七年级数学 整式的加减中的数学思想方法 教案 北师大版
- 格式:doc
- 大小:143.00 KB
- 文档页数:2
《整式的加减》精品教案●教学目标:一、知识与技能目标:1. 理解同类项的概念和合并同类项的意义,学会合并同类项。
2. 理解整式加减的实质就是合并同类项。
二、过程与方法目标:培养学生观察、分析、归纳和动手解决问题的能力,初步使学生了解数学的分类思想。
三、情感态度与价值观目标:激励全体学生积极参与教学活动,培养他们团结协作,严谨求实的学习作风和锲而不舍,勇于创新的精神。
●重点:掌握同类项的定义以及合并同类项的法则。
●难点能根据题目的要求,正确熟练地进行整式的加减运算.●教学流程:一、回顾旧知,情景导入图中的长方形由两个小长方形组成,求这个长方形的面积。
图中长方形的面积可以用代数式表示为8n+5n,或(8+5)n,从而8n+5n=(8+5)n=13n。
二、解答困惑,讲授新知这就是说,当我们计算8n+5n时,可以先将它们的系数相加,再乘n就可以了。
利用乘法分配律也可以得到这个结果。
与此类似,根据乘法分配律可得:-7a²b+2a²b=(-7+2)a²b=-5a²b像8n与5n,2a²b与-7a²b这样所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
(两个相同)x+y 和xy是同类项吗?不是2ab和5ab是同类项吗?是b和a是同类项吗?不是3和-4是同类项吗?是与所含字母顺序无关两无关与系数大小无关注意同类项的两相同和两无关!!把同类型合并成一项叫做合并同类项。
例如:8n+5n =13n -7a²b+2a²b=-5a²b6xy-10x²-5yx+7x²+5x(先分)=(6xy-5yx)+(-10x²+7x²)+5x (移)=(6-5)xy+(-10+7)x²+5x (合并)=xy-3x²+5x合并同类项步骤:一分,二移,三合并,移时连同项的符号移火眼金睛1.下列各组是同类项的有_________-①x与y ②a²b与ab²③-3pq与3pq ④abc与ac ⑤a²和a³⑥π与-3 ⑦ x4与a42.若 2x3y n与-x m y2是同类项,则m+n=___.3.5x2y和7y m x n是同类项,则m=____,n=______三、实例演练深化认识例1根据乘法分配律合并同类项:(1)-xy²+3xy² (2)7a+3a²+2a-a²+3解:(1)-xy²+3xy² =(-1+3)xy²=2 xy²(2)7a+3a²+2a-a²+3=(7a+2a)+(3a²-a²)+3=(7+2)a+(3-1)a²+3=9a+2a²+3注意:合并同类项时,把同类项的系数相加,字母和字母的指数不变。
初一数学整式的加减教案进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.一起看看北师大初二数学上册教案!欢迎查阅!初一数学整式的加减教案1一、学生起点分析八年级学生已经具备一定的观察、归纳、探索和推理的能力.在小学,他们已学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补思想解决问题的意识和能力还远远不够.部分学生听说过“勾三股四弦五”,但并没有真正认识什么是“勾股定理”.此外,学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强.二、教学任务分析本节课是义务教育课程标准实验教科书北师大版八年级(上)第一章《勾股定理》第一节第1课时. 勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用.本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.此外,历勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值.为此本节课的教学目标是:1.用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.2.让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.3.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.4.在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化历史,激励学生发奋学习.三、教学过程设计本节课设计了五个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业.第一环节:创设情境,引入新课内容:2023年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)意图:紧扣课题,自然引入,同时渗透爱国主义教育.效果:激发起学生的求知欲和爱国热情.第二环节:探索发现勾股定理1.探究活动一内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:问:你能发现各图中三个正方形的面积之间有何关系吗学生通过观察,归纳发现:结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫.效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望.2.探究活动二内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢(1)观察下面两幅图:(2)填表:A的面积(单位面积) B的面积(单位面积) C的面积(单位面积)左图右图(3)你是怎样得到正方形C的面积的与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)学生的方法可能有:方法一:如图1,将正方形C分割为四个全等的直角三角形和一个小正方形, .方法二:如图2,在正方形C外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积, .方法三:如图3,正方形C中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法, .(4)分析填表的数据,你发现了什么学生通过分析数据,归纳出:结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C的面积计算是一个难点,为此设计了一个交流环节.效果:学生通过充分讨论探究,在突破正方形C的面积计算这一难点后得出结论2.3.议一议内容:(1)你能用直角三角形的边长,,来表示上图中正方形的面积吗(2)你能发现直角三角形三边长度之间存在什么关系吗(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用,,分别表示直角三角形的两直角边和斜边,那么 .数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.(在西方文献中又称为毕达哥拉斯定理)意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理.效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力;2.通过作图培养学生的动手实践能力.第三环节:勾股定理的简单应用内容:例题如图所示,一棵大树在一次强烈台风中于离地面10m处折断倒下,树顶落在离树根24m处. 大树在折断之前高多少(教师板演解题过程)练习:1.基础巩固练习:求下列图形中未知正方形的面积或未知边的长度(口答):2.生活中的应用:小明妈妈买了一部29 in(74 cm)的电视机. 小明量了电视机的屏幕后,发现屏幕只有58 cm长和46 cm宽,他觉得一定是售货员搞错了.你同意他的想法吗你能解释这是为什么吗意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容.第四环节:课堂小结内容:教师提问:1.这一节课我们一起学习了哪些知识和思想方法2.对这些内容你有什么体会与同伴进行交流.在学生自由发言的基础上,师生共同总结:1.知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用,,分别表示直角三角形的两直角边和斜边,那么 .2.方法:(1) 观察—探索—猜想—验证—归纳—应用;(2)“割、补、拼、接”法.3.思想:(1) 特殊—一般—特殊;(2) 数形结合思想.意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动.效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识.第五环节:布置作业内容:布置作业:1.教科书习题1.1.2.观察下图,探究图中三角形的三边长是否满足初一数学整式的加减教案2教学目标:知识与技能目标:1.掌握矩形的概念、性质和判别条件。
《整式的加减》教学设计第一课时合并同类项教材分析:《整式的加减》(第一课时)合并同类项,这节课的教学内容有同类项的概念、合并同类项法则及其运用,它是学生学习了有理数运算、单项式和多项式的有关知识的基础上学习的,同类项及合并同类项的法则是学习整式的加减运算和一元一次方程的直接基础;而整式的加减运算既是“数与代数”领域中最基本的运算,又是今后学习整式的乘除、因式分解、分式、根式运算、方程及函数等知识的重要基础.所以,本节课具有承上启下的重要作用。
教学目标:1.知识目标:在具体情境中感受合并同类项的必要性,了解合并同类项的法则,能进行同类项的合并。
2.能力目标:通过具体情境导入同类项以及合并同类项的概念,经历合并同类项的过程,培养学生的观察、归纳等能力。
3.情感目标:在学习中培养学生分类、化繁为简等数学思想、方法,鼓励学生敢于发表自己的观点,从交流中获益。
教学重难点:【教学重点】找出同类项并正确合并。
【教学难点】准确合并同类项。
课前准备:学习工具、自己家的内部图片、PPT、智慧课堂等。
教学过程:一、情景引入师:昨天我们请同学们拍一拍自己的家,现在我们来看一看。
(图例)教师出示图片:这是不是你心目中的家的一部分呢?它之所以这么美,是因为分类摆放。
在数学学习中有时候我们也要将一些单项式进行分类。
【设计意图】通过图片的交流,使学生注意力高度集中,激发学习兴趣,并体会分类的必要性。
二、思考交流、理解概念1.同类项的思考和认识观察下列单项式,你觉得它们中哪些是同类?-a ; 2b ; ab ; 3a ; -7ba ; 5b2abc通过学生猜测,讨论,说出分类和分类标准,得到同类项的定义。
同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
游戏:找朋友a²mn xy 2-3pq³a³xy/2 pq-8pq³-nm 3q³p -4分析思考:两个单项式是否为同类项与系数无关、与单项式中字母的顺序无关。
第3课时整式的加减【知识与技能】掌握整式加减的一般步骤,熟练地进行整式的加减运算.【过程与方法】通过探究整式加减的一般步骤,培养学生观察、分析、归纳及概括能力.【情感态度】结合本课教学特点,教育学生热爱生活,热爱学习,激发学生观察,探究数学问题的兴趣. 【教学重点】整式的加减.【教学难点】归纳整式加减的一般步骤.一、情境导入,初步认识按照下面的步骤做一做:1.任意写一个两位数;2.交换这个两位数的十位数字和个位数字,又得到一个数;3.求这两个数的和.再写几个两位数重复上面的过程.这些和有什么规律?这个规律对任意一个两位数都成立吗?【教学说明】学习通过操作,初步感受整式的加减.二、思考探究,获取新知1.整式加减的一般步骤问题1按照下面的步骤做一做.教材第95页的“做一做”.【教学说明】学生通过导入的操作已经知道解决问题的方法,进一步感受整式的加减.问:在上面的两个问题中,分别涉及整式的什么运算?说一说你是如何运算的.通过这个问题得到整式加减的一般步骤.【归纳结论】进行整式加减运算时,如果遇到括号要先去括号,再合并同类项.2.整式的加减问题2计算:【教学说明】通过计算,使学生熟练地掌握整式的加减的计算方法.【归纳结论】几个整式相加减,通过用括号将一个整式括起来,再用加减号连接,然后去括号,合并同类项.3.整式加减的应用问题3我国出租车收费标准因地而异.甲市为:起步价6元,3千米后每千米收费为1.5元;乙市为:起步价10元,3千米后每千米收费为1.2元.(1)试问在甲、乙两市乘坐出租车S(S>3)千米的价钱差是多少元?(2)如果在甲、乙两市乘坐出租车的路程都为10千米,那么哪个市的收费标准高些?高多少?【分析】先把甲、乙两市乘坐出租车S(S>3)千米的价钱分别用含S的式子表示出来,再求甲、乙两市的价钱差.【教学说明】学生分析、思考,与同伴交流,感受整式的加减在实际问题中的应用.问题4已知M=4x2-3x-2,N=6x2-3x+6,试比较M与N的大小关系.【分析】比较两个式子的大小,一般采用“作差法”,即先将两式作差,再把所得的差与0比较,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.【教学说明】学生通过思考、分析,与同伴进行交流,进一步体验知识的综合运用.三、运用新知,深化理解4.已知A=-2x2+x-6,B=4+3x+5x2.求:(1)A+B;(2) A-B;(3)3A-B.5.某学生计算2x2-5xy+6y2加上某多项式时,由于粗心,误算为减去这个多项式而得到7y2+4xy+4x2,你能帮他求出正确的答案吗?6.一个长方形的宽为a,长比宽的2倍少1.(1)写出这个长方形的周长;(2)当a=2时,这个长方形的周长是多少?7.蔬菜供应站以每千克a元的价格购进某种蔬菜m千克,如果按10%的损耗计算,若以5元/千克的价格出售,那么利润是多少?【教学说明】学生自主完成,检测对整式的加减有关知识的掌握情况,加深对新学知识的理解,使学生学会综合运用所学的知识,对学生的疑惑教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.四、师生互动,课堂小结1.师生共同回顾整式加减的一般步骤.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流进行知识的提炼和归纳,加深对知识的理解.1.布置作业:从教材“习题3.7”中选取.2.完成练习册中本课时的相应作业.本节课从学生探究整式加强的一般步骤,到运用整式的加减解决实际问题,体验应用知识的成就感,激发学生学习的兴趣.6.2 立方根一、新课导入:1.导入课题:要制作一种容积为27m3的正方体形状的包装箱,这种包装箱的棱长应该是多少?为了解决这一问题,这节课我们就来学习立方根(板书课题).2.学习目标:(1)知道什么是立方根,什么是开立方,并能运用开立方与立方之间互为逆运算的关系求一个数的立方根.(2)知道立方根的性质,会用符号正确表示一个数的立方根.(3)能用计算器求立方根,知道立方根的小数点的位置移动规律.(4)类比平方根来学习立方根,体会类比思想.3.学习重、难点:重点:立方根的概念.难点:立方根与平方根的区别与联系.二、分层学习1.自学指导:(1)自学内容:课本P49至P50例题为止的内容.(2)自学时间:8分钟.(3)自学要求:认真阅读课文,并做好圈点标记,类比平方根来理解相关内容.(4)自学参考提纲:①什么叫立方根(或三次方根)?什么叫开立方?开立方与立方之间有何关系?②根据开立方与立方的关系,完成P49“探究”中的填空.③根据填空的结果,归纳出立方根的性质,你能说说它与平方根的性质有什么不同吗?④一个数a的立方根,用符号a表示,读作三次根号a.⑤符号a中,3是根指数,能省略吗?(不能)根指数在什么情况下可以省略?a 是实数,这里的a还需满足“a≥0”的条件吗?⑥完成P50“探究”,从中可以归纳出:对于任意数a,都有-a=-a.⑦求下列各式的值:1000-0.01-1 -64 27上面4个小题的答案依次为:10,-0.1,-1,-4 32.自学:同学们可结合自学指导进行学习.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况.②差异指导:根据学情进行相应指导.(2)生助生:小组内相互交流和纠错.4.强化:(1)立方根的概念,性质和符号表示.(2)3-a=-3a.(3)利用开立方与立方互为逆运算求一个数的立方根.1.自学指导:(1)自学内容:课本P50倒数第三行至P51“练习”之前的内容.(2)自学时间:6分钟.(3)自学要求:认真阅读课文,熟悉用计算器求立方根的方法;小组合作探究立方根的小数点的位置移动规律.(4)自学参考提纲:23、523、4等开方开不尽的数也都是无限不循环小数,可以用夹逼法求其近似值,也可以用计算器求其近似值.②若a、b是两个连续整数,且a<50,求a+b的值.(7)③用计算器计算:0.002160.216216216000上面4小题答案依次为:0.06,0.6,6,60.④由③中计算结果,可以归纳出被开方数的小数点的移动与它的立方根的小数点的移动规律:被开方数的小数点每向右或向左移动3位,它的立方根的小数点就相应地向右或向左移动1位.⑤用计算器计算100=4.642(精确到0.001),并利用④)中总结的规律填空:①0.1=0.4642;②0.0001=0.04642;③100000=46.42.2.自学:同学们可结合自学指导进行学习.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况.②差异指导:根据学情进行相应指导.(2)生助生:小组内同学间相互交流、纠错.4.强化:被开方数的小数点与它的立方根的小数点的位置移动规律.三、评价1.学生的自我评价:学生代表交流学习目标的达成情况及学习的感受等.2.教师对学生的评价:(1)表现性评价:教师对学生在本节课学习中的整体表现进行总结和点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学要突出体现“创设情境——提出问题——建立模型——解决问题”的思路,提倡学生自主学习,利用平方根的知识类比学习立方根的知识.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)审查下列说法:(1)2是8的立方根;(2)±4是64的立方根;(3)-1 3是-127的立方根;(4)(-4)3的立方根是-4,其中正确的个数是(C)A.1个B.2个C.3个D.4个2.(10分)下列各式:(1)-3;(2) 3;(3)()33-3110中,有意义的有(D)A.1个B.2个C.3个D.4个3.(10分)已知0.343=0.7,则343000=70; -0.000343=-0.07.4.(20分)求下列各数的立方根:(1)-0.008;(2)64125; (3)106; (4)(-110)3.解:(1)-0.008=-0.2;(2)6412545;(3)6102=100;(4)33110⎛⎫⎪⎝⎭-=-110. 5.(20分)求下列各式的值:二、综合运用(20分) 6.(10分)求下列各式中x 的值: (1)x 3=0.008; (2)x 3-3=38; (3)(x-1)3=64. 解:(1)∵0.23=0.008,∴x=0.2. (2)x 3=278,∵32⎛⎫ ⎪⎝⎭3=278,∴x=32. (3)∵43=64,∴x-1=4,∴x=5. 7.(10分)比较下列各组数的大小: (1)9 2.5; (2)332. 解:(1)∵(93=9,2.53=15.625,∴(93<15.625, ∴9(2)∵(3)3=3,3·(32)2=278, ∴3<278, ∴3332. 三、拓展延伸(10分) 8.若x 2y =4,2x y +的值.解:∵x 2y ∴x=23,y 2=16, ∴x=8,y=±4,∴x+2y=8+2×4=16或x+2y=8-2×4=0, 2x y +162x y +0=0.第2章整式加减1. 用字母表示数【知识与技能】1.在现实情境中理解用字母表示数的意义.2.能用字母运算律和计算公式.3.让学生在探索基本数量关系的过程中,建立符号意识.【过程与方法】从一个学生熟悉的实例引入用字母表示数,并通过各种师生活动加深学生对“奇偶数”的概念和用字母表示数的意义的理解;并使学生会用字母表示数和数量关系,使学生进一步发展符号感.【情感态度】从学生的生活实际中提出问题,既体现知识的学习过程,又体现知识的应用过程,同时还有利于激发学生的学习兴趣,培养学生思维严谨的良好素养.【教学重点】重点是会用字母表示数和规律.【教学难点】难点是探索一般规律并用字母表示.一、情境导入,初步认识【情境1】实物投影,并呈现问题:科学家爱因斯坦上小学的时候,在一次数学课中,发现了下列等式:1+2=2+1,3.5+5.6=5.6+3.5,12+23=23+12.他认为,这是数学运算的一个重要规律,于是就把这个规律告诉了他的老师和同学,得到了大家的赞赏.你能发现这个规律吗?你能把这个规律用简明的方法表示出来吗?你还能用简明的方法表示哪些运算规律?【情境2】实物投影,并呈现问题:游戏:如果你能把你想到的一个数扩大2倍后再减去2的差的一半告诉我,我就能猜到你想到的是什么数,信吗?试试看.老师为什么能猜到你想到的数呢?【教学说明】学生独立思考后,小组讨论,教师注意引导学生发现用字母表示数的意义,从而会用字母表示数和规律.情境1中有理数加法的交换律,用字母表示为:a+b=b+a,还可以表示:加法结合律(a+b)+c=a+(b+c),乘法结合律(a×b)×c=a×(b×c),乘法交换律a×b=b×a,乘法分配律a×(b+c)=a×b+a×c.情境2中学生体验并感受到了用字母表示数的优越性.【教学说明】通过现实情景再现,让学生体会到用字母表示数的意义,发展学生的数学符号意识.通过前面的情景引入,激发学生的探究欲望,并使学生获得大量的感性材料,有趣的情境也激发了学生学习的兴趣.二、思考探究,获取新知1.奇数和偶数问题1什么是奇数?什么是偶数?问题2用字母如何表示奇数和偶数?【教学说明】学生通过阅读教材和观察生活,在经过观察、分析后能得出结论.2.字母表示数的意义问题用字母表示数有什么作用?【教学说明】一方面让学生经历用字母表示数,在用字母表示数和数量关系的过程中体会用字母表示数的意义,另外发展学生运用符号的意识.【归纳结论】用字母所表示的数是某个范围内所有数的代表,具有普遍性,又是这个范围内的任意一个数,具有任意性.因此,用字母表示数,可以把数和数量关系简明地表示出来.用字母可以简明地表示数学运算律、公式、数量关系、未知数等.三、运用新知,深化理解1.字母与数相乘的3v表示什么,下面同学的说法中,正确的个数是()①我一小时走v千米,3小时共走3v千米;②小明说小彬一分钟跑v米,3分钟跑3v 米;③晶晶说一个瓶子体积共v升,3个同样的瓶子体积是3v升;④媛媛说老虎一顿吃3公斤肉,v顿吃3v公斤肉.2.下列用字母表示“分数的分子、分母同乘以不等于0的数,分数的值不变”正确的是()3.请用字母表示:(1)三角形底边为a,高为h,面积为s,则s= ;(2)梯形的上底为a,下底为b,高为h,面积为s,则s= ;(3)圆的半径为R,面积为s,周长为L,则S= , L= .4.如图,用字母表示图中阴影部分的面积:5.如图所示的是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中由个基础图形组成.【教学说明】通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好地巩固新知识.通过本环节的讲解与训练,让学生对利用新知识解决一些简单问题有更加明确的认识.【答案】1.A 2.D四、师生互动,课堂小结1.什么叫做奇数?什么叫做偶数?2.用字母表示数有什么意义?3.通过这节课的学习,你还有哪些疑惑,大家交流.【教学说明】引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.1.布置作业:从教材第57页“练习”中选取.2.完成同步练习册中本课时的练习.本节课精心预设教学的各个环节,给学生提供了较大的思考空间,创设了多个贴近学生认知规律且适合学生学习的教学情境,使学生在现实情境中了解用字母表示数的意义,理解奇偶数的概念,掌握奇偶数的表示方法和能用字母来表示数和数量关系,为代数式的学习打好基础,同时发展了学生的符号意识.。
初中七年级数学《整式的加减》教案3篇学问与技能:1、在现实情境中理解整式的加减实际就是合并同类项,有意识地培育他们有条理的思索和语言表达力量。
2、了解同类项的定义及合并法则,且会运用此法则进展整式加减运算。
3、知道在求多项式的值时,一般先合并同类项再代入数值进展计算。
过程与方法:通过详细情境的观看、思索、类比、探究、沟通和反思等数学活动培育学生创新意识和分类思想,使学生把握讨论问题的方法,从而学会学习。
情感与态度与价值观:通过学生自主学习探究出合并同类项的定义和法则,培育了学生的自学力量和探究精神,提高学习兴趣。
感受数学的形式美、简洁美,感受学数学是美的享受,爱学、乐学数学。
教学重点:娴熟地进展合并同类项,化简代数式。
教学难点;如何推断同类项,正确合并同类项。
教学用具:多媒体或小黑板、教学过程:一、创设情景问题:在甲、乙两面墙壁上,各挖去一个圆形空洞安装窗花,其余局部刷油漆,请依据图中的尺寸,算出:(1)甲乙油漆面积的和。
(2)甲比乙油漆面积大多少。
(处理方式:①学生思索片刻②找学生代表沟通自己的解答③教师汇总学生的解答)板书:(1)(2ab-πr2)+(ab-πr2)或(2ab+ab)-(πr2+πr2 )(2) (2ab-πr2)-(ab-πr2)(此时提问学生:这3个式子都是什么式子?在学生答复的根底上引出课题—从本节课开头来学习:2.3整式的加减。
并板书)二、探求新知教师自问:如何计算(1)和(2)两个式子呢?接着解答:本节课来学习2.2.1合并同类项(此时板书课题——1.合并同类项)1、同类项的概念观看多项式(2ab+ab)-(πr2+πr2 )中的项:2ab、ab 的特点。
学生沟通、争论。
③师生总结:(这就是我们今日所要介绍的同类项,此时板书:1.同类项的概念)所含字母一样并且一样字母的指数也一样的项叫做同类项。
几个常数项也是同类项。
强调:①所含字母一样②一样字母的指数也一样简称“两同”。
北师大版数学七年级3.4 整式的加减(1) 教学设计课题 3.4 整式的加减(1)单元第三单元学科数学年级七学习目标1.在具体的情境中了解合并同类项的法则,并能合并同类项.2.领悟判断同类项的两条标准,会识别同类项.3.经历合并同类项的过程,体验探求规律的思想方法.4.培养学生观察、分析、归纳和动手解决问题的能力,初步使学生了解数学的分类思想;通过合并同类项,体验化繁为简的数学思想.重点理解同类项的概念,并能正确进行同类项的合并.难点找准同类项;能熟练地进行同类项的合并.教学过程教学环节教师活动学生活动设计意图导入新课1、教师出示课件:看一看:教师以生活中实际情景引入,创设情景:教师提问:(1)药店药品的摆放?(2)如果有一罐硬币(分别为一角、五元一元的),你会如何去数呢?通过解决问题,引入本课:整式的加减(1):合并同类项。
学生通过思考生活中的情景,从而引入整式的加减及相关概念教师从学生身边的情境为载体,激发学生的积极性,使学生从感同类项,进一步理解合并同类项的意义,从而自然引入新课.,讲授新课2、出示课件做一做:教师引导学生解决问题:如图的长方形由两个小长方形组成,求这个长方形面积.上图长方形的面积可以用代数式表示为8n+5n,或(8+5)n,从而8n+5n=(8+5)n=13n.这就是说当我们计算8n+5n时,可以将他们的系数让学生自己通过观察大长方形的形成过程,探索、分析、交流、辩证、归纳,总结同类项概念及合并同类项的实质,分组交流、汇报发现,然后教师1.进一步丰富整式的实际背景,使学生再一次体会单项式、多项式及整式的概念,并借此明确同类项的概念及合并同类项的方法。
2.通过解决问题,从而让学生合并同类项时,把同类项的系数相加,字母和字母的指数不变. 例3 合并同类项:归纳总结“合并同类项”的方法:一找,找出多项式中的同类项,不同类的同类项用不同的标记标出;二移,利用加法的交换律,将不同类的同类项集中到不同的括号内;三合,将同一括号内的同类项相加即可. 3.出示课件 试一试 :鼓励学生尝试用第二种方法解得出方法一,先化简再求值会更简便例3. 求代数式-3x ²y+1.5x-1.5x ²y+3.5x ²y-7的值, 其中x=1,y=0师:试试用两种方法去解该题,你又发现了什么?总结提高学生对同类项及合并同类项的认知。
教 学设计 与反思课前任务目标:(看微课后的)1、初步认识同类项的概念,2、会辨别几个代数式是否为同类项课堂教学目标:1. 加深对同类项的概念的理解,会判断几个代数式是否是同类项。
2. 在具体的情景中,通过探究、交流、反思等活动获得合并同类项的法则,体 验探求规律的思想方法:并熟练运用法则进行合并同类项的运算,体验化繁 为简的数学思想。
学生在前面两节课已经学习了字母表示数、单项式、单项式系数、多项式、多 项式的项以及常数项等相关概念;并且学习了有理数加减运算及其运算律,对 数的运算律已经非常熟悉,为本课学习同类项、合并冋类项的概念以及合并同 类项法则奠楚了知识基础。
七年级的学生精力旺盛,比较好动,需要教师用有 趣的东西(平板电脑)来把他们的注意力吸引到课堂上。
教学过程所在学校 数学 年级七年级 教师北师大七年级上册《整式的加减一》 版本、册数 课目爼称内容 措施 教学重点 同类项的槪念、合并同类项的 法则及应用小组合作与平板配合内容措施教学难点 1获得合并同类项的法则 2•能熟练的进行合并同类项小组合作与平板配合信息技术应用策略1. 同学提前观看微 课,并做相应的课 前自测2. 利用平板点名的 平板拍照并且对照两个同学,学生进行 点拨,帮助学生解 决合并同类项过程 中遇到的困难 信息技术应用策略1.利用平板点名的方 式2. 利用平板拍照的功 能教学目标学习者分 析教学环节教学内容活动设讣活动目标信息技术使用及分析课前课中环节一、引入课题、复习旧知环节二、展示交流环节三■探究活动微课《同类项》和课前自测题引入课题,复习旧知展示课前自测题的情况纠错课前自测题,对同类项概念的深入理同类项V 两无关:规定:劣U断下歹0J各组是否为Pcbc 与QC < :(3pq-tj3qp (与一2n2m <<g> 12 > J 兀((X0O・久m (任务1:听微课《同类项》完成测验任务2:完成预习学案一边听音乐,一边感受生活中处处有数学,数学来源入数引入课题,并进一步复习旧知展示课前自测题的情况,给做题的同学善意的提醒下列各组数中是同类项的是(AxX * j y B、2x~y3与x*yC、-Zab ba'a,与a,D、从课前自测一的错误引导深化同类项的概念增加课中测试,及时查看学生掌握知识的情况1.学生初步认识同类项2.检测学生的学习情况1.激发学生的学习热情和学习知识的欲望2.学生从已有知识出发,降低知识难度倾听了解本节学习反馈情况,明确问题,榜样学习1.结合课前学生学情反馈再次加深对同类项概念的理解2.学生完成上而的梳理后对同类项深刻的认识后,需要再次检査;ft掌握情况。
整式的加减数学教案优秀5篇《整式的加减》教学设计篇一教学目标:1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
过程与方法:通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。
分层次教学,讲授、练习相结合。
情感、态度、价值观:培养学生观察、归纳、概括及运算能力教学重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
教学难点:单项式概念的建立。
教学过程:一、复习引入:1、列代数式(1)若正方形的边长为a,则正方形的面积是;(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为;(3)若x表示正方形棱长,则正方形的体积是(4)若m表示一个有理数,则它的相反数是;(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款元。
(让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。
)2、请学生说出所列代数式的意义。
3、请学生观察所列代数式包含哪些运算,有何共同运算特征。
由小组讨论后,经小组推荐人员回答,教师适当点拨。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。
)二、讲授新课:1.单项式:通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。
然后教师补充,单独一个数或一个字母也是单项式,如a,5。
2.练习:判断下列各代数式哪些是单项式?(1)x?12;(2)abc;(3)b2;(4)-5ab2;(5)y;(6)-xy2;(7)-5。
(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)3.单项式系数和次数:直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。
《整式的加减》中的数学思想学习数学不仅要学习数学知识,更重要的还要学习数学思想,因为数学思想是数学的灵魂,它在指导数学学习和研究有着十分重要的作用.下面以《整式的加减》一章中的几个数学思想为例说明之.一、整体处理思想整式加减的实质是同类项的合并,而同类项的合并实际上是一种整体的变形.如计算:3 +2 =5.这里我们实际上是把作为一个整体,然后将这个整体的系数相加.这种解决问题的方法就是数学中的整体思想方法,利用它进行解题可以收到化难为易,化繁为简的效果.【例1】已知-2x-5=0,求 6x-3 +1的值.【分析】要求所求代数式的值,一般方法是先求x的值,再代入计算.但就目前我们所学的知识还不足以求出x的值,怎么办?考虑到已知和所求代数式的关系,运用整体思想,问题便可以迎刃而解.【解】把-2x作为整体,则已知就是-2x=5,求值式就是-3(-2x)+1,故原式=-3×5+1=-14.二、逆向思维思想在本章中学习的合并同类项法则:几个同类项相加减,把它们的系数相加减,字母和字母的指数不变.如计算:3-2+5=(3-2+5),这里实际上就是逆向运用乘法对加法的分配律,其中所体现的思想就是逆向思维思想.这种思想通常就是我们所说的正难则反策略,运用这种思想可使一些“山穷水复疑无路”的问题变成“柳暗花明又一村”.【例2】甲、乙、丙三个箱子内共有小球384个,先由甲箱取出若干个球放入乙、丙箱内,所放个数分别为乙、丙箱内原有的个数,继而由乙箱取出若干个球放进甲、丙两箱内,最后由丙箱取出若干个球放入甲、乙两相内,放法同前,结果三箱内的小球个数恰好相等.问甲、乙、丙各箱内原有小球各是多少个?【分析】直接入手需要设元,列方程(组),但列方程(组)时却无从下手.从最后三箱的小球相等如手,易知最后每箱各有小球 384÷3=128(个);由后到先三次调动过程各箱中的球数容易列出下表:显然,由表立知甲、乙、丙三箱原有小球分别为208个、112个、64个.三、化归思想在进行整式加减运算时,实际上进行的是同类项的合并,而同类项的合并实际上是系数的相加减,因此,整式的加减最终要化归为数的加减来解决.如上述所说的计算:3-2+5=(3-2+5)=6.这就是化归思想.运用化归思想可以把一些陌生的问题转化为我们所熟悉的、或已经解决过的问题.【例3】已知A=-3-2mx+ 3x+1,B=2 +mx-1,且2A+3B的值与x无关,求m的值.【分析】把A、B所表示的多项式代入 3A+3B,问题化归为整式的加减运算,即3A+3B=3(-3 -2mx+3x+1)+2(2 +mx-1)=(6-m)x-1,这是一个我们所熟悉的形如ax+b的代数式,对此我们早已知道,当a=0时,ax+b 的值与x无关,故由6-m=0,得m=6.四、字母代数思想字母表示数是代数的主要特征和重要标志,通过字母表示数有利发现问题的本质和规律,从而迅速找到问题的解答方案.【例4】小明背对小亮,让小亮按下列四个步骤操作:第一步分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第二步从左边一堆拿出两张,放入中间一堆;第三步从右边一堆拿出一张,放入中间一堆;第四步左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌的张数是.【解析】来三堆牌的张数为x,则操作第二步后,中间的牌数为x+2,左边为x-2;操作第三步后,中间的牌数为x+3;操作第四步后,中间的牌数为x+3-(x-2)=x+3-x+2=5.。
3.4 整式的加减(第一课时)[教学目标]▲知识目标:使学生理解同类项的概念和合并同类项的意义,学会合并同类项。
▲能力目标:培养学生观察、分析、归纳和动手解决问题的能力,初步使学生了解数学的分类思想。
▲情感目标:借助情感因素,营造亲切和谐活泼的课堂气氛,激励全体学生积极参与教学活动。
培养他们团结协作,严谨求实的学习作风和锲而不舍,勇于创新的精神。
[教学重点]同类项的概念和合并同类项的法则[教学难点]学会合并同类项[教学过程](一)创设情境,引入课题1.我首先设计了一个学生非常熟悉的一个生活场景:教室里非常混乱,有书本、扫把、粉笔等东西,问学生如何整理。
学生很容易回答出:将扫把放到一起,将书本摆放整齐…。
我问学生为什么这样做,引导学生意识到“归类”存在于生活中。
由学生举例在生活中那些运用到归类方法。
2.教师:我想和同学们进行一场比赛,看谁最快得到答案,你们愿意吗?学生:(很好奇、兴奋)愿意。
出示题目:求代数式—4x2+7 x + 3 x2 —4 x + x2的值,请一学生任意说出一个一至两位整数,教师和另一学生比赛,结果教师很快说出答案。
在学生的惊讶声中教师说:“你们想知道为什么吗?学了这节课后你们也可以像老师一样算得那么快了。
”(用师生竞赛的方式,充分调动了学生积极参与,激发了学生求知欲望)3.根据某学校的总体规划图(单位:m),计算这个学校的占地面积。
提出让学生尝试用不同的方法。
提问:两种方法的结果是否一样?如果一样,那么是不是又可以得到这样的一个等式:100a+200a+240b+60b = (100+200)a+(240+60)b---①让学生观察这个等式,使其从中发现规律、联系。
出示:由等式我们可以知道,计算100a+200a,可以先把它们的系数相加,再乘a;计算240b+60b,可以先把它们的系数相加,再乘以b。
(创设问题情境,选择新旧知识的切入点,通过启发提问,构造问题悬念,激发学生兴趣,并自然引出课题。
3.2整式的加减第1课时合并同类项1.在具体情境中感受合并同类项的必要性,理解合并同类项法则所依据的运算律;2.了解合并同类项的法则,能进行同类项的合并.重点了解同类项的定义以及合并同类项的法则.难点准确理解合并同类项法则并进行计算.一、导入新课课件出示生活中各种水果的图片,让学生根据其本身具有的不同特征对其进行分类.教师:我们常常把具有相同特征的事物归为一类.今天我们要将生活中的分类思想应用到数学中.二、探究新知1.同类项的概念课件出示问题:图3-6中的长方形由两个小长方形组成.(1)利用图3-6化简8n+5n,并用运算律解释你的化简结果.(2)你能用类似的方法化简2xy+3xy及-7a2b+2a2b吗?根据乘法对加法的分配律可得8n+5n=(8+5)n=13n,2xy+3xy=(2+3)xy=5xy,-7a2b+2a2b=(-7+2)a2b=-5a2b.把你认为类型相同的式子归为同一类,并说出分类依据.8n与5n,2xy与3xy,-7a2b与2a2b先让学生自己独立思考,再在小组内讨论说出分类的依据.教师点评并进一步讲解:所含字母相同,并且相同字母的指数也相同的项,叫做同类项.强调判断同类项的方法:①两相同:字母相同,相同字母的指数也相同;②两无关:与系数无关,与字母顺序无关;③所有的常数项都是同类项.2.合并同类项教师:同类项之间能否进行运算呢?课件出示教材第90页图3-8,提出问题:图3-8的长方形由两个小长方形组成,求这个长方形的面积.学生独立完成后汇报答案,教师进一步讲解:长方形的面积可用代数式表示为8n+5n,或(8+5)n,从而8n+5n=(8+5)n=13n.引导学生说明:同类项之间能进行运算,把同类项合并成一项,叫做合并同类项.让学生进一步观察:在合并同类项的过程中,它们的系数、字母和字母的指数有什么变化?学生归纳出合并同类项的方法,教师进一步说明:合并同类项的法则:同类项的系数相加,字母和字母的指数不变. 课件出示例1:(1)-xy 2+3xy 2;(2)7a +3a 2+2a -a 2+3.学生独立完成后,小组讨论合并同类项的步骤:(1)发现同类项(找);(2)确定各同类项系数(移);(3)合并同类项(并).课件出示例2:例2 合并同类项:(1)3a +2b -5a -b ;(2)-4ab +13 b 2-9ab -12 b 2课件出示练习:求代数式-3x 2y +5x -0.5x 2y +3.5x 2y -2的值,其中x =15 ,y =7.说说你是怎么做的,并与同伴进行交流.三、举例分析例1 (课件出示教材第90页例1)例2 (课件出示教材第91页例2)学生独立完成后汇报答案,教师点评.四、课堂练习1.合并同类项:6xy-10x2-5yx+7x2.2.求x2+2x-2y2-y-x2+2y2的值,其中x=1,y=2.3.教材第89页“随堂练习”第1~3题.【答案】1.-3x2+xy 2.原式=2x-y,当x=1,y=2时,原式=2×1-2=0五、课堂小结1.什么是同类项?其判定方法是什么?2.合并同类项的定义及法则分别是什么?3.怎样合并同类项?六、课后作业教材第93页第1,2题.本节课的内容是合并同类项,是本章的一个重点知识,是以后学习解方程、解不等式的基础.课堂中,用生活中的事例导入新课,充分调动了学生学习的积极性,激发了学生的求知欲.随后,通过教师的引导,让学生一步步总结出了同类项的定义、合并同类项的定义及法则.本节课充分尊重学生的主体地位,积极鼓励学生独立思考,自主探索,合作交流,让同学们体验和经历知识的发生、发展、形成和应用的过程,学会获取新知识的方法.第2课时去括号1.掌握去括号的法则,并能根据去括号的法则进行运算;2.培养学生观察、类比、归纳的能力.重点运用去括号的法则进行化简.难点正确进行括号前面是“-”号的运算.一、导入新课问题1:什么叫同类项?问题2:若149xm y4和34x5y2n是同类项,则m=________,n=________,它们的和为________.指名学生回答,教师点评.二、探究新知1.去括号法则课件出示:(1)13+2×(7-5);(2)13-2×(7-5).教师:谁能用两种方法分别解这两题?学生回答,教师进一步提出:运用分配律可以去括号.教师:若将数换成代数式,又会怎么样呢?课件出示:在上一节用小棒拼摆正方形时,我们得到了几个不同的代数式:x+x+(x+1),4+3(x-1),4x-(x-1),3x+1,它们都表示拼摆x个正方形所需小棒的根数,因此应该相等.对此,你能用运算律加以解释吗?与同伴进行交流.利用乘法分配律去括号,可得x+x+(x+1)=x+x+x+1=3x+1;4+3(x-1)=4+3x-3=3x+1;4x-(x-1)=4x+(-1)(x-1)=4x+(-1)x+(-1)(-1)=4x-x+1=3x+1.三个代数式都可化为3x+1的形式,因此,这四个代数式是相等的.教师:仿照刚才的两种方法,分别化简这两道题.利用乘法分配律将下列各式去括号.去括号前后,括号里各项的符号有什么变化?与同伴进行交流.(1)a+(b+c);(2)a-(b+c);(3)a+(b-c);(4)a-(b-c).学生完成后汇报答案,教师点评,引导学生思考:(1)我们是怎么得到多项式去括号的方法的?(2)这两道题中的第(1)小题与第(2)小题的去括号有何不同?(3)你能总结去括号的法则吗?学生讨论后回答,教师讲评并课件出示:括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.为了便于记忆,教师引导学生共同完成下面的顺口溜:去括号,看符号:是“+”号,不变号;是“-”号,要变号.课件出示例3:化简下列各式:(1)4a-(a-3b);(2)a+(5a-3b)-(a-2b)(3)3(2xy-y)-2xy;(4)5x-y-2(x-y)你认为去括号时要注意什么?与同伴进行交流.三、课堂练习1.教材第91页“随堂练习”第1,2题.2.(1)9a+2(6a-a);(2)9a-2(6a-a).【答案】(1)原式=9a+10a=19a(2)原式=9a-10a=-a四、课堂小结1.去括号的法则是什么?五、课后作业教材第93页第5,6,7题.本节课的内容是去括号,是本章的一个重点知识,是以后学习解方程、解不等式的基础.去括号看似容易,实际上是最容易出错的地方.课堂中,用自然数去括号的计算导入代数式去括号的问题.随后,让学生通过比较归纳得出去括号时符号的变化规律,将新知识转化为已经学过的知识,从而构建新的知识体系,在此基础上要求学生用自己的语言叙述这个规律,有利于提高学生数学语言的表达能力.第3课时整式的加减1.让同学们从实际背景中去体会进行整式加减的必要性,会进行整式的加减运算;2.经历探索整式加减运算法则的过程,进一步培养学生观察、归纳、运算的能力.重、难点掌握去括号法则.一、导入新课课件出示问题:(1)任意写一个两位数;(2)交换这个两位数的十位数字和个位数字,又得到一个数;(3)求这两个数的和.二、探究新知1.整式的加减教师:再写几个两位数重复上面的过程.这些和有没有规律?如果有规律,这个规律对任意一个两位数都成立吗?如果用字母表示两位数,结果会怎样?学生小组讨论完毕后,派代表回答,教师点评.课件出示问题:(1)任意写一个三位数;(2)交换它的百位数字与个位数字,又得到一个三位数;(3)两个数相减.教师:两个数相减后的结果有什么规律?这个规律对任意一个三位数都成立吗?如果用字母表示三位数,结果会怎样?在上面的两个问题中,分别涉及整式的什么运算?说一说你是如何运算的,并与同伴进行交流.学生小组讨论完毕后,派代表回答,教师点评,进一步引导学生总结归纳:整式的加减实质上就是去括号后合并同类项,运算的结果是一个单项式或一个多项式.课件出示例4计算:(1)2x 2-3x +1与-3x 2+5x -7的和;(2)-x 2+3x -12 y 2与-12 x 2+4xy -32 y 2的差.学生独立完成后汇报答案,教师点评,进一步引导学生得出:进行整式加减运算时,如果遇到括号要先去括号,再合并同类项.三、课堂练习计算:(1)(4k 2+7k )+(-k 2+3k -1);(2)(5y +3x -15z 2)-(12y +7x +z 2);(3)7(p 3+p 2-p -1)-2(p 3+p );(4)-(13 +m 2n +m 3)-(23 -m 2n -m 3).【答案】(1)原式=3k 2+10k -1 (2)原式=-16z 2-4x -7y (3)原式=5p 3+7p 2-9p -7 (4)原式=-1四、课堂小结1.整式加减运算的实质及步骤是什么?五、课后作业教材P93~P94第6、7、9题.其实整式的加减本质上就是合并同类项的问题,重点是让学生较好的记住法则,依据法则去解决问题.只是学生的基本计算能力有待加强,计算出现的错误比较多,说明学生计算的基本功有待加强.有理数的学习不够优秀是本章学习的一大难题.。
《整式的加减》中的数学思想教学目标:1、通过对各题型的理解,掌握方程、整体、类比、化归的思想2、能运用数学思想解题教学重点:1、方程思想:根据题意列出字母满足的方程,通过解方程求出问题答案的思想2、整体思想:将具有共同特征的某一项或某一类看成整体的思想3、类比思想:数的运算性质整式也适用,把数与整式进行类比的思想4、化归思想:从几个简单的情况归纳出一般的规律。
一、回顾二、新授例1、 若3x m +5y 2与x 3y n 的和是单项式,求m n 的值.[解析] 根据同类项的概念.相同字母的指数相同解:⎩⎨⎧m +5=3,n =2,解得⎩⎨⎧m =-2,n =2.所以m n =(-2)2=4.注意:底数为负数时要用括号括起来数学思想:方程思想例2、已知:x 2+5x+5=2,求2x 2+10x+2的值解:由题意得:x 2+5x=-32x 2+10x+2=2(x 2+5x)+2=2×(-3)+2=-4数学思想:整体思想注意:把x 2+5x 看成整体,用括号括起来例3 已知A =3x 2-x +2,B =x +1,C =14x 2-49,求3A +2B -36C 的值,其中x =-6.[解析] 如果把x 的值直接代入,分别求出A ,B ,C 的值,然后再求3A +2B -36C 的值显然很麻烦,不如先把原式化简,再把x 值代入计算.解:3A +2B -36C =3(3x 2-x +2)+2(x +1)-36⎝ ⎛⎭⎪⎫14x 2-49 =9x 2-3x +6+2x +2-9x 2+16=-x +24.当x =-6时,原式=-(-6)+24=6+24=30.注意:几个整式相加减时,通常先把每一个整式用括号括起来,再用加减号连接 数学思想:类比思想例四观察下列图形:它们是按一定规律排列的,依照此规律,第2012个图形中共有________个五角星数学思想:特殊与一般的思想(化归思想)练习4三:练习巩固1、;2的值,其中)643(31)14(3多项式232-=++-+-x x x x x 2、的值12123求,2x x 3已知22++=+x x 12,12322++-=+-=x x B x x A计算多项式A-2B四、总结归纳:方程思想整体思想类比思想化归思想注意:(1)几个整式相加减时,通常先把每一个整式用括号括起来,再用加减号连接,得到一个含有括号的多项式。
七年级数学《整式的加减》教案七年级数学《整式的加减》教案一数学活动一、内容和内容解析1.内容活动1 用火柴棍摆放图形,探究火柴棍的根数与图形的个数之间的对应关系;活动2 探究月历中数之间所蕴含的关系和变化规律.2.内容解析本节课的数学活动将第二章“整式的加减”所学知识应用于实际,进一步用整式表示数量关系,用整式的加减运算进行化简,是整式与整式加减的应用.两个数学活动综合运用整式和整式的加减运算,表示具体情境中的数量关系和变化规律.活动1中的核心问题是寻求三角形的个数与火柴棍根数之间的对应关系,问题的本质是变化与对应.由于观察图形时入视的角度不同,规律的显现方式不同,得到的表达形式不同,但经过整式的加减运算后得到的结论是唯一确定的.活动1先从图形的特殊情况入手,体现由特殊到一般地观察、分析、判断、归纳的思维活动过程.在探究的过程中体现借助于图形的变化规律进行思考和推理的过程,体现借助于图形的变化规律来解决实际问题的优越性.活动2应用整式的加减探究月历中数之间的规律:(1)月历中数的排列规律;(2)由数的排列规律引出运算规律,应用整式的加减进行化简,表示出一般规律;(3)如何设字母可以简化表示方法和运算.基于以上分析,可以确定本节课的教学重点:用整式表示实际问题中的数量关系,掌握数学活动中由特殊到一般的探究方法.二、教材解析本套教科书专门设计了“数学活动”专栏,旨在为学生提供探索的空间,发展学生的思维能力.本节课安排了两个有趣的数学活动.其中活动1从一个开放性的问题入手“如图1所示,用火柴棍拼成一排由三角形组成的图形.如果图形中含有n个三角形,需要多少根火柴棍?”引发学生的思索和探究.问题中并没有先问“图形中含有2,3,4个三角形,分别需要多少根火柴棍?”而是直接问“如果图形中含有n个三角形,需要多少根火柴棍?”目的在于让学生自己发现要解决一般性问题应先从特殊值入手,给学生充分的时间思考和探究,让学生自己寻求解决问题的策略,最终掌握从特殊到一般,从个体到整体地观察、分析问题的方法.之后又设计了一个问题“当图形中含有2012个三角形时,需要多少根火柴棍?”目的在于让学生体会由特殊一般特殊的分析问题的方法,体会一般性规律的实际意义.活动2设计了一个问题串,6个问题循序渐进地引导学生发现月历中数的排列规律,引导学生应用本章所学的整式的加减探究方框里数之间的关系.这两个活动有一定的趣味性,也有较强的探索性.两个活动的侧重点不同,活动1的重点是让学生能够用整式准确地表示数量关系;活动2的重点是让学生能够应用整式的加减探究月历中的数量关系.通过这两个数学活动检验学生对于第二章内容的掌握情况.本节数学活动课教师要注意改进教学方式,充分相信学生,尽可能为学生留出探索的空间,发挥学生的主动性和积极性,力求使得数学结论的获得是通过学生思考、探究活动而得出的.三、教学目标和目标解析1.教学目标(1)用整式和整式的加减运算表示实际问题中的数量关系;(2)掌握从特殊到一般,从个体到整体地观察、分析问题的方法.尝试从不同角度探究问题,培养应用意识和创新意识;(3)积极参与数学活动,在数学活动过程中,合作交流、反思质疑,体验获得成功的乐趣,锻炼克服困难的意志,建立学好数学的自信心.2.目标解析达成目标(1)的标志:学生用整式表示出火柴棍的根数与三角形的个数之间的对应关系,用整式表示出月历中不同位置上的数字的一般表达式并探寻规律;目标(2)是内容所蕴含的思想方法,学生需要体会在较为复杂的图形中寻找一般规律的方法,先把复杂图形分解,从其中的特殊图形入手,先就个体观察特征,再扩展到一般,最后由整体总结规律,感受由特殊到一般的探究模式.在活动2中,分析月历中数字之间的数量关系时,经常先将月历分解,分别从横、纵、对角线等不同的方向入手观察特征,再推广到一般,用整式表示出数的一般规律;学生体验解决问题策略的多样性;让学生尝试评价不同方法之间的差异,从而得出最优方案.学生体会进行数学活动的基本方法:提出问题动手实践寻求规律归纳总结.学生经历发现问题、独立思考、猜想验证,归纳总结这些数学活动,提高应用意识和创新意识;达成目标(3)的标志:学生对数学有好奇心和求知欲,在小组合作活动中积极思考,勇于质疑,敢于发表自己的想法.在自主探究两个数学活动的过程中,小组成员合作克服困难,解决数学问题,感受成功的快乐,建立学好数学的信心.四、教学问题诊断分析本章学生已经学习用整式表示实际问题中的数量关系及整式的加减运算.但是正确理解字母的真正含义,熟悉用符号表示具体情境中的数量关系,对学生而言有一定难度.在拼图的过程中,学生比较容易发现火柴棍根数的变化情况,但要借助观察图形的变化寻找火柴棍的根数与三角形的个数n之间的对应关系,还是有一定困难,在总结变化量与n的对应关系时学生也容易出错.所以用整式准确地表示出这种对应关系是本节课的一个难点.在活动2中,探索月历中数字的排列规律比较容易,但要从不同角度,运用不同方法探究月历中隐含的数量关系及其规律,对学生来说具有一定的挑战性.本节课的教学难点:利用整式和整式的加减运算准确表示出具体情境中的数量关系.五、教学支持条件分析根据活动课的特点,学生准备一盒火柴棍、若干张大小相等的正方形纸片、一张月历.教师准备几何画板软件供学生使用,同时采用多媒体课件辅助教学.六、教学过程设计1.数学活动1问题1 如图1所示,用火柴棍拼成一排由三角形组成的图形.图1(1)如果图形中含有n个三角形,需要多少根火柴棍?(2)当图形中含有2012个三角形时,需要多少根火柴棍?师生活动:学生分成小组,利用已准备好的火柴棍动手摆放图形进行自主探究.学生代表(利用几何画板软件)展示小组讨论的过程与结果.教师重点关注学生自主探究的步骤和方法.学生在探究的过程中会从不同角度观察图形,会用不同的表达形式呈现规律,会从数和形两个方面进行探究.教师引导学生借助于“形”进行思考和推理,加强对图形变化的感受.在活动的过程中,整理数据,观察火柴棍的根数与n之间的对应关系,有助于突破难点.问题1的解决方法很多,下面列出几种常见方法仅供参考.①从第二个图形起,与前一图形比,每增加一个三角形,增加两根火柴棍,可得三角形个数1 2 3 4 … n 火柴棍根数 3 3+2 3+2+2 3+2+2+2 … 表达式:3+2(n-1)=2n+1.②每个三角形由三根火柴棍组成,从第一个图形起,火柴棍根数等于所含三角形个数乘3,再减去重复的火柴棍根数,可得三角形个数1 2 3 4 … 火柴棍根数1×3 2×3-1 3×3-2 4×3-3 … 3×n-(n-1) 表达式:3n-(n-1)=2n+1.③从第一个图形起,以一根火柴棍为基础,每增加一个三角形,增加两根火柴棍,可得三角形个数1 2 3 4 … n 火柴棍根数1+2 1+2+2 1+2+2+2 1+2+2+2+2 … 表达式:1+2n.④从火柴棍的根数与三角形的个数的对应关系观察可得三角形个数1 2 3 4 … n 火柴棍根数3=1×2+1 5=2×2+1 7=3×2+19=4×2+1 … n×2+1 表达式:2n+1.⑤将组成图形的火柴棍分为“横”放和“斜”放两类统计计数,可得三角形个数1 2 3 4 … n 火柴棍根数1+2 2+3 3+4 4+5 … n+(n+1) 表达式:n+(n+1)=2n+1.七年级数学《整式的加减》教案二教学目标知识与技能理解同类项的概念,在具体情景中,认识同类项.过程与方法通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流的能力.情感、态度与价值观初步体会数学与实际生活的密切联系,从而激发学生学好数学的信心.教学重难点重点理解同类项的概念.难点根据同类项的概念在多项式中找同类项.教学过程一、复习引入师:同学们,在上新课之前,我们先来做几个题目.1.教师读题,指名回答.(1)5个人+8个人=;?(2)5只羊+8只羊=.?2.师:观察下列各单项式,把你认为相同类型的式子归为一类:8x2y,-mn2,5a,-x2y,7mn2,,9a,-,0,0.4mn2,,2xy2.由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示.要求学生观察归为一类的式子,思考它们有什么共同的特征.请学生说出各自的分类标准,并且对学生按不同标准进行的分类给予肯定.二、讲授新课1.同类项的定义:师:在生活中我们常常把具有相同特征的事物归为一类.8x2y与-x2y可以归为一类,2xy2与-可以归为一类,-mn2、7mn2与0.4mn2可以归为一类,5a与9a 可以归为一类,还有、0与也可以归为一类.8x2y与-x2y只有系数不同,各自所含的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地,2xy2与-也只有系数不同,各自所含的字母都是x、y,并且x的指数都是1,y的指数都是2.像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.另外,所有的常数项都是同类项.比如,前面提到的、0与也是同类项.通过特征的讲述,选择所含字母相同,并且相同字母的指数也分别相等的项作为研究对象,并称它们为同类项.(板书课题:同类项)(教师为了让学生理解同类项概念,可设问同类项必须满足什么条件,让学生归纳总结)板书由学生归纳总结得出的同类项概念以及所有的常数项都是同类项.三、例题讲解教师读题,指名回答.例1判断下列说法是否正确,正确的在括号内打“√”,错误的打“×”.(1)3x与3mx是同类项.()(2)2ab与-5ab是同类项.()(3)3x2y与-yx2是同类项.()(4)5ab2与-2ab2c是同类项.()(5)23与32是同类项.()(这组判断题能使学生清楚地理解同类项的概念,其中第(3)题满足同类项的条件,只要运用乘法交换律即可;第(5)题两个都是常数项属于同类项.一部分学生可能会单看指数不同,误认为不是同类项)例2游戏.规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项.要求出题同学尽可能使自己的题目与众不同.可请回答正确的同学向大家介绍写一个单项式同类项的经验,从而揭示同类项的本质特征,透彻理解同类项的概念.例3指出下列多项式中的同类项:(1)3x-2y+1+3y-2x-5;(2)3x2y-2xy2+xy2-yx2.答案(1)3x与-2x是同类项,-2y与3y是同类项,1与-5是同类项.(2)3x2y与-yx2是同类项,-2xy2与xy2是同类项.例4k取何值时,3xky与-x2y是同类项?答案要使3xky与-x2y是同类项,这两项中x的次数必须相等,即k=2.所以当k=2时,3xky与-x2y是同类项.例5若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项.(1)(s+t)-(s-t)-(s+t)+(s-t);(2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t.(组织学生口头回答上面三个例题,例3多项式中的同类项可由教师标出不同的下划线,并运用投影仪给出书面解答,为合并同类项做准备.例4让学生明确同类项中相同字母的指数也相同.例5必须把(s-t)、(s+t)分别看作一个整体)通过变式训练,可进一步明晰“同类项”的意义,在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、提高识别能力.四、课堂练习请写出2ab2c3的一个同类项.你能写出多少个?它本身是自己的同类项吗?(学生先在课本上解答,再回答,若有错误请其他同学及时纠正)答案改变2ab2c3的系数即可,与其本身也是同类项.五、课堂小结理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断同类项.第2课时合并同类项教学目标知识与技能理解合并同类项的概念,掌握合并同类项的法则.过程与方法经历概念的形成过程和法则的探究过程,渗透分类和类比的思想方法.培养观察、归纳、概括能力,发展应用意识.情感、态度与价值观在独立思考的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益.教学重难点重点正确合并同类项.难点找出同类项并正确的合并.教学过程一、情境引入师:为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品.他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔.问:(1)他们两次共买了多少本软面抄和多少支水笔?(2)若设软面抄的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元?学生完成,教师点评.二、讲授新课合并同类项的定义.学生讨论问题(2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运用加法的交换律与结合律将同类项结合在一起,将它们合并起来,化简整个多项式,所得结果都为(21x+25y)元.由此可得:把多项式中的同类项合并成一项,叫做合并同类项.三、例题讲解例1找出多项式3x2y-4xy2-3+5x2y+2xy2+5中的同类项,并合并同类项.答案原式=3x2y+5x2y-4xy2+2xy2+5-3=(3+5)x2y+(-4+2)xy2+(5-3)=8x2y-2xy2+2.根据以上合并同类项的实例,让学生讨论归纳,得出合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变.例2下列各题合并同类项的结果对不对?若不对,请改正.(1)2x2+3x2=5x4;(2)3x+2y=5xy;(3)7x2-3x2=4; (4)9a2b-9ba2=0.(通过这一组题的训练,进一步熟悉法则)例3求多项式3x2+4x-2x2-x+x2-3x-1的值,其中x=-3.答案3x2+4x-2x2-x+x2-3x-1=(3-2+1)x2+(4-1-3)x-1=2x2-1,当x=-3时,原式=2×(-3)2-1=17.试一试:把x=-3直接代入例4这个多项式,可以求出它的值吗?与上面的解法比较一下,哪个解法更简便?(通过比较两种方法,使学生认识到在求多项式的值时,常常先合并同类项,再求值,这样比较简便)课堂练习.课本P71练习第1~4题.答案略四、课堂小结1.要牢记法则,熟练正确的合并同类项,以防止2x2+3x2=5x4的错误.2.从实际问题中类比概括得出合并同类项法则并能运用法则正确地合并同类项.第3课时去括号、添括号教学目标知识与技能去括号与添括号法则及其应用.过程与方法在具体情境中体会去括号和添括号的必要性,能运用运算律去括号和添括号.情感、态度与价值观让学生接受“矛盾的对立双方能在一定条件下互相转化”的辩证思想和概念.教学重难点重点去括号和添括号法则.难点当括号前是“-”号时的去括号和添括号.教学过程一、创设情境,引入新课还记得我们前面用火柴棒摆的正方形吗?记录正方形的个数与所用火柴棒的根数.1.若第一个正方形摆4根,以后每个摆3根,则n个正方形所用的火柴棒的根数为4+3(n-1).?2.若每个正方形上方摆1根,下方摆1根,中间摆1根,还需加1根,则n个正方形所用的火柴棒的根数为n+n+(n+1).?3.若每个正方形都摆4根,除第1个外,其余的都多1根,则n个正方形所用的火柴棒的根数为4n-(n-1).?4.若先摆1根,再每个正方形摆3根,则n个正方形所用的火柴棒的根数为1+3n.?搭n个正方形所需要的火柴棒的根数,用的计算方法不一样,所用火柴棒的根数相等吗?生:相等.师:那么我们怎样说明它们相等呢?学生讨论、回答.师评:4+3(n-1)用乘法的分配律把3乘到括号里,再合并得3n+1;4n-(n-1)可看成4n与-(n-1)的和,而-(n-1)可看成n-1的相反数,即为1-n,所以4n-(n-1)等于4n+1-n=3n+1.活动一去括号师:在代数式里,如果遇到括号,那么该如何去括号呢?我们再看看以前做过的习题.七年级数学《整式的加减》教案三一、教学内容解析:1.本节课选自:新人教版数学七年级上册§2.2.1节,是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题。
1
整式的加减中的数学思想方法
【点评】利用整体思想方法将貌似独立但实质上又相互关联的量作为一个整体代入求值,比较简便。
二、方程思想
所谓方程思想是指在求解数学问题时,从题中的已知量和未知量之间的数量关系入手,找出相等关系,运用数学符号形成的语言将相等关系转化为方程(或方程组),再通过解方程(组)使问题获得解决。
方程思想是一种重要的数学思想,很多数学问题都可转化为方程问题来解决。
例2. 若代数式⎪⎭
⎫ ⎝⎛-+--⎪⎭⎫ ⎝⎛+-
+22122151312bx y x y ax x 的值与字母x 的取值无关,求a 、b 的值。
【分析】代数式的值与字母x 的取值无关,表明化简后的代数式中x 的系数为0,由此可列出方程求解。
【解】将原代数式化简,得: ()5
4352122-+⎪⎭⎫ ⎝⎛-++y x a x b 因为多项式的值与x 的取值无关,所以021,02=-=+a b ,即2
1,2=-=a b 【点评】掌握这种思想,再结合一定的技巧,对求值问题就简单多了,特别是在数学竞赛中,不愧为克敌制胜的利器。
三、分类思想 当研究的问题包含多种情况,不能一概而论时,必须按可能出现
的所有情况来分别讨
2 论,得出各种情况下相应的结论,这种解决问题的思想方法就叫分类思想。
例3、已知
26432m n a b ma b 与的和是关于,a b 的单项式,求,m n 的值。
【分析】整式加减的实质就是合并同类项,观察
26432m n a b ma b 与的和是关于,a b 的单项式,知26432m n a b ma b 与是同类项,因此须讨论解决此问题。
【解】由题意,分以下两种情形讨论:
(1)0m =时,n 可取任意数;
(2)0m ≠时,已知两单项式为同类项,24,63m n ==,即2,2m n ==.
综上所述,0,m n =取任意数,或2, 2.m n ==
【点评】用分类思想解题,可防止错解、漏解。
四、转化思想
“转化”思想称为“化归” 思想,就是将要解决的问题转化为另一个较易解决的问题或己解决的问题。
例4. 已知3,5=--=+c b b a ,试求代数式()()a c b 23--+的值。
【分析】代数式()()a c b 23--+有三个字母,但只有两个条件,所以考虑将问题进行转化。
由于()()()()32323-+++=+-+=--+c a b a a c b a c b 这样再从已知条件得c a +的值即可求解。
【解】因为3,5=--=+c b b a 将这两式相减,得8-=+c a
所以()()()()32323-+++=+-+=--+c a b a a c b a c b
=()()16385-=--+-
【点评】转化的思想将新知识转化为为旧知识,把未知转化为己知,把复杂的问题转化为简单的问题,从而解决数学问题。