新人教版九年级数学上册全册教案(135页)
- 格式:docx
- 大小:4.39 MB
- 文档页数:226
最新人教版九年级上册数学全册教案第二十三章旋转23.1图形的旋转(1)教学内容1.什么叫旋转?旋转中心?旋转角?2.什么叫旋转的对应点?教学目标了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.1.重点:旋转及对应点的有关概念及其应用.2 .难点与关键:从活生生的数学中抽出概念.教具、学具准备小黑板、三角尺教学过程一、复习引入(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点 B 的对应点为点D,作出平移后的图形.2.如图,已知△ ABC和直线 L,请你画出△ ABC关于 L 的对称图形△A′ B′ C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴) ?的对称图形并口述它既有的一些性质.( 3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1 .请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢??从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.?如果从现在到下课时针转了_______度,分针转了 _______度,秒针转了 ______度.2 .再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3 .第 1、 2 两题有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O 叫做旋转中心,转动的角叫做旋转角.如果图形上的点P 经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.下面我们来运用这些概念来解决一些问题.例 1.如图,如果把钟表的指针看做三角形 OAB,它绕 O 点按顺时针方向旋转得到△ OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点 A、 B 分别移动到什么位置?解:( 1)旋转中心是O,∠ AOE、∠ BOF等都是旋转角.( 2)经过旋转,点 A 和点 B 分别移动到点 E 和点 F 的位置.例2.(学生活动)如图,四边形 ABCD、四边形 EFGH都是边长为 1 的正方形.( 1)这个图案可以看做是哪个“基本图案”通过旋转得到的?( 2)请画出旋转中心和旋转角.( 3)指出,经过旋转,点 A、 B、 C、 D分别移到什么位置?(老师点评)( 1)可以看做是由正方形 ABCD的基本图案通过旋转而得到的.( 2) ?画图略.( 3)点 A、点 B、点 C、点D 移到的位置是点 E、点 F、点 G、点 H.最后强调,这个旋转中心是固定的,即正方形对角线的交点,三、巩固练习?但旋转角和对应点都是不唯一的.四、应用拓展五、归纳小结(学生总结,老师点评)本节课要掌握:1.旋转及其旋转中心、旋转角的概念.2.旋转的对应点及其它们的应用.六、布置作业23.1图形的旋转(2)教学内容1.对应点到旋转中心的距离相等.2.对应点与旋转中心所连线段的夹角等于旋转角.3.旋转前后的图形全等及其它们的运用.教学目标理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.先复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着用操作几何、实验探究图形的旋转的基本性质.重难点、关键1.重点:图形的旋转的基本性质及其应用.2.难点与关键:运用操作实验几何得出图形的旋转的三条基本性质.教学过程一、复习引入(学生活动)老师口问,学生口答.1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?3.请独立完成下面的题目.如图, O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?(老师点评)分析:能.看做是一条边(如线段 AB)绕 O点,按照同一方法连续旋转 60°、120°、180°、240°、 300°形成的.二、探索新知上面的解题过程中,能否得出什么结论,请回答下面的问题:1. A、B、 C、 D、 E、 F 到 O点的距离是否相等?2.对应点与旋转中心所连线段的夹角∠BOC、∠ COD、∠ DOE、∠ EOF、∠ FOA是否相等?3.旋转前、后的图形这里指三角形△OAB、△ OBC、△ OCD、△ ODE、△ OEF、△ OFA全等吗?老师点评:( 1)距离相等,( 2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验.请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,?再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ ABC),然后围绕旋转中心O转动硬纸板, ?在黑板上再描出这个挖掉的三角形(△A′ B′ C′),移去硬纸板.1 2 3(分组讨论)根据图回答下面问题(一组推荐一人上台说明).线段 OA与 OA′, OB与 OB′, OC与 OC′有什么关系?.∠ AOA′,∠ BOB′,∠ COC′有什么关系?.△ ABC与△ A′ B′ C′形状和大小有什么关系?老师点评: 1. OA=OA′, OB=OB′, OC=OC′,也就是对应点到旋转中心相等.2 .∠ AOA′ =∠ BOB′ =∠ COC′,我们把这三个相等的角, ?即对应点与旋转中心所连线段的夹角称为旋转角.3.△ ABC和△ A′ B′ C′形状相同和大小相等,即全等.综合以上的实验操作和刚才作的( 3),得出( 1)对应点到旋转中心的距离相等;( 2)对应点与旋转中心所连线段的夹角等于旋转角;( 3)旋转前、后的图形全等.例 1.如图,△ ABC 绕 C 点旋转后,顶点 A 的对应点为点 D ,试确定顶点 B?对应点的位置,以及旋转后的三角形.分析:绕 C 点旋转, A 点的对应点是 D 点,那么旋转角就是∠ ACD ,根据对应点与旋转中心所连线段的夹角等于旋转角, 即∠ BCB ′ =ACD ,?又由对应点到旋转中心的距离相等, 即CB=CB ′,就可确定 B ′的位置,如图所示.解:( 1)连结 CD( 2)以 CB 为一边作∠ BCE ,使得∠ BCE=∠ ACD( 3)在射线 CE 上截取 CB ′ =CB则 B ′即为所求的 B 的对应点.( 4)连结 DB ′则△ DB ′ C 就是△ ABC 绕 C 点旋转后的图形. 例 2.如图,四边形ABCD 是边长为 1 的正方形,且 DE=1,△ ABF 是△ ADE 的旋转图形.4( 1)旋转中心是哪一点?( 2)旋转了多少度?( 3) AF 的长度是多少?( 4)如果连结 EF ,那么△ AEF 是怎样的三角形?分析:由△ ABF 是△ ADE 的旋转图形,可直接得出旋转中心和旋转角,要求 AF?的长度,根据旋转前后的对应线段相等,只要求 AE 的长度,由勾股定理很容易得到. ?△ ABF 与△ ADE 是完全重合的,所以它是直角三角形.解:( 1)旋转中心是 A 点.( 2)∵△ ABF 是由△ ADE 旋转而成的 ∴ B 是 D 的对应点∴∠ DAB=90°就是旋转角 ( 3)∵ AD=1, DE=14∴ AE= 12( 1)2= 174 4∵对应点到旋转中心的距离相等且 F 是 E 的对应点∴ AF=174( 4)∵∠ EAF=90°(与旋转角相等)且 AF=AE∴△ EAF 是等腰直角三角形.三、巩固练习:四、应用拓展分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明. 五、归纳小结 (学生总结,老师点评)本节课应掌握: 1.对应点到旋转中心的距离相等; 2.对应点与旋转中心所连线段的夹角等于旋转角; 3.旋转前、后的图形全等及其它们的应用.六、布置作业23.1图形的旋转 (3)教学内容 :选择不同的旋转中心或不同的旋转角,设计出不同的美丽的图案.教学目标 :理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.复习图形旋转的基本性质,着重强调旋转中心和旋转角然后应用已学的知识作图,设计出美丽的图案.重难点、关键1 .重点:用旋转的有关知识画图.2 .难点与关键:根据需要设计美丽图案.教具、学具准备小黑板教学过程一、复习引入1.(学生活动)老师口问,学生口答.(1)各对应点到旋转中心的距离有何关系呢?(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?(3)两个图形是旋转前后的图形,它们全等吗?2.请同学独立完成下面的作图题.如图,△ AOB绕 O点旋转后, G点是 B 点的对应点,作出△ AOB旋转后的三角形.(老师点评)分析:要作出△ AOB旋转后的三角形,应找出三方面:第一,旋转中心: O;第二,旋转角:∠BOG;第三, A点旋转后的对应点:A′.二、探索新知从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.1.旋转中心不变,改变旋转角画出以下图所示的四边形ABCD以 O点为中心,旋转角分别为30°、 60°的旋转图形.2.旋转角不变,改变旋转中心画出以下图,四边形ABCD分别为 O、 O为中心,旋转角都为30?°的旋转图形.因此,从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.例 1.如下图是菊花一叶和中心与圆圈,现以O?为旋转中心画出分别旋转45°、 90°、 135°、 180°、225°、 270°、 315°的菊花图案.分析:只要以O 为旋转中心、旋转角以上面为变化,?旋转长度为菊花的最长OA,按菊花叶的形状画出即可.解:( 1)连结 OA(2)以 O点为圆心, OA长为半径旋转 45°,得 A.(3)依此类推画出旋转角分别为90°、 135°、 180°、 225°、 270°、 315°的 A、 A、 A、 A、 A、A.(4)按菊花一叶图案画出各菊花一叶.那么所画的图案就是绕O点旋转后的图形.例 2.(学生活动)如图,如果上面的菊花一叶,绕下面的点O′为旋转中心, ?请同学画出图案,它还是原来的菊花吗?老师点评:显然,画出后的图案不是菊花,而是另外的一种花了.三、巩固练习.四、应用拓展五、归纳小结(学生归纳,老师点评)本节课应掌握:1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案;2.作出几个复合图形组成的图案旋转后的图案, ?要先求出图中的关键点──线的端点、角的顶点、圆的圆心等.六、布置作业23.2 中心对称(1)教学内容两个图形关于这个点对称或中心对称、对称中心、关于中心的对称点等概念及其运用它们解决一些实际问题.教学目标了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题.复习运用旋转知识作图, ?旋转角度变化, ?设计出不同的美丽图案来引入旋转 180°的特殊旋转──中心对称的概念,并运用它解决一些实际问题.重难点、关键1.重点:利用中心对称、对称中心、关于中心对称点的概念解决一些问题.2.难点与关键:从一般旋转中导入中心对称.教具、学具准备小黑板、三角尺教学过程一、复习引入请同学们独立完成下题.如图,△ ABC绕点 O旋转,使点 A 旋转到点D处,画出旋转后的三角形,?并写出简要作法.老师点评:分析,本题已知旋转后点 A 的对应点是点D,且旋转中心也已知,所以关键是找出旋转角和旋转方向.显然,逆时针或顺时针旋转都符合要求,?一般我们选择小于180°的旋转角为宜,故本题选择的旋转方向为顺时针方向;?已知一对对应点和旋转中心,很容易确定旋转角.如图,连结 OA、 OD,则∠ AOD即为旋转角.接下来根据“任意一对对应点与旋转中心的连线所成的角都是旋转角”和“对应点到旋转中心的距离相等”这两个依据来作图即可.作法:( 1)连结 OA、 OB、 OC、 OD;(2)分别以 OB、 OB为边作∠ BOM=∠CON=∠ AOD;(3)分别截取 OE=OB,OF=OC;(4)依次连结 DE、 EF、FD;即:△ DEF就是所求作的三角形,如图所示.二、探索新知问题:作出如图的两个图形绕点O旋转 180°的图案,并回答下列的问题:1.以 O为旋转中心,旋转 180°后两个图形是否重合?2.各对称点绕O旋转 180°后,这三点是否在一条直线上?老师点评:可以发现,如图所示的两个图案绕O旋转180°都是重合的,即甲图与乙图重合,△OAB与△COD重合.像这样,把一个图形绕着某一个点旋转 180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.例1.如图,四边形 ABCD绕 D 点旋转 180°,请作出旋转后的图案,写出作法并回答.( 1)这两个图形是中心对称图形吗?如果是对称中心是哪一点?如果不是,请说明理由.( 2)如果是中心对称,那么A、B、 C、 D 关于中心的对称点是哪些点.分析:( 1)根据中心对称的定义便直接可知这两个图形是中心对称图形,?对称中心就是旋转中心.( 3)旋转后的对应点,便是中心的对称点.解:作法:( 1)延长 AD,并且使得 DA′ =AD( 2)同样可得: BD=B′D, CD=C′D( 3)连结 A′ B′、 B′ C′、 C′ D,则四边形 A′ B′C′ D 为所求的四边形,如图23-44 所示.答:( 1)根据中心对称的定义便知这两个图形是中心对称图形,对称中心是 D 点.(2) A、 B、 C、D 关于中心 D 的对称点是 A′、 B′、 C′、 D′,这里的 D′与 D重合.例 2.如图,已知 AD是△ ABC的中线,画出以点 D 为对称中心,与△ ABD?成中心对称的三角形.分析:因为 D 是对称中心且 AD是△ ABC的中线,所以 C、B 为一对的对应点,因此,只要再画出 A 关于 D 的对应点即可.解:( 1)延长 AD,且使 AD=DA′,因为 C 点关于 D 的中心对称点是 B( C′), B?点关于中心 D 的对称点为 C( B′)( 2)连结 A′ B′、 A′C′.则△ A′ B′ C′为所求作的三角形,如图所示.三、巩固练习四、应用拓展例3.如衅,在△ ABC中,∠ C=70°, BC=4,AC=4,现将△ ABC沿 CB方向平移到△ A′B′ C′的位置.( 1)若平移的距离为 3,求△ ABC与△ A′ B′ C′重叠部分的面积.y 与x 的关系式.( 2)若平移的距离为x( 0≤ x≤4),求△ ABC与△ A′ B′ C′重叠部分的面积y,写出分析:( 1)∵ BC=4, AC=4BC′ =1∴△ ABC是等腰直角三角形,易得△BDC′也是等腰直角三角形且( 2)∵平移的距离为x,∴ BC′ =4-x五、归纳小结(学生归纳,老师点评)本节课应掌握:1.中心对称及对称中心的概念;2.关于中心的对称点的概念及其运用.六、布置作业1 .教材练习1.23.2中心对称(2)教学内容1 .关于中心对称的两个图形,对称点所连线段都经过对称中心,?而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.教学目标理解关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;理解关于中心对称的两个图形是全等图形;掌握这两个性质的运用.复习中心对称的基本概念(中心对称、对称中心,关于中心的对称点),提出问题,让学生分组讨论解决问题,老师引导总结中心对称的基本性质.重难点、关键1.重点:中心对称的两条基本性质及其运用.2.难点与关键:让学生合作讨论,得出中心对称的两条基本性质.教学过程一、复习引入(老师口问,学生口答)1.什么叫中心对称?什么叫对称中心?2.什么叫关于中心的对称点?3 .请同学随便画一三角形,以三角形一顶点为对称中心,?画出这个三角形关于这个对称中心的对称图形,并分组讨论能得到什么结论.(每组推荐一人上台陈述,老师点评)(老师)在黑板上画一个三角形ABC,分两种情况作两个图形(1)作△ ABC一顶点为对称中心的对称图形;(2)作关于一定点 O为对称中心的对称图形.第一步,画出△ ABC.第二步,以△ ABC的 C 点(或 O 点)为中心,旋转 180°画出△ A′B′和△ A′ B′ C′,如图 1 和用 2 所示.(1)(2)从图 1 中可以得出△ABC与△ A′B′ C 是全等三角形;分别连接对称点AA′、 BB′、 CC′,点 O在这些线段上且 O平分这些线段.下面,我们就以图 2 为例来证明这两个结论.证明:( 1)在△ ABC和△ A′ B′ C′中,OA=OA ′, OB=OB′,∠ AOB=∠ A′ OB′∴△ AOB≌△ A′OB′∴AB=A′ B′同理可证: AC=A′ C′, BC=B′ C′∴△ ABC≌△ A′B′ C′(2)点 A′是点 A 绕点 O旋转 180°后得到的,即线段 OA绕点 O?旋转 180?°得到线段 OA′,所以点 O 在线段AA′上,且 OA=OA′,即点 O是线段 AA′的中点.同样地,点 O也在线段 BB′和 CC′上,且 OB=OB′, OC=OC′,即点 O是 BB′和 CC′的中点.因此,我们就得到1 .关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.2 .关于中心对称的两个图形是全等图形.例 1.如图,已知△ ABC和点 O,画出△ DEF,使△ DEF和△ ABC关于点 O成中心对称.分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转连 AO、 BO、 CO并延长,取与它们相等的线段即可得到.解:( 1)连结 AO并延长 AO到 D,使 OD=OA,于是得到点 A 的对称点180°,因此,我们D,如图所示.(2)同样画出点 B 和点 C 的对称点 E 和 F.(3)顺次连结 DE、 EF、FD.则△ DEF即为所求的三角形.例 2.(学生练习,老师点评)如图,已知四边形ABCD和点 O,画四边形A′B?′ C′ D′,使四边形 A′ B′C′ D′和四边形ABCD关于点 O成中心对称(只保留作图痕迹,不要求写出作法).二、巩固练习三、应用拓展例 3.如图等边△ ABC内有一点O,试说明: OA+OB>OC.分析:要证明OA+OB>OC,必然把O A、OB、 OC转为在一个三角形内,应用两边之和大于第三边(两点之间线段最短)来说明,因此要应用旋转.以 A 为旋转中心, ?旋转 60°,便可把OA、 OB、 OC转化为一个三角形内.解:如图,把△AOC以 A 为旋转中心顺时针方向旋转60°后,到△ AO′ B?的位置,则△AOC≌△ AO′ B.∴ AO=AO′, OC=O′ B又∵∠ OAO′ =60°,∴△ AO′ O为等边三角形.∴ AO=OO′在△ BOO′中, OO′ +OB>BO′即 OA+OB>OC四、归纳小结(学生总结,老师点评)本节课应掌握:中心对称的两条基本性质:1 .关于中心对称的两个图形,对应点所连线都经过对称中心,?而且被对称中心所平分;2.关于中心对称的两个图形是全等图形及其它们的应用.五、布置作业23.2 中心对称 (3)教学内容1.中心对称图形的概念.2.对称中心的概念及其它们的运用.教学目标了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其它的运用.重难点、关键1.重点:中心对称图形的有关概念及其它们的运用.2.难点与关键:区别关于中心对称的两个图形和中心对称图形.教具、学具准备小黑板、三角形教学过程一、复习引入1.(老师口问)口答:关于中心对称的两个图形具有什么性质?(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.关于中心对称的两个图形是全等图形.2.(学生活动)作图题.(1)作出线段 AO关于 O点的对称图形,如图所示.A OAO B( 2)作出三角形AOB关于 O点的对称图形,如图所示.(2)延长 AO使OC=AO,延长 BO使OD=BO连结 CD则△ COD为所求的,如图所示.二、探索新知从另一个角度看,上面的(1)题就是将线段AB 绕它的中点旋转180°,因为 OA=?OB,所以,就是线段AB绕它的中点旋转180°后与它重合.上面的( 2)题,连结 AD、 BC,则刚才的两个关于中心对称的两个图形,就成平行四边形,如图所示.∵ AO=OC, BO=OD,∠ AOB=∠ COD A D∴△ AOB≌△ CODO∴ AB=CD也就是, ABCD绕它的两条对角线交点O旋转 180°后与它本身重合.C 因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么B这个图形叫做中心对称图形,这个点就是它的对称中心.(学生活动)例1:从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.老师点评:老师边提问学生边解答.(学生活动)例2:请说出中心对称图形具有什么特点?老师点评:中心对称图形具有匀称美观、平稳.A D 例 3.求证:如图任何具有对称中心的四边形是平行四边形.O 分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.证明:如图, O是四边形 ABCD的对称中心,根据中心对称性质,线段AC、?BD必B C 过点 O,且 AO=CO, BO=DO,即四边形 ABCD的对角线互相平分,因此,?四边形 ABCD是平行四边形.三、巩固练习四、应用拓展例 4.如图,矩形 ABCD中, AB=3, BC=4,若将矩形折叠,使 C点和 A 点重合, ?求折痕 EF 的长.分析:将矩形折叠,使 C 点和 A 点重合,折痕为 EF,就是 A、 C 两点关于 O 点对称,这方面的知识在解决一些翻折问题中起关键作用,对称点连线被对称轴垂直平分,进而转化为中垂线性质和勾股定理的应用,求线段长度或面积.解:连接AF,∵点 C与点 A 重合,折痕为EF,即 EF 垂直平分AC.∴AF=CF,AO=CO,∠ FOC=90°,又四边形 ABCD为矩形,∠ B=90°,AB=CD=3, AD=?BC=4设CF=x,则 AF=x, BF=4-x,由勾股定理,得2222 AC=BC+AB=5∴ AC=5, OC=1AC=5 2222222∵ AB +BF =AF∴ 3 +(4-x ) =2=x ∴x=258∵∠ FOC=90°222252- (5215)215∴ OF=FC-OC=(8)) =(8OF=28同理15,即15 OE=EF=OE+OF=84五、归纳小结(学生归纳,老师点评)本节课应掌握:1.中心对称图形的有关概念;2.应用中心对称图形解决有关问题.六、布置作业23.2中心对称(4)教学内容两个点关于原点对称时,它们的坐标符号相反,即点 P( x,y),关于原点的对称点为 P′( -x ,-y )及其运用.教学目标理解 P与点 P′点关于原点对称时,它们的横纵坐标的关系,掌握P(x,y)关于原点的对称点为P′( -x ,-y )的运用.复习轴对称、旋转,尤其是中心对称,知识迁移到关于原点对称的点的坐标的关系及其运用.重难点、关键1 .重点:两个点关于原点对称时,它们的坐标符号相反,即点P( x, y) ?关于原点的对称点P′( -x ,-y )及其运用.2.难点与关键:运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题.教具、学具准备l小黑板、三角尺教学过程A一、复习引入(学生活动)请同学们完成下面三题.1.已知点 A 和直线 L,如图,请画出点 A 关于 L 对称的点 A′.2.如图,△ ABC是正三角形,以点 A 为中心,把△ ADC顺时针旋转60°,画出旋转后的图形.3.如图△ ABO,绕点 O旋转 180°,画出旋转后的图形.老师点评:老师通过巡查,根据学生解答情况进行点评.(略)二、探索新知(学生活动)如图,在直角坐标系中,已知 A( -3 ,1)、B(-4 ,0)、yC( 0,3)、?D( 2, 2)、 E( 3,-3 )、F( -2 , -2 ),作出 A、B、 C、 D、E、4F 点关于原点 O 的中心对称点,并写出它们的坐标,并回答:这些坐标3C与已知点的坐标有什么关系?2DA老师点评:画法:( 1)连结 AO并延长 AO B1O 1 2 3x ( 2)在射线 AO上截取 OA′ =OA-4 -3-2-1( 3)过 A 作 AD′⊥ x 轴于 D′点,过 A′作 A′ D″⊥ x 轴于点 D″.-1-2∵△ AD′ O与△ A′ D″ O全等-3∴ AD′=A′ D″, OA=OA′∴ A′( 3, -1 )同理可得 B、 C、 D、 E、F 这些点关于原点的中心对称点的坐标.(学生活动)分组讨论(每四人一组):讨论的内容:关于原点作中心对称时,?①它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点?提问几个同学口述上面的问题.老师点评:( 1)从上可知,横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等.( 2)坐标符号相反,即设 P( x, y)关于原点 O的对称点 P′( -x , -y ).两个点关于原点对称时,它们的坐标符号相反,即点 P( x,y)关于原点 O的对称点 P′( -x , -y ).例 1.如图,利用关于原点对称的点的坐标的特点,作出与线段AB?关于原点对称的图形.分析:要作出线段AB 关于原点的对称线段,只要作出点A、点 B 关于原点的对称点A′、 B′即可.y4 32解:点 P ( x , y )关于原点的对称点为 P ′( -x ,-y ),因此,线段 AB 的两个端点 A (0, -1 ),B ( 3, 0)关于原点的对称点分别为1BA ′( 1, 0),B ( -3 ,0). 连结 A ′B ′.-4 -3 -2 -1 O 1x23则就可得到与线段 AB 关于原点对称的线段 A ′ B ′.-1A-2(学生活动)例 2.已知△ ABC , A ( 1, 2), B ( -1 ,3), C (-2 , 4)利用关-3于原点对称的点的坐标的特点,作出△ ABC 关于原点对称的图形.老师点评分析:先在直角坐标系中画出A 、B 、C 三点并连结组成△ ABC ,要作 出△ ABC 关于原点 O 的对称三角形,只需作出△ABC 中的 A 、 B 、 C 三点关于原点的对称点, ?依次连结,便可得到所求作的△ A ′ B ′ C ′.三、巩固练习 教材 练习. 四、应用拓展例 3.如图, 直线 AB 与 x 轴、y 轴分别相交于 A 、B 两点,将直线 AB 绕点( 1)在图中画出直线 A 1B 1.( 2)求出线段 A 1B 1 中点的反比例函数解析式.( 3)是否存在另一条与直线 AB 平行的直线 y=kx+b (我们发现互相平行的两条直线斜率 k 值相等)它与双曲线只有一个交点,若存在,求此直线的函数解析式,若不存在,请说明理由.分析:( 1)只需画出 A 、B 两点绕点 O 顺时针旋转 90°得到的点 A 1、 B 1 ,连结 A 1B 1.( 2)先求出 A 1B 1 中点的坐标,设反比例函数解析式为y= k代入求xk . O 顺时针旋转 90°得到直线 A 1B 1.y4 3 2BA1-4 -3 -2 -1O 1 2 3 x-1-2-3( 3)要回答是否存在,如果你判断存在,只需找出即可;如果不存在,才加予说明. 这一条直线是存在的, 因此 A 1B 1 与双曲线是相切的,只要我们通过 A 1B 1 的线段作 A 1、 B 1 关于原点的对称点 A 2、 B 2,连结 A 2B 2 的直线就是我们所求的直线.解:(1)分别作出 A 、 B 两点绕点 O 顺时针旋转 90°得到的点 A 1( 1, 0), B 1( 2, 0),连结 A 1B 1,那么直线 A 1B 1 就是所求的.( 2)∵ A 1B 1 的中点坐标是( 1, 1) 2设所求的反比例函数为 y=kx则 1 = k,k= 12 121∴所求的反比例函数解析式为y=2x( 3)存在.∵设 A 1B 1:y=k ′ x+b ′过点 A 1 (0, 1), B 1( 2, 0)1 b`b` 11 ∴∴k`0 2k b2∴ y=- 1x+12把线段 A B 作出与它关于原点对称的图形就是我们所求的直线.1 1根据点 P ( x , y )关于原点的对称点 P ′( -x , -y )得:A ( 0,1),B ( 2,0)关于原点的对称点分别为A ( 0, -1 ),B ( -2 , 0)1122∵ A 2B 2: y=kx+b1 bk 1 2∴2k` ∴b1b。
九年级数学上册全册教案(最新人教版)本资料为woRD文档,请点击下载地址下载全文下载地址www.5ykj.com 义务教育课程标准人教版数学教案九年级上册XX—XX学年度第一学期学校:班级:九(3)班教师:XX—XX学年度第一学期九年级数学教学进度表周序日期教学工作内容及课时安排8.24—8.3021.1一元二次方程221.2降次——解一元二次方程228.31—9.621.2降次——解一元二次方程539.7—9.1321.3实际问题与一元二次方程及数学活动2 《一元二次方程》单元小结与练习349.14—9.2021.1二次函数的图像与性质559.21—9.2721.2二次函数与一元二次方程221.3实际问题与二次函数2《二次函数》单元小结与练习169.28—10.423.1图形的旋转223.2中心对称370.5—10.1123.3课题学习图案设计2《旋转》单元考及讲评380.12—10.1824.1圆590.19—10.2524.2点、直线、圆和圆的位置关系5 00.26—11.1期中考复习11.2—11.8期中考试与试卷分析21.9—11.1524.3正多边形和圆224.4弧长和扇形面积2131.16—11.2124.4弧长和扇形面积2《圆》单元考及讲评3141.23—11.2925.1随机事件与概率451.30—12.625.2用列举法求概率325.3用频率估计概率162.7—12.1325.4课题学习及数学活动2 《概率初步》单元考及讲评2 72.14—12.20九年级数学下册内容82.21—12.27九年级数学下册内容92.28—1.3九年级数学下册内容20.4—1.10期末考复习21.11—1.17期末考复习及考试教学时间课题21.1一元二次方程课型新授教学媒体多媒体教学目标知识技能.理解一元二次方程概念是以未知数的个数和次数为标准的.2.掌握一元二次方程的一般形式以及三种特殊形式,能将一个一元二次方程化为一般形式3.理解二次根式的根的概念,会判断一个数是否是一个一元二次方程的根过程方法..通过根据实际问题列方程,向学生渗透知识于生活.2.通过观察,思考,交流,获得一元二次方程的概念及其一般形式和其它三种特殊形式.3.经历观察,归纳一元二次方程的概念,一元二次方程的根的概念,情感态度通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.教学重点一元二次方程的概念,一般形式和一元二次方程的根的概念教学难点通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.教学过程设计教学程序及教学内容师生行为设计意图一、复习引入导语:小学五年级学习过简易方程,上初中后学习了一元一次方程,二元一次方程组,可化为一元一次方程的分式方程,运用方程方法可以解决众多代数问题和几何求值问题,是非常常见的一种数学方法。
九年级数学上册教学计划和全册教案二十一章一元二次方程第1课时 21.1 一元二次方程教学内容一元二次方程概念及一元二次方程一般式及有关概念.教学目标了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;•应用一元二次方程概念解决一些简单题目.1.通过设置问题,建立数学模型,•模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点关键1.•重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.教学过程一、复习引入学生活动:列方程.问题(1)古算趣题:“执竿进屋”笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。
有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。
借问竿长多少数,谁人算出我佩服。
如果假设门的高为x•尺,•那么,•这个门的宽为_______•尺,长为_______•尺,•根据题意,•得________.整理、化简,得:__________.二、探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?还是与多项式一样只有式子?老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)•都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.解:略注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.解:略三、巩固练习教材练习1、2补充练习:判断下列方程是否为一元二次方程?(1)3x+2=5y-3 (2) x2=4 (3) 3x2-5x=0 (4) x2-4=(x+2) 2 (5) ax2+bx+c=0四、应用拓展例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17•≠0即可.证明:m2-8m+17=(m-4)2+1∵(m-4)2≥0∴(m-4)2+1>0,即(m-4)2+1≠0∴不论m取何值,该方程都是一元二次方程.•练习: 1.方程(2a—4)x2—2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?2.当m为何值时,方程(m+1)x/4m/-4+27mx+5=0是关于的一元二次方程五、归纳小结(学生总结,老师点评)本节课要掌握:(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)•和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.六、布置作业第2课时 21.1 一元二次方程教学内容1.一元二次方程根的概念;2.•根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目.教学目标了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题.提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题.重难点关键1.重点:判定一个数是否是方程的根;2.•难点关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.教学过程一、复习引入学生活动:请同学独立完成下列问题.问题1.前面有关“执竿进屋”的问题中,我们列得方程x2-8x+20=0列表:问题2列表:老师点评(略)二、探索新知提问:(1)问题1中一元二次方程的解是多少?问题2•中一元二次方程的解是多少?(2)如果抛开实际问题,问题2中还有其它解吗?老师点评:(1)问题1中x=2与x=10是x2-8x+20=0的解,问题2中,x=4是x2+7x-44=0的解.(2)如果抛开实际问题,问题2中还有x=-11的解.一元二次方程的解也叫做一元二次方程的根.回过头来看:x2-8x+20=0有两个根,一个是2,另一个是10,都满足题意;但是,问题2中的x=-11的根不满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.例1.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根.例2.若x=1是关于x 的一元二次方程a x 2+bx+c=0(a ≠0)的一个根,求代数式2007(a+b+c)的值练习:关于x 的一元二次方程(a-1) x 2+x+a 2-1=0的一个根为0,则求a 的值点拨:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这种解决问题的思维方法经常用到,同学们要深刻理解.例3.你能用以前所学的知识求出下列方程的根吗?(1)x 2-64=0 (2)3x 2-6=0 (3)x 2-3x=0分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义. 解:略三、巩固练习教材 思考题 练习1、2.四、归纳小结(学生归纳,老师点评) 本节课应掌握:(1)一元二次方程根的概念;(2)要会判断一个数是否是一元二次方程的根;(3)要会用一些方法求一元二次方程的根.(“夹逼”方法; 平方根的意义) 六、布置作业1.教材 复习巩固3、4 综合运用5、6、7 拓广探索8、9. 2.选用课时作业设计.第3课时 21.2.1 配方法教学内容运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程. 教学目标理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax 2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a (ex+f )2+c=0型的一元二次方程. 重难点关键1.重点:运用开平方法解形如(x+m )2=n (n ≥0)的方程;领会降次──转化的数学思想.2.难点与关键:通过根据平方根的意义解形如x 2=n ,知识迁移到根据平方根的意义解形如(x+m )2=n (n ≥0)的方程. 教学过程一、复习引入学生活动:请同学们完成下列各题 问题1.填空(1)x 2-8x+______=(x-______)2;(2)9x 2+12x+_____=(3x+_____)2;(3)x 2+px+_____=(x+____)2. 问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(2p )2 2p. 问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程于一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法? 二、探索新知上面我们已经讲了x 2=9,根据平方根的意义,直接开平方得x=±3,如果x 换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢? (学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x ,那么2t+1=±3 即2t+1=3,2t+1=-3方程的两根为t 1=1,t 2=--2例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 (3)x 2-2x+4=-1分析:很清楚,x 2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.解:(2)由已知,得:(x+3)2=2直接开平方,得:x+3=即,所以,方程的两根x 1x 2例2.市政府计划2年内将人均住房面积由现在的10m 2提高到14.4m ,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x.•一年后人均住房面积就应该是10+•10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.•我们把这种思想称为“降次转化思想”.三、巩固练习教材练习.四、应用拓展例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?分析:设该公司二、三月份营业额平均增长率为x,•那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长的,应是(1+x)2.解:设该公司二、三月份营业额平均增长率为x.那么1+(1+x)+(1+x)2=3.31把(1+x)当成一个数,配方得:(1+x+12)2=2.56,即(x+32)2=2.56x+32=±1.6,即x+32=1.6,x+32=-1.6方程的根为x1=10%,x2=-3.1因为增长率为正数,所以该公司二、三月份营业额平均增长率为10%.五、归纳小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0),那么x=转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=p<0则方程无解六、布置作业1.教材复习巩固1、2.第4课时 22.2.1 配方法(1)教学内容间接即通过变形运用开平方法降次解方程.教学目标理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,•引入不能直接化成上面两种形式的解题步骤.重难点关键1.重点:讲清“直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.2.•难点与关键:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.教学过程一、复习引入(学生活动)请同学们解下列方程(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4) 4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=mx+n=p≥0).如:4x2+16x+16=(2x+4)2 ,你能把4x+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢? (2)能否直接用上面三个方程的解法呢?问题2:要使一块矩形场地的长比宽多6m ,并且面积为16m 2,场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x 的完全平方式而后二个不具有. (2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x 2+6x-16=0移项→x 2+6x=16两边加(6/2)2使左边配成x 2+2bx+b 2的形式 → x 2+6x+32=16+9左边写成平方形式 → (x+3)2=•25 •降次→x+3=±5 即 x+3=5或x+3=-5 解一次方程→x 1=2,x 2= -8可以验证:x 1=2,x 2= -8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m ,常为8m. 像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法. 可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解. 例1.用配方法解下列关于x 的方程 (1)x 2-8x+1=0 (2)x 2-2x-12=0 分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上. 解:略三、巩固练习教材P 38 讨论改为课堂练习,并说明理由. 教材P 39 练习1 2.(1)、(2). 四、应用拓展例3.如图,在Rt △ACB 中,∠C=90°,AC=8m ,CB=6m ,点P 、Q 同时由A ,B•两点出发分别沿AC 、BC 方向向点C 匀速移动,它们的速度都是1m/s ,•几秒后△PCQ•的面积为Rt △ACB 面积的一半.BC A QP分析:设x 秒后△PCQ 的面积为Rt △ABC 面积的一半,△PCQ 也是直角三角形.•根据已知列出等式. 解:设x 秒后△PCQ 的面积为Rt △ACB 面积的一半. 根据题意,得:12(8-x )(6-x )=12×12×8×6 整理,得:x 2-14x+24=0(x-7)2=25即x 1=12,x 2=2x 1=12,x 2=2都是原方程的根,但x 1=12不合题意,舍去. 所以2秒后△PCQ 的面积为Rt △ACB 面积的一半. 五、归纳小结 本节课应掌握:左边不含有x 的完全平方形式的一元二次方程化为左边是含有x 的完全平方形式,右边是非负数,可以直接降次解方程的方程. 六、布置作业1.教材 复习巩固2.3(1)(2)第5课时 21.2.1 配方法(2)教学内容给出配方法的概念,然后运用配方法解一元二次方程. 教学目标了解配方法的概念,掌握运用配方法解一元二次方程的步骤.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重难点关键1.重点:讲清配方法的解题步骤.2.难点与关键:把常数项移到方程右边后,•两边加上的常数是一次项系数一半的平方.教具、学具准备小黑板教学过程一、复习引入(学生活动)解下列方程:(1)x2-4x+7=0 (2)2x2-8x+1=0老师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式,•不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:略. (2)与(1)有何关联?二、探索新知讨论:配方法届一元二次方程的一般步骤:(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.例1.解下列方程(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方.解:略三、巩固练习教材P 练习 2.(3)、(4)、(5)、(6).四、归纳小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性(如例3)在今后学习二次函数,到高中学习二次曲线时,还将经常用到。
人教版九年级上数学教案(6篇)人教版九年级上数学教案(6篇)好的数学教学教案很有意义的。
教案的作用有很多,作为新的老师教案的重要性是不容小觑的,随着教案的完成,对于教材和知识点的把握更有力度,更有利于将来的讲课。
下面小编给大家带来关于人教版九年级上数学教案,希望会对大家的工作与学习有所帮助。
人教版九年级上数学教案【篇1】在初中的数学教学过程中,函数教学是比较难的章节,我们该如何设计我们的教学过程呢?下面我来谈谈我的一些很浅的看法:首先函数是刻画和研究现实世界变化规律的重要模型,也是初中数学里代数领域的重要内容,它在初中数学中具有较强的综合性。
在教学中,学生常常觉得函数抽象深奥,高不可攀,老师也觉得函数难讲,讲了学生也理解不了,理解了也不会解题。
事实果真如此难教又难学吗?下面我谈谈在教学设计方面一些方法和实践。
一、注重类比教学不同的事物往往具有一些相同或相似的属性,人们正是利用相似事物具有的这种属性,通过对一事物的认识来认识与它相似的另一事物,这种认识事物的思维方法就是类比法,利用类比的思想进行教学设计实施教学,可称为类比教学。
在函数教学中我们期望的是通过对前面知识的学习方法的传授,达到对后续知识的学习产生影响,使学生达到举一反三,触类旁通的目的,让学生顺利地由学会到会学,真正实现教是为了不教的目的。
有经验的老师都会发现,初中学习的正比例函数、一次函数、反比例函数、二次函数在概念的得来、图象性质的研究、及基本解题方法上都有着本质上的相似。
因此采用类比的教学方法不但省时、省力,还有助于学生的理解和应用。
是一种既经济又实效的教学方法。
下面我就举例说明如何采用类比的方法实现函数的教学。
首先是正比例函数,它是一次函数特例,也是初中数学中的一种简单最基本的函数。
但是,我们有些教师却因为正比例函数过于简单,而轻视。
匆匆给出概念,然后应用。
等到讲到一次函数、反比例函数、二次函数又感到力不从心,学生接受起来概念模糊,性质混乱,解题方法不明确。
教学过程设计教学过程设计教学过程设计教学过程设计教学过程设计教学过程设计教学过程设计教学过程设计教学时间课题26.1二次函数(2)课型新授课教学目标知识和能力使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念。
过程和方法使学生经历、探索二次函数y=ax2图象性质的过程情感态度价值观培养学生观察、思考、归纳的良好思维习惯教学重点使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象是教学的重点。
教学难点用描点法画出二次函数y=ax2的图象以及探索二次函数性质是教学的难点。
教学准备教师多媒体课件学生“课堂教学程序设计设计意图一、提出问题1,同学们可以回想一下,一次函数的性质是如何研究的?(先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质)2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,应先研究什么?(可以用研究一次函数性质的方法来研究二次函数的性质,应先研究二次函数的图象)3.一次函数的图象是什么?二次函数的图象是什么?二、范例例1、画二次函数y=x2的图象。
解:(1)列表:在x的取值范围内列出函数对应值表:x …-3 -2 -1 0 1 2 3 …y …9 4 1 0 1 4 9 …(2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点(3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示。
提问:观察这个函数的图象,它有什么特点?让学生观察,思考、讨论、交流,归结为:它有一条对称轴,且对称轴和图象有一点交点。
抛物线概念:像这样的曲线通常叫做抛物线。
顶点概念:抛物线与它的对称轴的交点叫做抛物线的顶点.三、做一做1.在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别?2.在同一直角坐标系中,画出函数y=2x2与y=-2x2的图象,观察并比较这两个函数的图象,你能发现什么?3.将所画的四个函数的图象作比较,你又能发现什么?在学生画函数图象的同时,教师要指导中下水平的学生,讲评时,要引导学生讨论选几个点比较合适以及如何选点。
人教版九年级数学上册教案(全册)第二十一章二次根式教材内容.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式..本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理与其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标.知识与技能()理解二次根式的概念.()理解(≥).;()掌握>),(≥,>).()先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.()用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.()利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.()通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的..情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点.是一个非负数;(=(≥);•与其运用..二次根式乘除法的规定与其运用..最简二次根式的概念..二次根式的加减运算.教学难点(≥)的理解与应用..二次根式的乘法、除法的条件限制..利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点..培养学生利用二次根式的规定和重要结论进行准确计算的能力,•培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需课时,具体分配如下:.二次根式课时.二次根式的乘法课时.二次根式的加减课时教学活动、习题课、小结课时.二次根式第一课时教学内容二次根式的概念与其运用教学目标(≥)的意义解答具体题目.教学重难点关键.重点:形如.难点与关键:利用“”解决具体问题.一、复习引入(学生活动)请同学们独立完成下列三个问题:,那么它的图象在第一象限横、•纵坐标相问题:已知反比例函数3x等的点的坐标是.问题:如图,在直角三角形中,,,∠°,那么边的长是.AC问题:甲射击次,各次击中的环数如下:、、、、、,那么甲这次射击的方差是,那么.老师点评:,问题:由方差的概念得.二、探索新知,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们•的式子叫做二次根式,“”称为二次根号..有算术平方根吗?.的算术平方根是多少?.当<老师点评:(略)、例.下列式子,哪些是二次根式,x(>)、•≥).分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或. (>)、;不是二次根式的有:、1x 、.例.在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于,所以≥,才能有意义.解:由≥,得:≥13当≥13在实数范围内有意义.三、巩固练习教材练习、、.四、应用拓展例.11x +在实数范围内有意义? 分析:11x +在实数范围内有意义,中的≥和11x +中的≠. 解:依题意,得由①得:≥32由②得:≠当≥32且≠时,11x +在实数范围内有意义.例()xy的值.(答案)()若,求的值.(答案:25)五、归纳小结(学生活动,老师点评)本节课要掌握:”称为二次根号..要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业.教材复习巩固、综合应用..选用课时作业设计..课后作业:《同步训练》第一课时作业设计一、选择题.下列式子中,是二次根式的是()..下列式子中,不是二次根式的是().1x.已知一个正方形的面积是,那么它的边长是()..15.以上皆不对二、填空题.形如的式子叫做二次根式..面积为的正方形的边长为..负数平方根.三、综合提高题.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?.当是多少时,在实数范围内有意义?.)个.....无数.第一课时作业设计答案:一、...(≥).没有二、.依题意得:,∴当>3且≠时,+在实数范围内没有意义.2.13..,二次根式()第二课时教学内容.(≥).(≥)是一个非负数和()(≥),并利用它们进行计算和化简.)(≥);最后运用结论严谨解题.教学重难点关键(≥)与其运用..重点:(≥)是一个非负数;•(≥).教学过程一、复习引入(学生活动)口答.什么叫二次根式?<老师点评(略).二、探究新知议一议:(学生分组讨论,提问解答)老师点评:根据学生讨论和上面的练习,我们可以得出做一做:根据算术平方根的意义填空:);;(;;;(;). 老师点评:是的算术平方根,根据算术平方根的意义,是一个平方等于的非负数,因此有().同理可得:),,),13,72,),所以例 计算.. . .) 分析:我们可以直接利用((≥)的结论解题.解:32, ··,56,). 三、巩固练习计算下列各式的值:) )22-四、应用拓展例 计算.(≥) . ..分析:()因为≥,所以>;()≥;()2a ()≥;()()··()≥.(≥)的重要结论解题.解:()因为≥,所以>()∵2a()又∵()≥,∴2a≥()∵()··()又∵()≥∴≥,∴(例在实数范围内分解下列因式:()()()分析:(略)五、归纳小结本节课应掌握:.(≥);)(≥).六、布置作业.教材复习巩固.()、()..选用课时作业设计..课后作业:《同步训练》第二课时作业设计一、选择题.下列各式中次根式的个数是( ).. . . ..数没有算术平方根,则的取值范围是( )..> .≥ .< .二、填空题.).三、综合提高题.计算()() ()(12)() ().把下列非负数写成一个数的平方的形式:() () ()16 ()(≥) .已知,求的值..在实数范围内分解下列因式:()()第二课时作业设计答案:一、..二、..非负数三、.()()()(12)14×32()23().()()()()16()(≥)..()))()()()()()()略以上已经编排二次根式()第三课时教学内容教学目标,并利用这个结论解决具体问题.教学重难点关键.重点:..难点:探究结论.教学过程一、复习引入老师口述并板收上两节课的重要内容;.=(≥).那么,问题.二、探究新知(学生活动)填空:;;.(老师点评):根据算术平方根的意义,我们可以得到:110;23;37.例 化简分析:因为(),()(),(),()()•去化简.解:三、巩固练习教材练习.四、应用拓展例 <•并根据这一性质回答下列问题.,则可以是什么数?分析,∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“()2”中的数是正数,因为,那么≥.()根据结论求条件;()根据第二个填空的分析,逆向思想;()根据()、<.解:()因为,即使>所以不存在;当<要使,即使>,<综上,<例当>分析:(略)五、归纳小结本节课应掌握:<应用拓展.六、布置作业.教材习题.、、、..选作课时作业设计..课后作业:《同步训练》第三课时作业设计一、选择题.的值是()...23.23.以上都不对确的是()..二、填空题.三、综合提高题.先化简再求值:当时,求的值,甲乙两人的解答如下:甲的解答为:原式;()2a.两种解答中,的解答是错误的,错误的原因是.,求的值.(提示:先由≥,判断•的值是正数还是负数,去掉绝对值).答案:一、..二、...三、.甲甲没有先判定是正数还是负数.由已知得••≥,••≥所以,所以...二次根式的乘除第一课时教学内容(≥,≥)与其运用.(≥,≥),并利用它们进行计算和化简行计算;•(≥,≥)并运用它进行解题和化简.教学重难点关键重点:(≥,≥)(≥,≥)与它们的运用..难点:发现规律,导出教学过程一、复习引入(学生活动)请同学们完成下列各题..填空×;参考上面的结果,用“>、<或=”填空..利用计算器计算填空×,,×.二、探索新知(学生活动)让、个同学上台总结规律.老师点评:()被开方数都是正数;()两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.一般地,对二次根式的乘法规定为反过来:例.计算()(≥,≥)计算即可.分析:()()=()例化简()()(≥,≥)直接化简即可.解:三、巩固练习()计算(学生练习,老师点评)①·() 化简: ; ;教材练习全部四、应用拓展例.判断下列各式是否正确,不正确的请予以改正:解:()不正确.()不正确.五、归纳小结(≥,≥)(≥,本节课应掌握:≥)与其运用.六、布置作业.课本,,,.()()..选用课时作业设计..课后作业:《同步训练》第一课时作业设计一、选择题•那么此直角三角形斜边长是().. c . c .9cm .27cm.化简的结果是().11x-=).≥.≥.≤≤.≥或≤.下列各等式成立的是().二、填空题.自由落体的公式为1(为重力加速度,它的值为10m),若物体下2落的高度为720m,则下落的时间是.三、综合提高题.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?.探究过程:观察下列各式与其验证过程.==同理可得:,……通过上述探究你能猜测出:(>),并验证你的结论.答案:一、...二、三、.设:底面正方形铁桶的底面边长为,则×××,××,..验证:=..二次根式的乘除第二课时教学内容>),反过来(≥,>)与利用它们进行计算和化简.教学目标>(≥,>)与利用它们进行运算.教学重难点关键>),(≥,>)与利用它们进行.重点:理解计算和化简..难点关键:发现规律,归纳出二次根式的除法规定.教学过程一、复习引入(学生活动)请同学们完成下列各题:.写出二次根式的乘法规定与逆向等式..填空.利用计算器计算填空:,,,.。
新人教版九年级数学上册全册教案设计第二十一章 一元二次方程21.1 一元二次方程1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax 2+bx +c =0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.重点通过类比一元一次方程,了解一元二次方程的概念及一般式ax 2+bx +c =0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.难点一元二次方程及其二次项系数、一次项系数和常数项的识别.活动1 复习旧知1.什么是方程?你能举一个方程的例子吗?2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式. (1)2x -1 (2)mx +n =0 (3)1x+1=0 (4)x 2=13.下列哪个实数是方程2x -1=3的解?并给出方程的解的概念.A .0B .1C .2D .3活动2 探究新知 根据题意列方程. 1.教材第2页 问题1. 提出问题:(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程.2.教材第2页问题2.提出问题:(1)本题中有哪些量?由这些量可以得到什么?(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?(3)如果有x个队参赛,一共比赛多少场呢?3.一个数比另一个数大3,且两个数之积为0,求这两个数.提出问题:本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?活动3归纳概念提出问题:(1)上述方程与一元一次方程有什么相同点和不同点?(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?(3)归纳一元二次方程的概念.1.一元二次方程:只含有________个未知数,并且未知数的最高次数是________,这样的________方程,叫做一元二次方程.2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.提出问题:(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?(2)为什么要限制a≠0,b,c可以为0吗?(3)2x2-x+1=0的一次项系数是1吗?为什么?3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).活动4例题与练习例1 在下列方程中,属于一元二次方程的是________.(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;(4)2x2-2x(x+7)=0.总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的最高次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.例2 教材第3页例题.例3 以-2为根的一元二次方程是( )A.x2+2x-1=0 B.x2-x-2=0C.x2+x+2=0 D.x2+x-2=0总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.练习:1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.(1)4x2=81;(2)(3x-2)(x+1)=8x-3.3.教材第4页练习第2题.4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.答案:1.a≠1;2.略;3.略;4.k=4.活动5课堂小结与作业布置课堂小结我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?作业布置教材第4页习题21.1第1~7题.21.2解一元二次方程21.2.1配方法(3课时)第1课时直接开平方法理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题. 提出问题,列出缺一次项的一元二次方程ax 2+c =0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex +f)2+c =0型的一元二次方程.重点运用开平方法解形如(x +m)2=n(n≥0)的方程,领会降次——转化的数学思想. 难点通过根据平方根的意义解形如x 2=n 的方程,将知识迁移到根据平方根的意义解形如(x +m)2=n(n≥0)的方程.一、复习引入学生活动:请同学们完成下列各题. 问题1:填空(1)x 2-8x +________=(x -________)2;(2)9x 2+12x +________=(3x +________)2;(3)x 2+px +________=(x +________)2.解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p 2)2 p 2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x 2=9,根据平方根的意义,直接开平方得x =±3,如果x 换元为2t +1,即(2t +1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t +1变为上面的x ,那么2t +1=±3 即2t +1=3,2t +1=-3 方程的两根为t 1=1,t 2=-2例1 解方程:(1)x 2+4x +4=1 (2)x 2+6x +9=2分析:(1)x 2+4x +4是一个完全平方公式,那么原方程就转化为(x +2)2=1. (2)由已知,得:(x +3)2=2 直接开平方,得:x +3=± 2即x+3=2,x+3=- 2所以,方程的两根x1=-3+2,x2=-3- 2解:略.例2 市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材第6页练习.四、课堂小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.五、作业布置教材第16页复习巩固1.第2课时配方法的基本形式理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.重点讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.难点将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.一、复习引入(学生活动)请同学们解下列方程:(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4)4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p(p≥0).如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面前三个方程的解法呢?问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5解一次方程→x1=2,x2=-8可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m .像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法. 可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解. 例1 用配方法解下列关于x 的方程: (1)x 2-8x +1=0 (2)x 2-2x -12=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略. 三、巩固练习教材第9页 练习1,2.(1)(2). 四、课堂小结 本节课应掌握:左边不含有x 的完全平方形式的一元二次方程化为左边是含有x 的完全平方形式,右边是非负数,可以直接降次解方程的方程.五、作业布置教材第17页 复习巩固2,3.(1)(2).第3课时 配方法的灵活运用了解配方法的概念,掌握运用配方法解一元二次方程的步骤.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重点讲清配方法的解题步骤. 难点对于用配方法解二次项系数为1的一元二次方程,通常把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方;对于二次项系数不为1的一元二次方程,要先化二次项系数为1,再用配方法求解.一、复习引入(学生活动)解下列方程:(1)x2-4x+7=0 (2)2x2-8x+1=0老师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式的一元二次方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:略.(2)与(1)有何关联?二、探索新知讨论:配方法解一元二次方程的一般步骤:(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程无实根.例1 解下列方程:(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式.解:略.三、巩固练习教材第9页练习2.(3)(4)(5)(6).四、课堂小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中学习二次曲线时,还将经常用到.五、作业布置教材第17页复习巩固3.(3)(4).补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.(2)求证:无论x,y取任何实数,多项式x2+y2-2x-4y+16的值总是正数.21.2.2公式法理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.重点求根公式的推导和公式法的应用.难点一元二次方程求根公式的推导.一、复习引入1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程(1)x2=4 (2)(x-2)2=7提问1 这种解法的(理论)依据是什么?提问 2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)(学生活动)用配方法解方程2x2+3=7x(老师点评)略总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程无实根.二、探索新知 用配方法解方程:(1)ax 2-7x +3=0 (2)ax 2+bx +3=0如果这个一元二次方程是一般形式ax 2+bx +c =0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx +c =0(a≠0),试推导它的两个根x 1=-b +b 2-4ac2a,x 2=-b -b 2-4ac2a(这个方程一定有解吗?什么情况下有解?)分析:因为前面具体数字已做得很多,我们现在不妨把a ,b ,c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax 2+bx =-c 二次项系数化为1,得x 2+b a x =-c a配方,得:x 2+b a x +(b 2a )2=-c a +(b 2a )2即(x +b 2a )2=b 2-4ac4a2∵4a 2>0,当b 2-4ac≥0时,b 2-4ac4a2≥0 ∴(x +b 2a )2=(b 2-4ac 2a)2直接开平方,得:x +b 2a =±b 2-4ac2a即x =-b ±b 2-4ac2a∴x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a由上可知,一元二次方程ax 2+bx +c =0(a≠0)的根由方程的系数a ,b ,c 而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac≥0时,将a ,b ,c 代入式子x =-b ±b 2-4ac2a就得到方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根.例1 用公式法解下列方程:(1)2x2-x-1=0 (2)x2+1.5=-3x(3)x2-2x+12=0 (4)4x2-3x+2=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.补:(5)(x-2)(3x-5)=0三、巩固练习教材第12页练习1.(1)(3)(5)或(2)(4)(6).四、课堂小结本节课应掌握:(1)求根公式的概念及其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a,b,c,注意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.(4)初步了解一元二次方程根的情况.五、作业布置教材第17页习题4,5.21.2.3因式分解法掌握用因式分解法解一元二次方程.通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.重点用因式分解法解一元二次方程.难点让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.一、复习引入(学生活动)解下列方程:(1)2x 2+x =0(用配方法) (2)3x 2+6x =0(用公式法)老师点评:(1)配方法将方程两边同除以2后,x 前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.二、探索新知(学生活动)请同学们口答下面各题.(老师提问)(1)上面两个方程中有没有常数项? (2)等式左边的各项有没有共同因式?(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解. 因此,上面两个方程都可以写成: (1)x(2x +1)=0 (2)3x(x +2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x =0或2x +1=0,所以x 1=0,x 2=-12.(2)3x =0或x +2=0,所以x 1=0,x 2=-2.(以上解法是如何实现降次的?) 因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.例1 解方程:(1)10x -4.9x 2=0 (2)x(x -2)+x -2=0 (3)5x 2-2x -14=x 2-2x +34 (4)(x -1)2=(3-2x)2思考:使用因式分解法解一元二次方程的条件是什么? 解:略 (方程一边为0,另一边可分解为两个一次因式乘积.) 练习:下面一元二次方程解法中,正确的是( )A .(x -3)(x -5)=10×2,∴x -3=10,x -5=2,∴x 1=13,x 2=7B .(2-5x)+(5x -2)2=0,∴(5x -2)(5x -3)=0,∴x 1=25,x 2=35C .(x +2)2+4x =0,∴x 1=2,x 2=-2D .x 2=x ,两边同除以x ,得x =1三、巩固练习教材第14页 练习1,2. 四、课堂小结 本节课要掌握:(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用. (2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.五、作业布置教材第17页 习题6,8,10,11.21.2.4 一元二次方程的根与系数的关系1.掌握一元二次方程的根与系数的关系并会初步应用. 2.培养学生分析、观察、归纳的能力和推理论证的能力. 3.渗透由特殊到一般,再由一般到特殊的认识事物的规律. 4.培养学生去发现规律的积极性及勇于探索的精神.重点根与系数的关系及其推导 难点正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系.一、复习引入1.已知方程x 2-ax -3a =0的一个根是6,则求a 及另一个根的值.2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3.由求根公式可知,一元二次方程ax 2+bx +c =0(a≠0)的两根为x 1=-b +b 2-4ac2a,x 2=-b -b 2-4ac 2a .观察两式右边,分母相同,分子是-b +b 2-4ac 与-b -b 2-4ac.两根之间通过什么计算才能得到更简洁的关系?二、探索新知解下列方程,并填写表格:观察上面的表格,你能得到什么结论?(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q≥0)的两根x 1,x 2与系数p ,q 之间有什么关系?(2)关于x 的方程ax 2+bx +c =0(a≠0)的两根x 1,x 2与系数a ,b ,c 之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:小结:根与系数关系:(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q≥0)的两根x 1,x 2与系数p ,q 的关系是:x 1+x 2=-p ,x 1·x 2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)(2)形如ax 2+bx +c =0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论. 即:对于方程 ax 2+bx +c =0(a≠0)∵a ≠0,∴x 2+b a x +c a =0∴x 1+x 2=-b a ,x 1·x 2=ca(可以利用求根公式给出证明)例1 不解方程,写出下列方程的两根和与两根积: (1)x 2-3x -1=0 (2)2x 2+3x -5=0 (3)13x 2-2x =0 (4)2x 2+6x = 3 (5)x 2-1=0 (6)x 2-2x +1=0例2 不解方程,检验下列方程的解是否正确? (1)x 2-22x +1=0 (x 1=2+1,x 2=2-1) (2)2x 2-3x -8=0 (x 1=7+734,x 2=5-734)例3 已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)例4 已知方程2x 2+kx -9=0的一个根是-3,求另一根及k 的值. 变式一:已知方程x 2-2kx -9=0的两根互为相反数,求k ; 变式二:已知方程2x 2-5x +k =0的两根互为倒数,求k. 三、课堂小结 1.根与系数的关系.2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零. 四、作业布置1.不解方程,写出下列方程的两根和与两根积. (1)x 2-5x -3=0 (2)9x +2=x 2(3)6x 2-3x +2=0 (4)3x 2+x +1=02.已知方程x 2-3x +m =0的一个根为1,求另一根及m 的值.3.已知方程x 2+bx +6=0的一个根为-2,求另一根及b 的值.21.3 实际问题与一元二次方程(2课时) 第1课时 解决代数问题1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.2.通过学生自主探究,会根据传播问题、百分率问题中的数量关系列一元二次方程并求解,熟悉解题的具体步骤.3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点利用一元二次方程解决传播问题、百分率问题.难点如果理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.一、引入新课1.列方程解应用题的基本步骤有哪些?应注意什么?2.科学家在细胞研究过程中发现:(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?(2)一个细胞一次可分裂成x个,经过3次分裂后共有多少个细胞?(3)如是一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?二、教学活动活动1:自学教材第19页探究1,思考教师所提问题.有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.(2)本题中有哪些数量关系?(3)如何利用已知的数量关系选取未知数并列出方程?解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有(x+1)人患了流感,第二轮有x(1+x)人被传染上了流感.于是可列方程:1+x+x(1+x)=121解方程得x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?活动2:自学教材第19页~第20页探究2,思考老师所提问题.两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(1)如何理解年平均下降额与年平均下降率?它们相等吗?(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);二月(或二年)后产量为a(1±x)2;n月(或n年)后产量为a(1±x)n;如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.(4)对甲种药品而言根据等量关系列方程为:________________.三、课堂小结与作业布置课堂小结1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际.2.传播问题解决的关键是传播源的确定和等量关系的建立.3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.作业布置教材第21-22页习题21.3第2-7题.第2课时解决几何问题1.通过探究,学会分析几何问题中蕴含的数量关系,列出一元二次方程解决几何问题.2.通过探究,使学生认识在几何问题中可以将图形进行适当变换,使列方程更容易.3.通过实际问题的解答,再次让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点通过实际图形问题,培养学生运用一元二次方程分析和解决几何问题的能力.难点在探究几何问题的过程中,找出数量关系,正确地建立一元二次方程.活动1创设情境1.长方形的周长________,面积________,长方体的体积公式________.2.如图所示:(1)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为2 cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.(2)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为x cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.活动2自学教材第20页~第21页探究3,思考老师所提问题要设计一本书的封面,封面长27 cm,宽21 cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1 cm).(1)要设计书本封面的长与宽的比是________,则正中央矩形的长与宽的比是________.(2)为什么说上下边衬宽与左右边衬宽之比为9∶7?试与同伴交流一下.(3)若设上、下边衬的宽均为9x cm,左、右边衬的宽均为7x cm,则中央矩形的长为________cm,宽为________cm,面积为________cm2.(4)根据等量关系:________,可列方程为:________.(5)你能写出解题过程吗?(注意对结果是否合理进行检验.)(6)思考如果设正中央矩形的长与宽分别为9x cm和7x cm,你又怎样去求上下、左右边衬的宽?活动3变式练习如图所示,在一个长为50米,宽为30米的矩形空地上,建造一个花园,要求花园的面积占整块面积的75%,等宽且互相垂直的两条路的面积占25%,求路的宽度.答案:路的宽度为5米.活动4课堂小结与作业布置课堂小结1.利用已学的特殊图形的面积(或体积)公式建立一元二次方程的数学模型,并运用它解决实际问题的关键是弄清题目中的数量关系.2.根据面积与面积(或体积)之间的等量关系建立一元二次方程,并能正确解方程,最后对所得结果是否合理要进行检验.作业布置教材第22页习题21.3第8,10题.第二十一章一元二次方程21.1一元二次方程1. 了解一元二次方程的概念,应用一元二次方程概念解决一些简单问题.2.掌握一元二次方程的一般形式ax2+bx+c=0(a≠0)及有关概念.。
九年级数学上册教学计划和全册教案二十一章一元二次方程第1课时21.1 一元二次方程教学容一元二次方程概念及一元二次方程一般式及有关概念.教学目标了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;•应用一元二次方程概念解决一些简单题目.1.通过设置问题,建立数学模型,•模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点关键1.•重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.教学过程一、复习引入学生活动:列方程.问题(1)古算趣题:“执竿进屋”笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。
有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。
借问竿长多少数,谁人算出我佩服。
如果假设门的高为x•尺,•那么,•这个门的宽为_______•尺,长为_______•尺,•根据题意,•得________.整理、化简,得:__________.二、探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?还是与多项式一样只有式子?老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)•都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.解:略注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.解:略三、巩固练习教材练习1、2补充练习:判断下列方程是否为一元二次方程?(1)3x+2=5y-3 (2) x2=4 (3) 3x2-5x=0 (4) x2-4=(x+2) 2(5) ax2+bx+c=0四、应用拓展例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17•≠0即可.证明:m2-8m+17=(m-4)2+1∵(m-4)2≥0∴(m-4)2+1>0,即(m-4)2+1≠0∴不论m取何值,该方程都是一元二次方程.•练习:1.方程(2a—4)x2—2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?2.当m为何值时,方程(m+1)x/4m/-4+27mx+5=0是关于的一元二次方程五、归纳小结(学生总结,老师点评)本节课要掌握:(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)•和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.六、布置作业第2课时21.1 一元二次方程教学容1.一元二次方程根的概念;2.•根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目.教学目标了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题.提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题.重难点关键1.重点:判定一个数是否是方程的根;2.•难点关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.教学过程一、复习引入学生活动:请同学独立完成下列问题.问题1.前面有关“执竿进屋”的问题中,我们列得方程x2-8x+20=0列表:问题2列表:老师点评(略)二、探索新知提问:(1)问题1中一元二次方程的解是多少?问题2•中一元二次方程的解是多少?(2)如果抛开实际问题,问题2中还有其它解吗?老师点评:(1)问题1中x=2与x=10是x2-8x+20=0的解,问题2中,x=4是x2+7x-44=0的解.(2)如果抛开实际问题,问题2中还有x=-11的解.一元二次方程的解也叫做一元二次方程的根.回过头来看:x 2-8x+20=0有两个根,一个是2,另一个是10,都满足题意;但是,问题2中的x=-11的根不满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.例1.下面哪些数是方程2x 2+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4.分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x 2+10x+12=0的两根.例2.若x=1是关于x 的一元二次方程a x 2+bx+c=0(a ≠0)的一个根,求代数式2007(a+b+c)的值练习:关于x 的一元二次方程(a-1) x 2+x+a 2-1=0的一个根为0,则求a 的值点拨:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这种解决问题的思维方法经常用到,同学们要深刻理解.例3.你能用以前所学的知识求出下列方程的根吗?(1)x 2-64=0 (2)3x 2-6=0 (3)x 2-3x=0分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义. 解:略三、巩固练习教材 思考题 练习1、2.四、归纳小结(学生归纳,老师点评) 本节课应掌握:(1)一元二次方程根的概念;(2)要会判断一个数是否是一元二次方程的根;(3)要会用一些方法求一元二次方程的根.(“夹逼”方法; 平方根的意义) 六、布置作业1.教材 复习巩固3、4 综合运用5、6、7 拓广探索8、9. 2.选用课时作业设计.第3课时 21.2.1配方法教学容运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程. 教学目标理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax 2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a (ex+f )2+c=0型的一元二次方程. 重难点关键1.重点:运用开平方法解形如(x+m )2=n (n ≥0)的方程;领会降次──转化的数学思想.2.难点与关键:通过根据平方根的意义解形如x 2=n ,知识迁移到根据平方根的意义解形如(x+m )2=n (n ≥0)的方程. 教学过程一、复习引入学生活动:请同学们完成下列各题 问题1.填空(1)x 2-8x+______=(x-______)2;(2)9x 2+12x+_____=(3x+_____)2;(3)x 2+px+_____=(x+____)2. 问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(2p )22p. 问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程于一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3即2t+1=3,2t+1=-3方程的两根为t1=1,t2=--2例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 (3)x 2-2x+4=-1分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.解:(2)由已知,得:(x+3)2=2直接开平方,得:x+3=即所以,方程的两根x1x2例2.市政府计划2年将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x.•一年后人均住房面积就应该是10+•10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.•我们把这种思想称为“降次转化思想”.三、巩固练习教材练习.四、应用拓展例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?分析:设该公司二、三月份营业额平均增长率为x,•那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长的,应是(1+x)2.解:设该公司二、三月份营业额平均增长率为x.那么1+(1+x)+(1+x)2=3.31把(1+x)当成一个数,配方得:(1+x+12)2=2.56,即(x+32)2=2.56x+32=±1.6,即x+32=1.6,x+32=-1.6方程的根为x1=10%,x2=-3.1因为增长率为正数,所以该公司二、三月份营业额平均增长率为10%.五、归纳小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0),那么x=形如(mx+n)2=p(p≥0),那么mx+n=p<0则方程无解六、布置作业1.教材复习巩固1、2.第4课时22.2.1 配方法(1)教学容间接即通过变形运用开平方法降次解方程.教学目标理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的解题步骤.重难点关键1.重点:讲清“直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.2.•难点与关键:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.教学过程一、复习引入(学生活动)请同学们解下列方程(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4) 4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=mx+n=p≥0).如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面三个方程的解法呢?问题2:要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9左边写成平方形式→(x+3)2=•25 •降次→x+3=±5 即x+3=5或x+3=-5解一次方程→x1=2,x2=-8可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m,常为8m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1.用配方法解下列关于x的方程(1)x2-8x+1=0 (2)x2-2x-12=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略三、巩固练习教材P38讨论改为课堂练习,并说明理由.教材P39练习1 2.(1)、(2).四、应用拓展例3.如图,在Rt△ACB中,∠C=90°,AC=8m,CB=6m,点P、Q同时由A,B•两点出发分别沿AC、BC 方向向点C匀速移动,它们的速度都是1m/s,•几秒后△PCQ•的面积为Rt△ACB面积的一半.BC A QP分析:设x 秒后△PCQ 的面积为Rt △ABC 面积的一半,△PCQ 也是直角三角形.•根据已知列出等式. 解:设x 秒后△PCQ 的面积为Rt △ACB 面积的一半. 根据题意,得:12(8-x )(6-x )=12×12×8×6 整理,得:x 2-14x+24=0(x-7)2=25即x 1=12,x 2=2x 1=12,x 2=2都是原方程的根,但x 1=12不合题意,舍去. 所以2秒后△PCQ 的面积为Rt △ACB 面积的一半. 五、归纳小结 本节课应掌握:左边不含有x 的完全平方形式的一元二次方程化为左边是含有x 的完全平方形式,右边是非负数,可以直接降次解方程的方程. 六、布置作业1.教材 复习巩固2.3(1)(2)第5课时 21.2.1 配方法(2)教学容给出配方法的概念,然后运用配方法解一元二次方程. 教学目标了解配方法的概念,掌握运用配方法解一元二次方程的步骤.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目. 重难点关键1.重点:讲清配方法的解题步骤.2.难点与关键:把常数项移到方程右边后,•两边加上的常数是一次项系数一半的平方. 教具、学具准备 小黑板 教学过程一、复习引入(学生活动)解下列方程:(1)x 2-4x+7=0 (2)2x 2-8x+1=0老师点评:我们上一节课,已经学习了如何解左边不含有x 的完全平方形式,•不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题. 解:略. (2)与(1)有何关联? 二、探索新知讨论:配方法届一元二次方程的一般步骤: (1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边; (4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q 的形式,如果q ≥0,方程的根是x=-p ±√q ;如果q <0,方程无实根. 例1.解下列方程(1)2x 2+1=3x (2)3x 2-6x+4=0 (3)(1+x )2+2(1+x )-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x 的完全平方.解:略三、巩固练习教材P 练习2.(3)、(4)、(5)、(6).四、归纳小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性(如例3)在今后学习二次函数,到高中学习二次曲线时,还将经常用到。
义务教育课程标准人教版数学教案九年级上册2016—2017学年度第一学期教师:张小林新沟初中2012—2013学年度第一学期九年级数学教学进度表目录第二十一章二次根式21.1二次根式 (1)21.2二次根式的乘除(第1课时) (3)21.2二次根式的乘除(第2课时) (5)21.2二次根式的加减(第1课时) (7)21.2二次根式的加减(第2课时) (9)小结 (11)第二十二章一元二次方程22.1 一元二次方程 (13)22.2.1配方法(第1课时) (15)22.2.1配方法(第2课时) (17)22.2.1公式法 (19)22.2.3因式分解法 (21)22.2.4 一元二次方程的根与系数关系 (23)22.3 实际问题与一元二次方程(第1课时) (25)22.3 实际问题与一元二次方程(第2课时) (27)小结 (29)第二十三章旋转23.1 图形的旋转(1) (33)23.1 图形的旋转(2) (36)23.1 图形的旋转(3) (39)23.2.1中心对称(1) (42)23.2.1中心对称(2) (45)23.2.1中心对称(3) (48)22.2 中心对称图形,关于原点对称的点的坐标 (51)23.3 课题学习图案设计 (55)小结 (57)第二十四章圆24.1.1 圆 (59)24.1.2 垂直于弦的直径 (62)24.1.3 弧、弦、圆心角 (66)24.1.4 圆周角 (70)24.2.2 直线和圆的位置关系 (77)24.2.3 圆和圆的位置关系 (80)24.3 正多边形和圆 (85)24.4圆锥的侧面积和全面积 (90)小结 (93)第二十五章概率25.1.1随机事件(第一课时) (96)25.1.1 随机事件(第二课时) (98)25.1.2 概率的意义 (100)25.2 用列举法求概率(第一课时) (104)25.2 用列举法求概率(第二课时) (107)25.2 用列举法求概率(第三课时) (109)25.3.1利用频率估计概率 (111)25.3.2利用频率估计概率 (113)25.4课题学习键盘上字母的排列规律 (115)小结 (117)教学过程设计教学过程设计教学过程设计教学过程设计教学过程设计练习:○1课本例4,之后补充 (3)27)64148(÷- ○2课本例5,之后补充 2)5225(+ 分析说明:○1中补充(3)是不能除尽(含分数线)的类型。
新人教版初中数学九年级上册精品教案全册数学教案九年级上册教学过程设计教学过程设计教学过程设计教学过程设计教学过程设计练习:○1课本例4,之后补充 (3)27)64148(÷- ○2课本例5,之后补充 2)5225(+ 分析说明:○1中补充(3)是不能除尽(含分数线)的类型。
○2中补充完全平方公式应用. 归纳:二次根式混合运算时,乘法公式仍然适用,仔细观察式子的特征,灵活运用完全平方公式、平方差公式来简化运算. (二)二次根式混合运算的应用1.若x=12-,则x 2+x+1=2.已知23,23-=+=y x ,求()1yx x y +;()22622y xy x ++的值.3.如图,四边形ABCD 中,AB ⊥BC,AD⊥AB,AB=1,BC=CD=2,求四边形ABCD 的面 积.三、课堂训练完成课本练习 .补充: 1.海伦——秦九韶公式:如果一个三角形的三边长分别是a ,b,c,设p =2c b a ++, 则三角形的面积为S=)())((c p b p a p p ---公式运用:在ABC ∆中,BC=4,AC=5,AB=6,求ABC ∆的面积。
四、小结归纳 1.进行二次根式混合运算的一般步骤.2.二次根式混合运算时,仔细观察式子的特征,灵活运用运算法则、运算律、公式来简化运算.2.二次根式混合运算的应用.五、作业设计必做: P18:4、6、7 选做: P18:8、9 1.已知236.25≈,求45544555+-的近似值. 2.如图21.3-3在平行四边形ABCD 中,得DE ⊥AB,E 点在AB 上,DE=AE=EB=a ,求平行四边形ABCD 的周长.学生板演,并说明每一步的依据,然后师生订正.引导学生先观察、分析,找学生说明解题思路,解题后养成说明理由的反思习惯.学生独立完成练习,巩固新知,师生订正指导学生交流,教师总结感受二次根式混合运算的应用熟练计算和解题纳入知识系统教 学 反 思E D C B A教学过程设计5.计算:○16)123242(÷-; ○21212731+-○3)(62)32(-⨯+; ○4)()(6262)12(2+-++ 归纳:此组题与上组题考察内容相同,但问法不同,更具技巧性. (二)综合运用1.当m 时,mm --534有意义.2.能使33-=-x x x x 成立的x 的取值范围是 . 3.若12-=a a ,则a 的取值范围是 .4.若()()的值,则m b a m b a +=-+-++,021232是 .5.当a <-3时,化简()()22312++-a a 的结果是 .6.整数x 满足下列两个条件:○1式子13-x 和x -20都有意义○2x 的值是整数,则x 的值是 . 7.以下结论正确的是 .(填序号即可) ○1 ()2a =a 对一切实数a 都成立 ○2 a a =2对一切实数a 都成立○3式子a 叫做二次根式 ○4一个数的平方根和它的绝对值都是非负数 8. 在实数范围内分解因式:2594-x 的结果是 . 9.)(2223)32(-⨯+的计算结果是 . 10.已知,32,321+=+=y x 求22xy y x +的值. 11.如图,有一艘船在点O 处测得一小岛上的电视塔A 在北偏西600 的方向上,前进20海 里到达B 处,测得A 在船的西北方向,问再向西航行多少海里,船离电视塔最近?归纳:这组题是本章知识的深化运用,有一定的难度,与实数,有理式,勾股定理等知识综合运用. (三)构建知识体系 三、小结归纳 1.复习巩固二次根式知识,及于其他相关知识的联系. 2.进一步理解本章知识,熟练解决相关问题. 3.补充课本未明确给出的概念及相关题目,拓展知识与能力. 4.构建知识体系,纳入知识系统. 四、作业设计必做: P22:1-8选做: P22:9-11师生总结引导学生先观察、分析,小组讨论,再找学生说明解题思路,解题后养成说明理由的反思习惯.学生解题后, 师生订正 指导学生交流,谈收获,体会,师生总结 让学生构建本章知识体系,教师展示学生的结构图,学生之间进行交流,肯定最优建构 让学生阐述本节课有哪些收获,有何体会,教师指导从考查知识,易错题目,典型题,解题技巧,思想方法等方面总结增加问题难度,综合性,使学生进一步理解知识,培养综合分析能力. 总结二次根式、绝对值、平方的共同特点是非负补充分母有理化因式和分母有理化化简方法,拓宽知识,为后续学习打好准备使学生系统感知本章知识,掌握各知识之间的内在联系纳入知识系统 教 学 反 思二次根式概念 性质 运算乘除运算 加减运算 混合运算教学过程设计教学过程设计教学过程设计教学过程设计教学过程设计教学过程设计教学过程设计教学过程设计第二十二章《一元二次方程》小结一、本章知识结构框图二、本章知识点概括1、相关概念(1)一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
第二十一章一元二次方程22.1 一元二次方程(1)学习目标:了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;•应用一元二次方程概念解决一些简单题目.1.通过设置问题,建立数学模型,•模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.难点(关键):通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.学一学(阅读教材第30至31页,并完成预习内容。
)问题1 要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为多高?分析:设雕像下部高x m,则上部高________,得方程_____________________________整理得_____________________________①问题2如图,有一块长方形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒。
如果要制作的无盖方盒的底面积为3600c㎡,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为x cm,则盒底的长为________________,宽为_____________.得方程_____________________________整理得_____________________________②问题3 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。
根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为___________设应邀请x个队参赛,每个队要与其他_________个队各赛1场,所以全部比赛共_________________场。
人教版九年级上册数学教案5篇3、遇到不理解或不懂的地方,用下划线和?标记出来。
便于交流时提出。
4、自己的建议、体会、方法可以在旁边作好批注。
教学重难点1、认识扇形统计图的特点和作用;2、能联系百分数的意义,对扇形统计图供应的信息进行简洁的分析。
教学工具课件教学过程一、欢乐自学你喜爱运动吗?调查本班同学喜爱的运动项目。
依据下面的统计图:六(1)班最喜爱的运动项目统计图1、说一说:从这幅统计图中你能猎取哪些信息?2、我知道这是一幅( )统计图,它的特点是( )。
3、我最喜爱的运动项目是( ),它占全班人数的百分比是( )。
要想清楚地知道百分比这样的信息,我们可以选用( )统计图。
4、一起来认识扇形统计图吧!自学教材第107页,留意拿笔勾画哦!.(1)计算出各运动项目占全班人数的百分比。
(2)从扇形统计图中,你又能猎取哪些信息?(3)你还能提出什么问题?二、合作探究。
讨论交流:扇形统计图是怎样来表示各个数据的?它有什么特点?1、我发觉扇形统计图中的( )代表单位“1”,表示( ),各个扇形面积表示( ),扇形的大小说明了( )。
2、扇形统计图的特点是( )。
3、生活中,你还从()见到过扇形统计图?三、学习小结我们已曾经学过的统计图有条形统计图,它的特点是();还有()统计图,它的特点是不但可以表示各部分数量的多少,而且还可以清楚地看出数量的增减变化情况。
我们今天又学习了扇形统计图,它的特点是(),四、智勇大闯关,我是小擂主1、第一关:小练兵。
完成练习二十五的第1、2题。
2、第二关完成练习二十五的第4题。
五、学后反思1、我的收获:2、自我评价:我对我的课堂表现( ),因为()。
六、作业1、完成教材P107的“做一做”.2、练习二十五的第3题课后习题1、完成教材P107的“做一做”。
2、练习二十五的第3题。
人教版九班级上册数学教案2教学目标学问与技能目标:理解生活中的百分率,把握求百分率的方法,能正确求出百分率。
人教版九年级上册数学全册教案(完整版)教学设计21.1 一元二次方程一、基本目标【知识与技能】1.理解一元二次方程及相关概念.2.掌握一元二次方程的一般形式.3.了解一元二次方程根的概念,会检验一个数是不是一元二次方程的解.【过程与方法】从实际问题中建立方程模型,体会一元二次方程的概念.【情感态度与价值观】通过从实际问题中抽象出方程模型来认识一元二次方程,培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.二、重难点目标【教学重点】1.一元二次方程的概念及其一般形式.2.判断一个数是不是一元二次方程的解.【教学难点】能准确判断一元二次方程的二次项、二次项系数、一次项、一次项系数及常数项.环节1 自学提纲,生成问题【5 min阅读】阅读教材P1~P4的内容,完成下面练习.【3 min反馈】1.解决下列问题:问题1:如图,有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样大小的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?【解析】设切去的正方形的边长为x cm ,则盒底的长为__(100-2x )_cm__,宽为__(50-2x )_cm__.列方程,得__(100-2x )(50-2x )=3600__, 化简,整理,得__x 2-75x +350=0__.①问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?【解析】全部比赛的场数为__4×7=28(场)__.设应邀请x 个队参赛,每个队要与其他__(x -1)__个队各赛一场.因为甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共__12x (x -1)__场.列方程,得__12x (x -1)=28__.化简、整理,得 __x 2-x -56=0__.②归纳总结:方程①②的共同特点是:方程的两边都是__整式__,只含有__一个__未知数,并且未知数的最高次数是__2__.2.一元二次方程的定义:等号两边都是__整式__,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程.3.一元二次方程的一般形式是__ax 2+bx +c =0(a ≠0)__.其中__ax 2__是二次项,__a __是二次项系数,__bx __是一次项,__b __是一次项系数,__c __是常数项.环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】判断下列方程,哪些是一元二次方程? (1)x 3-2x 2+5=0; (2)x 2=1;(3)5x 2-2x -14=x 2-2x +35;(4)2(x +1)2=3(x +1); (5)x 2-2x =x 2+1; (6)ax 2+bx +c =0.【互动探索】(引发学生思考)要判断一个方程是一元二次方程,那么它应该满足哪些条件?【解答】(2)(3)(4)是一元二次方程.【互动总结】(学生总结,老师点评)判断一个方程是不是一元二次方程,首先看方程等号两边是不是整式,然后移项,使方程的右边为0,再观察左边是否只有一个未知数,且未知数的最高次数是否为2.【例2】将方程2x ⎝ ⎛⎭⎪⎫12-x +2=5(x -1)化成一元二次方程的一般形式,并指出各项系数. 【互动探索】(引发学生思考)一元二次方程的一般形式是怎样的? 【解答】去括号,得x -2x 2+2=5x -5.移项,合并同类项,得一元二次方程的一般形式:2x 2+4x -7=0. 其中二次项系数是2,一次项系数是4,常数项是-7.【互动总结】(学生总结,老师点评)将一元二次方程化成一般形式时,通常要将二次项化负为正,化分为整.【例3】下面哪些数是方程2x 2+10x +12=0的解? -4,-3,-2,-1,0,1,2,3,4.【互动探索】(引发学生思考)你能类比判断一个数是一元一次方程的解的方法判断一元二次方程的解吗?【解答】将上面的这些数代入后,只有-2和-3满足等式,所以x =-2或x =-3是一元二次方程2x 2+10x +12=0的解.【互动总结】(学生总结,老师点评)要判断一个数是否是方程的解,只要把这个数代入等式,看等式两边是否相等即可.若相等,则这个数是方程的解,若不相等,则这个数不是方程的解.【活动2】 巩固练习(学生独学) 1.下列方程是一元二次方程的是( D ) A .ax 2+bx +c =0 B .3x 2-2x =3(x 2-2) C .x 3-2x -4=0D .(x -1)2+1=02.已知x =2是一元二次方程x 2-2mx +4=0的一个解,则m 的值为( A ) A .2 B .0 C .0或2D .0或-2【教师点拨】将x =2代入x 2-2mx +4=0得,4-4m +4=0.再解关于m 的一元一次方程即可得出m 的值.3.把一元二次方程(x +1)(1-x )=2x 化成二次项系数大于0的一般式是__x 2+2x -1=0__,其中二次项系数是__1__,一次项系数是__2__,常数项是 __-1__.【活动3】 拓展延伸(学生对学)【例4】求证:关于x 的方程(m 2-8m +17)x 2+2mx +1=0,不论m 取何值,该方程都是一元二次方程.【互动探索】(引发学生思考)已知关于x 的方程,且含有字母系数,要证明该方程是一元二次方程,则该方程的二次项系数必须满足什么条件?【证明】m 2-8m +17=m 2-8m +42+1=(m -4)2+1. ∵(m -4)2≥0,∴(m -4)2+1>0,即(m -4)2+1≠0, ∴不论m 取何值,该方程都是一元二次方程.【互动总结】(学生总结,老师点评)要证明不论m 取何值,该方程都是一元二次方程,只需证明二次项系数恒不为0,即m 2-8m +17≠0.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.一元二次方程⎩⎨⎧必须满足的三要素⎩⎪⎨⎪⎧ 是整式方程只有一个未知数未知数的最高次数是2一般形式:ax 2+bx +c =0a ≠02.判断一个数是否是一元二次方程解的方法:将这个数分别代入方程的左右两边,如果“左边=右边”,则这个数是方程的解;如果“左边≠右边”,则这个数不是方程的解.请完成本课时对应练习!21.2 解一元二次方程 21.2.1 配方法(第1课时)一、基本目标 【知识与技能】1.理解一元二次方程“降次”转化的数学思想,并能应用它解决一些具体问题. 2.理解并掌握直接开方法、配方法解一元二次方程的方法. 【过程与方法】1.通过根据平方根的意义解形如x 2=n (n ≥0)的方程,迁移到根据平方根的意义解形如(x +m )2=n (n ≥0)的方程.2.通过把一元二次方程转化为形如(x -a )2=b 的过程解一元二次方程. 【情感态度与价值观】通过对一元二次方程解法的探索,体会“降次”的基本思想,培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.二、重难点目标 【教学重点】掌握直接开平方法和配方法解一元二次方程. 【教学难点】把一元二次方程转化为形如(x -a )2=b 的形式.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P5~P9的内容,完成下面练习. 【3 min 反馈】1.一般地,对于方程x 2=p :(1)当p >0时,根据平方根的意义,方程有两个不等的实数根,x 1=__p ,x 2=__-p __.(2)当p =0时,方程有两个相等的实数根x 1=x 2=__0__; (3)当p <0时,方程__无实数根__. 2.用直接开平方法解下列方程: (1)(3x +1)2=9; x 1=23,x 2=-43.(2)y 2+2y +1=25. y 1=4,y 2=-6. 3.(1)x 2+6x +__9__=(x +__3__)2; (2)x 2-x +__14__=(x -__12__)2;(3)4x 2+4x +__1__=(2x + __1__)2.4.一般地,如果一个一元二次方程通过配方转化成(x +n )2=p 的形式,那么就有: (1)当p >0时,根据平方根的意义,方程有两个不等的实数根,x 1=__-n -p __,x 2=__-n +p __;(2)当p =0时,方程有两个相等的实数根x 1=x 2=__-n __; (3)当p <0时,方程__无实数根__. 环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学) 【例1】用配方法解下列关于x 的方程: (1)2x 2-4x -8=0; (2)2x 2+3x -2=0.【互动探索】(引发学生思考)用配方法解一元二次方程的实质和关键点是什么? 【解答】(1)移项,得2x 2-4x =8. 二次项系数化为1,得x 2-2x =4.配方,得x 2-2x +12=4+12,即(x -1)2=5. 由此可得x -1=±5, ∴x 1=1+5,x 2=1- 5. (2)移项,得2x 2+3x =2. 二次项系数化为1,得x 2+32x =1.配方,得⎝ ⎛⎭⎪⎫x +342=2516.由此可得x +34=±54,∴x 1=12,x 2=-2.【互动总结】(学生总结,老师点评)用配方法解一元二次方程的实质就是对一元二次方程进行变形,转化为开平方所需要的形式,配方法的一般步骤可简记为:一移,二化,三配,四开.【活动2】 巩固练习(学生独学)1.若x 2-4x +p =(x +q )2,则p 、q 的值分别是( B ) A .p =4,q =2 B .p =4,q =-2 C .p =-4,q =2D .p =-4,q =-22.用直接开平方法或配方法解下列方程: (1)3(x -1)2-6=0 ; (2)x 2-4x +4=5; (3)9x 2+6x +1=4; (4)36x 2-1=0; (5)4x 2=81; (6)x 2+2x +1=4. (1)x 1=1+2,x 2=1- 2. (2)x 1=2+5,x 2=2- 5. (3)x 1=-1,x 2=13.(4)x 1=16,x 2=-16.(5)x 1=92,x 2=-92.(6)x 1=1,x 2=-3.【活动3】 拓展延伸(学生对学)【例2】如果x 2-4x +y 2+6y +z +2+13=0,求(xy )z的值.【互动探索】(引发学生思考)一个数的平方是正数还是负数?一个数的算术平方根是正数还是负数?几个非负数相加的和是正数还是负数?【解答】由已知方程,得x2-4x+4+y2+6y+9+z+2=0,即(x-2)2+(y+3)2+z+2=0,∴x=2,y=-3,z=-2.∴(xy)z=[2×(-3)]-2=1 36 .【互动总结】(学生总结,老师点评)若几个非负数相加等于0,则这几个数都等于0.环节3 课堂小结,当堂达标(学生总结,老师点评)用配方法解一元二次方程的一般步骤:一移项→二化简→三配方→四开方请完成本课时对应练习!21.2.2 公式法(第2课时)一、基本目标【知识与技能】1.理解一元二次方程求根公式的推导过程,了解公式法的概念.2.会熟练运用公式法解一元二次方程.【过程与方法】复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.【情感态度与价值观】在一元二次方程求根公式的推导过程中,激发学生兴趣,了解解决问题多样性.二、重难点目标【教学重点】求根公式的推导及用公式法解一元二次方程.【教学难点】一元二次方程求根公式的推导.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P9~P12的内容,完成下面练习. 【3 min 反馈】1.用配方法解下列方程: (1)x 2-5x =0; x 1=0,x 2=5. (2)2x 2-4x -1=0. x 1=1+62,x 2=1-62. 2.如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它的两根? x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac2a.【教师点拨】因为前面解具体数字的一元二次方程已做得很多,我们现在不妨把a 、b 、c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.3.一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a 、b 、c 而定.(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0.当b 2-4ac ≥0时,将a 、b 、c 代入式子x =-b ±b 2-4ac2a就得到方程的根.(2)这个式子叫做一元二次方程的__求根公式__. (3)利用求根公式解一元二次方程的方法叫__公式法__.(4)由求根公式可知,一元二次方程最多有__2__个实数根,也可能__没有__实数根. (5)一般地,式子b 2-4ac 叫做方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=__b 2-4ac __.当Δ__>__0时,方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根;当Δ__=__0时,方程ax 2+bx +c =0(a ≠0)有两个相等的实数根;当Δ__<__0时,方程ax 2+bx +c =0(a ≠0)没有实数根.4.不解方程,判断方程根的情况. (1)16x 2+8x =-3; (2)9x 2+6x +1=0; (3)2x 2-9x +8=0; (4)x 2-7x -18=0. 解:(1)没有实数根. (2)有两个相等的实数根. (3)有两个不相等的实数根. (4)有两个不相等的实数根.【教师点拨】将方程化为一般形式,再用判别式进行判断. 环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】用公式法解下列方程: (1)2x 2+1=3x ; (2)2x (x -1)-7x =2.【互动探索】(引发学生思考)用公式法解一元二次方程的步骤是怎样的? 【解答】(1)原方程整理,得2x 2-3x +1=0. 其中a =2,b =-3,c =1,则Δ=b 2-4ac =(-3)2-4×2×1=1>0. ∴x =-b ±b 2-4ac 2a =--3±12×2,即x 1=12,x 2=1.(2)原方程整理,得2x 2-9x -2=0. 其中a =2,b =-9,c =-2,则Δ=b 2-4ac =(-9)2-4×2×(-2)=97>0. ∴x =-b ±b 2-4ac 2a=--9±972×2,即x 1=9+974,x 2=9-974.【互动总结】(学生总结,老师点评)用公式法解一元二次方程的一般步骤:(1)把方程化为一般形式,确定a 、b 、c 的值;(2)求出Δ=b 2-4ac 的值;(3)当Δ>0时,方程有两个不相等的实数根,即x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac2a ;当Δ=0时,方程有两个相等的实数根,即x 1=x 2=-b2a;当Δ<0时,方程没有实数根. 【活动2】 巩固练习(学生独学)1.方程x 2-4x +4=0的根的情况是( B ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有一个实数根 D .没有实数根2.如果方程5x 2-4x =m 没有实数根,那么m 的取值范围是__m <-45__.3.用公式法解下列方程:(1)2x 2-6x -1=0; (2)2x 2-2x +1=0; (3)5x +2=3x 2.解:(1)x 1=3+112,x 2=3-112.(2)方程没有实数根. (3)x 1=2,x 2=-13.【活动3】 拓展延伸(学生对学)【例2】已知a 、b 、c 分别是三角形的三边,试判断方程(a +b )x 2+2cx +(a +b )=0的根的情况.【互动探索】(引发学生思考)三角形的三边满足什么关系?是怎样根据一元二次方程的系数判断根的情况?【解答】∵a 、b 、c 分别是三角形的三边,∴a +b >0,c +a +b >0,c -a -b <0,∴Δ=(2c )2-4(a +b )·(a +b )=4(c +a +b )(c -a -b )<0,故原方程没有实数根.【互动总结】(学生总结,老师点评)解答本题的关键是掌握三角形三边的关系,即两边之和大于第三边,以及运用根的判别式Δ=b 2-4ac 判断方程的根的情况.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.一元二次方程根的情况⎩⎪⎨⎪⎧Δ>0⇔方程有两个不相等的实数根Δ=0⇔方程有两个相等的实数根Δ<0⇔方程没有实数根2.当Δ≥0时,方程ax 2+bx +c =0(a ≠0)的实数根为x =-b ±b 2-4ac2a.请完成本课时对应练习!21.2.3 因式分解法(第3课时)一、基本目标 【知识与技能】1.掌握用因式分解法解一元二次方程.2.能根据具体一元二次方程的特征,灵活选择方程的解法. 【过程与方法】通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.【情感态度与价值观】了解因式分解法是一元二次方程解法中应用较为广泛的简便方法,它避免了复杂的计算,提高了解题速度和准确程度,培养学生的应用意识和创新能力.二、重难点目标 【教学重点】运用因式分解法解一元二次方程. 【教学难点】选择适当的方法解一元二次方程.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P12~P14的内容,完成下面练习. 【3 min 反馈】1.将下列各题因式分解:am +bm +cm =__m (a +b +c )__; a 2-b 2=__(a +b )(a -b )__; a 2+2ab +b 2=__(a +b )2__; x 2+5x +6=__(x +2)(x +3)__;3x 2-14x +8=__(x -4)(3x -2)__. 2.按要求解下列方程: (1)2x 2+x =0(用配方法); (2)3x 2+6x -24=0(用公式法).解:(1)x 1=0,x 2=-12. (2)x 1=2,x 2=-4.3.对于一元二次方程,先将方程右边化为0,然后对方程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做__因式分解法__.4.如果ab =0,那么a =0或b =0,这是因式分解法的根据.即:如果(x +1)(x -1)=0,那么x +1=0或 __x -1=0__,即x =-1或__x =1__.环节2 合作探究,解决问题 【活动1】 小组讨论(师生对学) 【例1】用因式分解法解下列方程: (1)x 2-3x -10=0; (2)5x 2-2x -14=x 2-2x +34;(3)3x (2x +1)=4x +2; (4)(x -4)2=(5-2x )2.【互动探索】(引发学生思考)用因式分解法解一元二次方程的一般步骤是什么? 【解答】(1)因式分解,得(x +2)(x -5)=0. ∴x +2=0或x -5=0, ∴x 1=-2,x 2=5.(2)移项、合并同类项,得4x 2-1=0. 因式分解,得(2x +1)(2x -1)=0. ∴2x +1=0或2x -1=0, ∴x 1=-12,x 2=12.(3)原方程可变形为3x (2x +1)-2(2x +1)=0. 因式分解,得(2x +1)(3x -2)=0. ∴2x +1=0或3x -2=0, ∴x 1=-12,x 2=23.(4)移项,得(x -4)2-(5-2x )2=0. 因式分解,得(1-x )(3x -9)=0, ∴1-x =0或3x -9=0, ∴x 1=1,x 2=3.【互动总结】(学生总结,老师点评)用因式分解法解一元二次方程的步骤:(1)将一元二次方程化成一般形式,即方程右边为0;(2)将方程左边进行因式分解,将一元二次方程转化成两个一元一次方程;(3)对两个一元一次方程分别求解.【活动2】 巩固练习(学生独学) 1.解方程: (1)x 2-3x -10=0; (2)3x (x +2)=5(x +2); (3)(3x +1)2-5=0; (4)x 2-6x +9=(2-3x )2. 解:(1)x 1=5,x 2=-2. (2)x 1=-2,x 2=53.(3)x 1=-1+53,x 2=5-13.(4)x 1=-12,x 2=54.2.三角形两边的长是3和4,第三边的长是方程x 2-12x +35=0的根,求该三角形的周长.解:解x 2-12x +35=0,得x 1=5,x 2=7.∵3+4=7,∴x =5,故该三角形的周长=3+4+5=12. 【活动3】 拓展延伸(学生对学)【例2】已知9a 2-4b 2=0,求代数式a b -b a -a 2+b 2ab的值.【互动探索】(引发学生思考)a 、b 的值能求出来吗?a 、b 之间有怎样的关系?怎样将a 、b 的值与已知代数式联系起来.【解答】原式=a 2-b 2-a 2-b 2ab =-2ba.∵9a 2-4b 2=0,∴(3a +2b )(3a -2b )=0, 即3a +2b =0或3a -2b =0, ∴a =-23b 或a =23b .当a =-23b 时,原式=-2b-23b =3;当a =23b 时,原式=-3.【互动总结】(学生总结,老师点评)要求a b -b a -a 2+b 2ab的值,首先要对它进行化简,然后从已知条件入手,求出a 与b 的关系后代入,但也可以直接代入,因计算量比较大,容易发生错误.本题注意不要漏解.环节3 课堂小结,当堂达标 (学生总结,老师点评)用因式分解法解一元二次方程的一般步骤:先将方程一边化为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.请完成本课时对应练习!*21.2.4 一元二次方程的根与系数的关系(第4课时)一、基本目标【知识与技能】掌握一元二次方程的根与系数的关系.【过程与方法】利用求根公式得到一元二次方程的根,推导出根与系数的关系,体现了数学推理的严密性与严谨性.【情感态度与价值观】通过公式的引入,培养学生寻求简便方法的探索精神及创新意识,培养学生观察思考、归纳概括的能力.二、重难点目标【教学重点】理解一元二次方程的根与系数的关系.【教学难点】利用一元二次方程根与系数的关系解决问题.环节1 自学提纲,生成问题【5 min阅读】阅读教材P15~P16的内容,完成下面练习.【3 min反馈】1.解下列方程,并填写表格:方程x1x2x1+x2x1·x2x2-2x=00220x2+3x-4=0-41-3-4x2-5x+6=0235 6(1)用语言描述你发现的规律:__一元二次方程的两根之和为一次项系数的相反数;两根之积为常数项__.(2)关于x的方程x2+px+q=0的两根为x1、x2,请用式子表示x1、x2与p、q的关系:__x1+x2=-p,x1x2=q__.2.解下列方程,并填写表格:方程x1x2x1+x2x1·x2(1)用语言描述你发现的规律:__两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比__.(2)关于x 的方程ax 2+bx +c =0(a ≠0)的两根为x 1、x 2,请用式子表示x 1、x 2与a 、b 、c 的关系:__x 1+x 2=-b a ,x 1x 2=ca__.3.求下列方程的两根之和与两根之积. (1)x 2-6x -15=0; (2)5x -1=4x 2; (3)x 2=4; (4)2x 2=3x .解:(1)x 1+x 2=6,x 1x 2=-15. (2)x 1+x 2=54,x 1x 2=14.(3)x 1+x 2=0,x 1x 2=-4. (4)x 1+x 2=32,x 1x 2=0.环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】x 1、x 2是方程2x 2-3x -5=0的两个根,不解方程,求下列代数式的值: (1)x 1+x 2 ; (2)1x 1+1x 2;(3)x 21+x 22; (4)x 21+3x 22-3x 2.【互动探索】(引发学生思考)根据一元二次方程的根与系数的关系可考虑将所求代数式转化为两根之和与两根之积的关系.【解答】(1)x 1+x 2=32,(2)∵x 1x 2=-52,∴1x 1+1x 2=x 1+x 2x 1x 2=-35.(3)x 21+x 22=(x 1+x 2)2-2x 1x 2=294.(4)x 21+3x 22-3x 2=(x 21 +x 22 ) +(2x 22 -3x 2 )=1214.【互动总结】(学生总结,老师点评)解答这类问题一般先将求值式进行变形,使其含有两根的和与两根的积,再求出方程的两根的和与两根的积,整体代入即可求解.【活动2】 巩固练习(学生独学)1.不解方程,求下列方程的两根和与两根积. (1)x 2-5x -3=0; (2)9x +2=x 2; (3)6x 2-3x +2=0; (4)3x 2+x +1=0. 解:(1)x 1+x 2=5,x 1x 2=-3. (2)x 1+x 2=9,x 1x 2=-2. (3)方程无解. (4)方程无解.2.已知方程x 2-3x +m =0的一个根为1,求另一根及m 的值. 解:另一根为2,m =2.【教师点拨】本题有两种解法:一种是根据根的定义,将x =1代入方程先求m ,再求另一个根;另一种是利用根与系数的关系解答.3.若一元二次方程x 2+ax +2=0的两根满足:x 21 +x 22 =12,求a 的值. 解:a =±4.【教师点拨】由x 21 + x 22 =(x 1+x 2)2-2x 1x 2=12,再整体代入方程的两根之和与两根之积得到答案.【活动3】 拓展延伸(学生对学)【例2】已知关于x 的方程x 2-(k +1)x +14k 2+1=0,且方程两实根的积为5,求k 的值.【互动探索】(引发学生思考)一元二次方程有根的条件是什么?一元二次方程两实根的积与什么有关?【解答】∵方程两实根的积为5,∴ ⎩⎪⎨⎪⎧Δ=[-k +1]2-4⎝ ⎛⎭⎪⎫14k 2+1≥0,x 1x 2=14k 2+1=5,∴k ≥32,k =±4.故当k =4时,方程两实根的积为5.【互动总结】(学生总结,老师点评)根据一元二次方程两实根满足的条件,求待定字母的值,务必要注意方程有两实根的条件,即所求的值应满足Δ≥0.环节3 课堂小结,当堂达标 (学生总结,老师点评)一元二次方程ax 2+bx +c =0(a ≠0)的两根x 1、x 2和系数的关系如下:x 1+x 2=-b a ,x 1x 2=ca.请完成本课时对应练习!21.3 实际问题与一元二次方程一、基本目标 【知识与技能】1.会根据具体问题中的数量关系列一元二次方程并求解. 2.能根据问题的实际意义,检验所得结果是否合理. 【过程与方法】经历分析和解决实际问题的过程,体会一元二次方程的数学建模作用. 【情感态度与价值观】体会数学来源于实践,反过来又作用于实践,增强数学的应用意识. 二、重难点目标 【教学重点】列一元二次方程解决实际问题的一般步骤. 【教学难点】利用一元二次方程解决实际问题.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P19~P21的内容,完成下面练习. 【3 min 反馈】1. 有一人患了感毛,经过两轮传染后共有121人患了感冒,每轮传染中平均一个人传染了几个人?设每轮传染中平均一个人传染了x个人,则第一轮后共有__1+x__人患了感冒,第二轮后共有__1+x+x(x+1)__人患了感冒.可列方程 __1+x+x(x+1)=121__.解方程,得x1=__-12(不合题意,舍去)__,_x2=__10__.所以平均一个人传染了__10__个人.2.两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(精确到0.01)绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000(元),乙种药品成本的年平均下降额为(6000-3600)÷2=1200(元),显然,乙种药品成本的年平均下降额较大.相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.①设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为__5000(1-x)__元,两年后甲种药品成本为__5000(1-x)2__元.依题意,得__5000(1-x)2=3000__.解得__x1≈0.23,x2≈1.77__.根据实际意义,甲种药品成本的年平均下降率约为__23%__.②设乙种药品成本的年平均下降率为y.依题意,得__6000(1-y)2=3600__.解得__y1≈0.23,y2≈1.77(不合题意,舍去)__.所以两种药品成本的年平均下降率 __相同__.提示:经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.环节2 合作探究,解决问题【活动1】小组讨论(师生互学)【例1】某林场计划修一条长750 m,断面为等腰梯形的渠道,断面面积为1.6 m2,上口宽比渠深多2 m,渠底比渠深多0.4 m.(1)渠道的上口宽与渠底宽各是多少?(2)如果计划每天挖土48 m3,需要多少天才能把这条渠道挖完?【互动探索】(引发学生思考)(1)怎样用渠深表示上口宽和渠底,怎样计算梯形面积?(2)渠道的体积怎样计算?【解答】(1)设渠深为x m,则渠底为(x+0.4)m,上口宽为(x+2)m.依题意,得12(x +2+x +0.4)x =1.6,整理,得5x 2+6x -8=0, 解得x 1=45=0.8,x 2=-2(舍去),∴上口宽为2.8 m ,渠底为1.2 m.(2)如果计划每天挖土48 m 3,需要1.6×75048=25(天)才能挖完渠道.【互动总结】(学生总结,老师点评)解答本题的关键是掌握梯形面积的计算方法,正确用未知数表示出相关数量.【活动2】 巩固练习(学生独学)1.两个正数的差是2,它们的平方和是52,则这两个数是( C ) A .2和4 B .6和8 C .4和6D .8和102.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支?解:设每个支干长出x 个小分支, 则1+x +x ·x =91.解得x 1=9或x 2=-10(舍去).故每个支干长出9个小分支.3.如图,要设计一幅长30 cm 、宽20 cm 的图案,其中有两横两竖的彩条(图中阴影部分),横、竖彩条的宽度比为3∶2,如果要使彩条所占面积是图案面积的14,应如何设计彩条的宽度?(精确到0.1 cm)解:横彩条宽为1.8 cm ,竖彩条宽为1.2 cm.【教师点拨】设横彩条的宽度为3x cm ,则竖彩条的宽度为2x cm.根据题意,得(30-4x )(20-6x )=⎝ ⎛⎭⎪⎫1-14×20×30.解得x 1≈0.61或x 2≈10.2(舍去). 4.用一根长40 cm 的铁丝围成一个长方形,要求长方形的面积为75 cm 2.(1)此长方形的宽是多少?(2)能围成一个面积为101 cm 2的长方形吗?若能,说明围法;若不能,说明理由; 解:(1)5 cm.(2)不能.设宽为x cm ,则长为(20-x ) cm ,由x (20-x )=101,即x 2-20x +101=0,由Δ=202-4×101=-4<0,∴方程无解,故不能围成一个面积为101 cm 2的长方形.【活动3】拓展延伸(学生对学)【例3】如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25 m),现在已备足可以砌50 m长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m2.【互动探索】(引发学生思考)AB与BC之间的数量关系是怎样的?BC还应满足什么条件?【解答】设AB=x m,则BC=(50-2x)m.根据题意,得x(50-2x)=300.解得x1=10,x2=15,当x=10时,BC=50-10-10=30>25,则x1=10不合题意,舍去.故可以围成AB长为15 m,BC长为20 m的矩形花园.【互动总结】(学生总结,老师点评)利用一元二次方程解决实际问题时,要注意检验方程的根是否符合实际问题.环节3 课堂小结,当堂达标(学生总结,老师点评)列一元二次方程解应用题的一般步骤:(1)“设”,即设未知数,设未知数的方法有直接设和间接设未知数两种;(2)“列”,即根据题中的等量关系列方程;(3)“解”,即求出所列方程的根;(4)“检验”,即验证是否符合题意;(5)“答”,即回答题目中要解决的问题.请完成本课时对应练习!22.1 二次函数的图象和性质22.1.1 二次函数(第1课时)一、基本目标 【知识与技能】1.理解并掌握二次函数的概念,能判断一个给定的函数是否为二次函数. 2.根据实际问题中的条件确定二次函数的解析式,体会函数的模型思想. 【过程与方法】经历与一次函数类比学习的过程,学会与人合作,并获得代数学习的一些常用方法:类比法、合情推理、抽象概括等.【情感态度与价值观】通过对几个特殊的二次函数的讲解,体验数学中的探索精神,初步体会二次函数的数学模型.二、重难点目标 【教学重点】 二次函数的概念. 【教学难点】能根据已知条件写出二次函数的解析式.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P28~P29的内容,完成下面练习. 【3 min 反馈】1.正比例的函数的表达式为y =kx (k 为常数,且k ≠0);一次函数的表达式为__y =ax +b __(a 、b 为常数,且a ≠0).2.二次函数的概念:一般地,形如__y =ax 2+bx +c __(a 、b 、c 是常数,且a ≠0)的函数叫做二次函数,其中二次项系数、一次项系数和常数项分别为__a 、b 、c __.3.下列函数中,是二次函数的有__①②③__.①y =(x -3)2-1;②y =1-2x 2;③y =13(x +2)(x -2);④y =(x -1)2-x 2.4.二次函数y =-x 2+2x 中,二次项系数是__-1__,一次项系数是___2____,常数项是___0____.5.半径为R 的圆,半径增加x ,圆的面积增加y ,则y 与x 之间的函数关系式为__y =πx 2+2πRx (x ≥0)__.环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】已知关于x 的函数y =(m +1)xm 2-m 是二次函数, 求m 的值.。
教学过程设计第1页第2页教学过程设计第3页第4页教学过程设计第5页第6页教学过程设计第7页第8页教学过程设计第9页第10页教学过程设计第11页第12页第13页第14页第15页第16页教学准备教师多媒体课件学生“课堂教学程序设计设计意图一、提出问题1,同学们可以回想一下,一次函数的性质是如何研究的?(先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质)2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,应先研究什么?(可以用研究一次函数性质的方法来研究二次函数的性质,应先研究二次函数的图象)3.一次函数的图象是什么?二次函数的图象是什么?二、范例例1、画二次函数y=x2的图象。
解:(1)列表:在x的取值范围内列出函数对应值表:x …-3 -2 -1 0 1 2 3 …y …9 4 1 0 1 4 9 …(2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点(3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示。
提问:观察这个函数的图象,它有什么特点?让学生观察,思考、讨论、交流,归结为:它有一条对称轴,且对称轴和图象有一点交点。
抛物线概念:像这样的曲线通常叫做抛物线。
顶点概念:抛物线与它的对称轴的交点叫做抛物线的顶点.三、做一做1.在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别?2.在同一直角坐标系中,画出函数y=2x2与y=-2x2的图象,观察并比较这两个函数的图象,你能发现什么?3.将所画的四个函数的图象作比较,你又能发现什么?在学生画函数图象的同时,教师要指导中下水平的学生,讲评时,要引导学生讨论选几个点比较合适以及如何选点。
两个函数图象的共同点以及它们的区别,可分组讨论。
交流,让学生发表不同的意见,达成共识,两个函数的图象都是抛物线,都关于y轴对称,顶点坐标都是(0,0),区别在于函数y=x2的图象开口向上,函数y=-x2的图象开口向下。
九年级上册全书教案 第二十一章 二次根式教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式. 2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础. 教学目标1.知识与技能(1)理解二次根式的概念.(2a ≥0)是一个非负数,)2=a (a ≥0)(a ≥0).(3(a ≥0,b ≥0);a ≥0,b>0)a ≥0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.(3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简. (4)通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力. 教学重点1(a ≥0a ≥0)是一个非负数;2=a (a ≥0);(a ≥0)•及其运用.2.二次根式乘除法的规定及其运用. 3.最简二次根式的概念. 4.二次根式的加减运算. 教学难点1a ≥02=a (a ≥0(a ≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式. 教学关键1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点. 2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,•培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需11课时,具体分配如下: 21.1 二次根式 3课时 21.2 二次根式的乘法 3课时 21.3 二次根式的加减 3课时 教学活动、习题课、小结 2课时21.1 二次根式第一课时教学内容二次根式的概念及其运用 教学目标a ≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1(a ≥0)的式子叫做二次根式的概念; 2(a ≥0)”解决具体问题. 教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y=,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.问题2:如图,在直角三角形ABC 中,AC=3,BC=1,∠C=90°,那么AB 边的长是__________.3xB AC问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S 2,那么S=_________. 老师点评:问题1:横、纵坐标相等,即x=y ,所以x 2=3.因为点在第一象限,所以.问题2:由勾股定理得问题3:由方差的概念得S=二、探索新知像这样一些正数的算术平方根(a ≥0)•的式子叫做二次根式,“”称为二次根号.(学生活动)议一议: 1.-1有算术平方根吗? 2.0的算术平方根是多少?3.当a<0老师点评:(略)例1x>0)、、、、x≥0,y•≥0).分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.x>0)、x ≥0,y ≥0);不是二次、. 例2.当x 在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,1x1x y+1x 1x y+才能有意义.解:由3x-1≥0,得:x ≥当x ≥在实数范围内有意义. 三、巩固练习教材P 练习1、2、3.四、应用拓展例3.当x +在实数范围内有意义? 分析+在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0. 解:依题意,得由①得:x≥-由②得:x ≠-1当x ≥-且x≠-1+在实数范围内有意义. 例4(1)已知,求的值.(答案:2) (2)=0,求a+b 的值.(答案:) 五、归纳小结(学生活动,老师点评) 本节课要掌握:1a ≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数. 六、布置作业1.教材P 8复习巩固1、综合应用5.2.选用课时作业设计. 3.课后作业:《同步训练》131311x +11x +11x +23010x x +≥⎧⎨+≠⎩323211x +xy25第一课时作业设计 一、选择题1.下列式子中,是二次根式的是( )A .BCD .x2.下列式子中,不是二次根式的是()A BCD .3.已知一个正方形的面积是5,那么它的边长是( )A .5BC .D .以上皆不对 二、填空题1.形如________的式子叫做二次根式.2.面积为a 的正方形的边长为________. 3.负数________平方根. 三、综合提高题1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少? 2.当x +x 2在实数范围内有意义? 3=_______.4.x 有( )个.A .0B .1C .2D .无数5.已知a 、b =b+4,求a 、b 的值.第一课时作业设计答案: 一、1.A 2.D 3.B二、1a ≥0) 2 3.没有三、1.设底面边长为x ,则0.2x 2=1,解答:2.依题意得:, ∴当x>-且x ≠0+x 2在实数范围内没有意义. 1x152300x x +≥⎧⎨≠⎩320x x ⎧≥-⎪⎨⎪≠⎩323.4.B5.a=5,b=-421.1 二次根式(2)第二课时教学内容1(a ≥0)是一个非负数; 2.)2=a(a ≥0).教学目标(a ≥02=a (a ≥0),并利用它们进行计算和化简.a ≥0)是一个非负数,用具体2=a (a ≥0);最后运用结论严谨解题.教学重难点关键1a ≥0)是一个非负数;)2=a (a ≥0)及其运用.2a ≥0)是一个非负数;•用探究的方法导2=a (a ≥0). 教学过程一、复习引入 (学生活动)口答 1.什么叫二次根式?2.当a ≥0叫什么?当a<0有意义吗? 老师点评(略). 二、探究新知 议一议:(学生分组讨论,提问解答)a ≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出做一做:根据算术平方根的意义填空:13)2=_______;)2=_______;2=______;2=_______;2=______;2=_______;)2=_______.是4是一个平方等于4的)2=4.同理可得:)2=2,2=9,2=3,)2=,2=,)2=0,所以例1计算1.22.(23.24.)2分析2=a(a≥0)的结论解题.解:2 =,(2 =32·2=32·5=45,2=,2.三、巩固练习计算下列各式的值:)222)2(2四、应用拓展例2 计算1.2(x≥0)2.23.24.)2分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2≥0.所以上面的42=a(a≥0)的重要结论解题.1372325674=22-解:(1)因为x ≥0,所以x+1>02=x+1(2)∵a 2≥02=a 2 (3)∵a 2+2a+1=(a+1)2又∵(a+1)2≥0,∴a 2+2a+1≥02+2a+1(4)∵4x 2-12x+9=(2x )2-2·2x ·3+32=(2x-3)2 又∵(2x-3)2≥0∴4x 2-12x+9≥0)2=4x 2-12x+9 例3在实数范围内分解下列因式:(1)x 2-3(2)x 4-4(3) 2x 2-3分析:(略) 五、归纳小结本节课应掌握:1a ≥0)是一个非负数;2.2=a (a ≥0);反之:a=)2(a ≥0).六、布置作业1.教材P 8 复习巩固2.(1)、(2) P 9 7.2.选用课时作业设计. 3.课后作业:《同步训练》 第二课时作业设计 一、选择题1的个数是( ).A .4B .3C .2D .12.数a 没有算术平方根,则a 的取值范围是( ). A .a>0 B .a ≥0 C .a<0 D .a=0 二、填空题1.(2=________.2_______数. 三、综合提高题 1.计算(1)2 (2)-2 (3)()2 (4)(- 2(5)122.把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3) (4)x (x ≥0)3=0,求x y 的值.4.在实数范围内分解下列因式:(1)x2-2 (2)x 4-9 3x 2-5第二课时作业设计答案:一、1.B 2.C二、1.3 2.非负数三、1.(1)2=9 (2)-2=-3 (3)()2=×6=(4)(-2=9×=6 (5)-62.(1)5=2 (2)3.4=2(3)=2 (4)x=)2(x ≥0) 3. x y =34=81 4.(1)x 2-2=()(x(2)x 4-9=(x 2+3)(x 2-3)=(x 2+3)((x (3)略21.1 二次根式(3)第三课时教学内容a (a ≥0)161214322316103304x y x x y -+==⎧⎧⎨⎨-==⎩⎩教学目标(a ≥0)并利用它进行计算和化简.(a ≥0),并利用这个结论解决具体问题.教学重难点关键1a (a ≥0).2.难点:探究结论.3.关键:讲清a ≥0a 才成立. 教学过程一、复习引入老师口述并板收上两节课的重要内容; 1a≥0)的式子叫做二次根式;2(a ≥0)是一个非负数;3.2=a (a ≥0).那么,我们猜想当a ≥0是否也成立呢?下面我们就来探究这个问题.二、探究新知(学生活动)填空:=_______=______;=________=_______.(老师点评):根据算术平方根的意义,我们可以得到:=0.01===.例1 化简(1(2 (3 (4分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32(a ≥0)•去化简.解:(1=3 (21102337(3=5 (4=3三、巩固练习教材P 7练习2.四、应用拓展例2 填空:当a≥0;当a<0,•并根据这一性质回答下列问题.(1,则a 可以是什么数? (2,则a 可以是什么数?(3,则a 可以是什么数?分析(a ≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“( )2”中的数是正数,因为,当a ≤0-a ≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)│a │,而│a │要大于a ,只有什么时候才能保证呢?a<0. 解:(1,所以a ≥0; (2,所以a ≤0;(3)因为当a ≥0,即使a>a 所以a 不存在;当a<0=-a ,即使-a>a ,a<0综上,a<0例3当x>2.分析:(略) 五、归纳小结(a ≥0)及其运用,同时理解当a<0a 的应用拓展.六、布置作业1.教材P 8习题21.1 3、4、6、8.2.选作课时作业设计. 3.课后作业:《同步训练》 第三课时作业设计 一、选择题1的值是( ).A.0 B.C.4D.以上都不对2.a≥0比较它们的结果,下面四个选项中正确的是(). AC.二、填空题1.=________.2是一个正整数,则正整数m的最小值是________.三、综合提高题1.先化简再求值:当a=9时,求的值,甲乙两人的解答如下:甲的解答为:原式=a+(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│。
新人教版九年级数学上册全册教案设计第二十一章 一元二次方程21.1 一元二次方程1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax 2+bx +c =0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.重点通过类比一元一次方程,了解一元二次方程的概念及一般式ax 2+bx +c =0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.难点一元二次方程及其二次项系数、一次项系数和常数项的识别.活动1 复习旧知1.什么是方程?你能举一个方程的例子吗?2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式. (1)2x -1 (2)mx +n =0 (3)1x+1=0 (4)x 2=13.下列哪个实数是方程2x -1=3的解?并给出方程的解的概念.A .0B .1C .2D .3活动2 探究新知 根据题意列方程. 1.教材第2页 问题1. 提出问题:(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程.2.教材第2页问题2.提出问题:(1)本题中有哪些量?由这些量可以得到什么?(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?(3)如果有x个队参赛,一共比赛多少场呢?3.一个数比另一个数大3,且两个数之积为0,求这两个数.提出问题:本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?活动3归纳概念提出问题:(1)上述方程与一元一次方程有什么相同点和不同点?(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?(3)归纳一元二次方程的概念.1.一元二次方程:只含有________个未知数,并且未知数的最高次数是________,这样的________方程,叫做一元二次方程.2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.提出问题:(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?(2)为什么要限制a≠0,b,c可以为0吗?(3)2x2-x+1=0的一次项系数是1吗?为什么?3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).活动4例题与练习例1 在下列方程中,属于一元二次方程的是________.(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;(4)2x2-2x(x+7)=0.总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的最高次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.例2 教材第3页例题.例3 以-2为根的一元二次方程是( )A.x2+2x-1=0 B.x2-x-2=0C.x2+x+2=0 D.x2+x-2=0总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.练习:1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.(1)4x2=81;(2)(3x-2)(x+1)=8x-3.3.教材第4页练习第2题.4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.答案:1.a≠1;2.略;3.略;4.k=4.活动5课堂小结与作业布置课堂小结我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?作业布置教材第4页习题21.1第1~7题.21.2解一元二次方程21.2.1配方法(3课时)第1课时直接开平方法理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题. 提出问题,列出缺一次项的一元二次方程ax 2+c =0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex +f)2+c =0型的一元二次方程.重点运用开平方法解形如(x +m)2=n(n≥0)的方程,领会降次——转化的数学思想. 难点通过根据平方根的意义解形如x 2=n 的方程,将知识迁移到根据平方根的意义解形如(x +m)2=n(n≥0)的方程.一、复习引入学生活动:请同学们完成下列各题. 问题1:填空(1)x 2-8x +________=(x -________)2;(2)9x 2+12x +________=(3x +________)2;(3)x 2+px +________=(x +________)2.解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p 2)2 p 2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x 2=9,根据平方根的意义,直接开平方得x =±3,如果x 换元为2t +1,即(2t +1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t +1变为上面的x ,那么2t +1=±3 即2t +1=3,2t +1=-3 方程的两根为t 1=1,t 2=-2例1 解方程:(1)x 2+4x +4=1 (2)x 2+6x +9=2分析:(1)x 2+4x +4是一个完全平方公式,那么原方程就转化为(x +2)2=1. (2)由已知,得:(x +3)2=2 直接开平方,得:x +3=± 2即x+3=2,x+3=- 2所以,方程的两根x1=-3+2,x2=-3- 2解:略.例2 市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材第6页练习.四、课堂小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.五、作业布置教材第16页复习巩固1.第2课时配方法的基本形式理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.重点讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.难点将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.一、复习引入(学生活动)请同学们解下列方程:(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4)4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p(p≥0).如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面前三个方程的解法呢?问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5解一次方程→x1=2,x2=-8可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m .像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法. 可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解. 例1 用配方法解下列关于x 的方程: (1)x 2-8x +1=0 (2)x 2-2x -12=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略. 三、巩固练习教材第9页 练习1,2.(1)(2). 四、课堂小结 本节课应掌握:左边不含有x 的完全平方形式的一元二次方程化为左边是含有x 的完全平方形式,右边是非负数,可以直接降次解方程的方程.五、作业布置教材第17页 复习巩固2,3.(1)(2).第3课时 配方法的灵活运用了解配方法的概念,掌握运用配方法解一元二次方程的步骤.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重点讲清配方法的解题步骤. 难点对于用配方法解二次项系数为1的一元二次方程,通常把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方;对于二次项系数不为1的一元二次方程,要先化二次项系数为1,再用配方法求解.一、复习引入(学生活动)解下列方程:(1)x2-4x+7=0 (2)2x2-8x+1=0老师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式的一元二次方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:略.(2)与(1)有何关联?二、探索新知讨论:配方法解一元二次方程的一般步骤:(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程无实根.例1 解下列方程:(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式.解:略.三、巩固练习教材第9页练习2.(3)(4)(5)(6).四、课堂小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中学习二次曲线时,还将经常用到.五、作业布置教材第17页复习巩固3.(3)(4).补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.(2)求证:无论x,y取任何实数,多项式x2+y2-2x-4y+16的值总是正数.21.2.2公式法理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.重点求根公式的推导和公式法的应用.难点一元二次方程求根公式的推导.一、复习引入1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程(1)x2=4 (2)(x-2)2=7提问1 这种解法的(理论)依据是什么?提问 2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)(学生活动)用配方法解方程2x2+3=7x(老师点评)略总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程无实根.二、探索新知 用配方法解方程:(1)ax 2-7x +3=0 (2)ax 2+bx +3=0如果这个一元二次方程是一般形式ax 2+bx +c =0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx +c =0(a≠0),试推导它的两个根x 1=-b +b 2-4ac2a,x 2=-b -b 2-4ac2a(这个方程一定有解吗?什么情况下有解?)分析:因为前面具体数字已做得很多,我们现在不妨把a ,b ,c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax 2+bx =-c 二次项系数化为1,得x 2+b a x =-c a配方,得:x 2+b a x +(b 2a )2=-c a +(b 2a )2即(x +b 2a )2=b 2-4ac4a2∵4a 2>0,当b 2-4ac≥0时,b 2-4ac4a2≥0 ∴(x +b 2a )2=(b 2-4ac 2a)2直接开平方,得:x +b 2a =±b 2-4ac2a即x =-b ±b 2-4ac2a∴x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a由上可知,一元二次方程ax 2+bx +c =0(a≠0)的根由方程的系数a ,b ,c 而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac≥0时,将a ,b ,c 代入式子x =-b ±b 2-4ac2a就得到方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根.例1 用公式法解下列方程:(1)2x2-x-1=0 (2)x2+1.5=-3x(3)x2-2x+12=0 (4)4x2-3x+2=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.补:(5)(x-2)(3x-5)=0三、巩固练习教材第12页练习1.(1)(3)(5)或(2)(4)(6).四、课堂小结本节课应掌握:(1)求根公式的概念及其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a,b,c,注意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.(4)初步了解一元二次方程根的情况.五、作业布置教材第17页习题4,5.21.2.3因式分解法掌握用因式分解法解一元二次方程.通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.重点用因式分解法解一元二次方程.难点让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.一、复习引入(学生活动)解下列方程:(1)2x 2+x =0(用配方法) (2)3x 2+6x =0(用公式法)老师点评:(1)配方法将方程两边同除以2后,x 前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.二、探索新知(学生活动)请同学们口答下面各题.(老师提问)(1)上面两个方程中有没有常数项? (2)等式左边的各项有没有共同因式?(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解. 因此,上面两个方程都可以写成: (1)x(2x +1)=0 (2)3x(x +2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x =0或2x +1=0,所以x 1=0,x 2=-12.(2)3x =0或x +2=0,所以x 1=0,x 2=-2.(以上解法是如何实现降次的?) 因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.例1 解方程:(1)10x -4.9x 2=0 (2)x(x -2)+x -2=0 (3)5x 2-2x -14=x 2-2x +34 (4)(x -1)2=(3-2x)2思考:使用因式分解法解一元二次方程的条件是什么? 解:略 (方程一边为0,另一边可分解为两个一次因式乘积.) 练习:下面一元二次方程解法中,正确的是( )A .(x -3)(x -5)=10×2,∴x -3=10,x -5=2,∴x 1=13,x 2=7B .(2-5x)+(5x -2)2=0,∴(5x -2)(5x -3)=0,∴x 1=25,x 2=35C .(x +2)2+4x =0,∴x 1=2,x 2=-2D .x 2=x ,两边同除以x ,得x =1三、巩固练习教材第14页 练习1,2. 四、课堂小结 本节课要掌握:(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用. (2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.五、作业布置教材第17页 习题6,8,10,11.21.2.4 一元二次方程的根与系数的关系1.掌握一元二次方程的根与系数的关系并会初步应用. 2.培养学生分析、观察、归纳的能力和推理论证的能力. 3.渗透由特殊到一般,再由一般到特殊的认识事物的规律. 4.培养学生去发现规律的积极性及勇于探索的精神.重点根与系数的关系及其推导 难点正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系.一、复习引入1.已知方程x 2-ax -3a =0的一个根是6,则求a 及另一个根的值.2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3.由求根公式可知,一元二次方程ax 2+bx +c =0(a≠0)的两根为x 1=-b +b 2-4ac2a,x 2=-b -b 2-4ac 2a .观察两式右边,分母相同,分子是-b +b 2-4ac 与-b -b 2-4ac.两根之间通过什么计算才能得到更简洁的关系?二、探索新知解下列方程,并填写表格:观察上面的表格,你能得到什么结论?(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q≥0)的两根x 1,x 2与系数p ,q 之间有什么关系?(2)关于x 的方程ax 2+bx +c =0(a≠0)的两根x 1,x 2与系数a ,b ,c 之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:小结:根与系数关系:(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q≥0)的两根x 1,x 2与系数p ,q 的关系是:x 1+x 2=-p ,x 1·x 2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)(2)形如ax 2+bx +c =0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论. 即:对于方程 ax 2+bx +c =0(a≠0)∵a ≠0,∴x 2+b a x +c a =0∴x 1+x 2=-b a ,x 1·x 2=ca(可以利用求根公式给出证明)例1 不解方程,写出下列方程的两根和与两根积: (1)x 2-3x -1=0 (2)2x 2+3x -5=0 (3)13x 2-2x =0 (4)2x 2+6x = 3 (5)x 2-1=0 (6)x 2-2x +1=0例2 不解方程,检验下列方程的解是否正确? (1)x 2-22x +1=0 (x 1=2+1,x 2=2-1) (2)2x 2-3x -8=0 (x 1=7+734,x 2=5-734)例3 已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)例4 已知方程2x 2+kx -9=0的一个根是-3,求另一根及k 的值. 变式一:已知方程x 2-2kx -9=0的两根互为相反数,求k ; 变式二:已知方程2x 2-5x +k =0的两根互为倒数,求k. 三、课堂小结 1.根与系数的关系.2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零. 四、作业布置1.不解方程,写出下列方程的两根和与两根积. (1)x 2-5x -3=0 (2)9x +2=x 2(3)6x 2-3x +2=0 (4)3x 2+x +1=02.已知方程x 2-3x +m =0的一个根为1,求另一根及m 的值.3.已知方程x 2+bx +6=0的一个根为-2,求另一根及b 的值.21.3 实际问题与一元二次方程(2课时) 第1课时 解决代数问题1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.2.通过学生自主探究,会根据传播问题、百分率问题中的数量关系列一元二次方程并求解,熟悉解题的具体步骤.3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点利用一元二次方程解决传播问题、百分率问题.难点如果理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.一、引入新课1.列方程解应用题的基本步骤有哪些?应注意什么?2.科学家在细胞研究过程中发现:(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?(2)一个细胞一次可分裂成x个,经过3次分裂后共有多少个细胞?(3)如是一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?二、教学活动活动1:自学教材第19页探究1,思考教师所提问题.有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.(2)本题中有哪些数量关系?(3)如何利用已知的数量关系选取未知数并列出方程?解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有(x+1)人患了流感,第二轮有x(1+x)人被传染上了流感.于是可列方程:1+x+x(1+x)=121解方程得x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?活动2:自学教材第19页~第20页探究2,思考老师所提问题.两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(1)如何理解年平均下降额与年平均下降率?它们相等吗?(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);二月(或二年)后产量为a(1±x)2;n月(或n年)后产量为a(1±x)n;如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.(4)对甲种药品而言根据等量关系列方程为:________________.三、课堂小结与作业布置课堂小结1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际.2.传播问题解决的关键是传播源的确定和等量关系的建立.3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.作业布置教材第21-22页习题21.3第2-7题.第2课时解决几何问题1.通过探究,学会分析几何问题中蕴含的数量关系,列出一元二次方程解决几何问题.2.通过探究,使学生认识在几何问题中可以将图形进行适当变换,使列方程更容易.3.通过实际问题的解答,再次让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点通过实际图形问题,培养学生运用一元二次方程分析和解决几何问题的能力.难点在探究几何问题的过程中,找出数量关系,正确地建立一元二次方程.活动1创设情境1.长方形的周长________,面积________,长方体的体积公式________.2.如图所示:(1)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为2 cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.(2)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为x cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.活动2自学教材第20页~第21页探究3,思考老师所提问题要设计一本书的封面,封面长27 cm,宽21 cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1 cm).(1)要设计书本封面的长与宽的比是________,则正中央矩形的长与宽的比是________.(2)为什么说上下边衬宽与左右边衬宽之比为9∶7?试与同伴交流一下.(3)若设上、下边衬的宽均为9x cm,左、右边衬的宽均为7x cm,则中央矩形的长为________cm,宽为________cm,面积为________cm2.(4)根据等量关系:________,可列方程为:________.(5)你能写出解题过程吗?(注意对结果是否合理进行检验.)(6)思考如果设正中央矩形的长与宽分别为9x cm和7x cm,你又怎样去求上下、左右边衬的宽?活动3变式练习如图所示,在一个长为50米,宽为30米的矩形空地上,建造一个花园,要求花园的面积占整块面积的75%,等宽且互相垂直的两条路的面积占25%,求路的宽度.答案:路的宽度为5米.活动4课堂小结与作业布置课堂小结1.利用已学的特殊图形的面积(或体积)公式建立一元二次方程的数学模型,并运用它解决实际问题的关键是弄清题目中的数量关系.2.根据面积与面积(或体积)之间的等量关系建立一元二次方程,并能正确解方程,最后对所得结果是否合理要进行检验.作业布置教材第22页习题21.3第8,10题.第二十一章一元二次方程21.1一元二次方程1. 了解一元二次方程的概念,应用一元二次方程概念解决一些简单问题.2.掌握一元二次方程的一般形式ax2+bx+c=0(a≠0)及有关概念.。