60.15.解:依题意可知:根据浓度是十字交叉法可知:浓度差的比等于溶液质量比即1:3=100:a,所以a=300克故答案为:30016.解:设这个数是a,[(a+5)×2﹣4]÷2﹣a=[2a+6]÷2﹣a=a+3﹣a=3,故答案为:3.17.解:2015×(1﹣)×(1﹣)×(1﹣)×…×(1﹣)=2015××××…×=1故答案为:1.18.解:因为(10a+b):(10b+a)=5:6,所以(10a+b)×6=(10b+a)×560a+6b=50b+5a所以55a=44b则a=b,所以b只能为5,则a=4.所以=45.故答案为:45.19.解:×3.14×13×3÷(﹣)=12.56×15=188.4(立方分米)答:圆柱形容器最多可以装水188.4立方分米.故答案为:188.4.20.解:先求出一份的长:(5+3)÷(5﹣3)=8÷2=4(厘米)长是:4×5=20(厘米)宽是:4×3=12(厘米)原来的面积是:20×12=240(平方厘米);答:原来长方形的面积是240平方厘米.故答案为:240.21.解:商是10,除数最大是9,余数最大是8,9×10+8=98;被除数最大是98.故答案为:98.22.解:根据分析可得,,=,=2;故答案为:2.23.解:据分析可知,沙子的高度为:5+20÷3=11(厘米);答:沙子的高度为11厘米.故答案为:11.24.解:分针每分钟走的度数是:360÷60=6(度),时针每分钟走的度数是:6×5÷60=0.5(度),第一成直角用的时间是:90÷(6﹣0.5),=90÷5.5,=16(分钟),第二次成直角用的时间是:270÷(6﹣0.5),=270÷5.5,=49(分钟).这时的时刻是:12时+49分=12时49分.故答案为:16,12时49分.25.解:设1台抽水机1小时抽1份水,每小时新增水:9×9﹣10×8=1;答:向外抽水的抽水机需1台.26.解:长方体的高是:56÷4÷(1+2+4),=14÷7,=2,宽是:2×2=4,长是:4×2=8,体积是:8×4×2=64,答:这个长方体的体积是64.故答案为:64.27.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.28.解:由分析可知:假设甲说的是真话,那乙说的也是真话,所以不成立;假设乙说的是真话,那甲说的也是真话,也不成立;所以只能是丙说的是真话,乙说的是假话,即:乙得奖了;故答案为:乙.29.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.30.解:多个2相乘结果个位数字有一个规律:2、4、8、6每4个2相乘一个循环,多个3相乘结果个位数字有一个规律:3、9、7、1每4个3相乘一个循环,2013÷4=503…1,所以2013个2相乘后个位数字是2,2013个3相乘后个位数字是3,2013个4相乘后个位数字是4,1的任何次方都是1,5的任何次方的个位数字都是5,1+2+3+4+5=15所以12013+22013+32013+42013+52013的个位数字是5,所以除以5的余数是0;故答案为:0.31.解:(1)1﹣32%﹣53%,=1﹣85%,=15%;答:蛋壳重量占鸡蛋重量的15%.(2)蛋黄重量:60×32%=19.2(克),蛋白重量:60×53%=31.8(克),蛋壳重量:60×15%=9(克),所以最接近32克的组成部分是蛋白.答:最接近32克的组成部分是蛋白.故答案为:15,蛋白.32.解:如图.图1是一个正方体的展开图,图2的四个正方体中只有一个是和这个展开图对应的,这个正方体是图2①;故答案为:①33.解:根据题干分析可得:10+10+10+5=35(个),答:一共有35个三角形.故答案为:35.34.解:将有3倍关系的放入一组为:(1,3,9)、(2,6)、(4,12)、(5,15)共有4组,其余7个数每一个数为一组,即将这16个数可分为11组,.则第一组最多取2个即1和9,其余组最多取一个,即最多能取12个数保证没有一个数是另一个的三倍,此时只要再任取一个,即取12+1=13个数必有一个数是另一个数的3倍.所以n最小是13.35.解:设计划用x天完成任务,那么原计划每天的工作效率是,提高后每天的工作效率是×(1+20%)=×=,前面完成工程的所用时间是天,提高工作效率后所用的实际是(185﹣)×天,所以,+(185﹣)××=1,+(185﹣)××﹣=1﹣,(185﹣)××=,(185﹣)×÷=÷,185﹣+=x+,x÷=185÷,x=180,答:工程队原计划180天完成任务.故答案为:180.36.解:①因为:x*y=(其中m是一个确定的数)且1*2=1所以:=18=m+6m+6=8m+6﹣6=8m=2②3*12===故答案为:2,.37.解:由一个三角形组成:14个;由两个三角形组成:8个;由三个三角形组成:8个;由四个三角形组成:4个;由六个三角形组成:1个;总共:14+8+8+4+1=35个.故共有35个三角形.故答案为:35.38.解:189=3×3×3×7=27×7147=3×7×7=21×7正好是27×7=189中把27看成21×7=147所以这种商品的实际单价是21元,卖了7件.故答案为:21,7.39.解:40÷2=20(厘米)20÷2=10(厘米)3.14×202﹣3.14×102÷2×4=1256﹣628=628(平方厘米)答:阴影部分的面积是628平方厘米.故答案为:628.40.解:由图可知,阴影部分的面积是图中最大圆面积的,非阴影部分的面积是图中最大圆面积的,所以图中阴影部分面积与非阴影部分面积之比是::=1:3;答:图中阴影部分面积与非阴影部分面积之比是1:3.故答案为:1:3.。
小学六年级奥数题100道及答案Part 1 warm up1.甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米解:那2分钟是甲和丙相遇,所以距离是60+75×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷=36分钟,所以路程=36×60+75=4860米;2. 小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校;如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校;问:小明家到学校多远第六届小数报数学竞赛初赛题第1题解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟;这时每分钟必须多走25米,所以总共多走了24×25=600米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600÷6=100米;总路程就是=100×30=3000米;3. 小张与小王分别从甲、乙两村同时出发,在两村之间往返行走到达另一村后就马上返回,他们在离甲村千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远相遇指迎面相遇解:画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了×3=千米.从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是=千米.每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离3+2+2倍的行程.其中张走了×7=千米,=++千米.就知道第四次相遇处,离乙村千米.答:第四次相遇地点离乙村1千米.4. 哥哥有12枚5分硬币,妹妹有10枚2分硬币,哥哥给妹妹几枚5分硬币,两人的钱数相等解答:5×12=60分 2×10=20分 60-20÷2=20分 20÷5=4枚5.阿香去吃午饭,发现附近的中餐厅有9个,西餐厅有3个,日式餐厅有2个,他准备找一家餐厅吃饭,一共有多少种不同的选择解答:9+3+2=14种6.用400个棋子摆放了5层空心方阵,最内层每边有几个棋子解答:400÷5=80个 80-8-8=64个 64÷4+1=17个7.用棋子摆方阵恰好摆成每边为20的实心方阵,若改为4层空心方阵,最外层每边应放几枚解答:20×20=400个 400+8×1+2+3=448个448÷4=112个 112÷4+1=29个8.一把钥匙只能开一把锁,现有10把钥匙和10把锁,最少要试验多少次就一定能使全部的钥匙和锁相匹配解答:从最不利的情形考虑;用10把钥匙依次去试第一把锁,最不利的情况是试验了9次,前8次都没打开,第 9次无论打开或没打开,都能确定与这把锁相匹配的钥匙若没打开,则第10把钥匙与这把锁相匹配;同理,第二把锁试验8次……第九把锁只需试验1次,第十把锁不用再试为什么;共要试验9+8+7+…+2+1=45次;所以,最少试验45次就一定能使全部的钥匙和锁相匹配;9.将60个红球和8个白球排成一圈,相邻红球个数最多的那一组至少有几个球解答:60÷8=7……6 7+1=8个10.在一个两位数的两个数字之间加一个0,所得三位数比原来大8,求这个两位数是多少解答:设两位数为ab ,根据位值原则得到100a+b=90a+9b10a=8b 5a=4b a=4 b=5 这个两位数是4511.一个回文数是这样的整数,它的各位数字从左到右与从右到左念都一样,例如8338、1331、12321;已知:A、B、C都是回文数,A、B是四位数,C是五位数,A+B=C,那么C是多少解答:如图显然e=1 a+c=11如果百位相加向上进位,则f=2 从而得到b+d=11, C=12221如果百位相加不向上进位,则f=1 从而得到b+d=0,C=11011所以C是12221或11011;12.先找出下列数排列的规律,并根据规律在括号里填上适当的数;1,4,7,10, ,16,19思路导航在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数;根据这一规律,括号里应填的数为:10+3=13或16-3=13;像上面按照一定的顺序排列的一串数叫做数列;13.先找出下列各列数的排列规律,然后在括号里填上适当的数;12,6,10,14, ,22,2623,6,9,12, ,18,21333,28,23, ,13, ,3455,49,43, ,31, ,1953,6,12, ,48, ,19262,6,18, ,162,7128,64,32, ,8, ,2819,3,17,3,15,3, , ,11,3..14.先找出下列数排列的规律,然后在括号里填上适当的数;1,2,4,7, ,16,22思路导航在这列数中,前4个数每相邻的两个数的差依次是1,2,3;由此可以推算7比括号里的数少4,括号里应填:7+4=11;经验证,所填的数是正确的;应填的数为:7+4=11或16-5=11;15.先找出下列数排列的规律,然后在括号里填上适当的数;110,11,13,16,20, ,3121,4,9,16,25, ,49,6433,2,5,2,7,2, , ,11,2453,44,36,29, ,18, ,11,9,8581,64,49,36, ,16, ,4,1,0628,1,26,1,24,1, , ,20,1730,2,26,2,22,2, , ,14,281,6,4,8,7,10, , ,13,1416.先找出规律,然后在括号里填上适当的数;23,4,20,6,17,8, , ,11,12思路导航在这列数中,第一个数减去3的差是第三个数,第二个数加上2的和是第四个数,第三个数减去3的差是第五个数,第四个数加上2的和是第六个数……依此规律,8后面的一个数为:17-3=14,11前面的数为:8+2=1017.先找出规律,然后在括号里填上适当的数;11,6,5,10,9,14,13, ,213,2,15,4,17,6, ,33,29,4,28,6,26,9,23, , ,18,14421,2,19,5,17,8, ,532,20,29,18,26,16, , ,20,1262,9,6,10,18,11,54, , ,13,48671,5,2,8,4,11,8,14, ,8320,1,160,3,80,9,40,27, ,18.在数列1,1,2,3,5,8,13, ,34,55……中,括号里应填什么数思路导航经仔细观察、分析,不难发现:从第三个数开始,每一个数都等于它前面两个数的和;根据这一规律,括号里应填的数为:8+13=21或34-13=21 上面这个数列叫做斐波那切意大利古代著名数学家数列,也叫做“兔子数列”;19.先找出规律,然后在括号里填上适当的数;12,2,4,6,10,16, ,234,21,13,8,5, ,2,30,1,3,8,21, ,14443,7,15,31,63, ,533,17,9,5,3,60,1,4,15,56,71,3,6,8,16,18, , ,76,7880,1,2,4,7,12,20,20.根据下表中的排列规律,在空格里填上适当的数;思路导航经仔细观察、分析表格中的数可以发现:12+6=18,8+7=15,即每一横行中间的数等于两边的两个数的和;依此规律,空格中应填的数为:4+8=12;21.找规律,在空格里填上适当的数;22.根据前面图形中的数之间的关系,想一想第三个图形的括号里应填什么数思路导航经仔细观察、分析可以发现前面两个圈中三个数之间有这样的关系:5×12÷10=6 4×20÷10=8根据这一规律,第三个圈中右下角应填的数为:8×30÷10=24.23.根据前面图形中数之间的关系,想一想第三个图形的空格里应填什么数;12324.先计算下面一组算式的第一题,然后找出其中的规律,并根据规律直接写出后几题的得数;×9=×18=×54=×81=思路导航题中每个算式的第一个因数都是,它是有趣的“缺8数”,与9相乘,结果是由九个1组成的九位数,即:1;不难发现,这组题得数的规律是:只要看每道算式的第二个因数中包含几个9,乘积中就包含几个1;因为:×9=1所以:×18=×9×2=2×54=×9×6=6×81=×9×9=9.练习3:找规律,写得数;1 1+0×9= 2+1×9= 3+12×9= 4+123×9= 9+×9=2 1×1= 11×11= 111×111= 1×1=319+9×9= 118+98×9= 1117+987×9=11116+9876×9= 111115+98765×9=25.找规律计算;1 81-18=8-1×9=7×9=632 72—27=7-2×9=5×9=453 63-36=□-□×9=□×9=□思路导航经仔细观察、分析可以发现:一个两位数与交换它的十位、个位数字位置后的两位数相减,只要用十位与个位数字的差乘9,所得的积就是这两个数的差;26.1.利用规律计算;153-35 282-28 392-29 461-16 595-592.找规律计算;1 62+26=6+2×11=8×11=882 87+78=8+7×11=15×11=1653 54+45=□+□×11=□×11=□27.计算126×11 238×11思路导航一个两位数与11相乘,只要把这个两位数的两个数字的和插入这两个数字中间,就是所求的积;1 26×11=22+66=2862 38×11=33+88=418 注意:如果两个数字的和满十,要向前一位进一;28.计算下面各题;127×11232×113 39×11446×11592×11698×1129.一包巧克力的重量等于两袋饼干的重量,4袋牛肉干的重等于一包巧克力的重量,一袋饼干等于几袋牛肉干的重量思路导航根据“一包巧克力的重量=两袋饼干的重量”与“4袋牛肉干的重量=一包巧克力的重量”可推出:两袋饼干的重量=4袋牛肉干的重量;因此,一袋饼干的重量=两袋牛肉干的重量;30.1一只菠萝的重量等于4根香蕉的重量,两只梨子的重量等于一只菠萝的重量,一只梨子的重量等于几根香蕉的重量23包巧克力的重量等于两袋糖的的重量,12袋牛肉干的重量等于3包巧克力的重量,一袋糖的重量等于几袋牛肉干的重量3一只小猪的重量等于6只鸡的重量,3只鸡的重量等于4只鸭的重量;一只小猪的重量等于几只鸭的重量31.一头象的重量等于4头牛的重量,一头牛的重量等于3匹小马的重量,一匹小马的重量等于3头小猪的重量;一头象的重量等于几头小猪的重量思路导航根据“一头象的重量等于4头牛的重量”与“一头牛的重量等于3匹小马的重量”可推出:“一头象的重量等于12匹小马的重量”,而“一匹小马的重量等于3头小猪的重量”,因此,一头象的重量等于36头小猪的重量;32.1一只西瓜的重量等于两个菠萝的重量,1个菠萝的重量等于4个苹果的重量,1个苹果的重量等于两个橘子的重量;1只西瓜的重量等于几个橘子的重量2一头牛一天吃草的重量和一只兔子9天吃草的重量相等,也和6只羊一天吃草的重量相等;已知一头牛每天吃青草18千克,一只兔子和一只羊一天共吃青草多少千克3一只小猪的重量等于6只鸡的重量,3只鸡的重量等于4只鸭的重量,两只鸭的重量等于6条鱼的重量;问:两只小猪的重量等于几条鱼的重量33.根据下面两个算式,求○与□各代表多少○+○+○=18 ○+□=10思路导航在第一个算式中,3个○相加的和是18,所以○代表的数是:18÷3=6,又由第二个算式可求出□代表的数是:10-6=4.34.1根据下面两个算式,求□与△各代表多少□+□+□+□=32 △-□=202根据下面两个算式,求○与□各代表多少○+○+○=15 ○+○+□+□+□=403根据下面两个算式,求○与△各代表多少○-△=8 △+△+△=○35.根据下面两个算式,求○与△各代表多少△-○=2 ○+○+△+△+△=56 思路导航由第一个算式可知,△比○多2;如果将第二个算式的○都换成△,那么5个△=56+2×2,△=12,再由第一个算式可知,○=12-2=10.36.1根据下面两个算式求□与○各代表多少□-○=8 □+□+○+○=202根据下面两个算式,求△与○各代表多少△+△+△+○+○=78 △+△+○+○+○=723根据下面两个算式,求△与□各代表多少△+△+△-□-□=12 □+□+□-△-△=237甲、乙、丙三人分别是一小、二小和三小的学生,在区运动会上他们分别获得跳高、跳远和垒球冠军;已知:二小的是跳远冠军;一小的不是垒球冠军,甲不是跳高冠军;乙既不是二小的也不是跳高冠军;问:他们三个人分别是哪个学校的获得哪项冠军思路导航由“二小的是跳远冠军”可知垒球、跳高冠军是一小或三小的;因为“一小的不是垒球冠军”,所以一小一定是跳高冠军,三小的是垒球冠军;由“甲不是跳远冠军”,“乙既不是二小的也不是跳高冠军”可知,一小的甲是跳高冠军,二小的丙是跳远冠军,三小的乙是垒球冠军;38.1有三个女孩穿着崭新的连衣裙去参加游园会;一个穿花的,一个穿白的,一个穿红的;但不知哪一个姓王、哪一个姓李、哪一个姓刘;只知道姓刘的不喜欢穿红的,姓王的既不是穿红裙子,也不是穿花裙子;你能猜出这三个女孩各姓什么吗2小兔、小猫、小狗、小猴和小鹿参加100米比赛,比赛结束后小猴说:“我比小猫跑得快;”小狗说:“小鹿在我前面冲过终点线;”小兔说:“我们的名次排在小猴前面,小狗在后面;”请根据它们的回答排出名次;3五个女孩并排坐着,甲坐在离乙、丙距离相等的座位上,丁坐在离甲、丙距离相等的座位上,戌坐在她两个姐姐之间;请问谁是戌的姐姐39.已知函数()ln f x x x =的图象与直线y=m 交于不同的两点1122(,),(,)A x y B x y , 求证:1221x x e <. 40.2013湖南已知函数21()1x x f x e x -=+ 证明:当1212()()()f x f x x x =≠时 120.x x +< 41.已知()21ln 2f x x x mx x =--,m ∈R .若()f x 有两个极值点1x ,2x ,且12x x <,求证:212e x x >e 为自然对数的底数.要求多种方法完成42.某玩具厂把630件玩具分别装在5个塑料箱和6个纸箱里,1个塑料箱与3个纸箱装的玩具同样多;每个塑料箱和纸箱各装多少件玩具思路导航如果玩具全部装在塑料箱或全部装在纸箱里,那么可以求出一个纸箱或一个塑料箱装多少件;因为3个纸箱与一个塑料箱装的同样多,所以6个纸箱与2个塑料箱装的同样多;这样,5个塑料箱装的玩具件数和7个塑料箱装的就同样多;由此,可求出一个塑料箱装多少件;43.1百货商店运来300双球鞋分别装在2个木箱和6个纸箱里;如果两个纸箱同一个木箱装的球鞋同样多,每个木箱和每个纸箱各装多少双球鞋2新华小学买了两张桌子和5把椅子,共付款195元;已知每张桌子的价钱是每把椅子的4倍,每张桌子多少元3王叔叔买了3千克荔枝和4千克桂圆,共付款156元;已知5千克荔枝的价钱等于2千克桂圆的价钱;每千克荔枝和每千克桂圆各多少元44.一桶油,连桶重180千克,用去一半油后,连桶还有100千克;问:油和桶各重多少千克思路导航原来油和桶共重180千克,用去一半油后,连桶还有100千克,说明用去的一半油的重是180-100=80千克,一桶油的重量就是80×2=160千克,油桶的重量就是180-160=20千克;45.1一筐梨,连筐重38千克,吃去一半后,连筐还有20千克;问:梨和筐各重多少千克2一筐苹果,连筐共重35千克,先拿一半送给幼儿园小朋友,再拿剩下的一半送给一年级小朋友,余下的苹果连筐重11千克;这筐苹果重多少千克3一只油桶里有一些油,如果把油加到原来的2倍,油桶连油重38千克;如果把油加到原来的4倍,这里油和桶共重46千克;原来油桶里有油多少千克46.有5盒茶叶,如果从每盒中取出200克,那么5盒剩下的茶叶正好和原来4盒茶叶的重量相等;原来每盒茶叶有多少克思路导航由条件“每盒取出200克,5盒剩下的茶叶正好和原来4盒茶叶重量相等”可以推出,拿出的200×5=1000克茶叶正好等于原来的5-4=1盒茶叶的重量;47.1有6筐梨子,每筐梨子个数相等,如果从每筐中拿出40个,6筐梨子剩下的个数总和正好和原来两筐的个数相等;原来每筐有多少个2在5个木箱中放着同样多的橘子;如果从每个木箱中拿出60个橘子,那么5个木箱中剩下的橘子的个数的总和等于原来两个木箱里橘子个数的和;原来每个木箱中有多少个橘子3某食品店有5箱饼干,如果从每个箱子里取出20千克,那么5个箱子里剩下的饼干正好等于原来3箱饼干的重量;原来每个箱子里装多少千克饼干48.一个木器厂要生产一批课桌;原计划每天生产60张,实际每天比原计划多生产4张,结果提前一天完成任务;原计划要生产多少张课桌思路导航这道题的关键是要求出工作时间;因为实际比原计划提前1天完成任务,这就相当于把原计划最后1天的任务平均分到前面的几天去做,正好分完;实际比原计划每天多生产4张,所以实际生产的天数是60÷4=15天,原计划生产的天数是15+1=16天;所以原计划要生产60×16=960张;49.1电视机厂接到一批生产任务,计划每天生产90台,可以按期完成;实际每天多生产5台,结果提前1天完成任务;这批电视机共有多少台2小明看一本故事书,计划每天看12页,实际每天多看8页,结果提前2天看完;这本故事书有多少页3修一条公路,计划每天修60米,实际每天比计划多修15米,结果提前4天修完;一共修了多少米50.有两盒图钉,甲盒有72只,乙盒有48只,从甲盒拿出多少只放入乙盒,才能使两盒中的图钉相等思路导航由条件可知,甲盒比乙盒多72-48=24只;要盒两盒中的图钉相等,只要把甲盒比乙盒多的24只图钉平均分成2份,取其中的1份放入乙盒就行了;所以应拿出24÷2=12只;51.1有两袋面粉,第一袋面粉有24千克,第二袋面粉有18千克;从第一袋中取出几千克放入第二袋,才能使两袋中的面粉重量相等2有两盒图钉,甲盒有72只,乙盒有48只;每次从甲盒中拿4只放到乙盒,拿几次才能使两盒相等3有两袋糖,一袋是68粒,另一袋是20粒;每次从多的一袋中拿出6粒放到少的一袋里,拿几次才能使两袋糖同样多52.1在括号里填上合适的数; 2在方框里填上合适的数;3下面的竖式里,有4个数字被遮住了,求竖式中被盖住的4个数字的和;53.下面各式中“巨”、“龙”、“腾”、“飞”分别代表不同的数字,相同的汉字代表相同的数字;当它们各代表什么数字时,下列的算式成立;思路导航先看个位,3个“飞”相加的和的个位数字是1,可推知“飞”代表7;再看十位,3个“腾”相加,再加上个位进来的2,所得的和的个位是0,可推知“腾”代表6;再看百位,两个“龙”相加,加上十位进上来的2,所得和的个位是0,“龙”可能是4或9,考虑到千位上的“巨”不可能为0,所以“龙”只能代表4,“巨”只能代表1;54.55.下面各式中的“兵”、“炮”、“马”、“卒”各代表0—9这十个数字中的某一个,相同的汉字代表相同的数字;这些汉字各代表哪些数字思路导航这道题应以“卒”入手来分析;“卒”和“卒”相加和的个位数字仍然是“卒”,这个数字只能是0;确定“卒”是0后,所有是“卒”的地方,都是0;注意到百位上是“兵”+“兵”=“卒”,容易知道“兵”是5,“车”是1;再由十位上的情况可推知“马”是4,进而推得“炮”是2;5657.将0、1、2、3、4、5、6这七个数字填在圆圈和方格内,每个数字恰好出现一次,组成一个整数算式; ○×○=□=○÷○思路导航要求用七个数字组成五个数,这五个数有三个是一位数,有两个是两位数;显然,方格中的数和被除数是两位数,其他是一位数;0和1不能填入乘法算式,也不能做除数;由于2×6=122将出现两次,2×5=10经试验不合题意,2×4=87个数字中没有8,2×3=66不能成为商;因此,0、1、2只能用来组成两位数;经试验可得:3×4=12=6=÷5.58.1将0、1、3、5、6、8、9这七个数字填在圆圈和方筐里,每个数字恰好出现一次组成一个整数算式; ○×○=□=○÷○2填入1、2、3、4、7、9,使等式成立; □÷□=□÷□3用1、2、3、7、8这五个数字可以列成一个算式:1+3×7=28;请你用0、1、2、3、4、6这六个数字列成一个算式;59.把“+、-、×、÷”分别放在适当的圆圈中运算符号只能用一次,并在方框中填上适当的数,使下面的两个等式成立;36○0○15=15 21○3○5=□思路导航先从第一个等式入手,等式右边是15,与等式左边最后一个数15相同,因为0+15=15,所以,只要使36与0的运算结果为0就行;显然,36×0+15=15因为第一个等式已填“×”、“+”,在第二个等式中只有“-”、“÷”可以填,题目要求在方框中填整数,已知3不能被5整除,所以“÷”只能填在21与3之间,而3与5之间填“-”;60.1把“+、-、×、÷”分别填入下面的圆圈中,并在方框中填上适当的整数,使下面每组的两个等式成立; ① 9○13○7=100 14○2○5=□② 17○6○2=100 5○14○7=□2将1~9这九个数字填入□中每个数字只能用一次,组成三个等式;□+□=□□-□=□□×□=□61.在下面的方框中填上合适的数字;思路导航由积的末尾是0,可推出第二个因数的个位是5;由第二个因数的个位是5,并结合第一个因数与5相乘的积的情况考虑,可推出第一人个因数的百位是3;由第一个因数为376与积为31□□0,可推出第二个因数的十数上是8;题中别的数字就容易填了;62.在□里填上适当的数;63.在下面方框中填上适合的数字;思路导航由商的十位是1,以及1与除数的乘积的最高位是1可推知除数的十位是1;由第一次除后余下的数是1,可推知被除数的十位只可能是7、8、9;如果是7,除数的个位是0,那么最后必有余数;如果被除数是8,除数的个位就是1,也不能除尽;只有当被除数的十位是9时,除数的个位是2时,商的个位为6,正好除尽;完整的竖式是:64.在□内填入适当的数字,使下列除法竖式成立;65.下面算式中的a、b、c、d这四个字母各代表什么数字思路导航因为四位数abcd乘9的积是四位数,可知a是1;d和9相乘的积的个位是1,可知d只能是9;因为第二个因数9与第一个因数百位上的数b相乘的积不能进位,所以b只能是01已经用过;再由b=0,可推知c=8;66.求下列各题中每个汉字所代表的数字;花= 红 = 柳 = 绿 = 华 = 罗 = 庚 = 金 = 杯 =盼 = 望 = 祖 = 国 = 早 = 日 = 统 = 一=67.在1、2、3、4、5、6、7、8、9这九个数字中间加上“+、-”两种运算符号,使其结果等于100数字的顺序不能改变; 2 3 4 5 6 7 8 9 = 100 思路导航先凑出与100比较接近的数,再根据需要把相邻的几个数组成一个数;比如:123与100比较接近,所以把前三个数字组成123,后面的数字凑出23就行;因为45与67相差22,8与9相差1,所以得到一种解法:123+45-67+8-9=100再比如:89与100比较接近,78与67正好相差11,所此可得另一种解法:123+45-67+8-9=100.68.:1在下面等号左边的数字之间添上一些加号,使其结果等于99数字的顺序不能改变; 8 7 6 5 4 3 2 1 = 992一个乘号和七个加号添在下面的算式中合适的地方,使其结果等于100数字的顺序不能改变; 1 2 3 4 5 6 7 8 9 = 1003添上适当的运算符号和括号,使下列等式成立; 1 2 3 4 5 = 10069.在下面的式子里添上括号,使等式成立; 7×9+12÷3-2 = 23思路导航采用逆推法,从最后一步运算开始考虑;假如最后一步是用前面计算的结果减2,那么前面式子的运算结果应等25,又因为25×3=75,而前面7×9+12又正好等于75,所以,应给前面两步运算加括号; 7×9+12÷3-2 = 2394.1.在下面的式子里添上括号,使等式成立;17×9+12÷3-2 = 7527×9+12÷3-2 = 47388+33-11÷11×2 = 52.在1、2、3、4、5、6、7、8、9这九个数字中间加上“+、-”两种运算符号,使其结果等于100数字的顺序不能改变;95. 用一只平底锅煎饼,每次只能放两个,剪一个饼需要2分钟规定正反面各需要1分钟;问煎3个饼至少需要多少分钟思路导航先将两个饼同时放入锅中一起煎,一分钟后两个饼都熟了一面,这时可将一个取出,另一个翻过去,再放入第三个;又煎了一分钟,将两面都熟的那个取出,把第三个翻过去,再将第一个放入煎,再煎一分钟就会全部煎好;所以,煎3个饼至少需要3分钟;96.1.烤面包时,第一面需要2分钟,第二面只要烤1分钟,即烤一片面包需要3分钟;小丽用来烤面包的架子,一次只能放两片面包,她每天早上吃3片面包,至少要烤多少分钟2.用一只平底锅烙大饼,锅里只能同时放两个;烙熟大饼的一面需要3分钟,现在要烙3个大饼,最少要用几分钟3.小华用平底锅烙饼,这只锅同时能放4个大饼,烙一个要用4分钟每面各需要2分钟;可小华烙6个大饼只用了6分钟,他是怎样烙的97.妈妈让小明给客人烧水沏茶;洗水壶需要1分钟,烧开水需要15分钟,洗茶壶需要1分钟,洗茶杯需要1分钟;要让客人喝上茶,最少需要多少分钟思路导航经验表明,能同时做的事,尽量同时做,这样可以节省时间;水壶不洗,不能烧开水,因此,洗水壶和烧开水不能同时进行;而洗茶壶、洗茶杯和拿茶叶与烧开水可以同时进行;根据以上的分析,可以这样安排:先洗水壶用1分钟,接着烧开水用15分钟,同时洗茶壶、洗茶杯、拿茶叶,水开了就沏茶,共需要16分钟;98.1.小虎早晨要完成这样几件事:烧一壶开水需要10分钟,把开水灌进热水瓶需要2分钟,取奶需要5分钟,整理书包需要4分钟;他完成这几件事最少需要多少分钟2.小强给客人沏茶,烧开水需要12分钟,洗茶杯要2分钟,买茶叶要8分钟,放茶叶泡茶要1分钟;为了让客人早点喝上茶,你认为最合理的安排,多少分钟就可以了3.在早晨起床后的1小时内,小欣要完成以下事情:叠被3分钟,洗脸刷牙8分钟,读外语30分钟,吃早餐10分钟,收碗擦桌5分钟,收听广播30分钟;最少需要多少分钟99.五1班赵明、孙勇、李佳三位同学同时到达学校卫生室,等候校医治病;赵明打针需要5分钟,孙勇包纱布需要3分钟,李佳点眼药水需要1分钟;卫生室只有一位校医,校医如何安排三位同学的治病次序,才能使三位同学留在卫生室的时间总和最短思路导航校医应该给治疗时间最短的先治病,治疗时间长的最后治疗,才能使三位同学在卫生室的时间总和最短;这样,三位同学留在卫生室的时间分别是:李佳1分钟,赵1+3=4分钟,赵明1+3+5=9分钟;时间总和是1+4+9=14分钟;100.1.甲、乙、丙三人分别拿着2个、3个、1个热水瓶同时到达开水供应点打热水;热水龙头只有一个,怎样安排他们打水的次序,可以使他们打热水所花的总时间最少2.甲、乙、丙三人到商场批发部洽谈业务,甲、乙、丙三人需要的时间分别是10分钟、16分钟和8分钟;怎样安排,使3人所花的时间最少最少时间是多少。
六年级奥数题及答案(dáàn)经典-(1)1·由奶糖和巧克力糖混合成一堆糖,如果(rúguǒ)增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案(dá àn)加10颗奶糖,巧克力占总数的60%,说明(shuōmíng)此时奶糖占40%,巧克力是奶糖的60/40=1。
5倍再增加(zēngjiā)30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍增加了3-1,5=1,5倍,说明30颗占1,5倍奶糖=30/1,5=20颗巧克力=1,5*20=30颗奶糖=20-10=10颗2·小明和小亮各有一些玻璃球,小明说;“你有球的个数比我少1/4!”小亮说;“你要是能给我你的1/6,我就比你多2个了。
”小明原有玻璃球多少个?答案小明说(mínɡ shuō);“你有球的个数比我少1/4!”,则想成小明的球的个数为4份,则小亮(xiǎo liànɡ)的球的个数为3份4*1/6=2/3 (小明(xiǎo mínɡ)要给小亮2/3份玻璃球)小明(xiǎo mínɡ)还剩;4-2/3=3又1/3(份)小亮(xiǎo liànɡ)现有;3+2/3=3又2/3(份)这多出来的1/3份对应的量为2,则一份里有;3*2=6(个)小明原有4份玻璃球,又知每份玻璃球为6个,则小明原有玻璃球4*6=24(个)3·搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时,有同样的仓库A和B,甲在A仓库·乙在B 仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运,最后两个仓库货物同时搬完,问丙帮助甲·乙各多少时间?解;设搬运一个仓库的货物的工作量是1,现在相当于三人共同完成工作量2,所需时间是答;丙帮助(bāngzhù)甲搬运3小时,帮助乙搬运5小时解本题的关键,是先算出三人共同搬运(bānyùn)两个仓库的时间,本题计算当然也可以(kěyǐ)整数化,设搬运一个仓库全部工作量为 60,甲每小时(xiǎoshí)搬运 6,乙每小时搬运5,丙每小时搬运4三人共同(gòngtóng)搬完,需要60 × 2÷(6+ 5+ 4)= 8(小时)甲需丙帮助搬运(60- 6× 8)÷ 4= 3(小时)乙需丙帮助搬运(60- 5× 8)÷4= 5(小时)4·一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?答案(dá àn)甲乙丙3人8天完成(wán chéng) :5/6-1/3=1/2甲乙丙3人每天完成(wán chéng) :1/2÷8=1/16,甲乙丙3人4天完成(wán chéng) :1/16×4=1/4则甲做一天(yī tiān)后乙做2天要做 :1/3-1/4=1/12那么乙一天做 :[1/12-1/72×3]/2=1/48则丙一天做 :1/16-1/72-1/48=1/36则余下的由丙做要 :[1-5/6]÷1/36=6天答;还需要6天5·股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。
小学奥数题六年级小学奥数题六年级 11、有鸡兔共20只,脚44只,鸡兔各几只?2、小红的储钱罐里有面值2元和5元的人民币共65张,总钱数为205元,两种面值的人民币各多少张?3、现有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大小桶各多少个?4、有两桶油共重86千克,假如从甲桶油倒入乙桶4千克,则两桶油的重量相同。
这两桶油各有多少千克?5、瓷器商店委托搬运站运送800只花瓶,双方商定每只运费是0.35元,如果打破1只,不但不计运费,而且要赔偿2.50元,结果运到目的地后,搬运站共得运费268。
6元,求打破了几只花瓶?6、学校举行运动会,三年级有35人参加比赛,四年级参加的人数是三年级的3倍,五年级参加的人数比三、四年级参加的总人数多10人,五年级参加比赛的有多少人?7、蓝墨水和红墨水,以前都是3角钱一瓶,王营小学每学期都花12元买若干瓶。
现在每瓶蓝墨水涨价5分,每瓶红墨水涨价3分,虽然买的两种墨水瓶数还和各学期相等,但比每学期都多付1.8元。
该校每学期买两种墨水各多少瓶?8、大院里养了三种动物,每只小山羊戴着3个铃铛,每只狮子狗戴着一个铃铛,大白鹅不戴铃铛。
小明数了数,一共9个脑袋、28条腿、11个铃铛,三种动物各有多少只?9、小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣2分,又知道他做错的题和没做的一样多。
问小毛做对几道题?10、赵传伦把一张50元和一张5元的人民币,兑换成了两元和5角的人民币共50张。
他兑换了两种面额的人民币各多少张?小学奥数题六年级 21、有一辆货车运输2000只玻璃瓶,运费按到达时完好瓶子数目计算,每只2角,如有破损,破损1个瓶子还要倒赔1元,结果得到运费379。
6元,问这次搬运中玻璃损坏了几只?2、鸡与兔共有200只,鸡的脚比兔的脚少56只,问鸡与兔各多少只?3、今有鸡兔共居一笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只,问鸡兔各几只?4、蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀,现有这三种动物共21只,共140条腿和23对翅膀,问蜘蛛、蝴蝶、蝉各有几只?5、12张乒乓球台上共有34人在打球,问:正在进行单打和双打的台子各有几张?6、鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?7、班主任张老师带五年级(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生?8、大油瓶一瓶装4千克,小油瓶2瓶装1千克。
小学六年级奥数题集锦1、甲乙两车同时从AB两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。
求AB两地相距多少千米2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
求乙绕城一周所需要的时间?4、甲乙两人同时从A地步行走向B地,当甲走了全程的1\4时,乙离B地还有640米,当甲走余下的5\6时,乙走完全程的7\10,求AB两地距离是多少米?5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。
甲车每小时行75千米,乙车行完全程需7小时。
两车开出3小时后相距15千米,A,B两地相距多少千米?6、甲,已两人要走完这条路,甲要走30分,已要走20分.现两人同时出发相向而走.走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟已相遇7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a 地出发至1千米时,发现有物品落在a地,便立即返回,拿了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的中点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?10、甲每小时行驶9千米,乙每小时行驶7千米。
两者在相距6千米的两地同时向背而行,几小时后相距150千米11、甲乙两车从相距600千米的两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米?12、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?13、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的3分之2 ,求二车的速度?14、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相距4千米,再经过多长时间相遇?15、甲、乙两车分别从a b两地开出甲车每小时行50千米乙车每小时行40千米甲车比乙车早1小时到两地相距多少?16、两辆车从甲乙两地同时相对开出,4时相遇。
奥数题六年级练习题第一题:某数加上8等于17,这个数是多少?解析:设这个数为x,根据题意可以得到方程x + 8 = 17。
解这个方程可得x = 17 - 8 = 9。
所以答案是9。
第二题:某书架上有5本数学书,比物理书多3本,比化学书少2本,总共有几本书?解析:假设物理书的本数为x,则数学书的本数为x + 3,化学书的本数为x - 2。
根据题意,数学书、物理书和化学书的总本数为5 + (x + 3) + (x - 2) = 2x + 6。
所以总共有2x + 6本书。
第三题:一个三位数,个位数字为3,十位和百位数字之和为13,这个数是多少?解析:设这个三位数为abc,根据题意可以列出方程系统:a = 3(个位数字为3)b +c = 13(十位和百位数字之和为13)根据第一个方程可以得到a = 3。
将a = 3代入第二个方程,得到b + c = 13。
由于a、b、c分别代表数字,所以b和c的取值范围为0到9之间。
根据题目条件可以得到b和c两个数的组合只有两种可能:4和9、5和8。
即b = 4,c = 9或者b = 5,c = 8。
所以这个三位数可以是349或者358。
第四题:甲数是乙数的2倍,乙数是丙数的3倍,甲数加丙数等于19,求甲、乙、丙三个数。
解析:设甲数为a,乙数为b,丙数为c,根据题意可以列出方程系统:a = 2b(甲数是乙数的2倍)b = 3c(乙数是丙数的3倍)a + c = 19(甲数加丙数等于19)根据第一个方程可以得到b = a/2。
将b = a/2代入第二个方程可以得到a/2 = 3c,化简得到a = 6c。
将a = 6c代入第三个方程可以得到6c + c = 19,化简得到7c = 19,解方程可得到c = 19/7。
由于甲、乙、丙三个数都是整数,所以c只能等于2。
将c = 2代入a = 6c和b = a/2可以得到a = 12和b = 6。
所以甲、乙、丙三个数分别为12、6和2。
,.练习(一)姓名1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?得分5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5千米,第二小组每小时行3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元? 10.一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?,.答案:奥数题解答参考1、想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
小学奥数题及答案详解
(一)植树问题
题目1:在一条长20米的公园小道一边种杨柳树,每隔4米种一棵,两端都要种,一种要种多少棵?
答案:20米的路每隔4米种一棵,可以分成5段,两端都种的话,就在加1棵。
算式为:20÷4=5(棵),5+1=6(棵);20÷4+1=6(棵)。
题目2:一条路上每隔2米有一根电线杆,连两端一共有10根电线杆,这条路有多长?
答案:加上两端一共10根电线杆,说明有9段,每段2米,则一共有18米。
算式为:2×(10-1)=18(米)
题目3:在一条20米的公园小道两边种树,每隔4米种1棵,两头都要种,一共要种多少棵?
答案:20米的小路每边每隔4米的话一共有5段,两头都种则每边有6棵,两边都种则有12棵。
算式为:20÷4=5(棵),5+1=6(棵),2×6=12(棵);(20÷4+1)×2=12(棵)。
题目4:一个圆形水池周围每隔2米栽一棵杨树,共栽了40棵,水池的周长是多少米?
答案:因为水池是圆形的,树的棵树与树的间隔数是相同的,所以40棵树把水池周围分成了40段,因此水池的长度为80米,算式为:2×40=80(米)。
小学六年级奥数题及答案[6篇]1.小学六年级奥数题及答案篇一1、有一份稿件,原计划是5小时打出来,实际上只用了4个小时,工作效率提高了百分之几?答案:25%解析:原计划的工作效率是1/5,实际上的工作效率是1/4,提高了(1/4-1/ 5)÷1/5=25%需要多少分钟?2、甲乙两车分别从A、B两地同时出发,相向而行,3小时相遇后,甲掉头返回A地,乙继续前行。
甲到达A地后掉头往B行驶,半小时后和乙相遇,那么从A到B需要多少分钟?答案:432分钟解析:甲行驶2.5小时的路程,乙用了3.5小时。
所以甲乙的速度比为7:5,走相同路程的时间比是5:7。
那么乙从A到B的时间为3×7/5+3=7.2小时,即432分钟。
2.小学六年级奥数题及答案篇二1、据说人的头发不超过20万跟,如果陕西省有3645万人,根据这些数据,你知道陕西省至少有多少人头发根数一样多吗?答案与解析:人的头发不超过20万根,可看作20万个“抽屉”,3645万人可看作3645万个“元素”,把3645万个“元素”放到20万个“抽屉”中,得到3645÷20=182……5根据抽屉原则的推广规律,可知k+1=183答:陕西省至少有183人的头发根数一样多。
2、已知一个正方形的对角线长8米,求这个正方形的面积是多少?答案与解析:①做正方形的另一条对角线。
得到四个完全相同的等腰直角三角形。
②一个等腰直角三角形的面积是:8÷2=4(直角边)4×4÷2=8(平方米)③四个等腰直角三角形的面积,即正方形的面积。
8×4=32(平方米)3.小学六年级奥数题及答案篇三1、125×(17×8)×4=125×8×4×17=1000×68=680002、375×480+6250×48=480×(375+625)=4800003、25×16×125=25×2×8×125=500004、13×99=13×(100-1)=1300-13=12875、75000÷125÷15=75×1000÷125÷15=75÷15×1000÷125=5×8=406、7900÷4÷25=7900÷(4×25)=797、150×40÷50=150÷50×40=3×40=1208、5600÷(25×7)=56×100÷25÷7=56÷7×100÷25=329、210÷42×6=210÷7÷6×6=3010、39600÷25=396×100÷25=396×4=15844.小学六年级奥数题及答案篇四有三块草地,面积分别是5,15,24亩。
全国168所名牌小学小考必做的600道奥数题(一)1、自然数P满足下列条件:P除以10的余数为9,P除以9的余数为8,P除以8的余数为7。
如果:100<P<1000,则这样的P有几个? ( )A.不存在B.1个C.2个D.3个2、甲、乙两车分别从A、B两地同时出发相向而行,6小时后相遇在C点,如果甲车速度不变,乙车每小时多行5千米,且两车还从A、B两地同时出发相向而行,则相遇地点距C点12千米;如果乙车速度不变,甲车每小时多行5千米,且两车还从A、B两地同时出发相向而行,则相遇地点距C点16千米,甲车原来每小时行多少千米?()A. 20B. 40C. 10D. 303、一个三位数除以9余7,除以5余2 ,除以4余3,这样的三位楼共有:A.5个B.6个C.7个D.8个4、19981999+19991998的尾数是:A.3B.6C.7D.95、下面的四只天平都保持平衡。
想一想:一个西瓜和几根香蕉的重量相等?根香蕉6、已知一只狗重8千克,请你根据下图推出一只小猴和一只小兔共重多少千克。
7、一头猪可以换3只羊,1只羊可以换2只狗,1只狗可以换4只兔子,1头猪可以换几只兔子?8、百货商店运来300双球鞋,分别装在2个木箱和6个纸箱里。
如果2个纸箱同1个木箱装的球鞋一样多,想一想;每个木箱和每个纸箱各装多少双球鞋?9、如右图,阴影部分BDFE是正方形,求长方形ACGH的周长。
10、某校6(1)班学生48人到公园划船。
如果每只小船可坐3人,每只大船可坐5人。
那么需要小船和大船各几只?(大、小船都有)11、甲级铅笔7角钱一枝,乙级铅笔3角钱一枝,小华用六元钱恰好可以买两种不同的铅笔共几枝?12、小华和小强各用6角4分买了若干枝铅笔,他们买来的铅笔中都是5分一枝和7分一枝的两种,而且小华买来的铅笔比小强多,小华比小强多买来多少枝?13、买三种水果30千克,共用去80元。
其中苹果每千克4元,橘子每千克3元,梨每千克2元。
练习(一)姓名1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱? 得分5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5千米,第二小组每小时行3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米? 9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?答案:奥数题解答参考1、想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
六年级数学奥赛题(一)
一、计算。
1、1.25×17.6+36.1÷0.8+2.63×12.5
2、7.5×2.3+1.9×2.5
3、1999+999×999
4、8+98+998+9998+99998=
5、(78.6—0.786×25十75%×21.4)÷15×1997
二、填空题
1、六(1)班男、女生人数的比是8:7。
(1)女生人数是男生人数的()(2)男生人数占全班人数的()(3)女生人数占全班人数的()(4)全班有45人,男生有()人。
2、甲数和乙数的比是2:5,乙数和丙数的比是4:7,已知甲数是16,求甲、乙、丙三个数的和是()。
3、甲数和乙数的比7:3,乙数和丙数的比是6:5,丙数是甲数的(),甲数和丙数的比是():()。
4、0.08的倒数是(),2.25的倒数是()。
5、一根铁丝长3米,剪去1/3 后还剩()米;一根铁丝长3米,剪去 1/3米后还剩()米。
6、甲、乙合做一件工作,甲做的部分占乙的 2/5,乙做的占全部工作的()。
7、周长相等的正方形和圆形,()的面积大。
8、()÷40=15:()= =0.625=()%
9、把0.38、、37%、0.373按从大到小的顺序排列是
()。
10、4米是5米的()%,5米比4米多()%,4米比5米少()%
11、用一张长5厘米,宽4厘米的长方形纸剪一个最大的圆,这个圆的面积占这张纸面积的()%。
12. 甲、乙、丙三种糖果每千克的价格分别是9元,7.5元,7元.现把甲种糖果5千克,乙种糖果4千克,丙种糖果3千克混合在一起,那么用10元可买____ _千克这种混合糖果。
13、一个月最多有5个星期日,在一年的12个月中,有5个星期日的月份最多有_____个月。
14、奶奶告诉小明:“2006年共有53个星期日”.聪敏的小明立刻告诉奶奶:2007年的元旦一定是星期( )。
15、、广场上的大钟5时敲响5下,8秒敲完,12时敲响12下,需要()秒。
16、甲、乙两数的比5:8,甲数比乙数少()%,乙数比甲数多()%。
三、图形计算
1、电视塔的圆形塔底半径为15米,现在要在它的周围种上5米宽的环形草坪。
(1)需要多少平方米的草坪?
(2)如果每平方米的草坪需500元,那么植这块草坪至少需要多少钱?
2、已知图中正方形的面积是20平方厘米,求阴影部分的面积。
(6分)
3、图中正方形的面积是8平方厘米,求圆的面积是多少?
四、应用题(每小题6分,计30分)
1、球从高处自由下落,每次接触地面后弹起的高度是前一次下落高度的2/3。
如果球从25米高处落下,那么第三次弹起的高度是多少米?
2、在一块20公顷的土地上,用它的1/5种小麦,其余的种大豆和玉米,种大豆和玉米的公顷数比是3:5。
种大豆和玉米各多少公顷?
3、水结成冰后,体积增加 1/10。
现有一块冰,体积是2立方分米,融化后的体积是多少?
4.为民中药店计划收购中草药1500千克,上半年完成了计划的55%,下半年完成了计划的65%。
为民中药店超额收购中草药多少千克?
5.公园的一个圆形花坛的直径是60米,这个花坛的面积是多少?如果一盆花占地面积大约是1/10平方米,这个花坛大约要摆多少万盆花?(得数保留整万数)
6.一部手机降价后只卖1800元,售价只有原来的9/10,比原来降价了多少元?7.一台挂钟的分针长8厘米,在5小时里分针的针尖共走了多少厘米?
8.生物小组同学要测量一棵百年大榕树的横截面积,他们量得树干的周长是6.28米,这棵树的横截面积是多少平方米?
9张老师有一套住房价值40万,由于急需现金,他以九折优惠卖给老李。
过了一段时间后,房价上涨10%,张老师又想从老李处把房子买回来。
想一想,如果老张买回房子,总共损失多少万元?
10、同学们参加野营活动。
一个同学到负责后勤的教师那是去领碗。
教师问他领多少,他说领55个,又问:“多少人吃饭?”他说:“一人一个饭碗,两人一个菜碗,三个人一个汤碗。
”算一算这个同学给多少人领碗?
11、某校五、六年级共有学生200人。
“六一”儿童节五年级有11人,六年级有25%的同学去市里参加庆祝活动,这时两个年级余下的人数相等。
求六年级有学生多少人?
设每年级各剩x人,x+11+x除以0.75=200,解得:x=81人,五年级81+11=92人,六年级2 00-92=108人。
这道题不列方程很不好解噢。
将六年级人数看作1,则五年级剩下的人为六年级的3/4,因此六年级的人数为(200-11)除以(1+3/4)=189*(4/7)=108人。
12、修一条路,第一天修了全路的1/3 ,第二天修了余下的2/5 ,两天共修路135米,这条路全长多少米?
13、幼儿园买来红气、蓝、黑气球共180个,其中红气球的个数是蓝气球的3倍,黑气球的个数是蓝气球的2倍,求红、蓝、黑气球各多少个?
14、小强买了一本书,第一天看了全书的2/5,第二天可能看了剩下的5/8,还有36页没看,这本书一共有多少页?
15、小东的存钱罐里存有1元的硬币若干,他每天取出一部分买零食,第一天取出1/9,以后7天分别取出当时硬币的1/8、1/7、1/6、1/5、1/4、1/3、1/ 2,8天后剩下5个硬币,原来罐内共有多少个硬币?
16、一条路全长60千米,分成上坡、平路、下坡三段,各段路程长的比依次是1:2:3,某人走各段路程所用时间比依次是4:5:6,已知他上坡的速度是每小时3千米,问此人走完全程用了多少时间?
解答:上坡路的路程:
60*1/(1+2+3)=10(千米)
走上坡路用的时间:
10/3=10/3(小时)
上坡路所用时间与全程所用时间比:
4/(4+5+6)=4/15
走完全程所用时间:
(10/3)/(4/15)=12.5(小时)
一条小路因为全长是60千米
而上坡平坡和下坡的比例是1:2:3
也就是分成了六份,上坡是一份10千米,平坡是2份20千米,下坡是3份30千米!
因为他走上坡所需的时间是:他上坡走的路程除以他的速度,也就是10/3
他的三段路程时间比是:4:5:6,共是(4 5 6)=15段时间
上坡占了4短时间共10/3,所以一段时间是:(10/3)/4=10/12
所以总共需要的时间是15段:即15*10/12=12.5小时
也就是12个半小时。