初中数学因式分解的12种解法精讲
- 格式:pdf
- 大小:586.23 KB
- 文档页数:16
因式分解的十二种方法因式分解是代数中的一个非常重要的概念,它可以帮助我们将一个复杂的代数表达式简化为更简单的乘积形式。
在因式分解的过程中,有许多不同的方法可以使用。
下面将介绍因式分解的十二种常见方法。
一、公因式提取法(通用方法):公因式提取法是因式分解中最基础也是最常见的一种方法。
它的基本思想是通过提取出一个或多个公因式,将原表达式分解为因子相乘的形式。
例如,对于表达式6x+9y,可以提取出3作为公因式,从而得到3(2x+3y)。
二、配方法(分组法):配方法是一种将高次项与低次项相乘的方法。
通过将原表达式分组,然后将每组中的项相乘,最后将各组之间的结果相加。
例如,对于表达式x^2+5x+6,可以将其写成(x^2+2x)+(3x+6),然后将每组中的项相乘,即得到x(x+2)+3(x+2),再进行合并得到(x+2)(x+3)。
三、分解差平方:分解差平方是一种将平方差分解为两个因数相乘的方法。
它的基本思想是将一项的平方与另一项的平方的差分解为两个因数的乘积。
例如,对于表达式x^2-4,可以将其分解为(x+2)(x-2)。
四、分解和差平方:分解和差平方是一种将平方和分解为两个因数相乘的方法。
它的基本思想是将一项的平方与另一项的平方的和分解为两个因数的乘积。
例如,对于表达式x^2+4,可以将其分解为(x+2i)(x-2i),其中i是虚数单位。
五、完全平方差公式:完全平方差公式是一种将二次三项式分解为两个完全平方的差的方法。
它的基本形式可以表示为a^2-b^2,其中a和b可以是任意代数式。
根据完全平方差公式,可以将a^2-b^2分解为(a+b)(a-b)。
例如,对于表达式x^2-4,可以将其分解为(x+2)(x-2)。
六、分组分解法:分组分解法是一种将多项式分解为若干个二次三项式相加的方法。
它的基本思想是通过分组,将多项式分成多个二次三项式的和,然后对每个二次三项式进行因式分解。
例如,对于表达式x^3+x^2+x+1,可以将其分为(x^3+x^2)+(x+1),然后对每个二次三项式进行因式分解,得到x^2(x+1)+1(x+1),再进行合并得到(x^2+1)(x+1)。
因式分解常用12种方法及应用【因式分解的12种方法】把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
因式分解的方法多种多样,现总结如下:1.提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1.分解因式x3-2x2-x(2003淮安市中考题)x3-2x2-x=x(x2-2x-1)2.应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
@初中生家长例2.分解因式a2+4ab+4b2(2003南通市中考题)解:a2+4ab+4b2=(a+2b)23.分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3.分解因式m2+5n-mn-5m解:m2+5n-mn-5m=m2-5m-mn+5n@初中生家长=(m2-5m)+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4.十字相乘法对于mx2+px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4.分解因式7x2-19x-6分析:1×7=7,2×(-3)=-61×2+7×(-3)=-19解:7x2-19x-6=(7x+2)(x-3)5.配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
@初中生家长例5.分解因式x2+6x-40解x2+6x-40=x2+6x+(9)-(9)-40=(x+3)2-(7)2=[(x+3)+7][(x+3)–7]=(x+10)(x-4)6.拆、添项法可以把多项式拆成若干部分,再用进行因式分解。
初中数学因式分解技巧实例解析因式分解是整数因式分解的简称,是指将一个整数写成几个因数的乘积的形式。
因式分解是数学中的一种基本运算方法和基本思维方式。
下面我们通过一些实例来解析初中数学因式分解的技巧。
1.因式分解法首先,我们来看一个简单的例子:将整数12分解为两个因数的乘积。
解法:由于12可以被2整除,所以可以将12分解为2和6的乘积。
然后,分解6为2和3的乘积。
所以,12可以分解为2×2×3的乘积。
这种方法叫做因式分解法。
2.最大公因数法最大公因数法是寻找最大公因数的方法。
例如,将整数20分解为两个因数的乘积。
解法:首先,找出20的所有因数,即1、2、4、5、10和20。
然后,寻找这些因数中和20的最大公因数,即可将20分解为两个因数的乘积。
所以,20可以分解为4×5的乘积。
这种方法叫做最大公因数法。
3.提取公因式法提取公因式法常用于多项式的因式分解中。
例如,将多项式4x+8分解为两个因式的乘积。
解法:首先,将多项式中各项的系数4提取出来,得到4(x+2)。
所以,4x+8可以分解为4(x+2)的乘积。
这种方法叫做提取公因式法。
4.平方差公式平方差公式常用于两个平方数之间的因式分解。
例如,将差的平方:9x^2-16分解为两个因式的乘积。
解法:首先,根据平方差公式9x^2-16=(3x-4)(3x+4)。
所以,9x^2-16可以分解为(3x-4)(3x+4)的乘积。
这种方法叫做平方差公式。
5.完全平方公式完全平方公式常用于一个二次多项式的因式分解。
例如,将二次多项式:x^2+6x+9分解为两个因式的乘积。
解法:首先,根据完全平方公式x^2+6x+9=(x+3)^2所以,x^2+6x+9可以分解为(x+3)^2的乘积。
这种方法叫做完全平方公式。
以上是一些初中数学因式分解的技巧实例解析。
通过这些例子,我们可以发现因式分解在解决数学问题中起到了重要的作用。
掌握这些技巧,可以帮助我们更好地理解数学问题,从而提高解题能力。
因式分解的十二种方法因式分解是一种将一个多项式分解成两个或更多个乘积的过程。
在数学中,因式分解是非常重要的概念,它能够帮助我们简化复杂的多项式表达式,从而更容易理解和计算。
在本文中,我将介绍并解释十二种常见的因式分解方法,每种方法都将详细讨论。
1.因式分解公式:因式分解公式是因式分解的基础,它是一些常见多项式的因式分解形式。
例如,平方差公式:$a^2 - b^2 = (a+b)(a-b)$,立方差公式:$a^3 - b^3 = (a-b)(a^2+ab+b^2)$,以及完全平方差公式:$a^2 - 2ab + b^2 = (a-b)^2$。
2.分组因式分解法:分组因式分解法适用于四项多项式,其中第一项和第四项以及第二项和第三项具有共同的因子。
我们将共同因子提取出来,然后重新组合表达式以实现因式分解。
例如,对于多项式$x^3-3x^2+4x-12$,我们可以将它分解为$(x^3-3x^2)+(4x-12)$,然后分别因式分解这两个分组。
3.提公因式法:提公因式法是一种常见的因式分解方法,它适用于多项式中存在公共因子的情况。
我们将公共因子提取出来,并将之前的每一项除以这个因子。
例如,对于多项式$2x^2+4x$,我们可以提取公共因子2,然后因式分解为$2(x^2+2x)$。
4.求和差式的因式分解法:求和差式的因式分解法适用于多项式中存在两个项的和或差的形式的情况。
我们根据求和差式的公式将多项式分解为两个因式的乘积。
例如,对于多项式$x^2+5x+6$,我们可以因式分解为$(x+2)(x+3)$,其中$(x+2)$和$(x+3)$是求和差式的因式。
5.平方差式的因式分解法:平方差式的因式分解法适用于多项式中存在两个项的平方差的形式的情况。
我们根据平方差式的公式将多项式分解为两个因式的乘积。
例如,对于多项式$x^2-4$,我们可以因式分解为$(x+2)(x-2)$,其中$(x+2)$和$(x-2)$是平方差式的因式。
因式分解的十二种方法(已整理)1. 提取公因式:将多项式中的公因子提取出来。
例如:4x^2 + 8x = 4x(x + 2)2. 平方差公式:将两个平方数的差表示为乘积形式。
例如:x^2 - 4 = (x + 2)(x - 2)3. 完全平方公式:通过平方根将平方项表示为乘积形式。
例如:x^2 + 6x + 9 = (x + 3)^24. 平方三项式:将三项式表示为两个平方的和或差。
例如:x^2 + 4x + 4 = (x + 2)^25. 相异平方差公式:将两个相异的平方根相乘,并加上或减去乘积的两倍。
例如:4x^2 - 25 = (2x + 5)(2x - 5)6. 完全立方公式:通过立方根将立方项表示为乘积形式。
例如:x^3 + 8 = (x + 2)(x^2 - 2x + 4)7. 立方和:将两个立方数的和表示为乘积形式。
例如:x^3 + 8 = (x + 2)(x^2 - 2x + 4)8. 左移、右移公式:通过改变变量的指数来分解多项式。
例如:x^3 - 8 = (x - 2)(x^2 + 2x + 4)9. 分组法:通过将多项式中的项分成组,然后分别进行分解。
例如:2x^3 + 3x^2 + 6x + 9 = x^2(2x + 3) + 3(2x + 3) = (x^2 + 3)(2x + 3)10. 精简法:通过合并多项式中的相似项来分解多项式。
例如:3x^2 + 2x + 5x + 1 = x(3x + 2) + 1(5x + 1) = (x + 1)(3x + 2)11. 求和公式:将多个项相加,并使用求和公式进行分解。
例如:2x + 3y + 4x + 6y = (2x + 4x) + (3y + 6y) = 6x + 9y12. 配方法:对于二次多项式,使用配方法将其分解为两个一次多项式的乘积。
例如:2x^2 + 5x + 3 = (2x + 3)(x + 1)。
因式分解的14种方法讲解因式分解是数学中常用的重要方法,它可以将一个多项式表达式分解为一个或多个乘积的形式。
在因式分解过程中,有多种方法可以使用。
下面我将为您介绍14种常见的因式分解方法。
方法一:公因式提取法1.公因式提取法是最基本的一种因式分解方法,适用于多项式中存在公共的因式。
例如,对于多项式2x+6,可以提取出公因式2,得到2(x+3)。
方法二:配方法2. 配方法适用于二次型多项式的因式分解。
对于ax² + bx + c形式的多项式,可以通过配方法将其分解为两个一次因式相乘的形式。
例如,对于多项式x² + 3x + 2,可以找到两个因数(x + 1)(x + 2)。
方法三:x平方差3.x平方差适用于形如x²-a²的多项式,其中a是一个常数。
这种情况下,可以将其分解为两个因子(x+a)(x-a)。
方法四:因式分解公式4.因式分解公式适用于一些特殊的多项式形式。
例如,x²-y²可以通过公式(x-y)(x+y)分解。
方法五:完全平方公式5. 完全平方公式适用于形如a² ± 2ab + b²的多项式。
这种情况下,可以将其分解为平方项的和或差。
(a ± b)²。
方法六:两个平方差的乘积6.两个平方差的乘积适用于形如(a+b)(a-b)(c+d)(c-d)的多项式。
这种情况下,可以分解为两个平方差相乘。
方法七:立方公式7. 立方公式适用于形如a³ ± b³的多项式。
这种情况下,可以将其分解为立方项的和或差。
(a ± b)(a² ∓ ab + b²)。
方法八:差的立方8. 差的立方适用于形如a³ - b³的多项式。
这种情况下,可以分解为差的立方公式(a - b)(a² + ab + b²)。
方法九:高次幂差的因式分解9.高次幂差的因式分解适用于形如aⁿ-bⁿ的多项式,其中n为正整数。
因式分解常用12种方法及应用【因式分解的12种方法】把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
因式分解的方法多种多样,现总结如下:L提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1.分解因式x3 -2x 2-xx,~x=x(x^_2x_ 1)2.应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2.分解因式a2 +4沥+4力2解:a2 +4ab+4b2 =(a+2b)23.分组分解法要把多项式am+cm+bm十bn分解因式,可以先把它前两项分成一组,并提出公因式。
,把它后两项分成一组,并提出公因式们从而得到ct(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3.分解因式m2 +5n-mn-5m解:m2 +5n・mn・5m= m 2-5m-mn+5n =(m2 -5m )+(-mn+5n)4.十字相乘法对于mx2 ^px^-q形式的多项式,如果a^b=m, c^d=q且ac+bd=p,则多项式可因式分解为(ctx+d)(bx+c)例4.分解因式7x2 -19x-6分析:1 x7=7, 2x(-3)=-6 lx2+7x(.3)=・19解:7x2-19x-6=f7x+2;(x-3;5.配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5.分解因式+6x-40 解x2 +6x-40=x2 +6x+( 9) -(9 ) -40=(x+ 3)2 -(7 )2 =[(x+3)+7][(x+3) —7]=(x+10)(x-4)6.拆、添项法可以把多项式拆成若干部分,再用进行因式分解。
例6.分解因式bc(b^c)+ca(c-a)-ab(a+b)角学:bc(b+c)+ca(c-a)-ab(a^-b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)-^bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)7 .换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
因式分解的12种方法精讲因式分解是将一个代数式拆分成多个因子的过程。
在学习因式分解时,我们通常用到以下的12种因式分解方法。
1.公因式提取法:对于一个代数式,如果其中存在公共因子,可以将公共因子提取出来。
例如,对于表达式6x+9y,可以提取出公因式3,得到3(2x+3y)。
2.公式法:使用平方差公式、平方和公式、立方差公式等数学公式对代数式进行因式分解。
例如,对于一个二次多项式x^2+5x+6,我们可以使用平方和公式(x+2)(x+3)进行因式分解。
3.因式定理法:当一个多项式F(x)中有一个因子(x-a)时,可以使用因式定理法进行因式分解,将F(x)除以(x-a)得到商式和余式。
例如,对于多项式x^2-2x-3,我们可以使用因式定理法进行因式分解,得到(x-3)(x+1)。
4.分组分解法:对于含有多个项的代数式,可以将其进行分组,然后再分别对每个组进行因式分解。
例如,对于代数式x^3+x^2+x+1,我们可以将其分组为(x^3+x^2)+(x+1),然后分别因式分解为x^2(x+1)+1(x+1),得到(x+1)(x^2+1)。
5.提取完全平方根法:对于一个二次多项式,如果其形式符合完全平方根的形式,可以使用提取完全平方根法进行因式分解。
例如,对于多项式x^2+6x+9,我们可以将其因式分解为(x+3)^26.平方差公式法:对于一个二次多项式,如果其形式符合平方差公式的形式,可以使用平方差公式进行因式分解。
例如,对于多项式4x^2-9,我们可以使用平方差公式进行因式分解,得到(2x-3)(2x+3)。
7.代入因式法:对于一个二次多项式,如果已知一根或两根的值,可以使用代入因式法进行因式分解。
例如,对于多项式x^2-5x+6,如果我们已经知道其中一根是2,可以使用代入因式法进行因式分解,得到(x-2)(x-3)。
8.辗转相除法:对于一个不是二次多项式的代数式,可以使用辗转相除法进行因式分解。
辗转相除法的思想是将一个代数式除以一个因子,得到一个商式和余式,然后再对商式进行继续因式分解,直到余式无法再进行因式分解为止。
因式分解12个公式因式分解可是数学里的一把神奇钥匙,能帮咱们打开很多复杂式子的秘密大门。
在这,我就给您唠唠因式分解的 12 个公式。
咱先来说说最常见的平方差公式,就是 a² - b² = (a + b)(a - b) 。
这就好比把一个大拼图拆成两块小的。
比如说有个式子 25x² - 9 ,您看,25x²不就是 (5x)²嘛,9 就是 3²,那它就能写成 (5x + 3)(5x - 3) 。
还有完全平方公式,(a ± b)² = a² ± 2ab + b²。
这个就像盖房子,您给定了房子的框架(a 和 b),就能算出房子的面积(a² ± 2ab + b²)。
举个例子,9x² + 12x + 4 ,这就是 (3x + 2)²。
立方和公式 a³ + b³ = (a + b)(a² - ab + b²) 以及立方差公式 a³ - b³ = (a - b)(a² + ab + b²) ,这俩可有点小复杂,不过别怕。
就像上次我给我小侄子辅导作业,他怎么都搞不明白这俩公式。
我就拿搭积木给他举例,一个大的立方体积木(a³),加上一个小的立方体积木(b³),咱们可以把它们拆成不同的组合方式来理解。
再说说提公因式法,这可是因式分解的基础。
比如说 6x + 9 ,都有个 3 ,那就提出 3 变成 3(2x + 3) 。
这就好像从一堆水果里把相同的挑出来放一起。
还有分组分解法,有时候式子就像一堆打乱的拼图块,咱得给它分分组,才能看清楚怎么分解。
像 ax + bx + ay + by ,就可以分成 (ax +bx) + (ay + by) ,然后分别提公因式,变成 x(a + b) + y(a + b) ,最后就是 (a + b)(x + y) 。
因式分解的十二种途径1. 公因式法则:如果一个多项式中的每一项都有相同的因子,可以通过提取公因式进行因式分解。
2. 平方差公式:对于两个数的平方差,可以使用平方差公式进行因式分解,即a² - b² = (a+b)(a-b)。
3. 完全平方公式:对于一个完全平方的多项式,可以使用完全平方公式进行因式分解,即a² + 2ab + b² = (a+b)²。
4. 分组法则:对于一个多项式中含有四项以上的情况,可以使用分组法进行因式分解。
将多项式中的项进行分组,然后尝试提取每个组的公因式进行因式分解。
5. 同底数幂公式:对于同底数的几个幂相乘的情况,可以使用同底数幂公式进行因式分解,即a^m * a^n = a^(m+n)。
6. 因子分解法则:对于一个多项式,可以尝试将其写成一些因子的积的形式,从而进行因式分解。
7. 代数和几何图像法则:有时候可以通过对代数表达式进行几何图像的分析来找到因式分解的途径。
8. 次高次幂定理:对于二次及高次多项式,可以使用次高次幂定理进行因式分解,即ax^(n+1) + bx^n + cx^(n-1) + ... + k = 0。
9. 有理根定理:对于具有整数系数的多项式,可以使用有理根定理来寻找有理根,从而进行因式分解。
10. 组合方法:可以尝试将多项式分解为两个或多个组合项的乘积,然后再进一步进行因式分解。
11. 复根定理:对于具有实系数的多项式,可以使用复根定理来寻找复根,从而进行因式分解。
12. 分解定理:对于具有多项式系数的多项式,可以使用分解定理来将多项式分解为线性和二次因子的乘积。
这些是因式分解中常用的十二种途径,通过使用不同的方法,在不同的情况下,选择合适的途径可以更加高效地进行因式分解。
因式分解的十二种方法:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
因式分解的方法多种多样,现总结如下:1、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、分解因式x -2x -x(2003淮安市中考题)x -2x -x=x(x -2x-1)2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a +4ab+4b (2003南通市中考题)解:a +4ab+4b =(a+2b)3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m +5n-mn-5m解:m +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4、十字相乘法对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x -19x-6分析:1 -37 22-21=-19解:7x -19x-6=(7x+2)(x-3)5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x +3x-40解x +3x-40=x +3x+( ) -( ) -40=(x+ ) -( )=(x+ + )(x+ - )=(x+8)(x-5)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b)7、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
因式分解的12种方法的详细解析因式分解是将一个多项式写成几个较简单的乘积的形式。
在数学中,因式分解是一项重要的基础技能,常用于求解方程、化简表达式和研究多项式的性质等方面。
以下是因式分解的12种常见方法的详细解析。
1.提取公因式法:当多项式的各项中存在公共因子时,可以提取出这个公因式,例如,对于多项式2x+6,可以提取出公因式2,得到2(x+3)。
这种方法常用于求解关系式和化简分式等问题。
2.公式法:利用一些常用的公式进行因式分解。
例如,二次平方差公式(x^2-y^2)=(x+y)(x-y),互补公式a^2-b^2=(a+b)(a-b)等。
这种方法常用于解决关于二次方程、三角函数等问题。
3.配方法:对于二次型的多项式,可以利用配方法进行因式分解。
例如,对于多项式x^2+3x+2,可以进行配方法得到(x+1)(x+2)。
这种方法需要将多项式转化为二次型形式,然后利用配方法进行分解。
4.求因子法:当多项式为多个因子的乘积时,可以用求因子的方法进行因式分解。
例如,对于多项式x^3-8,可以将8进行因式分解为2^3,然后利用立方差公式进行因式分解,即x^3-8=(x-2)(x^2+2x+4)。
5.幂的分解法:当多项式中有幂函数时,可以利用幂的分解法进行因式分解。
例如,对于多项式x^3-y^3,可以利用立方差公式进行因式分解,即x^3-y^3=(x-y)(x^2+xy+y^2)。
6.多项式整除法:当多项式可以被另一个多项式整除时,可以利用多项式整除法进行因式分解。
例如,对于多项式x^3-1,可以利用x-1整除得到(x-1)(x^2+x+1)。
7.韦达定理:韦达定理是将多项式表示为二次型的形式,然后利用二次型进行因式分解。
例如,对于多项式x^3+y^3+z^3-3xyz,可以将其表示为(x+y+z)(x^2+y^2+z^2-xy-xz-yz)。
8.根的关系法:利用多项式的根的关系进行因式分解。
例如,对于一元二次多项式ax^2+bx+c,可以利用二次方程求根公式进行因式分解,即ax^2+bx+c=a(x-x1)(x-x2),其中x1和x2为多项式的根。
因式分解的十二种方法:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
因式分解的方法多种多样,现总结如下:1、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、分解因式x -2x -x(2003淮安市中考题)x -2x -x=x(x -2x-1)2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a +4ab+4b (2003南通市中考题)解:a +4ab+4b =(a+2b)3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m +5n-mn-5m解:m +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4、十字相乘法对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x -19x-6分析:1 -37 22-21=-19解:7x -19x-6=(7x+2)(x-3)5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x +3x-40解x +3x-40=x +3x+( ) -( ) -40=(x+ ) -( )=(x+ + )(x+ - )=(x+8)(x-5)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b)7、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
因式分解的十二种方法把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
因式分解的方法多种多样,现总结如下: 1、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、分解因式x -2x -x(2003淮安市中考题) x -2x -x=x(x -2x-1) 2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a +4ab+4b (2003南通市中考题) 解:a +4ab+4b =(a+2b) 3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5m 解:m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、十字相乘法对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x -19x-6 分析: 1 -3 7 2 2-21=-19 解:7x -19x-6=(7x+2)(x-3) 5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x +3x-40 解x +3x-40=x +3x+( ) -( ) -40 =(x+ ) -( ) =(x+ + )(x+ - ) =(x+8)(x-5) 6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) 解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b) 7、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
【中考必背】因式分解12种方法,全掌握计算题不再怕!初中数学学习的是很重要的基础知识。
如果说小学数学学习的内容是生活中会经常用到的数学运算和思维方法,那么初中数学就是在为以后的数学学习、含有数学方面的研究打基础。
学生日后数学基础好不好,关键要看初中。
因式分解是数学常用的解题方法,掌握好因式分解的窍门,能够帮助我们提高做题速度,增加学习效率。
因式分解不是一个小的知识点,在整个数学学科的学习过程中,因式分解都是极其重要的解题步骤之一。
今天,王老师就带大家来了解下,因式分解的12种方法,全掌握计算题不再怕。
因式分解的十二种方法把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现总结如下:1提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.例1、分解因式x -2x -xx -2x -x=x(x -2x-1)2 应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式.例2、分解因式a +4ab+4ba +4ab+4b =(a+2b)3分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5mm +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4 十字相乘法对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x -19x-6分析:1 -37 22-21=-197x -19x-6=(7x+2)(x-3)5配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解.例5、分解因式x +3x-40解x +3x-40=x +3x+( ) -( ) -40=(x+ ) -( )=(x+ + )(x+ - )=(x+8)(x-5)6拆、添项法可以把多项式拆成若干部分,再用进行因式分解.例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)7换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来.例7、分解因式2x -x -6x -x+22x -x -6x -x+2=2(x +1)-x(x +1)-6x=x [2(x + )-(x+ )-6令y=x+ ,x [2(x + )-(x+ )-6= x [2(y -2)-y-6]= x (2y -y-10)=x (y+2)(2y-5)=x (x+ +2)(2x+ -5)= (x +2x+1) (2x -5x+2)=(x+1) (2x-1)(x-2)8求根法令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )例8、分解因式2x +7x -2x -13x+6令f(x)=2x +7x -2x -13x+6=0通过综合除法可知,f(x)=0根为 ,-3,-2,1则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)9图象法令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,......x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x ) (x)x )例9、因式分解x +2x -5x-6令y= x +2x -5x-6作出其图象,见右图,与x轴交点为-3,-1,2则x +2x -5x-6=(x+1)(x+3)(x-2)10 主元法先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解.例10、分解因式a (b-c)+b (c-a)+c (a-b)分析:此题可选定a为主元,将其按次数从高到低排列a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)=(b-c) [a -a(b+c)+bc]=(b-c)(a-b)(a-c)11利用特殊值法将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式.例11、分解因式x +9x +23x+15令x=2,则x +9x +23x+15=8+36+46+15=105将105分解成3个质因数的积,即105=3×5×7注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值则x +9x +23x+15=(x+1)(x+3)(x+5)12待定系数法首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解.例12、分解因式x -x -5x -6x-4分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式.设x -x -5x -6x-4=(x +ax+b)(x +cx+d)= x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd所以解得则x -x -5x -6x-4 =(x +x+1)(x -2x-4)。