生物化学笔记
- 格式:doc
- 大小:462.50 KB
- 文档页数:32
绪论生化得任务 ⎪⎩⎪⎨⎧功能生化动态生化静态生化静态生化就是研究生物体基本物质得化学组成,结构,理化性质,生物学功能及结构与功能得关系、;动态生化就是研究物质代谢得体内动态过程及在代谢过程中能量得转换与代谢调节规律;功能生化就是研究代谢反应与生理功能得关系也就是了解生命现象规律得重要环节之一、静态生化第一章 氨基酸与蛋白质一、组成蛋白质得20种氨基酸得分类三碱二酸三芳香1、非极性氨基酸包括:色、脯、苯丙、蛋亮、亮、异亮、缬、丙、 2、极性氨基酸极性中性氨基酸:酪、苏、丝、天冬酰胺、谷氨酰胺、半胱、甘酸性氨基酸:天冬、谷碱性氨基酸:赖、精、组其中:属于芳香族氨基酸得就是:色氨酸、酪氨酸、苯丙氨酸属于亚氨基酸得就是:脯氨酸含硫氨基酸包括:半胱氨酸、蛋氨酸二、氨基酸得理化性质1、两性解离及等电点氨基酸分子中有游离得氨基与游离得羧基,能与酸或碱类物质结合成盐,故它就是一种两性电解质。
在某一PH 得溶液中,氨基酸解离成阳离子与阴离子得趋势及程度相等,成为兼性离子,呈电中性,此时溶液得PH 称为该氨基酸得等电点。
2、氨基酸得紫外吸收性质芳香族氨基酸在280nm 波长附近有最大得紫外吸收峰,由于大多数蛋白质含有这些氨基酸残基,氨基酸残基数与蛋白质含量成正比,故通过对280nm 波长得紫外吸光度得测量可对蛋白质溶液进行定量分析。
3、茚三酮反应氨基酸得氨基与茚三酮水合物反应可生成蓝紫色化合物,此化合物最大吸收峰在570nm 波长处。
由于此吸收峰值得大小与氨基酸释放出得氨量成正比,因此可作为氨基酸定量分析方法。
三、肽两分子氨基酸可借一分子所含得氨基与另一分子所带得羧基脱去1分子水缩合成最简单得二肽。
二肽中游离得氨基与羧基继续借脱水作用缩合连成多肽。
10个以内氨基酸连接而成多肽称为寡肽;39个氨基酸残基组成得促肾上腺皮质激素称为多肽;51个氨基酸残基组成得胰岛素归为蛋白质。
多肽连中得自由氨基末端称为N端,自由羧基末端称为C端,命名从N端指向C端。
教学目标:1.掌握蛋白质的概念、重要性和分子组成。
2.掌握α-氨基酸的结构通式和20种氨基酸的名称、符号、结构、分类;掌握氨基酸的重要性质;熟悉肽和活性肽的概念。
3.掌握蛋白质的一、二、三、四级结构的特点及其重要化学键。
4.了解蛋白质结构与功能间的关系。
5.熟悉蛋白质的重要性质和分类导入:100年前,恩格斯指出“蛋白体是生命的存在形式”;今天人们如何认识蛋白质的概念和重要性?1839年荷兰化学家马尔德(G.J.Mulder)研究了乳和蛋中的清蛋白,并按瑞典化学家Berzelius的提议把提取的物质命名为蛋白质(Protein,源自希腊语,意指“第一重要的”)。
德国化学家费希尔(E.Fischer)研究了蛋白质的组成和结构,在1907年奠立蛋白质化学。
英国的鲍林(L.Pauling)在1951年推引出蛋白质的螺旋;桑格(F.Sanger)在1953年测出胰岛素的一级结构。
佩鲁茨(M.F.Perutz)和肯德鲁(J.C.kendrew) 在1960年测定血红蛋白和肌红蛋白的晶体结构。
1965年,我国生化学者首先合成了具有生物活性的蛋白质——胰岛素(insulin)。
蛋白质是由L-α-氨基酸通过肽键缩合而成的,具有较稳定的构象和一定生物功能的生物大分子(biomacromolecule)。
蛋白质是生命活动所依赖的物质基础,是生物体中含量最丰富的大分子。
单细胞的大肠杆菌含有3000多种蛋白质,而人体有10万种以上结构和功能各异的蛋白质,人体干重的45%是蛋白质。
生命是物质运动的高级形式,是通过蛋白质的多种功能来实现的。
新陈代谢的所有的化学反应几乎都是在酶的催化下进行的,已发现的酶绝大多数是蛋白质。
生命活动所需要的许多小分子物质和离子,它们的运输由蛋白质来完成。
生物的运动、生物体的防御体系离不开蛋白质。
蛋白质在遗传信息的控制、细胞膜的通透性,以及高等动物的记忆、识别机构等方面都起着重要的作用。
随着蛋白质工程和蛋白质组学的兴起和发展,人们对蛋白质的结构与功能的认识越来越深刻。
第1章蛋白质的结构与功能1.等电点:氨基酸分子所带正、负电荷相等,呈电中性时,溶液的pH值称为该氨基酸的等电点(isoelectric point, pI)当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,净电荷为零,此时溶液的pH称为蛋白质的等电点。
结构域:分子量大的蛋白质三级结构常由几个在功能上相对独立的,结构较为紧凑的区域组成,称为结构域(domain)。
亚基:有些蛋白质分子含有二条或多条多肽链,每一条多肽链都有完整的三级结构,称为蛋白质的亚基(subunit)。
别构效应:蛋白质空间结构的改变伴随其功能的变化,称为变构效应。
蛋白质变性:在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质改变和生物活性的丧失。
2.蛋白质的组成单位、连接方式及氨基酸的分类,酸碱性氨基酸的名称。
组成单位:氨基酸. 连接方式:肽键氨基酸可根据侧链结构和理化性质进行分类:非极性脂肪族氨基酸、极性中性氨基酸、芳香族氨基酸、酸性氨基酸、碱性氨基酸、非极性侧链氨基酸、极性中性/非电离氨基酸、酸性氨基酸、碱性氨基酸酸性氨基酸:天冬氨酸,谷氨酸碱性氨基酸:精氨酸,组氨酸3.蛋白质一-四级结构的概念的稳定的化学键。
一级结构:蛋白质的一级结构指在蛋白质分子从N-端至C-端的氨基酸排列顺序。
主要的化学键:肽键,有些蛋白质还包括二硫键。
二级结构:蛋白质分子中多肽主链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。
主要的化学键:氢键三级结构:整条肽链中全部氨基酸残基的相对空间位置。
即肽链中所有原子在三维空间的排布位置。
主要的化学键:疏水键、离子键、氢键和范德华力等。
四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构。
主要的化学键:氢键和离子键。
4.蛋白质的构象与功能的关系。
一、蛋白质一级结构是高级结构与功能的基础二、蛋白质的功能依赖特定空间结构5.蛋白质变形的概念的本质。
生物化学一.名词解释米氏常数(Km)磷酸戊糖途径调节子酶辅助因子cori循环与巴斯德效应滚动环复制二.结构式TPCK 尼克酰胺GC配对IP3三.填空1, 蔗糖是否为还原糖-----。
2,糖苷键的两种类型-----和-----。
3,DNA的一条链序列为GTCAATG,那么另一条链的序列为-----。
4,-----常数表征酶的催化效率。
5,ρ因子的催化活性是-----和-----。
6,常见的遗传缺陷病有-----,-----,-----,-----;常见的放射性标记的同位素是-----,-----,-----,-----。
7,DNA复制过程中动物是以-----为能源,E. Coli 以-----为能源。
8,生物体中产能最多的生化反应过程是-----。
9,-----发现TCA循环,-----发现化学渗透学说。
10,真核生物rRNA拼接过程中左端的拼接点顺序为-----右端为-----,切除-----结构。
11,生长激素是由-----产生的。
12,E.Coli DNA Pol I 经酶切,得到大小片段,其中大片段具有-----酶活性和-----酶活性,小片段具有-----酶活性。
13,必需脂肪酸有-----和-----。
四.回答1,作动力学曲线区分酶的可逆性抑制与不可逆抑制?2,比较ATP与ppi在磷酸键及生物学功能方面的异同。
3,真核生物至少需要31种tRNA才能识别61种密码子,而线粒体中tRNA只有22种,为什么?4,阐明衰减子对操纵子的调控。
5,糖酵解和糖异生过程中涉及的不可逆反应和限速步骤。
五.计算1,反竟争抑制和米氏方程。
2,酶活力,比活力,酶浓度。
3,DNA半保留复制。
15NDNA在14N培养基上培养一代后,14NDNA与14N-15NDNA杂交分子之比是多少?4,正常DNA的超螺旋密度为-0.05,在无拓扑异构酶条件下当复制到超螺旋密度为0.07时,由于正超螺旋的阻力而不能继续复制,求此时的复制百分数。
生物化学笔记一蛋白质的共价结构1.氨基酸amino acid-20个,18个常见,1个脯氨酸,1个硒代胱氨酸由终止密码字编码-20种氨基酸的性质,排列顺序决定蛋白质的性质-人类中L型出现较多,D型较少,但是牙齿中的天冬氨酸便是;而在微生物中,D型出现较多,一般出现于翻译后修饰,可通过恢复又形成L型1.1氨基酸结构●每个氨基酸除pro都含有:-COOH-羧基,-NH2-氨基,—RR集团羧基和氨基的主要作用:提供氢键形成二级结构●暴露在外的主要是R基,又侧链的排列组合决定蛋白质的结构●侧链提供不同的功能集团能够使蛋白具有独特性:✓独特的折叠结构✓溶解状态:与引起生命过程有强烈关系,侧链起决定作用✓聚集状态:单体,二聚体等✓与大分子物质形成复合物或大分子,提高酶活性✓修饰●蛋白质形成的氨基酸规律并不明显,但是结构蛋白有一定的规律,其中有点肯定的是,氨基酸的选择不是随意的●决定蛋白质结构的因素有:氨基酸数量,排列组合,侧链修饰例如电荷改变与其他分子,自身内部作用而发生改变1.2氨基酸分类根据极性分类在普通条件下,根据极性差别,可分为以下几类:✓非极性氨基酸Gly-G, Ala-A, Val-V, Leu-L, Ile-I, Phe-F, Trp-w, Met-M.Pro-P性质:1.具有疏水性2.结合或放出质子Met,Phe,Try易放出质子3.酶反应中,蛋白质折叠堆积在一起时,酸性强,从而形成极端环境,因此极性变强,某些基团具有极端性质易完成特定反应;4.在水相球蛋白中,非极性氨基酸贝排在蛋白质疏水中心,犹如蛋白质骨架,维持蛋白质结构,起稳定作用,蛋白质结构对功能非常重要,因此可在疏水区域对蛋白质骨架与功能有十分重要作用5.在跨膜蛋白中,非疏水侧链能与膜易结合1st甘氨酸Gly:a)缺少对称结构,不能形成立体化学结构b)缺少β碳原子,因此组成肽链时,使肽链更柔软,因为原子相互之间摆动的角度大,受到阻力比复杂侧链要简单c)提供更多的结构空间d)甘氨酸常位于蛋白质拐角处,并在胶原蛋白中甘氨酸含量大,提供空间与柔软性,抗击能力强;e)甘氨酸对邻位氨基酸也有影响;由于空间小,提供邻位氨基酸化学活性;比如Asn-Gly的组合比Asn-xaa更易形成环状的酰胺结构f)甘氨酸常作为免疫识别和酶催化的位点2nd丙氨酸Ala:a)是20种氨基酸种最没特性的氨基酸,没有特别的构想性质,因此可出现在任何部位b)最普通的氨基酸,弱疏水性,化学稳定性低,发生化学修饰机率低c)为左提花位点可用于研究某个氨基酸在蛋白质的功能3rd缬氨酸Ala:a)体积变大,降低整体结构软柔性,旋转空间不大b)阻碍邻位的化学活性c)属于国都太氨基酸,中度疏水性4th异亮氨酸ile:a)疏水性增强b)含有β分支链,对邻位氨基酸有空间阻碍,降低化学活性c)出现在蛋白质内部,倾向于形成β折叠结构而不是α-螺旋因为空间阻碍变大d)有第二个非对称中心,碰到强酸时,立体结构改变,形成别异亮氨酸,功能随之改变在体外和体内环境有差异时,蛋白质稳定结构对蛋白质功能具有重要作用5th亮氨酸Leu:a)疏水性比异亮氨酸b)在球蛋白中最常见氨基酸,处于疏水中心c)形成跨膜螺旋结构中的主要成分d)亮氨酸拉链结构亮氨酸拉链l eucine zipper:出现在DNA结合蛋白质和其它蛋白质中的一种结构基元motif;当来自同一个或不同多肽链的两个两用性的α-螺旋的疏水面常常含有亮氨酸残基相互作用形成一个圈对圈的二聚体结构时就形成了亮氨酸拉链;在生物化学的研究中,发现某些DNA结合蛋白的一级结构C末端区段,亮氨酸总是有规律地每隔7个氨基酸就出现一次;蛋白质α-螺旋每绕一圈为个氨基酸残基;这种一级结构形成α-螺旋时,亮氨酸必与螺旋轴平行而在外侧同一线上排布,每绕两圈出现一次,如图中的1,8,15,22位;而且,亮氨酸R-基因上的分支侧链也露于螺旋之外成规律地相间;所谓拉链,就是两组平行走向,带亮氨酸的α-螺旋形成的对称二聚体;每条肽链上的亮氨酸残基,侧链上R-基因的分支碳链,又刚好互相交错排列,故名;亮氨酸拉链结构常出现于真核生物DNA结合蛋白的C-端,它们往往是和癌基因表达调控功能有关,故受到研究者的重视;这类蛋白质的主要代表为酵母的转录激活因子GCN4,癌蛋白Jun,Fos,Myc,增强子结合蛋白C/EBP等;这类基元结构是解决基因转录调控的途径之一,并将会在生命科学研究中继续成为主导领域的研究课题;l eucine zipper是由伸展的氨基酸组成,每7个氨基酸中的第7个氨基酸是亮氨酸,亮氨酸是疏水性氨基酸,排列在;螺旋的一侧,所有带电荷的氨基酸残基排在另一侧;当2个蛋白质分子平行排列时,亮氨酸之间相互作用形成二聚体,形成“拉链”;在“拉链”式的蛋白质分子中,亮氨酸以外带电荷的氨基酸形式同DNA结合;原癌基因c—fos 的蛋白产物是磷酸化蛋白,有一个亮氨酸“拉链”区,却不能形成同源二聚体;可是,它可以同c-jun的蛋白产物中的“拉链”区形成异源二聚体;c—fos 的蛋白质产物本身不能同DNA结合,可是一旦同c-jun的蛋白质产物形成“拉链”式的异源二聚体后,却能与jun-jun同源二聚体一样具有DNA结合能力,且表现出更高的亲和力;6th苯丙氨酸Phe:a)体积大的疏水性结构b)具有弱极性苯环作用,易与其他芳香环或极性基团发生作用c)作为球蛋白或跨膜蛋白的主要成分,起稳定蛋白质结构d)可作为A280吸收位点,进行定量试验7th甲硫氨酸Met:a)含有硫醚结构b)疏水性和基团大小与Leu相似c)硫原子易与金属离子Zn,Cu,Hg等结合,赋予蛋白质新功能d)在体外易形成亚砜结构,氧化时形成亚砜结构,易变形,因此需要加抗氧化剂;e)在体内,可由酶进行反应形成特定结构完成特定功能f)易发生烷基化反应,在酸性条件下,能使硫醚链断裂8th色氨酸Trp:a)含有吲哚基团,由最大的侧链基团b)具有强的空间阻碍,常用于窜则稳定结构c)含有疏水性,但由于吲哚基存在,减弱疏水性;提供附加氢键主链,有时与其他物质相互作用时,吲哚基团易与配基相互作用,如抗体,亲和素,溶解酵素;d)易受轻电攻击,卤素易与之反应,发生共价键作用,使肽链易断裂e)吲哚基团易被光氧化降解f)最强的紫外吸收峰,具有荧光性质A2809th脯氨酸Pro:a)含有脯氨酰基,形成亚氨结构b)具有结构限制,出现在蛋白质表面或转角处c)能出现在α-螺旋的边边上,不能与主链上形成氢键,在β-折叠出现时,会形成凸起结构d)在肽链中能以顺式结构存在,它能进行反式转化,这是一个限时步骤,由酶参与完成,是可调控的,在体外自发完成e)化学活性低,当邻位是D-天冬氨酸时,脯氨酸活性增强,在弱酸条件下,易断裂✓极性氨基酸:Ser-S, Thr-T,Cys-C,Asn-N,Gln-Q,Tyr-Y性质:1.普通条件下,净电荷为零,ph=7;2.翻译后修饰易发生在极性氨基酸;10th丝氨酸Ser:a)含有脂肪羟基,在不同环境下,即可作为氢键供受体b)常出现在球蛋白表面c)氧原子在生理条件下,具有弱亲和性;在特定条件下,氧原子亲和力强,如丝氨酸激酶,化学活性增强;这种特定条件下可能是由蛋白质自身通过结构改变形成d)在体内中,易发生共价修饰,如糖基化修饰e)磷酸化:两种形式:一为稳定磷酸化,另为可逆磷酸化f)碱性条件下,易发生消除反应,-OH消失,形成双键11th苏氨酸Thr:a)与丝氨酸相似,但与之相比,空间阻碍变大,化学活性弱一些b)含有第二个手性结构,遇上强酸强碱,结构会改变12th半胱氨酸Cys:a)硫基CH-SH,可参与酶反应的中间反应物b)与金属反应重金属,吸附,解毒c)胞外蛋白与cys中硫基结合成二硫键,起稳定蛋白作用,还原形成谷胱甘肽GST抗氧化剂;在普通环境下研究蛋白质体外,使cys处于还原状态,重组蛋白含有cys时,与在体外相比,形成的二硫键还是有所差别,如白蛋白★为含585个的单链多肽,分子量为66458,分子中含17个,不含有糖的组分;在的环境中,白蛋白为负离子,每分子可以带有200个以上;它是血浆中很主要的,许多水溶性差的物质可以通过与白蛋白的结合而被运输;这些物质包括、长链每分子可以结合4-6个分子、胆汁酸盐、、、如Cu2+、Ni2+、Ca2+如、等;d)在胞外,蛋白质的cys易形成二硫键,以稳定自身蛋白质的结构,二硫键会在氧化的环境下形成谷胱甘肽在体内以二硫键状态存在,cys在胞内大多数以游离的状态存在,因此在体外研究蛋白质的二硫键时,要注意环境;e)主要有酰基化,烷基化修饰结合脂肪链,结合到侧链使其具有疏水性质脂肪链可接近脂膜,血红蛋白辅基血红素等共价结合蛋白f)β消除反应★β-消去指分子内两个相邻的原子上各失去一个基团,形成新的双键或叄键的反应;这也是最为普遍认识的消去反应;反应条件:醇类和能发生消去反应;分子中,连有-OH的碳原子必须有相邻的碳原子且与此相邻的碳原子上,并且还必须连有氢原子时,才可发生消去反应;:利用碱性处理,加入羟基,然后产生β消除,此方法利用在羊毛处理上,使羊毛更有强度;13th天冬酰胺Asn:a)β碳上有酰胺,易形成氢键,使氢键的供体和受体b)一般位于折叠蛋白转角位置,附加氢键,比较灵活,所以容易破坏正常氢键,使其形成多样性氢键c)环亚胺结构,消旋反应形成D-氨基酸残基★消旋反应是一种使分子产生同样多的两种构象的反应,只有手性结构的分子才能发生,会产生L-和R-即左旋和右旋两种结构的分子,这两种分子虽然分子式相同,但旋光性不同;,当Asn与Gly或Ser等空间阻碍小的氨基酸相连时Asn-Gly,亚胺结构易被水解;当空间位阻没有或小时,会形成环亚胺结构,环亚胺结构不稳定,易被羟胺化,导致肽键断裂;d)在胞外的显露的天冬氨酸氨侧链基N端,是糖蛋白的连接位点,当-asn-xaa-serthr三个氨基酸排列在一起时,asn被糖基化修饰后,会变得很稳定;xaa不能为pro;14th谷氨酰胺Glna)化学性质与asn相似,多一个亚甲基,蛋白质内部比asn稳定,在蛋白质末端会自动发生焦谷氨酰反应;b)有些谷氨酰胺得侧链是谷氨酰胺转移酶得作用底物,经催化与赖氨酰交联15th络氨酸Tyra)含有酚羟基,过渡态极性;在球蛋白结构时,通常它的侧链部分暴露与溶剂当中,部分与内部分子结合;b)在生理环境下,基团是中性的,容易结合金属离子,如Fe2+;有一定的电性,可以做H+的供受体c)体内修饰包括磷酸化,硝基化常发生于血管,引起粥样硬化,胞外蛋白酚羟基容易于其他蛋白发生交联反应;d)络氨酸区域也是甲状腺的前体物质✓酸性氨基酸Asp,Glu性质:在生理环境下带有负电荷16th天冬氨酸Aspa)生理条件下以负电荷形式存在,Pka=,酸性强b)羧基与供体基团如胍盐能形成氢键,极性侧链位于蛋白质表面,内部与碱性氨基酸结合形成盐桥,带负电荷能与Ca2+等离子发生反应;c)β-COOH能够直接参与酶催化反应,例如天门冬酰蛋白酶胃蛋白酶,高血压蛋白原酶,逆转录酶能够在Na+,K+—ATP酶,细胞膜上的Ca2+—ATP酶和肌浆网作用的过程中催化形成酰基磷酸酯;d)羧基易引起变性,因此体外研究需要加入试剂保持它的原始状态;在酸性环境下,肽链容易水解,若邻位是pro特易水解-asp-pro——e)当β-羧基与α-羧基肽键接近时会发生邻位效应,并且在酸溶液中,天门冬酰肽键比其他氨酰键更容易被水解;f)化学性质活页,能够参与化学反应;例如在活跃试剂,强酸条件,碳化二亚氨,酒精,亲核物质下能够酯化和氨化g)天冬氨酸在体内能够被羟基修饰,形成β-羟基天冬氨酸17th Glu谷氨酸a)邻位效应较弱,酸性比asp弱b)血凝蛋白中,发生修饰,形成γ-glu,与Ca2+结合更紧密✓碱性氨基酸Arg,Lys,His,硒代半胱氨酸性质:生理条件下,得质子18th精氨酸Arga)带有胍基团,酸性碱性下都带正电荷,碱性强,得质子b)出现在蛋白质内部,与酸性氨基酸形成盐桥或强氢键,能够形成多重氢键c)出现在表面,与带有负电的配基结合,如磷酸基团,核酸d)与lys结合能够形成正电荷信号,提供信号,完成相应功能,如膜蛋白信号,前蛋白剪切,核酸和核仁定位e)能够进行甲基化和糖基化修饰,非常重要;如病毒,病原体通过发生糖基化调节进入宿主细胞19th赖氨酸Lysa)被排除在球蛋白非极性内部中心以外,在生理条件下,侧链的丁基削弱氨基NH极性,但是整体极性占主导地位,因此整体极性较强;2b)很多蛋白质的交联结构主要由lys形成如羊毛,为负电荷提供结合位点,也可以连接氢键c)体内连接辅基,侧链测性交联结构,侧链也可进行修饰20th组氨酸Hisa)含有咪唑基团,几乎为中性;得质子后,呈碱性,在酶催化中,质子转移b)依赖ph值的酶催化反应,当需要中性条件时,常常会以his为质子供体,以提高催化效率c)分子内,接近ph,离域作用咪唑集团内,形成酸碱效应,对酶作用非常作用d)与其他酰基,金属离子结合金属螯合亲和层析,如his-nie柱子e)体内,得质子,磁共振21st硒代半胱氨酸a)天然蛋白组成成分,由UGA翻译而成b)酶反应位点,发生氧化还原反应c)还原性比半胱氨酸要强,粗略来说,对细胞具有积极作用d)性质与半胱氨酸相似,与之反应的类型也相同2. 翻译后修饰——末端修饰把构成蛋白质的二十种氨基酸再进行化学反应共价修饰而使功能得以发挥a)。
第一章绪论一、生物化学的的概念:生物化学(biochemistry)就是利用化学的原理与方法去探讨生命的一门科学,它就是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述生物化学阶段:就是生物化学发展的萌芽阶段,其主要的工作就是分析与研究生物体的组成成分以及生物体的分泌物与排泄物。
2.动态生物化学阶段:就是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。
其中,中间代谢过程就是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也就是现代生物化学与分子生物学研究的一个重要内容。
第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)就是蛋白质分子的基本组成单位。
构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。
2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu与Asp);④碱性氨基酸(Lys、Arg与His)。
二、肽键与肽链:肽键(peptide bond)就是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。
生物化学笔记第一篇生物大分子的结构与功能第一章氨基酸和蛋白质一、共同组成蛋白质的20种氨基酸的分类1、非极性氨基酸包括:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、脯氨酸2、极性氨基酸极性中性氨基酸:色氨酸、酪氨酸、丝氨酸、半胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸酸性氨基酸:天冬氨酸、谷氨酸碱性氨基酸:赖氨酸、精氨酸、组氨酸其中:属芳香族氨基酸的就是:色氨酸、酪氨酸、苯丙氨酸属亚氨基酸的就是:脯氨酸含硫氨基酸包括:半胱氨酸、蛋氨酸二、氨基酸的理化性质1、两性解离及等电点氨基酸分子中存有游离的氨基和游离的羧基,能够与酸或碱类物质融合成盐,故它就是一种两性电解质。
在某一ph的溶液中,氨基酸离解成阳离子和阴离子的趋势及程度成正比,沦为兼性离子,呈圆形电中性,此时溶液的ph称作该氨基酸的等电点2、氨基酸的紫外稀释性质芳香族氨基酸在280nm波长附近有最大的紫外吸收三、肽两分子氨基酸可借一分子所含的氨基与另一分子所带的羧基脱去1分子水缩多肽连中的自由氨基末端称为n端,自由羧基末端称为c端,命名从n端指向c端。
四、蛋白质的分子结构1、蛋白质的一级结构:即蛋白质分子中氨基酸的排列顺序。
主要化学键:肽键,有些蛋白质还包含二硫键。
2、蛋白质的高级结构:包含二级、三级、四级结构。
1)蛋白质的二级结构:主链原子的空间轨域n-c-cα-螺旋β-卷曲β-转角无规卷曲2)蛋白质的三级结构主要化学键:疏水键(最主要)、盐键、氢键、范德华力。
3)蛋白质的四级结构:五、蛋白质结构与功能关系(四点)六、蛋白质的化学性质1、蛋白质的两性电离:蛋白质两端的氨基和羧基及侧链中的某些基团,在一定的溶液ph条件下可解离成带负电荷或正电荷的基团。
2、蛋白质的结晶:在适度条件下,蛋白质从溶液中划出的现象。
盐析3、蛋白质变性:在某些物理和化学因素作用下,其特定的空间构象被破坏,从而导致其理化性质的改变和生物活性的丧失。
主要为二硫键和非共价键的破坏,不涉及一级结构的改变。
生物化学笔记一蛋白质的共价结构1.氨基酸(amino acid)-20个,18个常见,1个脯氨酸,1个硒代胱氨酸(由终止密码字编码)-20种氨基酸的性质,排列顺序决定蛋白质的性质-人类中L型出现较多,D型较少,但是牙齿中的天冬氨酸便是;而在微生物中,D型出现较多,一般出现于翻译后修饰,可通过恢复又形成L型1.1氨基酸结构●每个氨基酸(除pro)都含有:-COOH-(羧基),-NH2-(氨基),—R(R集团)羧基和氨基的主要作用:提供氢键形成二级结构●暴露在外的主要是R基,又侧链的排列组合决定蛋白质的结构●侧链提供不同的功能集团能够使蛋白具有独特性:✓独特的折叠结构✓溶解状态:与引起生命过程有强烈关系,侧链起决定作用✓聚集状态:单体,二聚体等✓与大分子物质形成复合物或大分子,提高酶活性✓修饰●蛋白质形成的氨基酸规律并不明显,但是结构蛋白有一定的规律,其中有点肯定的是,氨基酸的选择不是随意的●决定蛋白质结构的因素有:氨基酸数量,排列组合,侧链修饰(例如电荷改变与其他分子,自身内部作用而发生改变)1.2氨基酸分类(根据极性分类)在普通条件下,根据极性差别,可分为以下几类:✓非极性氨基酸(Gly-G,Ala-A, Val-V, Leu-L, Ile-I, Phe-F, Trp-w, Met-M.Pro-P)性质:1.具有疏水性2.结合或放出质子(Met,Phe,Try易放出质子)3.酶反应中,蛋白质折叠堆积在一起时,酸性强,从而形成极端环境,因此极性变强,某些基团具有极端性质易完成特定反应。
4.在水相球蛋白中,非极性氨基酸贝排在蛋白质疏水中心,犹如蛋白质骨架,维持蛋白质结构,起稳定作用,蛋白质结构对功能非常重要,因此可在疏水区域对蛋白质骨架与功能有十分重要作用5.在跨膜蛋白中,非疏水侧链能与膜易结合1st甘氨酸(Gly):a)缺少对称结构,不能形成立体化学结构b)缺少β碳原子,因此组成肽链时,使肽链更柔软,因为原子相互之间摆动的角度大,受到阻力比复杂侧链要简单c)提供更多的结构空间d)甘氨酸常位于蛋白质拐角处,并在胶原蛋白中甘氨酸含量大,提供空间与柔软性,抗击能力强。
生物化学笔记整理一相关名词解释氨基酸分类1 必需氨基酸:人体自身(或其它脊椎动物体内)不能合成或合成量不足以满足生理需要,必须依靠食物供给以保证正常的生理活动的氨基酸其中包括异亮氨酸,亮氨酸,赖氨酸,苏氨酸,缬氨酸,蛋氨酸,色氨酸,苯丙氨酸2 半必需氨基酸:人体自身合成量不足,需从食物中摄取一部分的氨基酸主要是组氨酸与精氨酸3 非蛋白质氨基酸:不参与蛋白质合成的氨基酸,一般以游离或参与构成细胞壁的形式存在4 蛋白质氨基酸:参与蛋白质合成的氨基酸5 限制性氨基酸:当某一种氨基酸的含量低于标准水平时,不论其它必需氨基酸的含量与比例如何的恰当,其营养价值一定大减,这种含量最低的必须氨基酸称作限制性氨基酸6 稀有氨基酸:常见氨基酸以外的其它罕见氨基酸,例如由脯氨酸衍生而来的4—羟脯氨酸等(无对应密码子,只能由20种常见氨基酸经过修饰衍生而来)7 常见氨基酸:20种常见氨基酸有相对应的密码子,可由相应的核酸指导合成蛋白质的结构与性质1 兼性离子:一个分子内含有两种不同形式的离子,又称偶极离子,在环境中既起酸的作用又起碱的作用2 等电点:氨基酸处于净电荷为0 时的特征PH值称为等电点或等电PH蛋白质的结构1 肽键:一分子氨基酸的α—羧基和一分子氨基酸的α—氨基脱水缩合而形成的酰胺键,即—CO—NH—2 氨基酸残基:多肽链中的氨基酸由于肽键的形成已不是原来完整的分子,称为氨基酸残基(多肽链中位于中间的氨基酸称为氨基酸残基)3 氨基端(N端):在一条多肽链的主链中,含有游离α—氨基的那一个末端氨基酸残基称为氨基端(N端)4 羧基端(C端):在一条多肽链的主链中,含有游离α—羧基的那一个末端氨基酸残基称为羧基端(C端)5 寡肽:含有几个至十几个氨基酸残基的肽6 多肽:含有多于20个残基的肽(多肽与蛋白质的区别:多肽的相对分子质量一般小于五千,少于五十个氨基酸残基;蛋白质则高于此值)7 蛋白质的一级结构:多肽链中的氨基酸序列,常称共价结构,化学结构,是一个无空间一维结构8 蛋白质的三维结构:二级及其以上的空间结构称之为三维结构,空间结构,立体结构9 酰胺平面:与肽键相关联的六个原子构成肽基或肽单位,具有刚性平面性质(肽键不能旋转,而α—C在相邻的两个肽平面上的单键Cn—C以及Cα—N都是可以自由旋转的,Cα—N单键旋转的角度用φ表示,Cα—C 单键旋转的角度用ψ表示)10 蛋白质的二级结构:由氢键引起的蛋白质主链空间结构(β—折叠:由一条肽链的若干肽段依靠肽链上的>C=0和>NH形成氢键来维持稳定的结构)11 蛋白质的超二级结构:由两个或更多个相邻的二级结构单元(主要是α螺旋和β折叠片)和它们的连接部件组合在一起,彼此相互作用,形成种类不多的,内能持续降低的,有规则的二级结构组合或二级结构簇或串,在多种蛋白质中充当三级结构的元件称为超二级结构12 蛋白质的结构域:复杂蛋白质使其结构功能相连的局部折叠区,是相对独立的紧密球状实体称为结构域或简称域13 蛋白质的三级结构:蛋白质的三级结构可定义为蛋白质分子的肽链中所有肽键和氨基酸残基(包括侧链R级)的空间位置。
第一章蛋白质的结构与功能第一节蛋白质的分子组成一、组成蛋白质的元素1、主要有C、H、O、N和S,有些蛋白质含有少量磷或金属元素铁、铜、锌、锰、钴、钼,个别蛋白质还含有碘。
2、蛋白质元素组成的特点:各种蛋白质的含氮量很接近,平均为16%。
3、由于体内的含氮物质以蛋白质为主,因此,只要测定生物样品中的含氮量,就可以根据以下公式推算出蛋白质的大致含量:100克样品中蛋白质的含量( g % )= 每克样品含氮克数×6.25×100二、氨基酸——组成蛋白质的基本单位(一)氨基酸的分类1.非极性氨基酸(9):甘氨酸(Gly)丙氨酸(Ala)缬氨酸(Val)亮氨酸(Leu)异亮氨酸(Ile)苯丙氨酸(Phe)脯氨酸(Pro)色氨酸(Try)蛋氨酸(Met)2、不带电荷极性氨基酸(6):丝氨酸(Ser)酪氨酸(Try) 半胱氨酸 (Cys) 天冬酰胺 (Asn) 谷氨酰胺(Gln ) 苏氨酸(Thr )3、带负电荷氨基酸(酸性氨基酸)(2):天冬氨酸(Asp ) 谷氨酸(Glu)4、带正电荷氨基酸(碱性氨基酸)(3):赖氨酸(Lys) 精氨酸(Arg) 组氨酸( His)(二)氨基酸的理化性质1. 两性解离及等电点等电点:在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。
此时溶液的pH值称为该氨基酸的等电点。
2. 紫外吸收(1)色氨酸、酪氨酸的最大吸收峰在280 nm 附近。
(2)大多数蛋白质含有这两种氨基酸残基,所以测定蛋白质溶液280nm的光吸收值是分析溶液中蛋白质含量的快速简便的方法。
3. 茚三酮反应氨基酸与茚三酮水合物共热,可生成蓝紫色化合物,其最大吸收峰在570nm处。
由于此吸收峰值与氨基酸的含量存在正比关系,因此可作为氨基酸定量分析方法三、肽(一)肽1、肽键是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键。
2、肽是由氨基酸通过肽键缩合而形成的化合物。
第一章绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。
其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。
构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。
2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。
二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。
生物化学笔记(汇总)(总15页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章蛋白质的结构与功能蛋白质的分子组成构成人体的20种氨基酸均属于L-α-氨基酸(除甘氨酸)【氨基酸的分类、结构式、中文名和英文缩写】含硫氨基酸:半胱氨酸、胱氨酸、甲硫氨酸(蛋氨酸)脯氨酸和赖氨酸可被羟化为羟脯氨酸、羟赖氨酸20种氨基酸的理化性质:等电点、紫外吸收(Tyr、Trp含共轭双键,A280)、茚三酮反应【谷胱甘肽的组成、结构特点、主要活性基团、作用】蛋白质的分子结构一级结构:氨基酸从N端到C端的排列顺序肽键、二硫键二级结构:局部主链骨架原子(Cα、N、Co)构象氢键{α−螺旋(3.6个残基上升一圈,螺距0.54nm),β−折叠(平行和反平行,5~8个残基)β−转角(转角处常有Pro),无规卷曲超二级结构(αα、βαβ、ββ)模体三级结构:全部氨基酸残基相对空间位置次级键四级结构:亚基相对空间位置和连接处布局次级键肽单元(Cα1、C、O、N、H、Cα2)蛋白质结构与功能的关系尿素、β-巯基乙醇分别可以破坏肽链中的次级键、二硫键【肌红蛋白与血红蛋白】肌红蛋白(Mb)为单一肽链蛋白质,含有一个血红素辅基;血红蛋白(Hb)四个亚基(2α、2β),每个亚基都有一个血红素辅基;肌红蛋白与血红蛋白亚基的三级结构相似;肌红蛋白的氧解离曲线为直角双曲线、血红蛋白为S形曲线;血红蛋白有紧张态(T)和松弛态(R),R态为结合氧的状态。
蛋白质构想改变引起疾病:疯牛病、阿尔兹海默症、亨廷顿舞蹈病蛋白质的理化性质两性电离、胶体性质(水化膜和电荷效应维持稳定)、双缩脲反应(检测蛋白质水解程度)蛋白质的分离、纯化与结构分析透析、超滤法可去除蛋白质溶液中的小分子化合物。
丙酮沉淀、盐析、免疫沉淀是常用的蛋白质浓缩方法既可以分离蛋白质又可以测定其分子量的方法是超速离心*简答题或论述题:1、简述α-螺旋结构的主要特征要点:右手螺旋、螺距和上升一圈的残基数、侧链位于外侧、氢键维持稳定2、简述谷胱甘肽的结构特点和生物学功能?要点:非α肽键、巯基、体内重要还原剂3、蛋白质变性后有什么改变?(1)生物活性丧失(2)空间结构被破坏、肽键完好(3)溶解度降低(4)黏度增加(5)不易结晶、易沉淀(6)易被蛋白酶水解第二章核酸的结构与功能核算的化学组成和一级结构糖苷键:核糖的C-1’原子和嘌呤的N-9原子或嘧啶的N-1原子形成的共价键。
绪论1.生命有机体的特征:①化学成分复杂但条理性很强;②新陈代谢;③能自我繁殖。
2.细胞是生物体基本的结构和功能单位。
3.生化研究内容:①生物体的化学组成及生物分子的结构与功能;②代谢及其调节;③遗传信息的表达及调控;4.自然界化合物:①有机物:糖、脂、蛋白质、核酸;②无机物:水、无机盐5.生物分子:①有机小分子:维生素、辅酶、激素、有机酸、色素;②生物大分子:糖、脂、蛋白质、核酸生物复杂多样,但在分子水平具有简单同一性6.生物大分子的基本特征:①由结构简单的小分子聚合而成②都有非常复杂的结构③作为信息分子的基础④生物分子之间相互作用和识别特性7.代谢及其调节特点:①细胞内发生②包括物质和能量代谢③需要精细的相互协调8.发展简史:①叙述生物化学;②动态生物化学;③分子生物化学。
生物活动的化学基础1.化学键:相邻原子或离子之间强烈的相互作用,分离子键和共价键。
2.次级键:氢键和范德华力等较弱化学键的总称。
3.官能团:决定性质的原子或基团。
4.基本化学反应类型:氧化、还原、中和、置换、合成等。
5.氧化反应:有机物反应时加氧或脱氢的作用。
6.还原反应:有机物反应时加氢或脱氧的作用。
7.正常血液PH:7.35~7.45糖化学1.糖:化学本质为多羟基醛或多羟基酮类及其衍生物、缩聚物。
2.单糖:不能在水解的糖。
3.寡糖:能水解生成几分子单糖的糖,各单糖之间借脱水缩合的糖苷键相连。
4.多糖:能水解生成多个分子单糖的糖,包括同多糖、杂多糖。
5.手性原子:结构具有不对称性、不能与其镜像重合的原子。
6.手性碳原子:所连接的四个化学基团完全不同的碳原子。
7.旋光性:使平面偏振光发生旋转的性质。
只有手性分子才有旋光性8.旋光度:平面偏振光旋转的角度。
9.比旋光度:手性分子的特征常数。
10.D、L构型:距离羰基最远的手性碳上-OH的位置,在左为L,在右为D。
自然界存在的单糖大多使D型11.变旋光现象:几种构型之间相互转换,动态平衡的现象。
绪论1.生命有机体的特征:①化学成分复杂但条理性很强;②新陈代谢;③能自我繁殖。
2.细胞是生物体基本的结构和功能单位。
3.生化研究内容:①生物体的化学组成及生物分子的结构与功能;②代谢及其调节;③遗传信息的表达及调控;4.自然界化合物:①有机物:糖、脂、蛋白质、核酸;②无机物:水、无机盐5.生物分子:①有机小分子:维生素、辅酶、激素、有机酸、色素;②生物大分子:糖、脂、蛋白质、核酸生物复杂多样,但在分子水平具有简单同一性6.生物大分子的基本特征:①由结构简单的小分子聚合而成②都有非常复杂的结构③作为信息分子的基础④生物分子之间相互作用和识别特性7.代谢及其调节特点:①细胞内发生②包括物质和能量代谢③需要精细的相互协调8.发展简史:①叙述生物化学;②动态生物化学;③分子生物化学。
生物活动的化学基础1.化学键:相邻原子或离子之间强烈的相互作用,分离子键和共价键。
2.次级键:氢键和范德华力等较弱化学键的总称。
3.官能团:决定性质的原子或基团。
4.基本化学反应类型:氧化、还原、中和、置换、合成等。
5.氧化反应:有机物反应时加氧或脱氢的作用。
6.还原反应:有机物反应时加氢或脱氧的作用。
7.正常血液PH:7.35~7.45糖化学1.糖:化学本质为多羟基醛或多羟基酮类及其衍生物、缩聚物。
2.单糖:不能在水解的糖。
3.寡糖:能水解生成几分子单糖的糖,各单糖之间借脱水缩合的糖苷键相连。
4.多糖:能水解生成多个分子单糖的糖,包括同多糖、杂多糖。
5.手性原子:结构具有不对称性、不能与其镜像重合的原子。
6.手性碳原子:所连接的四个化学基团完全不同的碳原子。
7.旋光性:使平面偏振光发生旋转的性质。
只有手性分子才有旋光性8.旋光度:平面偏振光旋转的角度。
9.比旋光度:手性分子的特征常数。
10.D、L构型:距离羰基最远的手性碳上-OH的位置,在左为L,在右为D。
自然界存在的单糖大多使D型11.变旋光现象:几种构型之间相互转换,动态平衡的现象。
生物化学笔记生物化学是研究生物体内化学反应及其调控的科学,以及生物分子的组成、结构、功能和相互作用的学科。
在本篇笔记中,我们将介绍一些关键概念和重要知识点。
一、生物大分子1. 蛋白质:蛋白质是生物体内功能最为多样的分子,由氨基酸残基组成。
蛋白质的结构分为一级至四级结构,不同结构决定了蛋白质的功能。
2. 碳水化合物:碳水化合物是生物体内最主要的能源来源,由碳、氢、氧三种元素组成。
简单的碳水化合物有单糖、双糖,而复杂的碳水化合物包括多糖和淀粉。
3. 脂类:脂类是生物体内的重要能源储备物质和结构组分,包括甘油三酯、磷脂和类固醇等。
脂类在细胞膜的结构和功能以及信号传导中起重要作用。
二、酶的基本概念和功能1. 酶是生物体内催化化学反应的蛋白质,可以加速反应速率,但不参与反应本身。
酶的活性受到温度、pH值和底物浓度的影响。
2. 酶的命名方式遵循国际酶学会(IUB)的命名规则,一般以底物名称后加“酶”的后缀命名。
3. 酶的功能多种多样,包括促进化学反应、调节代谢途径、合成新的化学物质等。
三、代谢途径1. 糖代谢:糖是生物体内的主要能源来源,糖代谢分为糖原的合成和降解过程。
糖原合成通过糖原合成酶来完成,而糖原降解则由糖原磷酸化酶和糖原酶协同完成。
2. 脂代谢:脂类代谢包括脂类的合成和降解过程。
脂类的合成需要通过酰基辅酶A(Acetyl-CoA)参与的反应来完成。
3. 氨基酸代谢:氨基酸代谢包括氨基酸的合成和降解过程。
氨基酸的合成可以通过氨基酸转氨酶催化来实现。
4. 核酸代谢:核酸代谢包括DNA和RNA的合成和降解过程。
DNA的合成需要以脱氧核苷酸为单体,RNA的合成则需要以核苷酸为单体。
四、酶动力学1. 酶动力学是研究酶催化的速率和影响因素的科学。
酶动力学常用的参数包括最大催化速率(Vmax)和米氏常数(Km)。
2. 米氏方程是描述酶催化速率和底物浓度之间关系的常用方程。
3. 酶抑制剂是能够抑制酶活性的分子,分为可逆抑制剂和不可逆抑制剂。
绪论生化的任务 ⎪⎩⎪⎨⎧功能生化动态生化静态生化静态生化是研究生物体基本物质的化学组成,结构,理化性质,生物学功能及结构与功能的关系.;动态生化是研究物质代谢的体内动态过程及在代谢过程中能量的转换和代谢调节规律;功能生化是研究代谢反应与生理功能的关系也是了解生命现象规律的重要环节之一.静态生化第一章 氨基酸和蛋白质一、组成蛋白质的20种氨基酸的分类三碱二酸三芳香1、非极性氨基酸包括:色、脯、苯丙、蛋亮、亮、异亮、缬、丙、 2、极性氨基酸极性中性氨基酸:酪、苏、丝、天冬酰胺、谷氨酰胺、半胱、甘酸性氨基酸:天冬、谷碱性氨基酸:赖、精、组其中:属于芳香族氨基酸的是:色氨酸、酪氨酸、苯丙氨酸属于亚氨基酸的是:脯氨酸含硫氨基酸包括:半胱氨酸、蛋氨酸二、氨基酸的理化性质1、两性解离及等电点氨基酸分子中有游离的氨基和游离的羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。
在某一PH 的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的PH 称为该氨基酸的等电点。
2、氨基酸的紫外吸收性质芳香族氨基酸在280nm 波长附近有最大的紫外吸收峰,由于大多数蛋白质含有这些氨基酸残基,氨基酸残基数与蛋白质含量成正比,故通过对280nm 波长的紫外吸光度的测量可对蛋白质溶液进行定量分析。
3、茚三酮反应氨基酸的氨基与茚三酮水合物反应可生成蓝紫色化合物,此化合物最大吸收峰在570nm 波长处。
由于此吸收峰值的大小与氨基酸释放出的氨量成正比,因此可作为氨基酸定量分析方法。
三、肽两分子氨基酸可借一分子所含的氨基与另一分子所带的羧基脱去1分子水缩合成最简单的二肽。
二肽中游离的氨基和羧基继续借脱水作用缩合连成多肽。
10个以内氨基酸连接而成多肽称为寡肽;39个氨基酸残基组成的促肾上腺皮质激素称为多肽;51个氨基酸残基组成的胰岛素归为蛋白质。
多肽连中的自由氨基末端称为N端,自由羧基末端称为C端,命名从N端指向C端。
人体内存在许多具有生物活性的肽,重要的有:谷胱甘肽(GSH):是由谷、半胱和甘氨酸组成的三肽。
半胱氨酸的巯基是该化合物的主要功能基团。
GSH的巯基具有还原性,可作为体内重要的还原剂保护体内蛋白质或酶分子中巯基免被氧化,使蛋白质或酶处于活性状态。
四、蛋白质的分子结构1、蛋白质的一级结构:即蛋白质分子中氨基酸的排列顺序。
主要化学键:肽键,有些蛋白质还包含二硫键。
2、蛋白质的高级结构:包括二级、三级、四级结构。
1)蛋白质的二级结构:指蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。
二级结构以一级结构为基础,多为短距离效应。
可分为:α-螺旋:多肽链主链围绕中心轴呈有规律地螺旋式上升,顺时钟走向,即右手螺旋,每隔3.6个氨基酸残基上升一圈,螺距为0.540nm。
α-螺旋的每个肽键的N-H和第四个肽键的羧基氧形成氢键,氢键的方向与螺旋长轴基本平形。
β-折叠:多肽链充分伸展,各肽键平面折叠成锯齿状结构,侧链R基团交错位于锯齿状结构上下方;它们之间靠链间肽键羧基上的氧和亚氨基上的氢形成氢键维系构象稳定.β-转角:常发生于肽链进行180度回折时的转角上,常有4个氨基酸残基组成,第二个残基常为脯氨酸。
无规线团:无确定规律性的那段肽链。
主要化学键:氢键。
2)蛋白质的三级结构:指整条肽链中全部氨基酸残基的相对空间位置,显示为长距离效应。
主要化学键:疏水键(最主要)、盐键、二硫键、氢键、范德华力。
3)蛋白质的四级结构:对蛋白质分子的二、三级结构而言,只涉及一条多肽链卷曲而成的蛋白质。
在体内有许多蛋白质分子含有二条或多条肽链,每一条多肽链都有其完整的三级结构,称为蛋白质的亚基,亚基与亚基之间呈特定的三维空间排布,并以非共价键相连接。
这种蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,为四级结构。
由一条肽链形成的蛋白质没有四级结构。
主要化学键:疏水键、氢键、离子键五、蛋白质结构与功能关系1、蛋白质一级结构是空间构象和特定生物学功能的基础。
一级结构相似的多肽或蛋白质,其空间构象以及功能也相似。
尿素或盐酸胍可破坏次级键β-巯基乙醇可破坏二硫键2、蛋白质空间结构是蛋白质特有性质和功能的结构基础。
肌红蛋白:只有三级结构的单链蛋白质,易与氧气结合,氧解离曲线呈直角双曲线。
血红蛋白:具有4个亚基组成的四级结构,可结合4分子氧。
成人由两条α-肽链(141个氨基酸残基)和两条β-肽链(146个氨基酸残基)组成。
在氧分压较低时,与氧气结合较难,氧解离曲线呈S状曲线。
因为:第一个亚基与氧气结合以后,促进第二及第三个亚基与氧气的结合,当前三个亚基与氧气结合后,又大大促进第四个亚基与氧气结合,称正协同效应。
结合氧后由紧张态变为松弛态。
六、蛋白质的理化性质1、蛋白质的两性电离:蛋白质两端的氨基和羧基及侧链中的某些基团,在一定的溶液PH条件下可解离成带负电荷或正电荷的基团。
2、蛋白质的沉淀:在适当条件下,蛋白质从溶液中析出的现象。
包括:a.丙酮沉淀,破坏水化层。
也可用乙醇。
b.盐析,将硫酸铵、硫酸钠或氯化钠等加入蛋白质溶液,破坏在水溶液中的稳定因素电荷而沉淀。
3、蛋白质变性:在某些物理和化学因素作用下,其特定的空间构象被破坏,从而导致其理化性质的改变和生物活性的丧失。
主要为二硫键和非共价键的破坏,不涉及一级结构的改变。
变性后,其溶解度降低,粘度增加,结晶能力消失,生物活性丧失,易被蛋白酶水解。
常见的导致变性的因素有:加热、乙醇等有机溶剂、强酸、强碱、重金属离子及生物碱试剂、超声波、紫外线、震荡等。
4、蛋白质的紫外吸收:由于蛋白质分子中含有共轭双键的酪氨酸和色氨酸,因此在280nm处有特征性吸收峰,可用蛋白质定量测定。
5、蛋白质的呈色反应a.茚三酮反应:在PH 5-7时,蛋白质与茚三酮丙酮液加热可产生蓝紫色.b.双缩脲反应:蛋白质和多肽分子中肽键在稀碱溶液中与硫酸酮共热,呈现紫色或红色。
氨基酸不出现此反应。
蛋白质水解加强,氨基酸浓度升高,双缩脲呈色深度下降,可检测蛋白质水解程度。
c.酚试剂反应在碱性条件下,蛋白质分子中的酪氨酸、色氨酸可与酚试剂(含磷钨酸-磷钼酸化合物)生成蓝色化合物.蓝色的强度与蛋白质的量成正比。
七、蛋白质的分离和纯化(一)根据溶解度不同的分离纯化方法1.等电点沉淀2.盐析沉淀3.低温有机溶剂沉淀法4.温度对蛋白质溶解度的影响(二)根据分子大小不同的分离纯化方法1.透析和超滤2.分子排阻层析3.密度梯度层析(三)根据电离性质不同的分离纯化方法1.电泳法2.离子交换层析3.大孔型离子交换树脂(四)根据配基特异性的分离纯化方法1.高度特异性2.可逆性八、蛋白质的含量测定1.克氏定氮法2.福林-酚试剂法3.双缩脲法4.紫外分光光度法5.BCA比色法6.Bradford蛋白分析法九、多肽链中氨基酸序列分析a.分析纯化蛋白质的氨基酸残基组成(蛋白质水解为个别氨基酸,测各氨基酸的量及在蛋白质中的百分组成)↓测定肽链头、尾的氨基酸残基二硝基氟苯法(DNP法)头端尾端羧肽酶A、B、C法等丹酰氯法↓水解肽链,分别分析胰凝乳蛋白酶(糜蛋白酶)法:水解芳香族氨基酸的羧基侧肽键胰蛋白酶法:水解赖氨酸、精氨酸的羧基侧肽键溴化脯法:水解蛋氨酸羧基侧的肽键↓Edman降解法测定各肽段的氨基酸顺序(氨基末端氨基酸的游离α-氨基与异硫氰酸苯酯反应形成衍生物,用层析法鉴定氨基酸种类)b.通过核酸推演氨基酸序列。
第二章 酶一、酶的组成单纯酶:仅由氨基酸残基构成的酶。
结合酶:酶蛋白:决定反应的特异性;辅助因子:决定反应的种类与性质;可以为金属离子或小分子有机化合物。
可分为辅酶:与酶蛋白结合疏松,可以用透析或超滤方法除去。
辅基:与酶蛋白结合紧密,不能用透析或超滤方法除去。
酶蛋白与辅助因子结合形成的复合物称为全酶,只有全酶才有催化作用。
二、酶的活性中心酶的活性中心由酶作用的必需基团组成,这些必需基团在空间位置上接近组成特定的空间结构,能与底物特异地结合并将底物转化为产物。
对结合酶来说,辅助因子参与酶活性中心的组成。
但有一些必需基团并不参加活性中心的组成。
三、酶促反应的动力学酶促反应的速度取决于底物浓度、酶浓度、PH 、温度、激动剂和抑制剂等。
1、底物浓度1)在底物浓度较低时,反应速度随底物浓度的增加而上升,加大底物浓度,反应速度趋缓,底物浓度进一步增高,反应速度不再随底物浓度增大而加快,达最大反应速度,此时酶的活性中心被底物饱合。
2)米氏方程式V =][][m m ax S K S V a.米氏常数K m 值等于酶促反应速度为最大速度一半时的底物浓度。
b. K m 值愈小,酶与底物的亲和力愈大。
c. K m 值是酶的特征性常数之一,只与酶的结构、酶所催化的底物和反应环境如温度、PH 、离子强度有关,与酶的浓度无关。
d.V ax m 是酶完全被底物饱和时的反应速度,与酶浓度呈正比。
2、酶浓度在酶促反应系统中,当底物浓度大大超过酶浓度,使酶被底物饱和时,反应速度与酶的浓度成正比关系。
3、温度温度对酶促反应速度具有双重影响。
升高温度一方面可加快酶促反应速度,同时也增加酶的变性。
酶促反应最快时的环境温度称为酶促反应的最适温度。
酶的活性虽然随温度的下降而降低,但低温一般不使酶破坏。
酶的最适温度不是酶的特征性常数,它与反应进行的时间有关。
4、PH酶活性受其反应环境的PH 影响,且不同的酶对PH 有不同要求,酶活性最大的某一PH 值为酶的最适PH 值,如胃蛋白酶的最适PH 约为1.8,肝精氨酸酶最适PH 为9.8,但多数酶的最适PH 接近中性。
最适PH 不是酶的特征性常数,它受底物浓度、缓冲液的种类与浓度、以及酶的纯度等因素影响。
5、激活剂使酶由无活性或使酶活性增加的物质称为酶的激活剂,大多为金属离子,也有许多有机化合物激活剂。
分为必需激活剂和非必需激活剂。
6、抑制剂凡能使酶的催化活性下降而不引起酶蛋白变性的物质统称为酶的抑制剂。
大多与酶的活性中心内、外必需基团相结合,从而抑制酶的催化活性。
可分为:1)不可逆性抑制剂:以共价键与酶活性中心上的必需基团相结合,使酶失活。
此种抑制剂不能用透析、超滤等方法去除。
又可分为:a.专一性不可逆抑制剂:如农药敌百虫、敌敌畏等有机磷化合物能特异地与胆碱酯酶活性中心丝氨酸残基的羟基结合,使酶失活,解磷定可解除有机磷化合物对羟基酶的抑制作用。
b.非专一性不可逆抑制剂:如低浓度的重金属离子如汞离子、银离子可与酶分子的巯基结合,使酶失活,二巯基丙醇可解毒。
化学毒气路易士气是一种含砷的化合物,能抑制体内的巯基酶而使人畜中毒。
2)可逆性抑制剂:通常以非共价键与酶和(或)酶-底物复合物可逆性结合,使酶活性降低或消失。
采用透析或超滤的方法可将抑制剂除去,使酶恢复活性。