高考加强练习专题1
- 格式:doc
- 大小:259.00 KB
- 文档页数:4
专题1 课标高考卷14题针对训练与纠错【真题体验】1.(2010 全国新课标卷)为了解释地球的磁性,19世纪安培假设:地球的磁场是由绕过地心的轴的环形电流I引起的。
在下列四个图中,正确表示安培假设中环形电流方向的是()B2.(2010 全国新课标卷)在电磁学发展过程中,许多科学家做出了贡献。
下列说法正确的是()AC A.奥斯特发现了电流磁效应;法拉第发现了电磁感应现象B.麦克斯韦预言了电磁波;楞次用实验证实了电磁波的存在C.库仑发现了点电荷的相互作用规律;密立根通过油滴实验测定了元电荷的数值D.安培发现了磁场对运动电荷的作用规律;洛伦兹发现了磁场对电流的作用规律3.(2009 宁夏卷)在力学理论建立的过程中,有许多伟大的科学家做出了贡献。
关于科学家和他们的贡献,下列说法正确的是()BDA. 伽利略发现了行星运动的规律B. 卡文迪许通过实验测出了引力常量C.牛顿最早指出力不是维持物体运动的原因D.笛卡尔对牛顿第一定律的建立做出了贡献4.(2008 宁夏卷)在等边三角形的三个顶点a、b、c处,各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图。
过c点的导线所受安培力的方向()CA.与ab边平行,竖直向上B.与ab边平行,竖直向下C.与ab边垂直,指向左边D.与ab边垂直,指向右边5.(2007 宁夏卷)天文学家发现了某恒星有一颗行星在圆形轨道上绕其运动,并测出了行星的轨道半径和运行周期。
由此可推算出()CA.行星的质量B.行星的半径C.恒星的质量D.恒星的半径【高考预猜】6. 一根容易形变的弹性导线,两端固定.导线中通有电流,方向如下图中箭头所示.当没有磁场时,导线呈直线状态;当分别加上方向竖直向上、水平向右或垂直于纸面向外的匀强磁场时,描述导线状态的四个图示中正确的是()D7. 已知万有引力常量G,根据下列哪组数据可以计算出地球的质量( )CA.卫星距离地面的高度和其运行的周期B.月球自转的周期和月球的半径C.地球表面的重力加速度和地球半径D.地球公转的周期和日地之间的距离8. 许多科学家在物理学发展过程中做出了重要贡献,下列叙述中符合物理学史实的是()CA.奥斯特发现了电流的磁效应,并总结出了右手定则B.牛顿提出了万有引力定律,并通过实验测出了万有引力恒量C.美国科学家富兰克林首次命名了正、负电荷,密立根最早通过实验,比较准确的测定了电子的电量D.伽利略通过理想斜面实验,提出了力是维持物体运动状态的原因9.在物理学的发展中,有许多科学家做出了重大贡献,下列说法中正确的是()ACA.美国科学家富兰克林命名了自然界中的两种电荷分别为正电荷和负电荷B.安培提出了电场的观点,说明处于电场中电荷所受到的力是电场给予的C.库仑总结并确认了真空中两个静止点电荷之间的相互作用规律,并通过实验得出静电力常量D.丹麦物理学家奥斯特提出了分子电流假说,并很好地解释了一些磁现象10. 如图所示,两根光滑金属导轨平行放置,导轨所在平面与水平面间的夹角为θ。
高考语文专题练习(一)语言运用之补写(时间:45分钟,分值:90分)1.在下面一段文字横线处补写恰当的语句,使整段文字语意完整连贯,内容贴切,逻辑严密。
每处不超过15个字。
文学从宏观讲带有规律,___________①___________。
从古典走向现代,这是宏观规律。
但从微观看,文学无所谓法则。
说诗、小说逐步散文化,似是个规律,___________②___________,如从汉赋到魏晋六朝的赋,却是诗化、小说化。
“一代有一代文学之所胜”的判断也难成立。
持此论者说,汉代以赋胜,其实汉司马迁等人的文比赋更有价值;说宋以词胜,___________③___________,如苏轼、陆游的诗均对后世产生了深远的影响。
2.在下面一段文字横线处补写恰当的语句,使整段文字语意完整连贯,内容贴切,逻辑严密。
每处不超过15个字。
有些人读书,___________①___________。
今天遇到一部有趣的书就把预拟做的事丢开,用全副精力去读它;___________②___________,仍是如此办,虽然这两书在性质上毫不相关。
在旁人认为重要而自己不感兴味的书都一概置之不理。
它的好处在使读书成为乐事,对于一时兴到的著作可以深入;___________③___________,缺乏专门研究所必须的系列训练。
3.在下面一段文字横线处补写恰当的语句,使整段文字语意完整连贯,内容贴切,逻辑严密,每处不超过15个字。
3D打印,是一种快速成型技术。
从3D打印的制作过程出发,___________①___________:在设计阶段,主要通过3D建模软件或三维扫描设备进行设计;在打印阶段,将3D模型按照某一坐标轴切成无限多个剖面,然后逐层打印,___________②___________,如飞机模型、汽车零部件等。
3D打印技术最4.在下面一段文字横线处补写恰当的语句,使整段文字语意完整连贯,内容贴切,逻辑严密。
每处不超过15个字。
专题一语言文字的运用图文转换类1.(2020浙江,6)阅读下面宣传抗疫防疫的图片,根据要求完成题目。
(6分)图1图2(摘编自《文汇报》) (1)为图1或图2拟标题。
不得照抄图片中的原文,不超过10个字。
(2分)选择图(),标题:(2)分别简要评价图1、图2的创意。
(4分)图1:(2分)图2:(2分)答案(1)(示例1)1凝聚力量,抗击疫情(示例2)2新门神(2)图1:由多个小心形组成大心形,戴着外形像船头的口罩,用“万众一心”“同舟共济”点明主题。
简洁凝练,号召有力。
图2:借用传统民俗的门神年画,名字替换为“霍去病”“辛弃疾”,表达人们去病、弃疾的愿望。
翻新传统,巧妙贴切。
解析(1)为图片拟标题时要紧紧围绕图片主题,可直接“亮剑”,也可含蓄委婉。
图1只要写出与图中“万众一心”“同舟共济”意思相近的词语,表达抗击疫情、共克时艰的决心与信心即可。
图2是两张年画,画了两个新门神——霍去病、辛弃疾,故图2可拟为“新门神”“新年画”。
(2)评价图片创意时,可结合构图要素来分析。
图1:整体看是个心形,由无数小心形组成,中间是个形似船头的口罩,恰好对应“万众一心”的“心”与“同舟共济”的“舟”,鼓舞人心。
图2:年画上人名中“去病”“弃疾”两个词语引人注目,表达了祛除疾病之意,令人耳目一新,也完全符合2020年公众的心愿。
2.(2019江苏,4)阅读下图,对VR(即“虚拟现实”)技术的解说不正确...的一项是(3分)()VR的未来方向A.VR技术能提供三个维度的体验:知觉体验、行为体验和精神体验。
B.现有的VR技术在精神体验上发展较快,而在知觉体验上发展较慢。
C.VR技术的未来方向是知觉体验、行为体验和精神体验的均衡发展。
D.期许的VR体验将极大提高行为体验的自由度和精神体验的满意度。
答案B本题考查图文转换的相关知识,重点考查阅读图表的能力,体现了思维发展与提升的学科素养,培养学生优秀的思维品质。
B项,结合图表可知,应是“现有的VR技术在精神体验上发展较慢,在知觉体验上发展较快”。
考点02 代词(A篇)一、填空题1、Though as a plain student, he did all he could to finance the student ________ family had difficulty in economy.2、The students benefitting most from college are those ________ are totally engaged in academic life, taking full advantage of the college's chances and resources.3、We promise ________ attends the party a chance to have a photo taken with the movie star.4、This is ________ my father has taught me—to always face difficulties and hope for the best.5、Some summer camps can provide you as many as ten courses, and you are required to choosesuits you best.6、He is so kind a man_______all the colleagues would like to work with.7、The number of smokers, _______is reported, has dropped by 17 percent.8、After _____ seemed a hopeless wait, four coal miners trapped in the mine for 125 hours were finally rescued in Heilongjiang Province.9、We found _______ interesting to lie in the sun, enjoying the sunshine.10、Kate,sister I shared a room with when we were at college,has gone to work in Australia.二、选择题1、Your support is important to our work. ________ you can do helps.A.HoweverB.WhoeverC.WhateverD.Wherever2、I live next door to a couple ______ children often make a lot of noise.A. whoseB. whyC. whereD. which3、Scientists have advanced many theories about why human beings cry tears, none of ______ has been proved.A. whomB. whichC. whatD. that4、Kate, _________sister I shared a room with when we were at college, has gone to work in Australia.A.whomB.thatC.whoseD.her5、This is _________ my father has taught me—to always face difficulties and hope for the best.A.howB.whichC.thatD.what6、Every year, ___________ makes the most beautiful kite will win a prize in the Kite Festival.A.whateverB.whoeverC.whomeverD.whichever7、In China, Chinese chess and table tennis are very popular among teenagers, many of _____ have been playing them since they were very young.A. whoB. themC. theirsD. whom8、In many ways, the education system in the US is not very different from ________ in the UK.A.thatB.thisC.oneD.it9、A large number of young women, unconscious that they are at risk, live in _____ UNAIDS calls “challenging environments”, with insufficient access to food and education.A. whereB. whatC. whyD. how10、Music should be taught routinely in schools because of the benefits ______ can have on the development of the brains of young children.A.itB.thatC.whichD.one三、阅读理解On a clear night, the sky is a wonderful thing. Is there life out there somewhere? Is there another place like Earth where life might exist? If so, where is it? And how far away is it?Recently, the Kepler spacecraft found “22b”, a planet about six hundred light years away. It is the first planet in a “habitable zone” outside the solar system. That means the planet orbits(环绕) a star like our sun, but it is not too close to it, nor too far away. Because of this position,Kepler-22b might have water, one of the main things needed for life. The newly-discovered planet is about two and a half times larger than the Earth. It is closer to its star than we are to the Sun, but 22b’s sun is smaller than ours, and doesn’t produce as mu ch heat. Scientific instruments show the new planet could be made of gases, rocks or some kinds of liquids.The Kepler spacecraft was named in honor of Johannes Kepler, the seventeenth century German astronomer. It was designed to examine a small part of the Milky Way galaxy(星系)and search for places like the Earth. It was made to inspect over 150,000 stars and measure how bright they are. It looks to see if a star’s brightness gets less over a short time.If a planet passes between Kepler and the star, it blocks out part of the light. That is what suggested to scientists that there is at least one planet orbiting the star. The instruments on Kepler show the new planet as a small, black dot moving across its sun. An important part of the Kepler experiment is on the Earth. After the spacecraft gathers information, scientists use the telescopes on the ground.Scientists have found over 2,300 new planets since Kepler was launched. Most are much larger, but it is the new planet’s distance from its star that is imp ortant. For life to possibly exist there, the planet’s temperature must not be too hot or too cold.1.What can we learn about Kepler-22b?A.It is the first planet in outer space where life may surviveB.It takes humans about 600 years to get there.C.It is made of gases, rocks and plenty of liquids.D.Water must have existed on it.2.The Kepler spacecraft was sent into space to_____.A.show honor to Johannes KeplerB.look for Earth-like planets in the Milky Way galaxyC.observe the changes of a star’s brig htnessD.measure the brightest star among 150.000 stars3.In Paragraph 4 the author mainly tells us______.A.how the Kepler system shows a new planetB.if the Kepler system sees a new planetC.how the Kepler system worksD.why an important part of the Kepler system remains on the Earth.4.What can we infer from the passage?A.Life may exist on the new planet in another form.B.It is colder on the new planet because its sun is smaller.C.The new planet’s distance from its star decides on the possibility of life existence.D.Life can’t exist on planets which are much larger than the Earth.四、语法填空阅读下面材料,在空白处填入1个适当的单词或括号内单词的正确形式。
2023届高考化学一轮专题 强化练习题——物质结构与性质1.(2022·河北邢台·模拟预测)一种无机纳米晶体材料,仅由铯、铅、溴三种元素构成,在太阳能电池方向有巨大应用前景。
回答下列问题:(1)基态Br 原子核外电子占据能量最高的能级的电子云轮廓图形状为_______。
Pb 属于_______区元素。
(2)Na Cs 、位于同主族,Na Cs 、元素的第一电离能分别为-11I (Na)=496kJ mol ⋅、-11I (Cs)=375.7kJ mol ⋅。
11I (Cs)<I (Na)的原因是_______。
(3)F Br Pb 、、三种元素的电负性如下表。
2PbF 具有较高的熔点(855℃),PbBr 2具有较低的熔点(373℃),原因是_______。
(4)该晶体材料的立方结构如图所示,其化学式为_______。
若其晶胞参数为anm ,阿伏加德罗常数的值为A N ,则该晶体密度=_______3g cm -⋅。
(5)该晶体材料电池并未实现商业化,原因在于自身的不稳定性。
①该晶体材料在潮湿环境中易从固体变成溶液(发生相变),导致器件效率降低,其原因是_______。
②某大学采用2CdBr 对该材料进行钝化处理可有效提高其稳定性,钝化机理如图所示。
根据晶格应变驰豫,_______(离子)脱离晶格,用2CdBr 钝化后的晶体比原晶体材料更稳定,其原因是_______。
(已知:应力与应变相伴而生,从原子尺度上来理解,应力为单位晶格上的作用力,应变即为晶格的拉伸或收缩,对应于拉伸应变和压缩应变。
对应出现的驰豫是指一个宏观平衡系统由于受到外界的作用变为非平衡状态,再从非平衡状态过渡到新的平衡态的过程。
)2.(2022·河北衡水·二模)近日,以色列魏茨曼科学研究所提出了一种新颖的模块化催化剂框架,将过渡金属Fe(III)、Ni(II)和Cu(II)放在三缺位多金属氧酸盐骨架的最近邻位置,通过精确调节金属组成来指导催化活性和选择性。
2023届高考化学一轮备考专题强化练习:有机推断题1.(2022·山东·高三阶段练习)有机物G是一种抑制肿瘤生长的药物,其合成路线如图所示。
回答下列问题:(1)F→G的反应类型为_______,G中含氧官能团的名称为_______。
(2)D的结构简式为_______,检验D中是否含有C的试剂为_______。
(3)已知A→B的反应中有可燃性气体生成,试写出其化学方程式为_______,A的同分异构体中,分子中含羟基且苯环上只有两个取代基的有_______种。
(4)根据上述信息,写出由苯和乙二醇制备吲哚()的合成路线_______(无机试剂任选)。
2.(2022·山西·太原五中高三阶段练习)已知:A是来自石油的重要有机化工原料,E是具有果香味的有机物,F是一种高聚物,可制成多种包装材料。
(1)A的电子式为___________,C的名称___________,F的结构简式___________。
(2)D分子中的官能团名称是___________,请设计一种实验来验证D物质存在该官能团的方法是___________。
(3)写出下列反应的化学方程式并指出反应类型:②___________,反应类型___________。
②___________,反应类型___________。
3.(2022·河北·秦皇岛一中高三阶段练习)熟地吡喃酮是从中药熟地中提取的有效成分,化合物F是合成熟地吡喃酮的一种中间体,合成路线如下图所示。
已知:回答下列问题:(1)F中含氧官能团的名称是_______。
(2)A的分子式是_______,A分子中一定共面的碳原子数是_______。
(3)A→B的反应类型为_______。
(4)C的核磁共振氢谱有_______组吸收峰。
(5)D的结构简式是_______。
(6)E和F_______同分异构体。
(填“是”或“不是”)4.(2022·贵州贵阳·高三专题练习)普瑞巴林(pregabalin)常用于治疗糖尿病和带状疱疹引起的神经痛,其合成路线如下:已知:i.R1CHO+R2-CH2COOR−−−−−−→一定条件+H2Oii.RCOOH+CO(NH2)2ΔRCONH2+NH3↑+CO2↑回答下列问题:(1)A的化学名称为___________,-NH2的电子式为___________。
现代文阅读Ⅰ专题练习一(五年高考真题)参考答案与解析目录现代文阅读Ⅰ专题练习一(高考真题) (1)参考答案与解析 (1)一、2024全国甲卷(论述类文本) (2)二、2024全国甲卷(实用类文本) (3)三、2024新课标Ⅰ卷(信息类文本) (4)四、2024新课标Ⅱ卷(信息类文本) (6)五、2023全国甲卷(论述类文本) (9)六、2023全国甲卷(实用类文本) (9)七、2023全国乙卷(论述类文本) (11)八、2023全国乙卷(实用类文本) (12)九、2023新高考Ⅰ卷(信息类文本) (13)十、2023新高考Ⅱ卷(信息类文本) (14)十一、2022全国甲卷(论述类文本) (16)十二、2022全国甲卷(实用类文本) (17)十三、2022全国乙卷(论述类文本) (18)十四、2022全国乙卷(实用类文本) (19)十五、2022新高考Ⅰ卷(信息类文本) (19)十六、2022新高考Ⅱ卷(信息类文本) (21)十七、2021全国甲卷(论述类文本) (22)十八、2021全国甲卷(实用类文本) (23)十九、2021全国乙卷(论述类文本) (24)二十、2021全国乙卷(实用类文本) (25)二十一、2021新高考Ⅰ卷(信息类文本) (26)二十二、2021新高考Ⅱ卷(信息类文本) (28)二十三、2020全国Ⅰ卷(论述类文本) (30)二十四、2020全国Ⅰ卷(实用类文本) (31)二十五、2020全国Ⅱ卷(论述类文本) (32)二十六、2020全国Ⅱ卷(实用类文本) (33)二十七、2020全国Ⅲ卷(论述类文本) (35)二十八、2020全国Ⅲ卷(实用类文本) (35)二十九、2020新课标Ⅰ卷(信息类文本) (37)三十、2020新课标Ⅱ卷(信息类文本) (38)一、2024全国甲卷(论述类文本)(一)论述类文本阅读(本题共3小题,9分)1.(3分)C2.(3分)D3.(3分)B【解析】【1题详解】本题考查学生对原文内容的理解和分析能力。
高考数学复习典型题型专题讲解与练习专题1 集合的概念题型一判断元素与集合的关系1.下面有四个语句:①集合N*中最小的数是0;②-a∉N,则a∈N;③a∈N,b∈N,则a+b的最小值是2;④x2+1=2x的解集中含有两个元素.其中说法正确的个数是()A.0B.1C.2D.3【答案】A【解析】因为N*是不含0的自然数,所以①错误;取a=2,则-2∉N,2∉N,所以②错误;对于③,当a=b=0时,a+b取得最小值是0,而不是2,所以③错误;对于④,解集中只含有元素1,故④错误.故选:A2.下列四个命题:①{0}是空集;②若a∈N,则-a∉N;③集合{x∈R|x2-2x+1=0}含有两个元素;④集合6|x Q Nx⎧⎫∈∈⎨⎬⎩⎭是有限集.其中正确命题的个数是()A.1B.2 C.3D.0 【答案】D【解析】①{0}是含有一个元素0的集合,不是空集,所以①不正确; ②当a =0时,0∈N ,所以②不正确;③因为由x 2-2x +1=0,得x 1=x 2=1,所以{x ∈R |x 2-2x +1=0}={1},所以③不正确;④当x 为正整数的倒数时,6x∈N ,所以6|x Q N x⎧⎫∈∈⎨⎬⎩⎭是无限集,所以④不正确.故选:D3.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}5k n k n Z =+∈,0,1,2,3,4k =,给出如下四个结论:①[]20111∈;②[]33-∈;③若整数,a b 属于同一“类”,则[]0a b -∈;④若[]0a b -∈,则整数,a b 属于同一“类”.其中,正确结论的个数是( ). A .1B .2C .3D .4 【答案】C【解析】对于①,201154021÷=⋅⋅⋅,[]20111∴∈,①正确; 对于②,352-=-+,即3-被5除余2,[]33∴-∉,②错误; 对于③,设15a n k =+,25b n k =+,()125a b n n ∴-=-,能被5整除,[]0a b ∴-∈,③正确;对于④,设5a b n -=,n Z ∈,即5a n b =+,n Z ∈, 不妨令5b m k =+,m Z ∈,0,1,2,3,4k =,则()555a n m k m n k =++=++,m Z ∈,n Z ∈,0,1,2,3,4k =,,a b ∴属于同一“类”, ④正确;综上所述:正确结论的个数为3个. 故选:C .4.已知集合{10}A x x =,23a =+,则a 与集合A 的关系是( ) A .a A ∈B .a A ∉C .a A =D .{}a A ∈ 【答案】A【解析】解:{|10}A x x =,23224a =+<+=,10a <,a A ∴∈,故选:A .5.下列三个命题:①集合N 中最小的数是1;②a N -∉,则a N ∈;③a N ∈,N b ∈,则+a b 的最小值是2.其中正确命题的个数是( ) A .0B .1C .2D .3 【答案】A【解析】①N 表示自然数集,最小的数为0,①错误; ②若32a N -=-∉,则32a N =∉,②错误; ③若0a =,1b =,则1a b +=,③错误.∴正确命题的个数为0个故选:A6.用符号“∈”或“∉”填空: (1)0________N *,5________Z ;(2)23________{x |x <11},32________{x |x >4};(3)(-1,1)________{y |y =x 2},(-1,1)________{(x ,y )|y =x 2}. 【答案】∉ ∉ ∉ ∈ ∉ ∈ 【解析】(1)*0N ∉5Z ;(2)22(23)(11)>,2311∴>,∴23{|11}∉<x x ;22(32)4>,即324>,∴32{|4}∈>x x ;(3)(-1,1)为点,{y |y =x 2}中元素为数,故(-1,1) ∉{y |y =x 2}. 又∵(-1)2=1,∴(-1,1)∈{(x ,y )|y =x 2}. 故答案为:∉;∉;∉;∈;∉;∈ 题型二 根据元素与集合的关系求参数1.若由a 2,2019a 组成的集合M 中有两个元素,则a 的取值可以是( ) A .0B .2019 C .1D .0或2019 【答案】C【解析】若集合M 中有两个元素,则a 2≠2 019a .即a ≠0且a ≠2 019.故选:C. 2.若集合2{|320}A x R ax x =∈-+=中只有一个元素,则(a =) A .92B .98C .0D .0或98【答案】D【解析】解:集合2{|320}A x R ax x =∈-+=中只有一个元素, 当0a =时,可得23x =,集合A 只有一个元素为:23. 当0a ≠时:方程2320ax x -+=只有一个解:即980a ∆=-=, 可得:98a =. 故选:D .3.已知集合A 是由a ﹣2,2a 2+5a ,12三个元素组成的,且﹣3∈A ,求a =________. 【答案】32-【解析】解:由﹣3∈A ,可得﹣3=a ﹣2,或﹣3=2a 2+5a , 由﹣3=a ﹣2,解得a =﹣1,经过验证a =﹣1不满足条件,舍去.由﹣3=2a 2+5a ,解得a =﹣1或32-,经过验证:a =﹣1不满足条件,舍去. ∴a =32-.故答案为:﹣32.4.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 的值为________. 【答案】3 【解析】∵2{0,,32}A m m m =-+,且2A ∈,∴2m =或2322m m -+=,即2m =或0m =或3m =,当2m =时,与元素的互异性相矛盾,舍去;当0m =时,与元素的互异性相矛盾,舍去;当3m =时,{}032A =,,满足题意,∴3m =,故答案是3. 5.已知集合2{|320}A x ax x =-+=,其中a 为常数,且a R ∈. (1)若A 中至少有一个元素,求a 的取值范围; (2)若A 中至多有一个元素,求a 的取值范围. 【答案】(1)89≤a ;(2)89≤a 或0=a 【解析】解:(1)0a =,由320x -+=,解得23x =,满足题意,因此0a =.0a ≠时,A 中至少有一个元素,∴980a ∆=-,解得89≤a ,0a ≠. 综上可得:a 的取值范围是89≤a .(2)0a =,由320x -+=,解得23x =,满足题意,因此0a =.0a ≠时,A 中至多有一个元素,∴980a ∆=-,解得89≤a . 综上可得:a 的取值范围是89≤a 或0=a . 题型三 利用集合互异性求参数1.含有三个实数的集合既可表示为{,,0}b b a,也可表示为{,,1}a a b +,则+a b 的值为____. 【答案】0【解析】由题意{,,0}{,,1}bb a a b a=+,可得0a ≠,根据集合相等和元素的互异性,可得0a b +=且1b =,解得1,1a b =-=, 此时集合{,,0}{1,1,0},{,,1}{1,1,0}b b a a b a=-+=- 所以0a b +=. 故答案为0. 2.已知集合22{2,(1),33}Aa a a =+++,且1A ∈,则实数a 的值为________.【答案】1-或0【解析】若()211,a +=则0a =或2,a =- 当0a =时,{}2,1,3A =,符合元素的互异性; 当2a =-时,{}2,1,1A =,不符合元素的互异性,舍去 若2a 3a 31,++=则1a =-或2,a =-当1a =-时,{}2,0,1A =,符合元素的互异性;当2a =-时,{}2,1,1A =,不符合元素的互异性,舍去; 故答案为:1-或0.3.已知集合{}2411A a a a =+++,,{}2|0B x x px q =++=,若1A ∈.(1)求实数a 的值;(2)如果集合A 是集合B 的列举表示法,求实数p q ,的值. 【答案】(1)4a =-;(2)23p q ==-,.【解析】解:(1)∵1A ∈,∴2411a a ++=或者11a += 得4a =-或0a =,验证当0a = 时,集合{}11A =,,集合内两个元素相同,故舍去0a = ∴4a =-(2)由上4a =-得{}13A =-,,故集合B 中,方程20x px q ++=的两根为1、-3. 由一元二次方程根与系数的关系,得[1(3)]21(3)3p q =-+-==⨯-=-,.4.已知{}20,1,1a a a ∈--,求a 的值.【答案】1a =-【解析】由已知条件得:若a =0,则集合为{0,﹣1,﹣1},不满足集合元素的互异性,∴a ≠0; 若a ﹣1=0,a =1,则集合为{1,0,0},显然a ≠1;若a 2﹣1=0则a =±1,由上面知a =1不符合条件;a =﹣1时,集合为{﹣1,﹣2,0}; ∴a =﹣1.5.含有三个实数元素的集合既可表示成,,1b a a ⎧⎫⎨⎬⎩⎭,又可表示成2{,,0}a a b +,求20172018a b +的值. 【答案】-1【解析】由题意得,,1ba a ⎧⎫⎨⎬⎩⎭与2{,,0}a a b +表示同一个集合,所以0b a=且0a ≠,1a ≠,即0b =,则有{,0,1}a 与2{,,0}a a 表示同一个集合,所以21a =,解得1a =-,所以()2017201720182018101a b +=-+=-,故答案为:1-题型四 集合的描述方法 1.给出下列说法:①集合{}3x x x ∈=N 用列举法表示为{}1,0,1-;②实数集可以表示为{|x x 为实数}或{}R ; ③方程组3,1x y x y +=⎧⎨-=-⎩的解组成的集合为{}1,2x y ==.其中不正确的有______.(把所有不正确说法的序号都填上) 【答案】①②③【解析】①由3x x =,即()210x x -=,得0x =或1x =或1x =-.因为1-∉N ,所以集合{}3x xx ∈=N 用列举法表示为{}0,1.②实数集正确的表示为{|x x 为实数}或R .③方程组3,1x y x y +=⎧⎨-=-⎩的解组成的集合正确的表示应为(){}1,2或()1,,2x x y y ⎧⎫=⎧⎪⎪⎨⎨⎬=⎩⎪⎪⎩⎭.故①②③均不正确. 2.定义集合运算(){}|,,A B z z xy x y x A y B ==+∈∈,集合{}{}0,1,2,3A B ==,则集合A B 所有元素之和为________ 【答案】18【解析】当0,2,0==∴=x y z 当1,2,6==∴=x y z 当0,3,0==∴=x y z当1,3,12==∴=x y z 和为0+6+12=18 故答案为:183.设数集A 由实数构成,且满足:若x A ∈(1x ≠且0x ≠),则11A x∈- . (1)若2A ∈,试证明集合A 中有元素1-,12; (2)判断集合A 中至少有几个元素,并说明理由; (3)若集合A 中的元素个数不超过8,所有元素的和为143,且集合A 中有一个元素的平方等于所有元素的积,求集合A .【答案】(1)证明见解析;(2)至少有3个元素.理由见解析(3)112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭【解析】(1)由题意,因为2A ∈,可得1112A =-∈-. 因为1A -∈,则()11112A =-∈-.所以集合A 中有元素1-,12.(2)由题意,可知若x A ∈(1x ≠且0x ≠), 则11A x ∈-,1x A x -∈,且11x x ≠-,111x x x -≠-,1x x x-≠, 故集合A 中至少有3个元素.(3)由集合A 中的元素个数不超过8,所以由(2)知A 中有6个元素. 设1111,,,,,11x m A x m x x m m --⎧⎫=⎨⎬--⎩⎭,m x ≠,1x ≠且0x ≠,1m ≠且0m ≠, 因为集合A 中所有元素的积为1,不妨设21x =,或2111x ⎛⎫= ⎪-⎝⎭,或211x x -⎛⎫= ⎪⎝⎭.当21x =时,1x =(舍去)或1x =-;若1x =-,则1,22A ∈. ∵集合A 中所有元素的和为143,∴1111421213m m m m -+-+++=-, ∴3261960m m m -++=,即()32261860m m m m ----=,即()()23620m m m ---=,即()()()321320m m m -+-=,∴12m =-或3或23,∴112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭.当2111x ⎛⎫= ⎪-⎝⎭或211x x -⎛⎫= ⎪⎝⎭时,同理可得112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭. 综上,112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭.题型五 元素个数的求解及参数问题1.用()d A 表示集合A 中的元素个数,若集合()(){}2210A x x ax x ax =--+=,{}0,1B =,且()()1d A d B -=.设实数a 的所有可能取值构成集合M ,则()d M =( )A .3B .2C .1D .4 【答案】A【解析】由题意,()()1d A d B -=,()2d B =,可得()d A 的值为1或3,若()1d A =,则20x ax -=仅有一根,必为0,此时a =0,则22110x ax x -+=+=无根,符合题意若()3d A =,若20x ax -=仅有一根,必为0,此时a =0,则22110x ax x -+=+=无根,不合题意,故20x ax -=有二根,一根是0,另一根是a ,所以210x ax -+=必仅有一根,所以2Δ40a =-=,解得2a =±,此时210x ax -+=的根为1或1-,符合题意,综上,实数a 的所有可能取值构成集合{0,2,2}M =-,故()3d M =. 故选:A .2.已知集合{}2,,M m m a b a b Q ==+∈,则下列四个元素中属于M 的元素的个数是( ) ①12π+;②1162+;③122+;④2323-++ A .4B .3C .2D .1【答案】C【解析】①当212a b π+=+时,可得1,a b π==,这与,a b Q ∈矛盾,②()211623232+=+=+232a b ∴+=+ ,可得3,1a b == ,都是有理数,所以正确,③122212222-==-+, 2212a b ∴+=-,可得11,2a b ==-,都是有理数,所以正确, ④()22323426-++=+= 而()2222222a b a b ab +=++ ,,a b Q ∈,()22a b ∴+是无理数,2323∴-++不是集合M 中的元素,只有②③是集合M 的元素.故选:C3.已知集合{}22(,)|1,,A x y x y x y Z =+≤∈,{}(,)|2,2,,B x y x y x y Z =≤≤∈,定义集合{}12121122(,)|(,),(,)A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A .77B .49C .45D .30【答案】C【解析】因为集合,所以集合中有5个元素(即5个点),即图中圆中的整点,集合中有25个元素(即25个点):即图中正方形中的整点,集合的元素可看作正方形中的整点(除去四个顶点),即个.4.选择适当的方法表示下列集合:(1)被5除余1的正整数组成的集合;(2)由直线y =-x +4上的横坐标和纵坐标都是自然数的点组成的集合;(3)方程(x 2-9)x =0的实数解组成的集合;(4)三角形的全体组成的集合.【答案】(1){x|x=5k+1,k ∈N };(2){(x ,y )|y =-x +4,x ∈N ,y ∈N };(3){-3,0,3};(4){x|x 是三角形}或{三角形}. 【解析】(1){|51,}x x k k N =+∈;(2){(,)|4,,}x y y x x N y N =-+∈∈;(3)2(9)00x x x -=⇒=或3x =±,解集为{3,0,3}-,(4){|x x 是三角形}或写成{三角形}.5.设A 是由一些实数构成的集合,若a ∈A ,则11a- ∈A ,且1∉A ,(1)若3∈A,求A.(2)证明:若a∈A,则11Aa-∈.【答案】(1)123,,23A⎧⎫=-⎨⎬⎩⎭;(2)证明见解析.【解析】(1)因为3∈A,所以11132A=-∈-,所以12131()2A=∈--,所以13213A=∈-,所以123,,23A⎧⎫=-⎨⎬⎩⎭.(2)因为a∈A,所以11Aa∈-,所以1111111aAa aa-==-∈---.。
考点02 代词(C篇)一、填空题1、They find the style of the young painter is modeled after ____________ of the master Xu Beihong.2、I know you want to borrow money but I don't have at hand myself.3、________ is known to everybody, the moon travels round the earth once every month.4、He finally made ______ as an actor after years of work on performance skills.5、---Shall we go for a drink at one o'clock this afternoon?---Sorry, I can't make ________. Will two o'clock be OK?6、A couple of days ago, I met a friend of ____________ (me) at a local cafeteria for a chat.7、Don’t upset ______ (you) about it—no harm has been done.8、After twenty days’ hard work, he threw ______ (he) on the bed, exhausted.9、He wants to return to the school ______ he studied English when he was young.10、The reason _________ he gave us was that his car broke down on the way.二、选择题1、Examination compositions, together with most business letters and government reports, are the main situations ________ formal language is used.A. in whichB. on whichC. of whichD. for which2、In many ways, the magic of AI is ________ it’s not something you can see or touch.A. whetherB. whatC. thatD. why3、Stan Lee, an outstanding comic-book writer, created plenty of superheroes in his works,________ the Spider-man and the X-men are the most famous.A. for themB. for whichC. of themD. of which4、A scientist’s attempt to produce the world’s first gene-edited babies _____ are immune to HIV has sparked controversy in academia and the public.A.asB.whoC.whomD.whose5、Niki is always full of ideas, but _____ is useful to my knowledge.A.nothingB.no oneC.neitherD.none6、Nowadays, many developing countries are heavily in debt, because very high interest rates have created a situation_______these countries now spend $13 on debt repayment for $ 1_______theyreceive.A.that; that B.which; when C.where; that D.where; what7、Upon _________, we get down to _________ a music club.A. he arrived; startB. him arriving; runC. he arrived; runningD. his arriving; starting8、The old bank, _____ appearance is not a pretty sight, is extremely magnificent inside.A. whoseB. whereC. whenD. why9、One of the sides of the board should be painted yellow, and ___ _.A. the other is whiteB. another whiteC. the other whiteD. another is white10、The quality of education in this small school is better than ________ in some larger schools.A. thatB. oneC. itD. this三、阅读理解In the United States, it is important to be on time, or punctual, for an appointment, a class, a meeting, etc. However, this may not be true in all countries. An American professor discovered the difference while teaching a class in a Brazilian(巴西的) university. The two-hour class was scheduled to begin at 10 A.M. and end at 12. On the first day, when the professor arrived on time, no one was in the classroom. Many students came after 10:30 A.M. Two students came after 11 A.M. Although all the students greeted the professor as they arrived, few apologized(道歉)for their lateness. Were these students being rude? He decided to study the students’ behavior.The professor talked to American and Brazilian students about lateness in both an informal and a formal situation: at a lunch with a friend and in a university class, respectively. He gave them an example and asked them how they would react, if they had a lunch appointment with a friend, the average American student defined lateness as 19 minutes after the agreed time. On the other hand, the average Brazilian student felt the friend was late after 33 minutes.In an American university, students are expected to arrive at the appointed hour. In contrast, in Brazil, neither the teacher nor the students always arrive at the appointed hour. Classes not only begin at the scheduled time in the United States, but also end at the scheduled time. In the Brazilian class, only a few students left the class at 12:00; many remained past 12:30 to discuss the class and ask more questions. While arriving late may not be very important in Brazil, neither is staying late.1. The word‘punctual’most probably means________.A.leaving soon after classing earlyC.arriving a few minutes lateD.being on time2. Why did the profes sor study the Brazilian students’behavior?A.He felt puzzled at the students’ being late.B.He felt angry at the students' rudeness.C.He wanted to make the students come on time later.D.He wanted to collect data for one of his studies.3. It can be infer red from the professor’s study of lateness in the informal situation that __________.A.American students will become impatient if their friend is five minutes lateB.neither Brazilian nor American students like being late in social gatheringsC.being late in one culture may not be considered so rude in another cultureD.Brazilian students will not come thirty-three minutes after the agreed time4. What is the main idea of this passage?A.It is important to be on time for class in the United States.B.The importance of being on time differs among cultures.C.People learn the importance of time only from their own culture.D.Students being late for class should explain the reason to their teacher.四、语法填空阅读下面材料,在空白处填入适当的内容(1 个单词)或括号内单词的正确形式。
高考英语定语从句专项强化训练一.Choose the best answer.1.All ____ should be done has been done.A. whatB. whichC. thatD. whatever2.I, ____ your best friend, will try my best to help you.A. who isB. who amC. that isD. which am3.Leilei is the girl _____ pronunciation is the best in our class.A. whoseB. whoC. who’sD. that4.Can you lend me the book ______ the other day?A. you talked about itB. that you talkedC. about that you talkedD. you talked about 5.The two old friends talked about the persons and places _____ impressed them most.A. whichB. whoC. whereD. that6.These articles are written in simple language, _____ makes it easy to read.A. thatB. thisC. whichD. it7.My father works in the factory _____ this type of truck is made.A. in whereB. in whichC. from whichD. of which8.He is the man to _____ I gave the money.A. whoB. whomC. whichD. that9.The very thing _____ brought about a complete change in her life was the libration.A. whichB. thatC. whoD. when10.This is the same girl _____ came to borrow an English book two days ago.A. thatB. whoC. whichD. whom11.The way _____ you are doing it is complete crazy.A. in whichB. by whichC. on whichD. at which12.I still remember the summer _____ we had the drought.A. whichB. whyC. whereD. when13 China is not the same country ______ it was 20 years ago.A. thatB. asC. whichD. when14. Wang Fei is the boy _____ I think is the most diligent in our class.A. whoB. whomC. about whomD. him15. Tom told the teacher the reason ______ he was late again.A. thatB. for whyC. for thatD. for which二.定语从句相似句型精练1.1) This is one of the most interesting films ____ shown last week.2) This is the only (very) one of the most interesting films ____ shown last week.A. which wasB. that wasC. which wereD. that were2.1) He has two sons, _____ are college students.2) He has two sons, and _____ are college students.A. both of whichB. both of whomC. both of them3.1) He still lives in the room ______ window faces to the east.2) He still lives in the room , the window ______ faces to the east.3) He still lives in the room ______ is in the north of the city.4) He still lives in the room ______ there is a beautiful table.A. whichB. whoseC. whereD. of which4.1) _____ we all know, China, is rich in natural resources.2) _____ is well- know that China is rich in natural resources.3) _____ is well- know, China is rich in natural resources.A. WhichB. AsC. ItD. That5.1) I will never forget the days ______ we studied together.2) I will never forget the days ______ we spent together.A. thatB. on whenC. whenD. on which6.1) Galileo collected facts _____ proved the earth and all the other planets move around the sun.2) Galileo collected facts _____ the earth and all the other planets move around the sun.A.thatB. whichC. 不填D. A and B7.1) It was eleven o’clock _____ they went out of the cinema.2) It was at eleven o’clock _____ they went out of the cinema.A. whichB. thatC. whenD. on which8.1) It was in 1969 _____ two Americans got to the moon by spaceship.2) It was 1969 _____ two Americans got to the moon by spaceship.A. whichB. whenC. thatD.as9.1) The soldiers left the village _____ they arrived yesterday evening.2) The soldiers started from the village _____ they stayed yesterday.A. on whichB. thatC. at whichD. where10.1) _____ leaves the room last ought to turn off the lights.2) _____ who leaves the room last ought to turn off the lights.3) _____ who leave the room last ought to turn off the lights.A. AnyoneB. WhoC. ThoseD. Whoever11.1) Is this the factory _____ you visited last year?2) Is this factory _____ you visited last year?3) This is the factory _____ he works.4) This is the factory _____ we paid a visit yesterday.A. whereB. thatC. the oneD. to which12.1) The doctor, _____ help the engineer managed to invent a new instrument, was praised.2) The doctor, _____ helped the engineer manage to invent a new instrument, was praised.A. thatB. with whoseC. whoD. whom13.1) Beijing is the most beautiful city, ____ has a population of over 10,000,000.2) Beijing is the most beautiful city ____ I have ever visited.3) Beijing is the most beautiful city, ____ I spent my last summer holiday.A. whichB. thatC. whereD. as14.1)The only spade, with ____ we planted trees, is missing.2) The only spade ____ we planted trees with is missing.A. whichB. thatC. whoseD. whom15.1) I want to buy the same watch ______ you are wearing.2) This is the same watch _____ I lost in the hotel.A. asB. thatC. whichD. who三.Correct the following sentences.16.Let me have a look at the dictionary that you bought it yesterday.17.This is the house where I lived in two years ago.18.There was little which I could do for you.19.Nobody wants the house which roof has fallen in.20.Guilin is a city where has a history of 2000 years.21.She is the only one among us that know French.22.This is the teacher whom we have learnt a lot.23.I hope to get such a dictionary that he is using.24.The man and the horse that who fell into the river were drowned.25.Which we know, more than seventy percent of the earth is covered with water.26.The reason why he was late for school was because he had been knocked down by a bike.27.I don’t like the way which you speak to your mother.28.That is all what they need for the experiment.29.What was the year that fighting broke out.30.The theatre that Lincoln was shot is in the same city.四.Consolidation exercises高考单选题精选1.His parents wouldn’t let him marry anyone ______ family was poor.A.of whomB.whomC.of whoseD.whose2.She heard a terrible noise, _______ brought her heart into her mouth.A.itB.whichC.thisD.that3.In the dark street , there wasn’t a single person _____ she could turn for help.A.thatB.whoC.from whomD.to whom4.The weather turned out to be very good , ____ was more than we could expect.A.whatB.whichC.thatD.it5.After living in Pairs for fifty years he returned to the small town ____ he grew up as a child.A.whichB.whereC.thatD.when6.Carol said the work would be done by October,_____personally I doubt very much.A. itB.thatC.whenD.which7.Dorothy was always speaking highly of her role in the play, ________,of course , made the others unhappy.A.who B.which C.this D.what8.Recently I bought an ancient Chinese vase , _____ was very reasonable.A.which priceB.its priceC.the price of whichD.the price of whose9._____ has already been pointed out , grammar is not a set of dead rules.A.AsB.ItC.ThatD.Which10.He lived in London for 3 months , during ____ time he learned some English.A.thisB.whichC.thatD.same11.Oh the wall hung a picture, _____ color is blue.A.whoseB.of whichC.whichD.its12.Whenever I met him , ____ was fairly often, I like his sweet and hopeful smile.A.whatB.whichC.thatD.when13.The film brought the hours back to me _____ I was taken good care of in that far-away village.A.untilB.thatC.whenD.where14.The boss ____ department Ms King worked ten years ago look down upon women.A.in whichB.in thatC.in whoseD.whose15.I don’t like _____ you speak to her.A.the wayB.the way in thatC.the way whichD.the way of which16.I had neither a raincoat nor an umbrella ._______ I got wet through .A.It’s the reasonB.That’s whyC.There’s whyD.It’s how17.He made another wonderful discovery , ____ of great importance to science.A.which I think isB.which I think it isC.which I think itD.I think which is18.Meeting my uncle after all these years was an unforgettable moment, _____ I will always treasure.A.thatB.oneC.itD.what定语从句对比练习1.① This is one of the most interesting films _____ shown last week.② This is the very one of the most interesting films _____ shown last week.A. which wasB. that wasC. which wereD. that were2.① He has two sons, _____ are college students.② He has two sons, and _____ are college students.A. both of whichB. both of whomC. both of themD. both of it3.① He still lives in the room _____ window faces to the east.② He still lives in the room, the window _____ faces to the east.③ He still lives in the room _____ is in the north of the city.④ He still lives in the room _____ there is a beautiful table.A. whichB. whoseC. whereD. of which4.① _____ leaves the room last ought to turn off the lights.② _____ who leaves the room last ought to turn off the lights.③ _____ who leave the room last ought to turn off the lights.A. AnyoneB. WhoC. ThoseD. Whoever5.① _____ we all know, China is rich in natural resources.② _____ is well-known that China is rich in natural resources.③ _____ is well-known, China is rich in natural resources.A. WhichB. AsC. ItD. That6.① I’ll never forget the days _____ we studied together.② I’ll never forget the days _____ we spent together.A. thatB. 不填C. whenD. A and B7.① This is the only way _____ you can find.② I don’t like the way _____ he spoke to his mother.A. thatB. 不填C. in whichD. A, B and CE. A and B8.① Galileo collected the facts _____ proved the earth and all the other planets move around the sun.② Galileo discovered the fact _____ the earth and all the other planets move around the sun.A. thatB. whichC. 不填D. A and B9. ① Is this museum _____ they visited last month?② The teacher tells us that _____ cleans the blackboard is to be praised.A. thatB. the oneC. whichD. the one who10. ① It was eleven o’clock _____ they went out of the cinema.② It was at eleven o’clock_____ they went out of the cinema.A. whichB. thatC. whenD. on which。
专题一绪论一、单项选择题1.“有些职业是这样的高尚,以致一个人如果是为了金钱而从事这些职业的话,就不能不说他不配这些职业。
教师所从事的,就是这样的职业。
”出自( )A.康德B.夸美纽斯C.福禄贝尔D.卢梭【答案】D【解析】本题考查对教育家教育观点的掌握程度。
2.幼儿教育理论是为幼儿教育实践服务的,因此,学好幼儿教育学需要( )A.实事求是B.脚踏实地C.从实际中出发D.理论联系实际【答案】D【解析】幼儿教育理论是为幼儿教育实践服务的,理论联系实际是学好幼儿教育学的必由之路。
3.进行一切教育活动的前提是要掌握( )A.幼儿教育基本理论B.幼儿教育基本常识C.幼儿基本发展特点D.幼儿教育基本知识【答案】A【解析】掌握幼儿教育基本理论是进行一切教育活动的前提。
4.“如果一个人掌握了本学科的基础理论,又学会独立思考和工作,那么他必定能找到自己的道路。
”这句话出自( )A.蒙台梭利B.爱因斯坦C.维果茨基D.苏霍姆林斯基【答案】B【解析】本题考查对教育家教育观点的掌握程度。
5. ( )是与我们的生活密切相关的一门科学。
A.学前教育B.学前教育学C.幼儿教育D.幼儿教育学【答案】D【解析】幼儿教育学是与我们的生活密切相关的一门科学,而不是远离现实的、抽象的、不可捉摸的学问。
6.作为一个幼儿园教师,最根本的任务是( )A.教幼儿能唱会跳,会弹会画B.教幼儿识字、拼音、算数,以适应小学学习C.促进每个幼儿在德、智、体、美诸方面生动、活泼、主动地发展D.通过游戏活动,促进幼儿健康地成长【答案】C【解析】作为一个幼儿园教师,最根本的任务是促进每个幼儿在德、智、体、美诸方面生动、活泼、主动地发展。
7.学习幼儿教育学的入门教科书是( )A.《幼儿教育学基础》B.《幼儿心理学》C.《学前儿童卫生保健》D.《幼儿园活动设计》【答案】A【解析】《幼儿教育学基础》是幼儿教育学的入门教科书,将为学习幼儿教育学理论奠定第一块基石。
专题01集合与逻辑(考点练+模拟练)一、填空题1.(23-24高三上·上海·期中)已如全集U =R ,集合10,x A x x x ⎧⎫-=≥∈⎨⎬⎩⎭R ,则A =.2.(23-24高三上·上海黄浦·开学考试)“0x ≠或0y ≠”是“220x y +≠”的条件.3.(2023·上海普陀·模拟预测)已知命题p :任意正数x ,恒有()1e 1xx +>,则命题p 的否定为.4.(23-24高三上·上海·期中)已知集合()2,1A =-,()()4,11,2B =-- ,则A B =.5.(22-23高一上·上海复旦附中分校·阶段练习)已知全集U =R ,集合{|1},{|2}A x x B x x =≤=≥,则A B =.6.(23-24高三上·上海奉贤·阶段练习)已知集合{}ln M x y x ==,集合11N y y x ⎧⎫==⎨⎬-⎩⎭,则M N ⋂=.7.(23-24高三上·上海松江·期中)已知2:280,:123p x x q a x a --<-<<-,且p 是q 的充分不必要条件,则实数a 的取值范围是.8.(23-24高三上·上海静安·开学考试)集合{}1,2,A a =,{}21,2B a =-,若集合A B ⋃中有三个元素,则实数=a .9.(23-24高一上·河北邯郸·阶段练习)若集合{}N |12A x x =∈-<≤,{},,B x x ab a b A ==∈,则集合B 的非空真子集的个数为.10.(20-21高三上·上海崇明·阶段练习)已知:31x m α<-或x m >-,:2x β<或4x ≥,若α是β的必要条件,则实数m 的取值范围是.11.(20-21高一上·上海闵行·期中)已知集合M =25|0ax x x a -⎧⎫<⎨⎬-⎩⎭,若3,5M M ∈∉,则实数a 的取值范围是.12.(23-24高三上·上海浦东新·期中)M 是正整数集的子集,满足:1,2022,2023M M M ∈∈∉,并有如下性质:若a 、b M ∈,则222a b M ⎤+∈⎥⎥⎦,其中[]x 表示不超过实数x 的最大整数,则M 的非空子集个数为.二、单选题13.(23-24高三上·上海浦东新·阶段练习)已知集合π,2m A x x m ⎧⎫==∈⎨⎬⎩⎭Z ,集合π,4n B x x n ⎧⎫==∈⎨⎬⎩⎭Z ,则A B = ()A .∅B .AC .BD .{}π,x x k k =∈Z 14.(16-17高一上·上海浦东新·期中)已知集合A ,B ,若A 不是B 的子集,则下列命题中正确的是()A .对任意的a A ∈,都有aB ∉B .对任意的a B ∈,都有a A ∈C .存在0a ,满足0a A ∈,且0a B∉D .存在0a ,满足0a A ∈,且0a B∈15.(21-22高三上·上海浦东新·阶段练习)集合,A B 各有8个元素,A B ⋂有6个元素,若集合C 满足:()()A B C A B ⊆⊆ ,则满足条件的集合C 共有()A .32个B .16个C .8个D .4个16.(20-21高三上·浙江·开学考试)设集合,S T 中至少两个元素,且,S T 满足:①对任意,x y S ∈,若x y ≠,则x y T +∈,②对任意,x y T ∈,若x y ≠,则x y S -∈,下列说法正确的是()A .若S 有2个元素,则S T 有3个元素B .若S 有2个元素,则S T 有4个元素C .存在3个元素的集合S ,满足S T 有5个元素D .存在3个元素的集合S ,满足S T 有4个元素三、解答题17.(23-24高三上·上海静安·阶段练习)设全集()(){}4230,0A x ax x a a =+-+>>,B x y ⎧⎪==⎨⎪⎩.(1)若2a =,求A B ⋂,A B ;(2)若“x B ∈”是“x A ∈”的充分不必要条件,求实数a 的取值范围.18.(22-23高三上·上海青浦·期中)已知集合{}(2)(3)0A x x x =--≤,{}3B x a x a =<<,且0a >.(1)若x A ∈是x B ∈的充分条件,求实数a 的取值范围;(2)若命题“A B ⋂=∅”为假命题,求实数a 的取值范围.19.(22-23高三上·上海崇明·阶段练习)已知R 为全集,集合R 21|1,1x A x x x -⎧⎫=≤∈⎨⎬+⎩⎭,集合{}1,R B x x a x =-≤∈.(1)求集合A ;(2)若B A B ⋂=,求实数a 的取值范围.20.(22-23高三上·上海浦东新·阶段练习)设全集U 为R ,集合{}11A x x =-<,{}2320B x x x =--≥.(1)求A B ;(2)若{}22430C x x ax a A B =-+≥⊇⋃,求a 的取值范围.21.(23-24高一上·上海·期中)集合{}12,,,n A a a a =⋅⋅⋅是由()3n n >个正整数组成的集合,如果任意去掉其中一个元素()1,2,,i a i n =⋅⋅⋅之后,剩余的所有元素组成的集合都能分为两个交集为空的集合,且这两个集合的所有元素之和相等,就称集合A 为“可分集合”.(1)判断集合{}1,2,3,4、{}1,3,5,7,9,11,13是否为“可分集合”(不用说明理由);(2)求证:五个元素的集合{}12345,,,,A a a a a a =一定不是“可分集合”;(3)若集合{}12,,,n A a a a = 是“可分集合”,证明n 是奇数.一、填空题1.(2022·上海·模拟预测)已知集合{}2=|40,A x x x x N *-<∈,则用列举法表示集合A =2.(2022·上海浦东新·模拟预测)已知集合()0,2A =,()1,3B =,则A B ⋃=.3.(2024·上海·三模)已知集合{}0,1,2A =,{}331B x x x =-≤,则A B =4.(2024·上海·三模)已知集合{}1,3,4A =,{},1B a a =+,若A B B = ,则=a .5.(2024·上海·三模)已知集合{}11A x x =-<,11B x x ⎧⎫=<⎨⎬⎩⎭,则A B =.6.(2023·上海静安·二模)若集合{}22,log A a =,{},B a b =,且{}0A B ⋂=,则A B ⋃=.7.(2023·上海青浦·二模)已知集合(){}{}|ln 3,|A x y x B x x a ==-=>,若A B ⋂=∅,则实数a 的取值范围为.8.(2024·上海宝山·二模)已知集合{}2,1,3A a a =++,且1A ∈,则实数a 的值为.9.(2017·上海奉贤·一模)已知互异实数0mn ≠,集合{}{}22,,m n m n =,则m n +=.10.(2023·上海金山·一模)若集合()(){}2,20A x y x y x y =+++-≤,()()(){}222,211B x y x a y a a =-+--≤-,且A B ⋂≠∅,则实数a 的取值范围是.11.(2022·上海青浦·二模)已知集合1,[,1]6A s s t t ⎡⎤=++⎢⎥⎣⎦,其中1A ∉且16s t +<,函数()1xf x x =-,且对任意a A ∈,都有()f a A ∈,则t 的值是.12.(2022·上海普陀·一模)设非空集合Q M ⊆,当Q 中所有元素和为偶数时(集合为单元素时和为元素本身),称Q 是M 的偶子集,若集合{}1,2,3,4,5,6,7=M ,则其偶子集Q 的个数为.二、单选题13.(2022·上海·模拟预测)已知集合(){},2A x y x y =+=,(){},24B x y x y =-=-,则A B = ()A .{}0,2B .()0,2C .∅D .(){}0,214.(2023·上海普陀·二模)设,a b 为实数,则“0a b >>”的一个充分非必要条件是()A>B .22a b >C .11b a>D .a b b a->-15.(2023·上海普陀·一模)设1A 、2A 、3A 、L 、7A 是均含有2个元素的集合,且17A A ⋂=∅,()11,2,3,,6i i A A i +⋂=∅= ,记1237B A A A A =⋃⋃⋃⋃ ,则B 中元素个数的最小值是()A .5B .6C .7D .816.(2021·上海青浦·一模)设函数,()1,x x P f x x Mx-∈⎧⎪=⎨∈⎪⎩,其中,P M 是实数集R 的两个非空子集,又规定()(){},A P y y f x x P ==∈,()(){},A M y y f x x M ==∈,则下列说法:(1)一定有()()A P A M ⋂=∅;(2)若P M R ⋃≠,则()()A P A M R ⋃≠;(3)一定有P M ⋂=∅;(4)若P M R ⋃=,则()()A P A M R ⋃=.其中正确的个数是()A .1B .2C .3D .4三、解答题17.(2017·上海浦东新·三模)数列{}n a 的前n 项12,,,n a a a ⋅⋅⋅()*N n ∈组成集合{}12,,,n n A a a a =⋅⋅⋅,从集合n A 中任取(1,2,3,,)k k n =⋅⋅⋅个数,其所有可能的k 个数的乘积的和为k T (若只取一个数,规定乘积为此数本身),例如:对于数列{21}n -,当1n =时,1{1},A =11;T =2n =时,2{1,3},A =113,T =+213T =⋅;(1)若集合{1,3,5,,21}n A n =⋅⋅⋅-,求当3n =时,1,T 2,T 3T 的值;(2)若集合{}1,3,7,,21nn A =⋅⋅⋅-,证明:n k =时集合k A 的m T 与1n k =+时集合1k A +的m T (为了以示区别,用m T '表示)有关系式()1121k m m m T T T +-'=-+,其中*,N ,m k ∈2m k ≤≤;(3)对于(2)中集合n A .定义12=+++…n n S T T T ,求n S (用n 表示).专题01集合与逻辑(考点练+模拟练)一、填空题1.(23-24高三上·上海·期中)已如全集U =R ,集合10,x A x x x ⎧⎫-=≥∈⎨⎬⎩⎭R ,则A =.【答案】{}01x x ≤<【分析】解出集合A ,利用补集的定义可求得集合A .【解析】由10x x -≥可得()100x x x ⎧-≥⎨≠⎩,解得0x <或1x ≥,则{0A x x =<或}1x ≥,又因为全集U =R ,则{}01A x x =≤<.故答案为:{}01x x ≤<.2.(23-24高三上·上海黄浦·开学考试)“0x ≠或0y ≠”是“220x y +≠”的条件.【答案】充要【分析】利用充分条件、必要条件的定义判断作答.【解析】命题“若0x ≠或0y ≠,则220x y +≠”是真命题,命题“若220x y +≠,则0x ≠或0y ≠”是真命题,所以“0x ≠或0y ≠”是“220x y +≠”的充要条件.故答案为:充要3.(2023·上海普陀·模拟预测)已知命题p :任意正数x ,恒有()1e 1xx +>,则命题p 的否定为.【答案】存在正数0x ,使()001e 1xx +≤【分析】含有全称量词的否定,改成特称量词即可.【解析】由全称命题的否定为特称命题知:存在正数0x ,使()001e 1xx +≤.故答案为:存在正数0x ,使()001e 1xx +≤4.(23-24高三上·上海·期中)已知集合()2,1A =-,()()4,11,2B =-- ,则A B = .【答案】()2,1--【分析】直接由交集的概念、区间的表示即可得解.【解析】因为()2,1A =-,()()4,11,2B =-- ,所以()2,1A B ⋂=--.故答案为:()2,1--.5.(22-23高一上·上海复旦附中分校·阶段练习)已知全集U =R ,集合{|1},{|2}A x x B x x =≤=≥,则A B =.6.(23-24高三上·上海奉贤·阶段练习)已知集合{}ln M x y x ==,集合11N y y x ⎧⎫==⎨⎬-⎩⎭,则M N ⋂=.【答案】()0,∞+【分析】根据函数的定义域及值域结合交集的运算求值即可.【解析】由题意可知()()()0,,,00,M N ∞∞∞=+=-⋃+,所以()0,M N ∞⋂=+.故答案为:()0,∞+7.(23-24高三上·上海松江·期中)已知2:280,:123p x x q a x a --<-<<-,且p 是q 的充分不必要条件,则实数a 的取值范围是.8.(23-24高三上·上海静安·开学考试)集合{}1,2,A a =,{}21,2B a =-,若集合A B ⋃中有三个元素,则实数=a .【答案】2-或1-【分析】集合A B ⋃中有三个元素,则222a -=或22a a -=,解方程并检验即可.【解析】集合{}1,2,A a =,{}21,2B a =-,若集合A B ⋃中有三个元素,则222a -=或22a a -=,若222a -=,解得2a =±,其中2a =与元素互异性矛盾舍去,2a =-满足题意;若22a a -=,解得2a =或1a =-,2a =舍去,1a =-满足题意,所以2a =-或1a =-.故答案为:2-或1-9.(23-24高一上·河北邯郸·阶段练习)若集合{}N |12A x x =∈-<≤,{},,B x x ab a b A ==∈,则集合B 的非空真子集的个数为.10.(20-21高三上·上海崇明·阶段练习)已知:31x m α<-或x m >-,:2x β<或4x ≥,若α是β的必要条件,则实数m 的取值范围是.11.(20-21高一上·上海闵行·期中)已知集合M =2|0x x a -⎧⎫<⎨⎬-⎩⎭,若3,5M M ∈∉,则实数a 的取值范围是.12.(23-24高三上·上海浦东新·期中)M 是正整数集的子集,满足:1,2022,2023M M M ∈∈∉,并有如下性质:若a 、b M ∈,则M ∈,其中[]x 表示不超过实数x 的最大整数,则M 的非空子集个数为.二、单选题13.(23-24高三上·上海浦东新·阶段练习)已知集合π,2m A x x m ⎧⎫==∈⎨⎬⎩⎭Z ,集合π,4n B x x n ⎧⎫==∈⎨⎬⎩⎭Z ,则A B = ()A .∅B .AC .BD .{}π,x x k k =∈Z14.(16-17高一上·上海浦东新·期中)已知集合A ,B ,若A 不是B 的子集,则下列命题中正确的是()A .对任意的a A ∈,都有aB ∉B .对任意的a B ∈,都有a A ∈C .存在0a ,满足0a A ∈,且0a B∉D .存在0a ,满足0a A ∈,且0a B∈【答案】C【分析】根据子集关系结合元素与集合的关系逐项分析判断.【解析】对于选项A 、B :例如{}{}1,2,2,3A B ==,满足A 不是B 的子集,但2,2A B ∈∈,故A 错误;3,3A B ∉∈,故B 错误;对于选项C :对任意的a A ∈,都有a B ∈,则A B ⊆,若A 不是B 的子集,则存在0a ,满足0a A ∈,且0a B ∉,故C 正确;对于选项D :例如{}{}1,2A B ==,满足A 不是B 的子集,但不存在0a ,满足0a A ∈,且0a B ∈,故D 错误;故选:C.15.(21-22高三上·上海浦东新·阶段练习)集合,A B 各有8个元素,A B ⋂有6个元素,若集合C 满足:()()A B C A B ⊆⊆ ,则满足条件的集合C 共有()A .32个B .16个C .8个D .4个【答案】B【分析】根据题意设出集合,A B ,根据()()A B C A B ⊆⊆ 判断集合C 中元素的构成情况,根据子集和集合中元素的个数关系即可得出结果.【解析】解:由题知,A B 各有8个元素,且A B ⋂有6个元素,设{}123456,,,,,c c c c A c c B = ,且{}12123456,,,,,,,,a a c c c c c c A ={}12123456,,,,,,,b bc c c c c B c =,则画Venn 图如下:因为()()A B C A B ⊆⊆ ,所以{}{}1234561212123456,,,,,,,,,,,,,,,c c c c c c C a a b b c c c c c c ⊆⊆所以集合C 中至少有123456,,,,,c c c c c c ,6个元素,最多有1212123456,,,,,,,,,a a b b c c c c c c ,10个元素,只需求出{}1212,,,a a b b 的子集,在每个子集中加入123456,,,,,c c c c c c 6个元素,即可得集合C ,所以集合C 的个数,即是{}1212,,,a a b b 的子集的个数4216=个.故选:B16.(20-21高三上·浙江·开学考试)设集合,S T 中至少两个元素,且,S T 满足:①对任意,x y S ∈,若x y ≠,则x y T +∈,②对任意,x y T ∈,若x y ≠,则x y S -∈,下列说法正确的是()A .若S 有2个元素,则S T 有3个元素B .若S 有2个元素,则S T 有4个元素C .存在3个元素的集合S ,满足S T 有5个元素D .存在3个元素的集合S ,满足S T 有4个元素【答案】A【解析】不妨设{,}S a b =,由②知集合S 中的两个元素必为相反数,设{,}S a a =-,由①得0T ∈,由于集合T 中至少两个元素,得到至少还有另外一个元素m T ∈,分集合T 有2个元素和多于2个元素分类讨论,即可求解.【解析】若S 有2个元素,不妨设{,}S a b =,以为T 中至少有两个元素,不妨设{},x y T ⊆,由②知,x y S y x S -∈-∈,因此集合S 中的两个元素必为相反数,故可设{,}S a a =-,由①得0T ∈,由于集合T 中至少两个元素,故至少还有另外一个元素m T ∈,当集合T 有2个元素时,由②得:m S -∈,则,{0,}m a T a =±=-或{0,}T a =.当集合T 有多于2个元素时,不妨设{0,,}T m n =,其中,,,,,m n m n m n n m S ----∈,由于,0,0m n m n ≠≠≠,所以,m m n n ≠-≠-,若m n =-,则n m =-,但此时2,2m n m m m n n n -=≠-=-≠,即集合S 中至少有,,m n m n -这三个元素,若m n ≠-,则集合S 中至少有,,m n m n -这三个元素,这都与集合S 中只有2个运算矛盾,综上,{0,,}S T a a =- ,故A 正确;当集合S 有3个元素,不妨设{,,}S a b c =,其中a b c <<,则{,,}a b b c c a T +++⊆,所以,,,,,c a c b b a a c b c a b S ------∈,集合S 中至少两个不同正数,两个不同负数,即集合S 中至少4个元素,与{,,}S a b c =矛盾,排除C ,D.故选:A.【点睛】解题技巧:解决以集合为背景的新定义问题要抓住两点:1、紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;2、用好集合的性质,解题时要善于从试卷中发现可以使用的集合的性质的一些因素.三、解答题17.(23-24高三上·上海静安·阶段练习)设全集()(){}4230,0A x ax x a a =+-+>>,B x y ⎧⎪==⎨⎪⎩.(1)若2a =,求A B ⋂,A B ;(2)若“x B ∈”是“x A ∈”的充分不必要条件,求实数a 的取值范围.18.(22-23高三上·上海青浦·期中)已知集合{}(2)(3)0A x x x =--≤,{}3B x a x a =<<,且0a >.(1)若x A ∈是x B ∈的充分条件,求实数a 的取值范围;(2)若命题“A B ⋂=∅”为假命题,求实数a 的取值范围.19.(22-23高三上·上海崇明·阶段练习)已知R 为全集,集合R |1,1A x x x -⎧⎫=≤∈⎨⎬+⎩⎭,集合{}1,R B x x a x =-≤∈.(1)求集合A ;(2)若B A B ⋂=,求实数a 的取值范围.20.(22-23高三上·上海浦东新·阶段练习)设全集U 为R ,集合11A x x =-<,{}2320B x x x =--≥.(1)求A B ;(2)若{}22430C x x ax a A B =-+≥⊇⋃,求a 的取值范围.21.(23-24高一上·上海·期中)集合{}12,,,n A a a a =⋅⋅⋅是由()3n n >个正整数组成的集合,如果任意去掉其中一个元素()1,2,,i a i n =⋅⋅⋅之后,剩余的所有元素组成的集合都能分为两个交集为空的集合,且这两个集合的所有元素之和相等,就称集合A 为“可分集合”.(1)判断集合{}1,2,3,4、{}1,3,5,7,9,11,13是否为“可分集合”(不用说明理由);(2)求证:五个元素的集合{}12345,,,,A a a a a a =一定不是“可分集合”;(3)若集合{}12,,,n A a a a = 是“可分集合”,证明n 是奇数.【答案】(1){}1,2,3,4不是“可分集合”,{}1,3,5,7,9,11,13为“可分集合”(2)证明见解析(3)证明见解析【分析】(1)由“可分集合”的定义判断;(2)不妨设12345a a a a a <<<<,讨论当在集合{}12345,,,,a a a a a 中去掉元素1a 、2a 后,将剩余元素构成的集合,结合“可分集合”的定义进行分拆,得出等式,推出矛盾,即可证得结论成立;(3)根据集合中元素总和与单个元素的奇偶性讨论后证明.【解析】(1)解:对于{}1,2,3,4,去掉3后,{}1,2,4不满足题中条件,故{}1,2,3,4不是“可分集合”,对于{}1,3,5,7,9,11,13,集合{}1,3,5,7,9,11,13所有元素之和为49.当去掉元素1时,剩下的元素之和为48,剩下元素可以组合{}3,5,7,9、{}11,13这两个集合,显然符合题意;当去掉元素3时,剩下的元素之和为46,剩下元素可以组合{}1,9,13、{}5,7,11这两个集合,显然符合题意;当去掉元素5时,剩下的元素之和为44,剩下元素可以组合{}1,3,7,11、{}9,13这两个集合,显然符合题意;当去掉元素7时,剩下的元素之和为42,剩下元素可以组合{}1,9,11、{}3,5,13这两个集合,显然符合题意;当去掉元素9时,剩下的元素之和为40,剩下元素可以组合{}1,3,5,11、{}7,13这两个集合,显然符合题意;当去掉元素11时,剩下的元素之和为38,剩下元素可以组合{}3,7,9、{}1,5,13这两个集合,显然符合题意;当去掉元素13时,剩下的元素之和为36,剩下元素可以组合{}1,3,5,9、{}7,11这两个集合,显然符合题意.综上所述,集合{}1,3,5,7,9,11,13是“可分集合”.(2)证明:不妨设123450a a a a a <<<<<,一、填空题1.(2022·上海·模拟预测)已知集合{}2=|40,A x x x x N *-<∈,则用列举法表示集合A =【答案】{}1,2,3【分析】根据不等式的解法,求得04x <<,进而利用列举法,即可求解.【解析】由不等式240x x -<,可得()40x x -<,解得04x <<,即集合{|04A x x =<<且}{1,2,3}x N *∈=.故答案为:{}1,2,3.2.(2022·上海浦东新·模拟预测)已知集合()0,2A =,()1,3B =,则A B ⋃=.【答案】()0,3【分析】直接根据并集定义求解即可.【解析】因为()0,2A =,()1,3B =,所以()0,3A B ⋃=,故答案为:()0,33.(2024·上海·三模)已知集合{}0,1,2A =,{}331B x x x =-≤,则A B =【答案】{}0,1【分析】把集合中的元素代入不等式331x x -≤检验可求得{0,1}A B = .【解析】当0x =时,303001-⨯=≤,所以0B ∈,当1x =时,313121-⨯=-≤,所以1B ∈,当2x =时,323221-⨯=>,所以2∉B ,所以{0,1}A B = .故答案为:{0,1}.4.(2024·上海·三模)已知集合{}1,3,4A =,{},1B a a =+,若A B B = ,则=a .【答案】3【分析】根据给定条件,利用交集的结果直接列式计算即得.【解析】集合{}1,3,4A =,{},1B a a =+,由A B B = ,得B A ⊆,又11a a +-=,因此143a a +=⎧⎨=⎩,所以3a =.故答案为:35.(2024·上海·三模)已知集合{}11A x x =-<,11B x x ⎧⎫=<⎨⎬⎩⎭,则A B =.6.(2023·上海静安·二模)若集合{}22,log A a =,{},B a b =,且{}0A B ⋂=,则A B ⋃=.【答案】{}0,1,2【分析】依题意可得0A ∈且0B ∈,即可求出a 、b 的值,从而求出集合A 、B ,再根据并集的定义计算可得.【解析】因为{}22,log A a =,{},B a b =,且{}0A B ⋂=,所以0A ∈且0B ∈,显然0a >,所以2log 0a =且0b =,所以1a =,所以{}2,0A =,{}1,0B =,所以{}0,1,2A B = .故答案为:{}0,1,27.(2023·上海青浦·二模)已知集合(){}{}|ln 3,|A x y x B x x a ==-=>,若A B ⋂=∅,则实数a 的取值范围为.【答案】[)3,+∞【分析】求函数的定义域求得集合A ,根据A B ⋂=∅求得a 的取值范围.【解析】由30x ->解得3x <,所以(),3A =-∞,由于A B ⋂=∅,所以3a ≥,所以a 的取值范围是[)3,+∞.故答案为:[)3,+∞8.(2024·上海宝山·二模)已知集合{}2,1,3A a a =++,且1A ∈,则实数a 的值为.9.(2017·上海奉贤·一模)已知互异实数0mn ≠,集合{}{}22,,m n m n =,则m n +=.【答案】-1【分析】分情况讨论2m m =,2n n =,或2n m =,2m n =再计算即可.【解析】互异实数m n ≠,集合{}{}22,,m n m n =,∴2m m =,2n n =,或2n m =,2m n =,0mn ≠,m n ≠.由2m m =,2n n =,0mn ≠,m n ≠,无解.由2n m =,2m n =,0mn ≠,m n ≠.可得22n m m n -=-,解得1m n +=-.故答案为:1-.【点睛】本题主要考查了根据集合的互异性与集合相等求参数的问题,属于基础题型.10.(2023·上海金山·一模)若集合()(){}2,20A x y x y x y =+++-≤,()()(){}222,211B x y x a y a a =-+--≤-,且A B ⋂≠∅,则实数a 的取值范围是.B 其中()()2221x a y a -+--当1a =±时,B 表示点(1,3)当1a ≠±时,B 表示以(M 其圆心在直线21y x =+上,依题意A B ⋂≠∅,即表示圆当1a =-时,显然满足题意,当当1a <-时,因为A B ⋂≠所以d r ≤,即222a a +++所以()()17110a a ++≤,所以1117a -≤<-;当1a >时,因为A B ⋂≠∅11.(2022·上海青浦·二模)已知集合,[,1]6A s s t t ⎡⎤=++⎢⎥⎣⎦ ,其中1A ∉且6s t +<,函数()1xf x x =-,且对任意a A ∈,都有()f a A ∈,则t 的值是.12.(2022·上海普陀·一模)设非空集合Q M ⊆,当Q 中所有元素和为偶数时(集合为单元素时和为元素本身),称Q 是M 的偶子集,若集合{}1,2,3,4,5,6,7=M ,则其偶子集Q 的个数为.【答案】63【分析】对集合Q 中奇数和偶数的个数进行分类讨论,确定每种情况下集合Q 的个数,综合可得结果.【解析】集合Q 中只有2个奇数时,则集合Q 的可能情况为:{}1,3、{}1,5、{}1,7、{}3,5、{}3,7、{}5,7,共6种,若集合Q 中只有4个奇数时,则集合{}1,3,5,7Q =,只有一种情况,若集合Q 中只含1个偶数,共3种情况;若集合Q 中只含2个偶数,则集合Q 可能的情况为{}2,4、{}2,6、{}4,6,共3种情况;若集合Q 中只含3个偶数,则集合{}2,4,6Q =,只有1种情况.因为Q 是M 的偶子集,分以下几种情况讨论:若集合Q 中的元素全为偶数,则满足条件的集合Q 的个数为7;若集合Q 中的元素全为奇数,则奇数的个数为偶数,共7种;若集合Q 中的元素是2个奇数1个偶数,共6318⨯=种;若集合Q 中的元素为2个奇数2个偶数,共6318⨯=种;若集合Q 中的元素为2个奇数3个偶数,共616⨯=种;若集合Q 中的元素为4个奇数1个偶数,共133⨯=种;若集合Q 中的元素为4个奇数2个偶数,共133⨯=种;若集合Q 中的元素为4个奇数3个偶数,共1种.综上所述,满足条件的集合Q 的个数为771818633163+++++++=.故答案为:63.二、单选题13.(2022·上海·模拟预测)已知集合(){},2A x y x y =+=,(){},24B x y x y =-=-,则A B = ()A .{}0,2B .()0,2C .∅D .(){}0,214.(2023·上海普陀·二模)设,a b 为实数,则“0a b >>”的一个充分非必要条件是()A >B .22a b >C .11b a >D .a b b a->-15.(2023·上海普陀·一模)设1A 、2A 、3A 、L 、7A 是均含有2个元素的集合,且17A A ⋂=∅,()11,2,3,,6i i A A i +⋂=∅= ,记1237B A A A A =⋃⋃⋃⋃ ,则B 中元素个数的最小值是()A .5B .6C .7D .8【答案】A 【分析】设1x 、2x 、L 、()4n x n ≥是集合B 互不相同的元素,分析可知4n ≥,然后对n 的取值由小到大进行分析,验证题中的条件是否满足,即可得解.【解析】解:设1x 、2x 、L 、()4n x n ≥是集合B 互不相同的元素,若3n =,则12A A ⋂≠∅,不合乎题意.①假设集合B 中含有4个元素,可设{}112,A x x =,则{}24634,A A A x x ===,{}35712,A A A x x ===,这与17A A ⋂=∅矛盾;②假设集合B 中含有5个元素,可设{}1612,A A x x ==,{}2734,A A x x ==,{}351,A x x =,{}423,A x x =,{}545,A x x =,满足题意.综上所述,集合B 中元素个数最少为5.故选:A.【点睛】关键点点睛:本题考查集合元素个数的最值的求解,解题的关键在于对集合元素的个数由小到大进行分类,对集合中的元素进行分析,验证题中条件是否成立即可.16.(2021·上海青浦·一模)设函数,()1,x x P f x x M x -∈⎧⎪=⎨∈⎪⎩,其中,P M 是实数集R 的两个非空子集,又规定()(){},A P y y f x x P ==∈,()(){},A M y y f x x M ==∈,则下列说法:(1)一定有()()A P A M ⋂=∅;(2)若P M R ⋃≠,则()()A P A M R ⋃≠;(3)一定有P M ⋂=∅;(4)若P M R ⋃=,则()()A P A M R ⋃=.其中正确的个数是()A .1B .2C .3D .4【答案】B【解析】根据分段函数的定义、一次函数和反比例函数的性质,结合集合交集、并集的运算定义进行判断即可.【解析】函数()f x 是分段函数,故P M ⋂=∅一定成立,因此说法(3)正确;对于(1):当{}{}1,1P M =-=时,根据已知的规定,有{}{}()1,()1A P A M ==,显然()(){}1A P A M ⋂=≠∅,因此说法(1)不正确;对于(4):当(,1),[1,)P M =-∞=+∞时,显然满足P M R ⋃=成立,根据已知的规定,有()(1,),()(0,1]A P A M =-+∞=,显然()()(1,)(0,1]A P A M R ⋃=-+∞⋃≠,因此说法(4)不正确;对于(2)来说,当P M R ⋃=时,()()A P A M R ⋃=不一定成立,故当P M R ⋃≠时,显然()()A P A M R ⋃≠一定成立,因此说法(2)正确,所以只有(2)(3)说法正确.故选:B三、解答题17.(2017·上海浦东新·三模)数列{}n a 的前n 项12,,,n a a a ⋅⋅⋅()*N n ∈组成集合{}12,,,n n A a a a =⋅⋅⋅,从集合n A 中任取(1,2,3,,)k k n =⋅⋅⋅个数,其所有可能的k 个数的乘积的和为k T (若只取一个数,规定乘积为此数本身),例如:对于数列{21}n -,当1n =时,1{1},A =11;T =2n =时,2{1,3},A =113,T =+213T =⋅;(1)若集合{1,3,5,,21}n A n =⋅⋅⋅-,求当3n =时,1,T 2,T 3T 的值;(2)若集合{}1,3,7,,21n n A =⋅⋅⋅-,证明:n k =时集合k A 的m T 与1n k =+时集合1k A +的m T (为了以示区别,用m T '表示)有关系式()1121k m m m T T T +-'=-+,其中*,N ,m k ∈2m k ≤≤;(3)对于(2)中集合n A .定义12=+++…n n S T T T ,求n S (用n 表示).。
D a b .=,=1232综上所述得原不等式的解集为>或<-.{x|x x 7}13函数题型2013/3/27抽象函数练习专题:画出示意图辅助解题1、定义在区间(-∞,+∞)的奇函数f(x)为增函数,偶函数g(x)在区间(0,+∞)的图象与f(x)的图象重合。
设a>b>0,给出下列不等式:①f(b)-f(-a)>g(a)-g(-b) ②f(b)-f(-a)<g(a)-g(-b) ③f(a)-f(-b)>g(b)-g(-a)④f(a)-f(-b)<g(b)-g(-a)其中成立的是( ) A 、①与④B 、②与③C 、①与③D 、②与④2 若f (x )为奇函数,且在(﹣∞,0)内是增函数,又f (﹣2)=0,则xf (x )<0的解集为( ) A.(﹣2,0)∪(0,2) B.(﹣∞,﹣2)∪(0,2) C.(﹣∞,﹣2)∪(2,+∞) D.(﹣2,0)∪(2,+∞)3、函数f(x)在(0,2)上是减函数,且关于x 的函数y=f(x+2)是偶函数,那么( )A 、15()()(3)22f f f <<B 、51(3)()()22f f f <<C 、15(3)()()22f f f <<D 、51()(3)()22f f f <<4、如果奇函数f(x)在区间[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是( ) A 、增函数且最小值为-5 B 、增函数且最大值为-5 C 、减函数且最小值为-5 D 、减函数且最大值为-55. f (x )是定义在R 上的函数,且满足如下两个条件:①对于任意x ,y ∈R,有f (x +y )=f (x )+f (y );②当x >0时,f (x )<0,且f (1)=﹣2.求函数f (x )在[﹣3,3]上的最大值和最小值.(6和-6)6 . 已知定义域为R +的函数f (x )满足:(1)x >1时,f (x )<0;(2)f (12)=1;(3)对任意的x ,y ∈R +,都有f (xy )=f (x )+f (y ).求不等式f (x )+f (5﹣x )≥﹣2的解集.绝对值不等式:分段讨论1.不等式|8-3x|>0的解集是[ ]88. . .| .{}33A B R C x x D ⎧⎫∅≠⎨⎬⎩⎭2.解不等式|x -5|-|2x +3|<1.3.解不等式|2x -1|>|2x -3|. {x|x >1}4.不等式4<|1-3x|≤7的解集为________. 58{|21}33x x x -≤-≤ 或 5.设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为[ ]A .a =1,b =3B .a =-1,b =3C .a =-1,b =-3 6.解不等式3||0.5||2x x -≥+ 44{|}33x x -≤≤零点定理:f(a).f(b)<0,且函数f(x)在(a,b )上连续,则在该区间一定存在零点。
1.函数f(x)=x-x 4的零点是( )A.0 B.1 C.2 D.无数个2.函数f(x)=3222x x x --+的零点是( )A. 1,2,3 B.-1,1,2 C.0,1,2 D.-1,1,-23.设f(x) = 12x 5x -3++,则在下列区间中,使函数f(x)有零点的区间是( )A .[0,1]B .[1,2]C .[-2,-1]D .[-1,0]4.函数32()32f x x x x =-+的零点个数为( )A 、0 B 、1 C 、2 D 、35. 函数()ln 26f x x x =+-的零点一定位于区间( ). A. (1, 2) B. (2 , 3) C. (3, 4) D. (4, 5)6. 求证方程231x xx -=+在(0,1)内必有一个实数根. 7. (1)若方程2210ax -=在(0,1)内恰有一解,则实数a 的取值范围是 . 8. 已知函数f (x )=|x 2-2x -3|-a 分别满足下列条件,求实数a 的取值范围.(1) 函数有两个零点; (2)函数有三个零点; (3)函数有四个零点.分段函数:1. 已知函数2log (1),0,()(1)1,0.x x f x f x x -≤⎧=⎨-+>⎩则(2010)f =( )A .2008B .2009C .2010D .20112. 已知函数⎪⎩⎪⎨⎧≥<-+-=)1()1(16)23()(x ax a x a x f x 在),(+∞-∞内单调递减,那么实数a 的取值范围是 A . )1,32( B . )32,0( C. )32,83[ D. )1,83[3. 设()11xf x x+=-又记()()()()()11,,1,2,,k k f x f x f x f f x k +=== ···则()2009=f x A .1x - B .x C .11x x -+ D .11x x+-4. 若f (x )=21(0)(1)(0)x x f x x -⎧⎨⎩- ≤- >,若方程f (x )=x +a 有两不同实根,则a 的取值范围为A .(-∞,1)B .(-∞,1]C .(0,1)D .(-∞,+∞)5. 定义在R 上的函数f(x)满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f (2010)的值为( )A.-1B. 0C.1D. 26. 设函数()f x 定义在整数集上,且3,1000()((5)),1000x x f x f f x x -≥⎧=⎨+<⎩,则(999)f = ( ) A 、996 B 、997 C 、998 D 、999函数的应用1.某企业去年销售收入1000万元,年成本为生产成本500万元与年广告成本200万元两部分.若年利润必须按p %纳税,且年广告费超出年销售收入2%的部分也按p %纳税,其他不纳税.已知该企业去年共纳税120万元.则税率p %为( )A.10% B.12% C.25%D.40%2.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x 万件时的生产成本为C (x )=12x 2+2x +20(万元).一万件售价是20万元,为获取更大利润,该企业一个月应生产该商品数量为( )A.36万件B.18万件 C.22万件D.9万件3.某商店已按每件80元的成本购进某商品1000件,根据市场预测,销售价为每件100元时可全部售完,定价每提高1元时销售量就减少5件,若要获得最大利润,销售价应定为每件( )A.100元B.110元 C .150元D.190元4.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,汽车离开A 地的距离x (千米)与时间t (小时)之间的函数表达式是( )A.x =60t B.x =60t +50t C.x =⎩⎪⎨⎪⎧60t 0≤t ≤2.5150-5t x >3.5D.x =⎩⎪⎨⎪⎧60t 0≤t ≤2.5,150 2.5<t ≤3.5150-50t -3.5 3.5<t ≤6.55.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x 之间关系的是( )A.y =100xB.y =50x 2-50x +100 C.y =50×2xD.y =100log 2x +100积分类型:1.(2012·济南二模)(x -sin x )d x 等于( ).A.π24-1B.π28-1C.π28D.π28+1 2.(2011·新课标全国)由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( ).A .103B.4 C.163D.63.①54x x =⎰d ___ ,②520(2)x x x -=⎰d __,③211)x =⎰d ___ __ ,④211x x=⎰d _____ ,⑤2211x x =⎰d ____ ,⑥0sin x x π-=⎰d ____ ,⑦0xe x π=⎰d ___ ,4.如图,直线y x =与抛物线2y x =相交,则阴影部分的面积为( )A .23B .1C .43D .2x5.如图中阴影部分的面积是-------------------------------------()A.B.9-C.323D.3536.由曲线y与直线y x=所围成的平面图形的面积7.(1)由正弦曲线siny x=,[0,]xπ∈和轴所围成的平面图形的面积是;8.求由曲线y,2y x=-,13y x=-围成图形的面积.9.曲线1yx=与直线y x=,2x=所围成的图形的面积是10.利用定积分的几何意义求2x-⎰的值.11.由2y x x=-,1x=-及x轴围成的平面图形的面积为()A.23B.1 C.43D.562。