九年级数学《二次函数与一元二次方程》同步练习题 - 副本
- 格式:doc
- 大小:180.00 KB
- 文档页数:4
人教版九年级上册数学22.2二次函数与一元二次方程同步练习一、单选题1.抛物线223y x x =+-与x 轴的交点个数有( )A .0个B .1个C .2个D .3个 2.下列二次函数的图象与x 轴有且只有一个交点的是( ) A .239y x x =+ B .244y x x =-++C .2245y x x =++D .221y x x =-+3.已知二次函数()22221y x b x b =----+的图象不经过第二象限,则实数b 的取值范围是( )4.二次函数2y ax bx c =++图象的一部分如图所示,它与x 轴的一交点为()6,0B ,对称轴为直线2x =,则由图象可知,方程20ax bx c ++=的解是( )A .10x =,26x =B .12x =-,26x =C .11x =-,26x =D .12x =-,22x = 5.已知抛物线()243y a x =--的部分图象如图所示,则图象与x 轴另一个交点的坐标是( )A .()5,0B .()6,0C .()7,0D .()8,06.如图是二次函数²y ax bx c =++的部分图像,由图像可知不等式²0ax bx c ++≥的解集是( )A .15x <<B . 5x ≤C .15x -≤≤D . 1x <-或5x >7.二次函数()()2y x a x b =---,()a b <的图像与x 轴交点的横坐标为m 、n ,且m n <,则a ,b ,m ,n 的大小关系是( )A .m a b n <<<B .a m b n <<<C .a m n b <<<D .m a n b <<<8.二次函数()20y ax bx c a =++≠的图象如图所示,对称轴是直线1x =,下列结论中:①0ac <;①24b ac <;①20a b -=;①930a b c ++>.正确的有( )A .1个B .2个C .3个D .4个二、填空题9.如图,在平面直角坐标系中,抛物线222y x mx m =-++-(m 为常数,且0m >)与直线y =2交于A 、B 两点.若AB =2,则m 的值为______.10.抛物线()231y ax a x =+-+的顶点在x 轴上,则a 的值为________.11.已知二次函数24y x x c =++的图象与x 轴的一个交点坐标是()20,,则它与x 轴的另一个交点坐标是______.12.已知二次函数y =﹣x 2+bx +c 的顶点为(1,5),那么关于x 的一元二次方程﹣x 2+bx +c ﹣m =0有两个相等的实数根,则m =______________.13.若抛物线y =x 2+ax +b 与x 轴两个交点间的距离为2,对称轴为直线x =1,将此抛物线向左平移2个单位,再向下平移3个单位,平移后抛物线的顶点坐标为_____. 14.如图,抛物线2y ax c =+与直线y mx n =+交于()()2,,4,A p B q -两点,则不等式2ax mx c n -+<的解集是___________.15.如图,已知二次函数()20y x m m =-+>的图像与x 轴交于A 、B 两点,与y 轴交于C 点.若AB OC =,则m 的值是______.16.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图.则有以下5个结论:①a <0;①b 2-4ac<0;①b =-2a ;①当0<x <2时,y >0;①a -b +c >0;其中正确的结论有:____________.(写出你认为正确的序号即可)三、解答题17.在平面直角坐标系中,已知抛物线22y x 2mx m 9=-+-.(1)求证:无论m 为何值,该抛物线与x 轴总有两个交点;(2)该抛物线与x 轴交于A ,B 两点,点A 在点B 的左侧,且3OA OB =,求m 的值. 18.如图,抛物线2y x bx c =-++交x 轴于()1,0A -、B 两点,交y 轴于()0,3C ,点P 在抛物线上,横坐标设为m .(1)求抛物线的解析式;求BDC的面积.(1)求抛物线的解析式;(2)若D 是抛物线上一点(不与点C 重合),且ABD ABC S S △△,请求出点D 的坐标.参考答案:。
基础知识反馈卡•21.1时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.若(a-1)x2+bx+c=0是关于x的一元二次方程,则() A.a≠0 B.a≠1C.a=1 D.a≠-12.一元二次方程2x2-(m+1)x+1=x(x-1)化成一般形式后二次项的系数为1,一次项的系数为-1,则m的值为()A.-1 B.1 C.-2 D.2二、填空题(每小题4分,共12分)3.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则m=_______________.4.若关于x的方程mx2+(m-1)x+5=0有一个解为2,则m的值是______.5.把一元二次方程(x-3)2=5化为一般形式为________________,二次项为________,一次项系数为__________,常数项为________.三、解答题(共7分)6.已知关于x的一元二次方程(2m-1)x2+3mx+5=0有一根是x=-1,求m的值.基础知识反馈卡•21.2.1时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.用配方法解方程x2-23x-1=0,正确的配方为()A.x-132=89B.x-232=59C.x-132+109=0D.x-132=1092.一元二次方程x2+x+14=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根D.无法确定二、填空题(每小题4分,共12分)3.方程x2-4x-12=0的解x1=________,x2=________.4.x2+2x-5=0配方后的方程为____________.5.用公式法解方程4x2-12x=3,得到x=________.三、解答题(共7分)6.已知关于x的一元二次方程x2-mx-2=0.(1)对于任意实数m,判断此方程根的情况,并说明理由;(2)当m=2时,求方程的根.时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.一元二次方程x2=3x的根是()A.x=3 B.x=0C.x1=0,x2=3 D.x1=0,x2=-32.方程4(x-3)2+x(x-3)=0的根为() A.x=3 B.x=125C.x1=-3,x2=125 D.x1=3,x2=125二、填空题(每小题4分,共12分)3.方程x2-16=0的解是____________.4.如果(m+n)(m+n+5)=0,则m+n=______. 5.方程x(x-1)=x的解是________.三、解答题(共7分)6.解下列一元二次方程:(1)2x2-8x=0;(2)x2-3x-4=0.时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.若x1,x2是一元二次方程x2+4x+3=0的两个根,则x1x2的值是()A.4 B.3 C.-4 D.-32.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,那么p,q的值分别是()A.-3,2 B.3,-2 C.2,-3 D.2,3二、填空题(每小题4分,共12分)3.已知一元二次方程的两根之和为7,两根之积为12,则这个方程为____________________.4.已知方程x2-3x+m=0的一个根是1,则它的另一个根是______,m的值是______.5.已知x1,x2是方程x2-3x-3=0的两根,不解方程可求得x21+x22=________.三、解答题(共7分)6.已知关于x的一元二次方程x2+(2m-3)x+m2=0的两个不相等的实数根α,β满足1α+1β=1,求m的值.基础知识反馈卡•21.3时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.某品牌服装原价173元,连续两次降价x%后售价为127元,下面所列方程中正确的是()A.173(1+x%)2=127 B.173(1-2x%)=127C.173(1-x%)2=127 D.127(1+x%)2=1732.某城市为绿化环境,改善城市容貌,计划经过两年时间,使绿地面积增加44%,这两年平均每年绿地面积的增长率是() A.19% B.20% C.21% D.22%3.一个面积为120 cm2的矩形花圃,它的长比宽多2 m,则花圃的长是()A.10 m B.12 m C.13 m D.14 m二、填空题(每小题4分,共8分)4.已知一种商品的进价为50元,售价为62元,则卖出8件所获得的利润为__________元.5.有一个两位数等于其数字之和的4倍,其十位数字比个位数字小2,则这个两位数是________.三、解答题(共8分)6.某西瓜经营户以2元/千克的进价购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克,另外,每天的房租等固定成本共24元,该经营户要想每天赢利200元,应将每千克小型西瓜的售价降低多少元?础知识反馈卡•22.1.1时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.若y=mx2+nx-p(其中m,n,p是常数)为二次函数,则() A.m,n,p均不为0 B.m≠0,且n≠0C.m≠0 D.m≠0,或p≠02.当ab>0时,y=ax2与y=ax+b的图象大致是()二、填空题(每小题4分,共8分)3.若y=xm-1+2x是二次函数,则m=________.4.二次函数y=(k+1)x2的图象如图J2211,则k的取值范围为________.图J2211三、解答题(共11分)5.在如图J2212所示网格内建立恰当直角坐标系后,画出函数y=2x2和y=-12x2的图象,并根据图象回答下列问题(设小方格的边长为1):图J2212(1)说出这两个函数图象的开口方向,对称轴和顶点坐标;(2)抛物线y=2x2,当x______时,抛物线上的点都在x轴的上方,它的顶点是图象的最______点;(3)函数y=-12x2,对于一切x的值,总有函数y______0;当x______时,y有最______值是______.基础知识反馈卡•22.1.2时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.下列抛物线的顶点坐标为(0,1)的是()A.y=x2+1 B.y=x2-1C.y=(x+1)2 D.y=(x-1)22.二次函数y=-x2+2x的图象可能是()二、填空题(每小题4分,共8分)3.抛物线y=x2+14的开口向________,对称轴是________.4.将二次函数y=2x2+6x+3化为y=a(x-h)2+k的形式是________.三、解答题(共11分)5.已知二次函数y=-12x2+x+4.(1)确定抛物线的开口方向、顶点坐标和对称轴;(2)当x取何值时,y随x的增大而增大?当x取何值时,y随x的增大而减小?基础知识反馈卡•*22.1.3时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.已知二次函数的图象过(1,0),(2,0)和(0,2)三点,则该函数的解析式是()A.y=2x2+x+2 B.y=x2+3x+2C.y=x2-2x+3 D.y=x2-3x+22.若二次函数的图象的顶点坐标为(2,-1),且抛物线过(0,3),则二次函数的解析式是()A.y=-(x-2)2-1 B.y=-12(x-2)2-1C.y=(x-2)2-1 D.y=12(x-2)2-1二、填空题(每小题4分,共8分)3.如图J2213,函数y=-(x-h)2+k的图象,则其解析式为____________.图J22134.已知抛物线y=x2+(m-1)x-14的顶点的横坐标是2,则m的值是________.三、解答题(共11分)5.已知当x=1时,二次函数有最大值5,且图象过点(0,-3),求此函数关系式.基础知识反馈卡•22.2时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.下表是二次函数y=ax2+bx+c的自变量x的值与函数y的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解的范围是()x 6.17 6.18 6.19 6.20y=ax2+bx+c -0.03 -0.01 0.02 0.04A.6<x<6.17 B.6.17<x<6.18 C.6.18<x<6.19 D.6.19<x<6.202.二次函数y=2x2+3x-9的图象与x轴交点的横坐标是()A.32和3B.32和-3 C.-32和2 D.-32和-2二、填空题(每小题4分,共8分)3.已知抛物线y=x2-x-1与x轴的交点为(m,0),则代数式m2-m +2 011的值为__________.4.如图J2221是抛物线y=ax2+bx+c的图象,则由图象可知,不等式ax2+bx+c<0的解集是________.图J2221 图J2222三、解答题(共11分)5.如图J2222,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).(1)求m的值和抛物线的关系式;(2)求不等式x2+bx+c>x+m的解集(直接写出答案).基础知识反馈卡•22.3时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.在半径为4 cm的圆中,挖去一个半径为x cm的圆,剩下一个圆环的面积为y cm2,则y与x的函数关系为()A.y=πx2-4 B.y=π(2-x)2C.y=-(x2+4) D.y=-πx2+16π2.已知某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=-52t2+20t+1.若此礼炮在升空到最高处时引爆,则引爆需要的时间为()A.3 s B.4 s C.5 s D.6 s二、填空题(每小题4分,共8分)3.出售某种手工艺品,若每个获利x元,一天可售出(8-x)个,则当x=________元,一天出售该种手工艺品的总利润y最大.4.如图J2231,某省大学的校门是一抛物线形水泥建筑物,大门的地面宽度为8 m,两侧距地面4 m的高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6 m,则校门的高度为(精确到0.1 m,水泥建筑物厚度忽略不计)________.图J2231三、解答题(共11分)5.杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一个点)的路线是抛物线y=-35x2+3x+1的一部分,如图J2232.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?说明理由.图J2232。
中考数学《二次函数与一元二次方程》专项练习题及答案.()=--2y x x my=mA.0个B.1个C.2个D.3个7.二次函数()20y ax bx c a =++≠()1,0-A .5个B .4个C .3个D .2个,使得ABP为等腰直角三角形,其中正确的结论的有(A.1个B.2个C.3个D.4个A.1个B.2个C.3个D.4个四个根的和为4-.其中正确的结论有_____.12.如图,抛物线1C :223y x x =+-与抛物线2C :2y ax bx c =++组成一个开口向上的“月牙线”,抛物线1C 和抛物线2C 与x 轴有着相同的交点A 、B (点B 在点A 右侧),与y 轴的交点分别为C 、D .如果BD CD =,那么抛物线2C 的表达式是______.13.二次函数()20y ax bx c a =++≠的图象的一部分如图所示,已知图象经过点()2,0-其对称轴为直线 2.x =下列结论①0abc >;①240b ac -<;①80a c +>;①9315a b c a ++=-;①点()()123,0,C y D y 是抛物线上的两点,则12y y <;①若抛物线经过点()3,n -,则关于x 的一元二次方程()200ax bx c n a ++-=≠的两根分别为3-,7.正确的有______ (填序号).14.已知y 是关于x 的函数,若该函数的图象经过点(),P t t ,则称点P 为函数图象上的“平衡点”,例如:直线23y x =-+上存在“平衡点”()1,1P ,若函数()2132y m x x m =--+的图象上存在唯一“平衡点”,则m =___________.15.已知抛物线2y ax bx c =++(a ,b ,c 是常数,a c ≠),且0a b c -+=,0a >下列四个结论:①对于任意实数m ,()()2110a m b m -+-≥恒成立;①若0a b +=,则不等式20ax bx c ++<的解集是12x -<<; ①一元二次方程()222a x bx b c --+=+有一个根1x =;①点()11,A x y ,()22,B x y 在抛物线上,若c a >,则当121x x -<<时,总有12y y <.其中正确的是__________.(填写序号)(1)求点M 的坐标;(用含m 的式子表示)时,请求出ODE 面积(3bx a +≠(1)求该二次函数解析式;,求BCP面积的最大值;所得新函数图象如图轴交于C点,(1)求该二次函数的表达式及其图象的顶点坐标;1.B2.B3.B4.D5.A6.D7.C。
九年级数学:二次函数与一元二次方程练习题(含解析)
1.某一抛物线开口向下,且与x 轴无交点,则具有这样性质的抛物线的表达式可能为 (只写一个),此类函数都有______值(填“最大”“最小”).
2.若抛物线y =x 2-(2k +1)x +k 2+2,与x 轴有两个交点,则整数k 的最小值是______.
3.等腰梯形的周长为60 cm,底角为60°,当梯形腰x =______时,梯形面积最大,等于______.
4.关于二次函数y =ax 2+bx +c 的图象有下列命题,其中是假命题的个数是( ) ①当c =0时,函数的图象经过原点; ②当b =0时,函数的图象关于y 轴对称; ③函数的图象最高点的纵坐标是a
b a
c 442
;④当c >0且函数的图象开口向下时,方程ax 2+bx +c =0必有两个不相等的实根.
A.0个
B.1个
C.2个
D.3个
5.抛物线y =kx 2
-7x -7的图象和x 轴有交点,则k 的取值范围是( )
A.k >-47;
B.k ≥-47且k ≠0;
C.k ≥-47;
D.k >-47且k ≠0 6.利用二次函数的图象求下列一元二次方程的根.
(1)4x 2-8x +1=0; (2)x 2-2x -5=0;
(3)2x 2-6x +3=0; (4)x 2-x -1=0.
参考答案
1.y=-x2+x-1 最大
2. 2
3. 15 cm
4.B
5.B
6.解:(1)x1≈1.9,x2≈0.1;(2)x1≈3.4,x2≈-1.4;(3)x1≈2.4,x2≈0.6;(4)x1≈1.6,x2≈-0 .6。
第1课时 二次函数与一元二次方程●基础练习1.如果抛物线y =-2x 2+mx -3的顶点在x 轴正半轴上,则m =______. 2.二次函数y =-2x 2+x -21,当x =______时,y 有最______值,为______.它的图象与x 轴______交点(填“有”或“没有”).3.已知二次函数y =ax 2+bx +c 的图象如图1所示.①这个二次函数的表达式是y =______;②当x =______时,y =3;③根据图象回答:当x ______时,y >0.xy 1 12 -1OxyAB O图1图24.某一元二次方程的两个根分别为x 1=-2,x 2=5,请写出一个经过点(-2,0),(5,0)两点二次函数的表达式:______.(写出一个符合要求的即可)5.不论自变量x 取什么实数,二次函数y =2x 2-6x +m 的函数值总是正值,你认为m 的取值范围是______,此时关于一元二次方程2x 2-6x +m =0的解的情况是______(填“有解”或“无解”).6.某一抛物线开口向下,且与x 轴无交点,则具有这样性质的抛物线的表达式可能为______(只写一个),此类函数都有______值(填“最大”“最小”).7.如图2,一小孩将一只皮球从A 处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A 距地面的距离OA 为1 m ,球路的最高点B (8,9),则这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1 m). 8.若抛物线y=x 2-(2k+1)x+k 2+2,与x 轴有两个交点,则整数k 的最小值是______.9.已知二次函数y=ax 2+bx+c(a ≠0)的图象如图1所示,由抛物线的特征你能得到含有a 、b 、c 三个字母的等式或不等式为______(写出一个即可).10.等腰梯形的周长为60 cm ,底角为60°,当梯形腰x=______xy1-1-1O时,梯形面积最大,等于______.11.找出能反映下列各情景中两个变量间关系的图象,并将代号填在相应的横线上.(1)一辆匀速行驶的汽车,其速度与时间的关系.对应的图象是______. (2)正方形的面积与边长之间的关系.对应的图象是______.(3)用一定长度的铁丝围成一个长方形,长方形的面积与其中一边的长之间的关系.对应的图象是______.(4)在220 V 电压下,电流强度与电阻之间的关系.对应的图象是______.x x xxyyyyA B C DOO OO 12.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的 零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价______元,最大利润为______元.13.关于二次函数y =ax 2+bx +c 的图象有下列命题,其中是假命题的个数是( )①当c =0时,函数的图象经过原点; ②当b =0时,函数的图象关于y 轴对称;③函数的图象最高点的纵坐标是ab ac 442 ;④当c >0且函数的图象开口向下时,方程ax 2+bx +c =0必有两个不相等的实根( ) A.0个 B.1个 C.2个 D.3个 14.已知抛物线y =ax 2+bx +c 如图所示,则关于x 的方程ax 2+bx +c -8=0的根的情况是A.有两个不相等的正实数根 ;B.有两个异号实数根;C.有两个相等的实数根;D.没有实数根.15.抛物线y =kx 2-7x -7的图象和x 轴有交点,则k 的取值范围是( )A.k >-47; B.k ≥-47且k ≠0; C.k ≥-47; D.k >-47且k ≠0 16.如图6所示,在一个直角三角形的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( ) A.424 m B.6 m C.15 m D.25 mx y 8O5 m 12 m ABCD x y2.4 12O图4图5图617.二次函数y =x 2-4x +3的图象交x 轴于A 、B 两点,交y 轴于点C ,△ABC 的面积为( )A.1B.3C.4D.618.无论m 为任何实数,二次函数y =x 2+(2-m )x +m 的图象总过的点是( )A.(-1,0);B.(1,0)C.(-1,3) ;D.(1,3)19.为了备战2008奥运会,中国足球队在某次训练中,一队员在距离球门12米处的挑射,正好从2.4米高(球门横梁底侧高)入网.若足球运行的路线是抛物线y =ax 2+bx +c (如图5所示),则下列结论正确的是( ) ①a <-601 ②-601<a <0 ③a -b +c >0 ④0<b <-12aA.①③B.①④C.②③D.②④20.把一个小球以20 m/s 的速度竖直向上弹出,它在空中的高度h(m)与时间t(s)满足关系h=20t -5t 2.当h=20 m 时,小球的运动时间为( )A.20 sB.2 sC.(22+2) sD.(22-2) s 21.如果抛物线y=-x 2+2(m -1)x+m+1与x 轴交于A 、B 两点,且A 点在x 轴正半轴上,B 点在x 轴的负半轴上,则m 的取值范围应是( ) A.m>1B.m>-1C.m<-1D.m<122.如图7,一次函数y=-2x+3的图象与x 、y 轴分别相交于A 、C 两点,二次函数y=x 2+bx+c 的图象过点c 且与一次函数在第二象限交于另一点B ,若AC ∶CB=1∶2,那么,这个二次函数的顶点坐标为( ) A.(-21,411) B.(-21,45) C.(21,411) D.(21,-411) 23.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为( )A.y=25x+15B.y=2.5x+1.5C.y=2.5x+15D.y=25x+1.5 24.如图8,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式是y=-121x 2+32x+35,则该运动员此次掷铅球的成绩是( ) A.6 mB.12 mC.8 mD.10 mx y ABCOx yOABM O图7图8图9 25.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图9,如果抛物线的最高点M 离墙1 m ,离地面340m ,则水流落地点B 离墙的距离OB 是( ) A.2 mB.3 mC.4 mD.5 m26.求下列二次函数的图像与x 轴的交点坐标,并作草图验证. (1)y=12x 2+x+1; (2)y=4x 2-8x+4; (3)y=-3x 2-6x-3; (4)y=-3x 2-x+4 27.一元二次方程x 2+7x+9=1的根与二次函数y=x 2+7x+9的图像有什么关系? 试把方程的根在图像上表示出来.28.利用二次函数的图像求下列一元二次方程的根. (1)4x 2-8x+1=0; (2)x 2-2x-5=0;(3)2x 2-6x+3=0; (3)x 2-x-1=0.29.已知二次函数y=-x 2+4x-3,其图像与y 轴交于点B,与x 轴交于A, C 两点. 求△ABC 的周长和面积.●能力提升30.某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x (元)满足关系:m =140-2x .(1)写出商场卖这种商品每天的销售利润y 与每件的销售价x 间的函数关系式; (2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?31.已知二次函数y =(m 2-2)x 2-4mx +n 的图象的对称轴是x =2,且最高点在直线y =21x +1上,求这个二次函数的表达式.32.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x m.(1)要使鸡场面积最大,鸡场的长度应为多少m?(2)如果中间有n(n是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少m?比较(1)(2)的结果,你能得到什么结论?x33.当运动中的汽车撞到物体时,汽车所受到的损坏程度可以用“撞击影响”来衡量.某型汽车的撞击影响可以用公式I=2v2来表示,其中v(千米/分)表示汽车的速度;(1)列表表示I与v的关系.(2)当汽车的速度扩大为原来的2倍时,撞击影响扩大为原来的多少倍?34.如图7,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.(1)建立如图所示的直角坐标系,求抛物线的表达式;(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少.4m (0,3.5)3.05 m xyO35.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数的图象(部分)刻画了该公司年初以来累积利润S(万元)与销售时间t(月)之间的关系(即前t 个月的利润总和S 与t 之间的关系).(1)根据图象你可获得哪些关于该公司的具体信息?(至少写出三条)(2)还能提出其他相关的问题吗?若不能,说明理由;若能,进行解答,并与同伴交流.12345-1-2(万元) 月份 ?S t O36.把一个数m 分解为两数之和,何时它们的乘积最大?你能得出一个一般性的结论吗?●综合探究37.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg 放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg 蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x 天后每千克活蟹的市场价为p 元,写出p 关于x 的函数关系式;(2)如果放养x 天后将活蟹一次性出售,并记1000 kg 蟹的销售总额为Q 元,写出Q 关于x的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q-收购总额)?38.图中a是棱长为a的小正方体,图b、图c由这样的小正方体摆放而成,按照这样的方法继续摆放,自上而下分别叫第一层,第二层……,第n层,第n层的小正方形的个数记为S,解答下列问题:a b c(1)按照要求填表:n 1 2 3 4 …S 1 3 6 …(2)写出当n=10时,S=______;(3)根据上表中的数据,把S作为纵坐标,n作为横坐标,在平面直角坐标系中描出相应的各点;(4)请你猜一猜上述各点会在某一个函数图象上吗?如果在某一函数的图象上,求出该函数的表达式;若不在,说明理由.S参考答案1.262.41 大 -83没有 3.①x 2-2x ②3或-1 ③<0或>2 4. y =x 2-3x -105. m >29 无解 6.y =-x 2+x -1 最大 7.y =-81x 2+2x +1 16.58. 2 9.b 2-4ac>0(不唯一) 10 . 15 cm23225 cm 211.(1)A (2)D (3)C (4)B 12. 5 62513.B 14.C 15.B 16.D 17.B 18.D 19.B 20.B 21.B 22.A 23.C 24.D25.B 〔提示:设水流的解析式为y=a(x -h)2+k,∴A(0,10),M(1,340). ∴y=a(x -1)2+340,10=a+340. ∴a=-310. ∴y=-310(x -1)2+340. 令y=0得x=-1或x=3得B(3,0), 即B 点离墙的距离OB 是3 m26.(1)没有交点;(2)有一个交点(1,0);(3)有一个交点(-1,0);(4)有两个交点( 1,0),(43,0),草图略.27.该方程的根是该函数的图像与直线y=1的交点的横坐标.28.(1)x 1≈1.9,x 2≈0.1;(2)x 1≈3.4,x 2≈-1.4;(3)x 1≈2.7,x 2≈0.6;(4)x 1≈1.6,x 2≈-0 .629.令x=0,得y=-3,故B 点坐标为(0,-3). 解方程-x 2+4x-3=0,得x 1=1,x 2=3. 故A 、C 两点的坐标为(1,0),(3,0).所以AC=3-1=2,AB=221310+=,BC=223332+=, OB=│-3│=3. C △ABC =AB+BC+AC=21032++. S △ABC =12AC ·OB=12×2×3=3. 30.(1)y =-2x 2+180x -2800.(2)y =-2x 2+180x -2800 =-2(x 2-90x )-2800 =-2(x -45)2+1250. 当x =45时,y 最大=1250.∴每件商品售价定为45元最合适,此销售利润最大,为1250元. 31.∵二次函数的对称轴x =2,此图象顶点的横坐标为2,此点在直线y =21x +1上. ∴y =21×2+1=2. ∴y =(m 2-2)x 2-4mx +n 的图象顶点坐标为(2,2). ∴-ab2=2.∴-)2(242--m m =2. 解得m =-1或m =2. ∵最高点在直线上,∴a <0, ∴m =-1.∴y =-x 2+4x +n 顶点为(2,2). ∴2=-4+8+n .∴n =-2. 则y =-x 2+4x +2. 32(1)依题意得鸡场面积y =-.350312x x +-∵y =-31x 2+350x =31-(x 2-50x )=-31(x -25)2+3625, ∴当x =25时,y 最大=3625,即鸡场的长度为25 m 时,其面积最大为3625m 2. (2)如中间有几道隔墙,则隔墙长为nx-50m.∴y =n x -50·x =-n 1x 2+n 50x=-n 1(x 2-50x ) =-n 1(x -25)2+n625, 当x =25时,y 最大=n625,即鸡场的长度为25 m 时,鸡场面积为n625 m 2.结论:无论鸡场中间有多少道篱笆隔墙,要使鸡场面积最大,其长都是25 m. 33(1)如下表v … -2 -1 -21 021 1 2 3 …I …8221 0 21 2 8 18 …(2)I =2·(2v )2=4×2v 2.当汽车的速度扩大为原来的2倍时,撞击影响扩大为原来的4倍. 34(1)设抛物线的表达式为y =ax 2+bx +c .由图知图象过以下点:(0,3.5),(1.5,3.05).⎪⎩⎪⎨⎧==-=⎪⎪⎩⎪⎪⎨⎧++===-.5.3,0,2.0,5.15.105.3,5.3,022c b a c b a c a b得 ∴抛物线的表达式为y =-0.2x 2+3.5.(2)设球出手时,他跳离地面的高度为h m ,则球出手时,球的高度为h +1.8+0.25=(h +2.05) m,∴h+2.05=-0.2×(-2.5)2+3.5, ∴h=0.2(m).35 (1)信息:①1、2月份亏损最多达2万元. ②前4月份亏盈吃平. ③前5月份盈利2.5万元. ④1~2月份呈亏损增加趋势. ⑤2月份以后开始回升.(盈利) ⑥4月份以后纯获利 ……(2)问题:6月份利润总和是多少万元?由图可知,抛物线的表达式为 y=21(x -2)2-2, 当x=6时,y=6(万元)(问题不唯一). 36.设m=a+b y=a ·b,∴y=a(m -a)=-a 2+ma=-(a -2m )2+42a ,当a=2m时,y 最大值为42a .结论:当两个数的和一定,这两个数为它们和的一半时,两个数的积最大. 37.(1)由题意知:p=30+x,(2)由题意知活蟹的销售额为(1000-10x)(30+x)元, 死蟹的销售额为200x 元.∴Q=(1000-10x)(30+x)+200x=-10x 2+900x+30000. (3)设总利润为L=Q -30000-400x=-10x 2+500x =-10(x 2-50x) =-10(x -25)2+6250. 当x=25时,总利润最大,最大利润为6250元. 38.(1)10 (2)55 (3)(略).(4)经猜想,所描各点均在某二次函数的图象上. 设函数的解析式为S=an 2+bn+c.由题意知⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎪⎩⎪⎨⎧=++=++=++0.c ,21b ,21a ,639,324,1解得c b a c b a c b a ∴S=.21212n n +高频考点强化训练:三视图的有关判断及计算时间:30分钟 分数:50分 得分:________ 一、选择题(每小题4分,共24分)1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是【易错6】( )3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为( )A .36cm 2B .40cm 2C .90cm 2D .36cm 2或40cm 2第5题图 第6题图6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数可能有( )A .8个B .6个C .4个D .12个二、填空题(每小题4分,共16分)7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..三个视图形状相同的几何体有________个,分别是________(填几何体的序号).8.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,则长方体的体积等于________.9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.第8题图 第9题图 第10题图10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x 的值为________,y 的值为________.三、解答题(10分)11.如图所示的是某个几何体的三视图. (1)说出这个几何体的名称;(2)根据图中的有关数据,求这个几何体的表面积.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..中考必考点强化训练专题:简单三视图的识别◆类型一 简单几何体的三视图1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )第1 题图 第2题图 第3题图 2.(2016·抚顺中考)如图所示几何体的主视图是( )3.(2016·南陵县模拟)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..4.(2016·肥城市一模)如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )A .1个B .2个C .3个D .4个5.(2016·宁波中考)如图所示的几何体的主视图为( )6.(2016·鄂州中考)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( )7.(2016·菏泽中考)如图所示,该几何体的俯视图是( )◆类型二 简单组合体的三视图8.(2016·黔西南州中考)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..9.(2016·营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )10.(2016·日照中考)如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是( )11.(2016·烟台中考)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为( )。
二次函数与一元二次方式练习题附答案一、选择题(共15 小题)1、已知二次函数 2)y=ax +bx+c 的图象如下图, 对称轴为直线 x=1,则以下结论正确的选项是 (A 、 ac > 0B 、方程 ax 2+bx+c=0 的两根是 x 1=﹣ 1, x 2=3C 、 2a ﹣ b=0D 、当 x > 0 时, y 随 x 的增大而减小 2 、已知二次函数y=ax 2+bx+c 的图象如下图,那么以下判断不正确的选项是()A 、 ac < 0B 、 a ﹣b+c > 0C 、 b=﹣ 4aD 、对于 x 的方程 ax 2+bx+c=0 的根是 x 1=﹣ 1, x 2=523、已知抛物线 y=ax +bx+c 中, 4a ﹣ b=0, a ﹣ b+c > 0,抛物线与 x 轴有两个不一样的交点,且 这两个交点之间的距离小于 2,则以下判断错误的选项是( )A 、 abc <0B 、 c > 0C 、 4a > cD 、 a+b+c > 04、抛物线 y=ax 2+bx+c 在 x 轴的下方,则所要知足的条件是()A 、 a <0, b 2﹣ 4ac < 0B 、 a < 0, b 2﹣ 4ac > 0C 、 a > 0, b 2﹣4ac <0D 、 a > 0, b 2﹣ 4ac > 05、如下图,二次函数 21, 2),且与 x 轴交点的横坐y=ax +bx+c ( a ≠0)的图象经过点(﹣ 标分别为 x 1, x 2,此中﹣ 2< x 1<﹣ 1, 0< x 2<1,以下结论: ① abc > 0;② 4a ﹣ 2b+c <0;③ 2a ﹣ b < 0;④b 2+8a > 4ac . 此中正确的有()A 、1 个B 、2 个C 、3 个D 、4 个6、已知: a > b > c ,且 a+b+c=0,则二次函数 y=ax 2+bx+c 的图象可能是以下图象中的()1A 、B 、C 、D 、7、已知 y =a x 2+b x+c,y =a x 2+b x+c 且知足.则称抛物线y , y 互为 “友善抛物线 ”,则1111222212以下对于 “友善抛物线 ”的说法不正确的选项是()A 、 y 1, y 2 张口方向、张口大小不必定相同B 、因为 y 1, y 2 的对称轴相同C 、假如 y 的最值为 m ,则 y 的最值为 kmD 、假如 y 与 x 轴的两交点间距离为212d ,则 y 1 与 x 轴的两交点间距离为|k|d8、已知二次函数的 y=ax 2+bx+c 图象是由的图象经过平移而获取,若图象与x 轴交于 A 、 C(﹣ 1, 0)两点,与 y 轴交于 D (0,),极点为 B ,则四边形 ABCD 的面积为( )A 、 9B 、 10C 、 11D 、 129、依据以下表格的对应值:判断方程 ax 2+bx+c=0( a ≠0, a , b , c 为常数)的一个解 x 的范围是()A 、 8< x < 9B 、 9< x < 10C 、 10< x < 11D 、 11<x < 1210、如图,已知二次函数y=ax 2 +bx+c 的部分图象,由图象可知对于 x 的一元二次方程2)ax +bx+c=0 的两个根分别是 x 1=1.6, x 2=(A 、﹣ 1.6B 、 3.2C 、 4.4D 、以上都不对11、如图,抛物线 2与双曲线 y=的交点 A 的横坐标是 1,则对于 2y=x +1 x 的不等式 +x +1< 0的解集是( )A 、 x > 1C 、 0< x < 1B 、 x <﹣ 1D 、﹣ 1< x < 012、已知二次函数 y=ax 2+bx+c 的图象如下图, 则对于x 的不等式bx+a > 0 的解集是 ()A 、 x <B 、 x <C 、 x >D 、 x >13、方程 7x 2﹣( k+13)x+k 2﹣ k ﹣ 2=0( k 是实数)有两个实根 α、β,且 0< α< 1,1< β< 2, 那么 k 的取值范围是( )A 、 3< k < 4B 、﹣ 2< k <﹣ 1C 、 3< k < 4 或﹣ 2< k <﹣ 1D 、无解14、对于整式 x 2和 2x+3,请你判断以下说法正确的选项是()A 、对于随意实数x ,不等式 x 2> 2x+3 都建立B 、对于随意实数 x ,不等式 x 2< 2x+3都建立C 、 x < 3 时,不等式 x 2< 2x+3 建立D 、 x > 3 时,不等式 x 2> 2x+3 建立二、解答题(共7 小题)215、已知抛物线 y=x +2px+2p ﹣2 的极点为 M ,(2)设抛物线与 x 轴的交点分别为 A , B ,务实数 p 的值使 △ABM 面积达到最小.216、已知:二次函数 y=( 2m ﹣ 1) x ﹣( 5m+3) x+3m+5 (1) m 为什么值时,此抛物线必与 x 轴订交于两个不一样的点; (2) m 为什么值时,这两个交点在原点的左右两边; (3) m 为什么值时,此抛物线的对称轴是 y 轴; (4) m 为什么值时,这个二次函数有最大值.17、已知下表:( 1)求 a 、 b 、 c 的值,并在表内空格处填入正确的数;( 2)请你依据上边的结果判断:① 能否存在实数 x ,使二次三项式 2ax +bx+c 的值为 0?若存在, 求出这个实数值; 若不存在, 请说明原因.② 画出函数 y=ax 2+bx+c 的图象表示图,由图象确立,当 x 取什么实数时, ax 2+bx+c > 0.18 、 请 将 下 表 补 充 完 整 ;(Ⅱ)利用你在填上表时获取的结论,解不等式﹣x 2﹣ 2x+3<0; (Ⅲ)利用你在填上表时获取的结论,试写出一个解集为全体实数的一元二次不等式;(Ⅳ) 试写出利用你在填上表时获取的结论解一元二次不等式ax 2+bx+c >0(a ≠0)时的解题 步骤.219、二次函数 y=ax +bx+c (a ≠0)的图象如下图,依据图象解答以下问题:( 1)写出方程 ax 2+bx+c=0 的两个根;( 2)写出不等式 ax 2+bx+c > 0 的解集;(3)写出 y 随 x 的增大而减小的自变量 x 的取值范围;(4)若方程 ax 2+bx+c=k 有两个不相等的实数根,求 k 的取值范围.20、阅读资料,解答问题.x 2﹣ 2x ﹣ 3> 0.例.用图象法解一元二次不等式:解:设 y=x 2﹣2x ﹣ 3,则 y 是 x 的二次函数.∵ a=1>0,∴抛物线张口向上.22又∵当 y=0 时, x ﹣ 2x ﹣ 3=0,解得 x 1=﹣ 1,x 2=3.∴由此得抛物线y=x ﹣2x ﹣ 3 的大概图象如下图.察看函数图象可知:当 x <﹣ 1或 x > 3 时, y > 0.∴ x 2﹣ 2x ﹣ 3>0 的解集是: x <﹣ 1 或 x > 3.x 2﹣ 2x ﹣ 3< 0 的解集是(1)察看图象,直接写出一元二次不等式: _________ ;(2)模仿上例,用图象法解一元二次不等式:x 2﹣5x+6< 0.(画出大概图象) .三、填空题(共 4 小题)21、二次函数 y=ax 2+bx+c (a ≠0)的图象如下图,依据图象解答以下问题:(1)写出方程 ax 2+bx+c=0 的两个根. x 1= _________ , x 2= _________ ;(2)写出不等式 ax 2+bx+c > 0 的解集. _________ ; (3)写出 y 随 x 的增大而减小的自变量 x 的取值范围. _________ ;(4)若方程 ax 2+bx+c=k 有两个不相等的实数根,求 k 的取值范围. _________ .22、如图是抛物线y=ax 2+bx+c 的一部分,其对称轴为直线x=1,若其与 x 轴一交点为 B (3 ,0),则由图象可知,不等式 2.ax +bx+c > 0 的解集是 _________23、二次函数 y=ax 2+bx+c 和一次函数 y=mx+n 的图象如下图,则 ax 2+bx+c ≤ mx+n 时, x的取值范围是_________ .24、如图,已知函数 y=ax 2+bx+c 与 y=﹣的图象交于 A (﹣ 4,1)、B (2,﹣ 2)、 C ( 1,﹣ 4)三点,依据图象可求得对于 x 的不等式 ax 2+bx+c <﹣的解集为 _________ .答案与评分标准一、选择题(共 15 小题)21、( 2011?山西)已知二次函数 y=ax +bx+c 的图象如下图,对称轴为直线 x=1,则以下结论正确的选项是( )A 、 ac > 0B 、方程 ax 2+bx+c=0 的两根是 x 1=﹣ 1, x 2=3C 、 2a ﹣ b=0D 、当 x > 0 时, y 随 x 的增大而减小考点 :二次函数图象与系数的关系;抛物线与 x 轴的交点。
人教版九年级上册数学22.2 二次函数与一元二次方程同步练习一.选择题1.抛物线y=﹣x2+3x﹣5与坐标轴的交点的个数是()A.0个B.1个C.2个D.3个2.已知抛物线y=x2﹣x﹣1,与x轴的一个交点为(m,0),则代数式m2﹣m+2020的值为()A.2018 B.2019 C.2020 D.20213.已知正比例函数y=kx的函数值随自变量的增大而增大,则二次函数y=x2﹣2(k+1)x+k2﹣1的图象与x轴的交点个数为()A.0 B.1 C.2 D.无法确定4.如图,二次函数y=ax2+bx+c(a>0)的图象与x轴的交点A、B的横坐标分别为﹣1和3,则函数值y随x值的增大而减小时,x的取值范围是()A.x<1 B. x<2 C. x>1 D.x>25.如图,二次函数y=ax2﹣bx+3图象的对称轴为直线x=1,与x轴交于A、B两点,且点B坐标为(3,0),则方程ax2=bx﹣3的根是()A.x1=x2=3 B.x1=1,x2=﹣3 C.x1=1,x2=3 D.x1=﹣1,x2=3二.填空题6.对于任意实数m,抛物线y=x2+4mx+m+n与x轴都有交点,则n的取值范围是.7.抛物线y=(k﹣1)x2﹣x+1与x轴有交点,则k的取值范围是.8.已知二次函数y=x2+2x+n,当自变量x的取值在﹣2≤x≤1的范围内时,函数的图象与x轴有且只有一个公共点,则n的取值范围是.9.已知抛物线y=x2+bx+c的部分图象如图所示,当y<0时,x的取值范围是.10.若二次函数y=x2﹣(m﹣1)x的图象经过点(3,0),则关于x的一元二次方程x2﹣(m﹣1)x =0的根为.11.二次函数y=x2+2x﹣3的图象与x轴有个交点.12.若二次函数y=a(x﹣4)2+4的图象在2<x<3这一段位于x轴的上方,在6<x<7这一段位于x轴的下方,则a值为.13.若关于x的函数y=kx2+2x﹣与x轴仅有一个交点,则实数k的值为.14.试写出一个二次函数关系式,使它对应的一元二次方程的一个根为0,另一个根在1到2之间:.15.已知二次函数y=x2﹣x+14m﹣1的图象与x轴有交点,则m的取值范围是.16.二次函数y=x2+bx的图象如图,对称轴为x=1.若关于x的一元二次方程x2+bx﹣t=0(b、t 为实数)在﹣1<x<4的范围内有解,则t的取值范围是.。
人教版九年级上册《一元二次方程与二次函数》专题测试卷(附答卷)1.下列方程中,是关于x的一元二次方程的是(。
)A。
3(x+1)^2=2(x+1)B。
x^2-5x+6=0C。
ax^2+bx+c=0D。
2x^3-x^2+3x-1=02.方程x^2-2x=0的根是A。
x1=0.x2=2B。
x1=2.x2=-2C。
x1=1.x2=-1D。
x1=0.x2=23.方程x^2-x+2=0的根的情况是(。
)A。
只有一个实数根B。
有两个相等的实数根C。
有两个不相等的实数根D。
没有实数根4.若a是不等于零的实数,对于二次函数y=|a|x^2的图象有如下判断:①开口方向向上;②与函数y=x^2形状相同;③以y轴为对称轴;④以原点为顶点;⑤无论x为何实数,函数y 总是非负数.其中判断正确的有(。
)A。
1个B。
2个C。
3个D。
4个5.把抛物线y=-x^2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为(。
)A。
y=-(x-1)^2-3B。
y=-(x+1)^2-3C。
y=-(x-1)^2+3D。
y=-(x+1)^2+36.关于x的方程x^2+mx-1=0的两根互为相反数,则m的值为(。
)A。
0B。
2C。
-2D。
-17.已知二次函数y=ax^2+bx+c(a≠0)的图象如图所示.则点M(b,a)在(。
)A。
第一象限B。
第二象限C。
第三象限D。
第四象限8.三角形两边的长分别是8和6,第三边的长是方程x^2-7x+10=0的一个实数根,则这个三角形的周长是(。
) A。
19B。
19或16C。
16D。
229.若二次函数y=ax^2+c(a≠0)当x分别取x1,x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值为(。
)A。
a+cB。
a-cC。
-cD。
c10.某饲料厂今年一月份生产伺料500t.三月份生产伺群720t,若二月份和三月份这两个月的月平均增长率为x,则有A。
500(1+2x)=720B。
500(1+x^2)=720答案:一、选择题1.C2.A3.D4.D5.A6.C7.D8.B9.B10.A二、填空题1.m=2或-22.m=-3/4.k=1/163.若抛物线 $y=x^2-kx+k-1$ 的顶点在 $x$ 轴上,则 $k=1$。
中考数学总复习《二次函数图像与一元二次方程的综合应用》练习题附带答案一、单选题(共12题;共24分)1.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴是直线x=12,且经过点(2,0),下列说法:①abc>0;②b2﹣4ac>0;③x=﹣1是关于x的方程ax2+bx+c=0的一个根;④a+b=0.其中正确的个数为()A.1B.2C.3D.42.若二次函数y=ax2﹣4ax+c的图象经过点(﹣1,0),则方程ax2﹣4ax+c=0的解为()A.x1=﹣1,x2=﹣5B.x1=5,x2=1C.x1=﹣1,x2=5D.x1=1,x2=﹣53.已知抛物线y=ax2+bx+c经过点(−4,m),(−3,n)若x1,x2是关于x的一元二次方程ax2+bx+c=0的两个根,且−4<x1<−3,x2>0则下列结论一定正确的是()A.m+n>0B.m−n<0C.m⋅n<0D.m n>04.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a +c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个B.3个C.2个D.1个5.设抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动,抛物线与x轴交于C,D两点(C在D 的左侧).若点A,B的坐标分别为(﹣2,3)和(1,3),给出下列结论:①c<3;②当x<﹣3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为﹣5;④当四边形ACDB为平行四边形时,a=﹣43.其中正确的是()A.①②④B.①③④C.②③D.②④6.已知二次函数y=x2−2x+m(m为常数)的图象与x轴的一个交点为(3,0),则关于x 的一元二次方程x2−2x+m=0的两个实数根是()A.x1=−1,x2=3B.x1=1C.x1=−1,x2=1D.x1=37.根据下列表格中的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的个数是()x 6.17 6.18 6.19 6.20y=ax2+bx+c0.020.010.020.04D.1或28.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(-1,0)则①二次函数的最大值为a+b+c;②a-b+c<0;③b2-4ac<0;④当y>0时,-1<x<3其中正确的个数是()A.1B.2C.3D.49.二次函数y=ax2+bx+c的部分图像如图所示,可知方程ax2+bx+c=0的所有解的积为()A.-4B.4C.5D.-510.抛物线y=﹣x2+bx+3的对称轴为直线x=﹣1,若关于x的一元二次方程﹣x2+bx+3﹣t=0(t为实数)在﹣2<x<3的范围内有实数根,则t的取值范围是()A.﹣12<t≤3B.﹣12<t<4C.﹣12<t≤4D.﹣12<t<311.二次函数y=ax2−2ax+c(a≠0)的图象过点(3,0),方程ax2−2ax+c=0的解为()A.x1=−3,x2=−1B.x1=−1C.x1=1,x2=3D.x1=−312.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(−1,0),其部分图象如图所示,下列结论中正确的有()①4ac<b2,②方程ax2+bx+c=0的两个根是x1=−1,x2=3③3a−c>0,④当y>0时,x的取值范围是−1≤x≤3.A.①②B.①②③C.①③④D.②④二、填空题(共6题;共6分)13.已知二次函数y=﹣x2+bx+c的顶点为(1,5),那么关于x的一元二次方程﹣x2+bx+c﹣m=0有两个相等的实数根,则m=.14.已知关于x的一元二次方程(x−2)(x−3)=m有实根x1,x2,且x1<x2,现有下列说法:①当)(x−m=0时,x1=2,x2=3;②当m>0时,2<x1<x2<3;③m>−14;④二次函数y=(x−x1x2)−m的图象与x轴的交点坐标为(2,0)和(3,0). 其中正确的有.15.如图所示为抛物线y=ax2−2ax+3,则一元二次方程ax2−2ax+3=0两根为.16.二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t 为实数)在﹣2<x<6的范围内有解,则t的取值范围是.17.如图,已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是.18.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②m+n=3;③抛物线与x轴的另一个交点是(﹣1,0);④方程ax2+bx+c=3有两个相等的实数根;⑤当1≤x≤4时,有y2<y1,其中正确的是三、综合题(共6题;共75分)19.已知抛物线y=﹣2x2+4x+c.(1)若抛物线与x轴有两个交点,求c的取值范围;(2)若抛物线经过点(﹣1,0),求方程﹣2x2+4x+c=0的根.20.已知P(-3,m)和Q(1,m)是抛物线y=2x2+bx+1上的两点.(1)求b的值;(2)判断关于x的一元二次方程2x2+bx+1=0是否有实数根,若有求出实数根;若没有请说明理由.21.在一次羽毛球比赛中,甲运动员在离地面53米的P点处发球,球的运动轨迹PAN可看作是一条抛物线的一部分,当球运动到最高点A处时,其高度为3米,离甲运动员站立地点O的水平距离为5米,球网BC离点O的水平距离为6米,以点O为原点建立平面直角坐标系,回答下列问题.(1)求抛物线的解析式(不要求些出自变量的取值范围);(2)羽毛球场地底线距离球网BC的水平距离为6米,此次发球是否会出界?(3)乙运动员在球场上M(m,0)处接球,乙原地起跳可接球的最大高度为2.5米,若乙因接球高度不够而失球,求m的取值范围.22.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加,某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=−2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.并指出该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(2)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?23.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程y=ax2+bx+c的两个根;(2)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围;(3)若抛物线与直线y=2x−2相交于A(1,0),B(2,2)两点,写出抛物线在直线下方时x 的取值范围.24.已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).(1)求出b、c的值,并写出此二次函数的解析式;(2)根据图象,直接写出函数值y为正数时,自变量x的取值范围;(3)当﹣1≤x≤2时,求y的取值范围.参考答案1.【答案】C 2.【答案】C 3.【答案】C 4.【答案】B 5.【答案】D 6.【答案】A 7.【答案】A 8.【答案】B 9.【答案】D 10.【答案】C 11.【答案】B 12.【答案】A 13.【答案】5 14.【答案】①③ 15.【答案】x 1=−1 16.【答案】﹣1≤t <2417.【答案】有两个同号不等实数根 18.【答案】①②④19.【答案】(1)解:∵抛物线与x 轴有两个交点∴b 2﹣4ac >0 即16+8c >0 解得c >﹣2(2)解:由y=﹣2x 2+4x+c 得抛物线的对称轴为直线x=1 ∵抛物线经过点(﹣1,0)∴抛物线与x 轴的另一个交点为(3,0) ∴方程﹣2x 2+4x+c=0的根为x 1=﹣1,x 2=3.20.【答案】(1)解:∵抛物线经过P (-3,m )和Q (1,m )∴抛物线的对称轴为直线x=−3+12=-1∴-b 2×2=−1 ∴b=4;(2)解:方程有实数解.对于方程2x 2+4x+1=0 ∵Δ=42-4×2×1=8>0∴关于x 的一元二次方程2x 2+4x+1=0有两个不相等的实数根;∴x=−4±√82×2=−2±√22∴x 1=−1+√22,x 2=−1−√22.21.【答案】(1)解:设抛物线的解析式为y =a (x ﹣5)2+3,由题意,得 53=a (0﹣5)2+3;a =﹣ 475.∴抛物线的解析式为:y =﹣ 475 (x ﹣5)2+3(2)解:当y =0时,﹣ 475(x ﹣5)2+3=0解得:x 1=﹣ 52 (舍去),x 2= 252即ON = 252∵OC =6∴CN = 252 ﹣6= 132 >6∴此次发球会出界 (3)解:由题意,得 2.5=﹣ 475(m ﹣5)2+3;解得:m 1=5+ 5√64 ,m 2=5﹣ 5√64(舍去)∵m >6∴6<m <5+ 5√64. ∴m 的取值范围是6<m <5+ 5√6422.【答案】(1)解:根据题意得W =(x −20)(−2x +80) =−2x 2+120x −1600 =−2(x −30)2+200∴当x =30时,每天的利润最大,最大利润为200元. (2)令−2(x −30)2+200=150,解得:x =35或x =25 ∵这种产品的销售价不高于每千克28元 ∴x =25.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.23.【答案】(1)解:∵函数图象与x轴的两个交点坐标为(1,0)(3,0)∴方程的两个根为x1=1(2)解:∵二次函数的顶点坐标为(2,2)∴若方程ax2+bx+c=k有两个不相等的实数根,则k的取值范围为k<2(3)解:∵抛物线与直线y=2x−2相交于A(1,0),B(2,2)两点由图象可知,抛物线在直线下方时x的取值范围为:x<1或x>2.24.【答案】(1)解:∵二次函数图象与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3)∴x=﹣1,y=0代入y=﹣x2+bx+c得:﹣1﹣b+c=0①把x=0,y=3代入y=﹣x2+bx+c得:c=3把c=3代入①,解得b=2则二次函数解析式为y=﹣x2+2x+3;(2)解:令二次函数解析式中的y=0得:﹣x2+2x+3=0可化为:(x﹣3)(x+1)=0解得:x1=3,x2=﹣1由函数图象可知:当﹣1<x<3时,y>0;(3)解:由抛物线的表达式知,抛物线的对称轴为直线x=1当﹣1≤x≤2时,y在x=﹣1和顶点处取得最小和最大值当x=﹣1时,y=0当x=1时,y=﹣x2+2x+3=4故当﹣1≤x≤2时,求y的取值范围0≤y≤4.。
人教版九年级数学上册《一元二次方程》《二次函数》测试题(含答案)满分120分 考试时间120分钟一、选择题(每题3分,共30分)1.一元二次方程(2)(1)0x x +-=的根为( )A .2x =-B .1x =C .12x =-,21x =D .12x =,21x =-2.若方程有两个不相等的实数根,则m 的取值范围( )A .m≥49B .m≤49C .m <49D .m >49 3.把方程08482=--x x 化成()n m x =+2的形式得( )A .100)4x (2=-B .100)16x (2=-C .84)4x (2=- D .84)16x (2=-4.在同一坐标系中,作22y x =、22y x =-、212y x =的图象,它们共同特点是 ( ) A .都是关于x 轴对称,抛物线开口向上 B .都是关于y 轴对称,抛物线开口向下 C .都是关于原点对称,顶点都是原点 D .都是关于y 轴对称,顶点都是原点5.若2=x 是关于x 的一元二次方程082=+-mx x 的一个解.则m 的值是( )A .6B .5C .2D .﹣66.如图,在长为100 m ,宽为80 m 的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644 m 2,则道路的宽应为多少米?设道路的宽为x m ,则可列方程为( ) A .100×80-100x -80x =7644 B .(100-x )(80-x )+x 2=7644 C .(100-x )(80-x )=7644 D .100x +80x =3567.对于抛物线()1322++=x y ,下列说法错误的是 ( )A .开口向上B .对称轴是x=-3C .当x >-3时,y 随x 的增大而减小D .当x=-3时,函数值有最小值是18.若点()11A y ,,()222B y ,,()34C y ,在抛物线26y x x c =-+上,则123y y y ,,的大小关系是( ) A .213y y y << B .123y y y << C .312y y y << D .231y y y <<9.在同一直角坐标系中,一次函数y =ax +c 和二次函数y =ax 2+c 的图象大致为( )10.如下图,在▱ABCD 中,AE ⊥BC 于E ,AE=EB=EC=a ,且a 是一元二次方程0322=-+x x 的根,则▱ABCD 的周长为( )x yOA xy OBxy OCxy ODA .224+B .2612+C .222+D .222+或2612+二、填空(每题3分,共24分)11.已知,则________.12.若y =(m +1)265mm x --是二次函数,则m = ,13.对称轴平行于y 轴的抛物线与,与x 轴交于(1,0),(3,0)两点,則它的对称轴为 。
22.4 二次函数与一元二次方程同步基础练习题一、选择题(本大题共15小题)1.抛物线y=x2+2x+m-1与x轴有交点,则m的取值范围是()A.m≤2B.m<-2C.m>2D.0<m≤22.已知函数y=ax2+bx+c的图象如图,那么关于x的方程ax2+bx+c+2=0的根的情况是()A.无实数根B.有两个相等实数根C.有两个同号不等实数根D.有两个异号实数根3.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=-1,与x轴的一个交点为(1,0),与y轴的交点为(0,3),则方程ax2+bx+c=0(a≠0)的解为()A.x=1B.x=-1C.x1=1,x2=-3D.x1=1,x2=-44.已知二次函数y=kx2-5x-5的图象与x轴有交点,则k的取值范围是()A.>B.且k≠0C.D.>且k≠05.在平面直角坐标系中,抛物线y=x2-1与x轴交点的个数()A.3B.2C.1D.06.不论m为何实数,抛物线y=x2-mx+m-2()A.在x轴上方B.与x轴只有一个交点C.与x轴有两个交点D.在x轴下方7.若抛物线y=-x2+px+q与x轴交于A(a,0),B(b,0)两点,且a<1<b,则有()A.p+q<1B.p+q=1C.p+q>1D.pq>08.若二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,对于以下说法:①b2-4ac>0;②x=x0是方程ax2+bx+c=y0的解;③x1<x0<x2④a(x0-x1)(x0-x2)<0;⑤x0<x1或x0>x2,其中正确的有()A.①②B.①②④C.①②⑤D.①②④⑤9.将抛物线y=x2-1向下平移8个单位长度后与x轴的两个交点之间的距离为()A.4B.6C.8D.1010.若函数y=x2-2x+b的图象与坐标轴有三个交点,则b的取值范围是()A.b<1且b≠0B.b>1C.0<b<1D.b<111.如图,抛物线y=ax2+bx+c(a≠0)与x轴一个交点为(-2,0),对称轴为直线x=1,则y<0时x的范围是()A.x>4或x<-2B.-2<x<4C.-2<x<3D.0<x<312.已知抛物线y=x2-x-2与x轴的一个交点为(m,0),则代数式m2-m+2016的值为()A.2017B.2018C.2019D.202013.如图,二次函数y=ax2+bx+c的图象与x轴交于(-2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<-2B.x>4C.-2<x<4D.x>014.函数y=-x2+2(m-1)x+m+1的图象如图,它与x轴交于A,B两点,线段OA与OB的比为1:3,则m的值为()A.或2B.C.1D.215.如图,抛物线y=ax2+bx+c的对称轴是经过点(1,0)且平行于y轴的直线,若点P(4,0)在抛物线上,则4a-2b+c 的值为()A.-2B.0C.2D.4二、填空题(本大题共11小题)16.已知二次函数y=ax2+bx+c的部分图象如图所示,则关于x的方程ax2+bx+c=0的两个根的和为______ .17.已知抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,则△ABC的面积是______ .18.若二次函数y=x2+6x+k的图象与x轴有且只有一个交点,则k的值为______ .19.如图,抛物线y=ax2+bx+c与x轴相交于点A、B两点,点B的坐标为(7,0),与y轴相交于点C(0,3),点D (5,3)在该抛物线上,则点A的坐标是______ .20.如图,二次函数y=a(x-2)2+k的图象与x轴交于A,B两点,且点A的横坐标为-1,则点B的横坐标为______ .21.若二次函数y=(k-2)x2+2x+1的图象与x轴有交点,则k的取值范围是______ .22.抛物线y=x2+4x+3在x轴上截得的线段的长度是______ .23.函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c-3=0的根的情况是______ .24.已知二次函数y=ax2+bx+c的图象如图所示,则a ______ 0,b ______ 0,c ______ 0,△ ______ 0.(用“<”,“=”或“>”号连接)25.若关于x的一元二次方程x2+ax+b=0有两个不同的实数根m,n(m<n),方程x2+ax+b=2有两个不同的实数根p,q(p<q),则m,n,p,q的大小关系用“<”连接为______ .2三、解答题(本大题共6小题)27.已知二次函数y=x2-2的图象与x轴交于A、B两点,与y轴交于C点.(1)求A、B、C点的坐标;(2)判断△ABC的形状,并求其面积.28.已知函数y=x2-(m-2)x+m的图象过点(-1,15),设其图象与x轴交于点A、B(A在B的左侧),点C在图象上,且S△ABC=1,求:(1)求m;(2)求点A、点B的坐标;(3)求点C的坐标.29.已知二次函数y=ax2+bx+c的图象与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3),求二次函数的顶点坐标.30.二次函数的图象经过A(4,0),B(0,-4),C(2,-4)三点:(1)求这个函数的解析式;(2)求函数图顶点的坐标;(3)求抛物线与坐标轴的交点围成的三角形的面积.31.已知二次函数y=x2+2x-3.(1)把函数配成y=a(x-h)2x轴交点坐标;(3)用五点法画函数图象y……(4)当y>0时,则x的取值范围为______ .(5)当-3<x<0时,则y的取值范围为______ .32.二次函数y=x2+(2m+1)x+m2-1与x轴交于A,B两个不同的点.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时A,B两点的坐标.【答案】1.A2.C3.C4.B5.B6.C7.C8.B9.B 10.A 11.B 12.B 13.C 14.D 15.B16.217.618.919.(-2,0)20.521.k≤3且k≠222.223.方程ax2+bx+c-3=0有两个相等的实数根24.>;<;>;=25.p<m<n<q26.x1=-4,x2=027.解:(1)令y=0,则x2-2=0,解得:x1=-2,x2=2,∴A(-2,0)、B(2,0)或A(2,0)、B(-2,0);令x=0,y=-2,∴C点的坐标为(0,-2).(2)∵A(-2,0)、B(2,0)或A(2,0)、B(-2,0),且C(0,-2),∴AC=2,BC=2,AB=4,∴AB2=AC2+BC2.∵AC=BC,∴△ABC为等腰直角三角形.S△ABC=AC•BC=×2×2=4.28.解:(1)∵函数y=x2-(m-2)x+m的图象过点(-1,15),∴15=1+m-2+m,解得:m=8.(2)将m=8代入y=x2-(m-2)x+m中得:y=x2-6x+8,令y=0,则x2-6x+8=0,解得:x1=2,x2=4,∵A在B的左侧,∴点A的坐标为(2,0),点B的坐标为(4,0).(3)设点C的坐标为(n,n2-6n+8),∵A(2,0),B(4,0),∴AB=2,S△ABC=AB•|n2-6n+8|=1=|n2-6n+8|,解得:n1=1,n2=6,n3=3,∴点C的坐标为(1,1)、(6,1)或(3,-1).29.解:把A(1,0),B(3,0),C(0,3)代入y=ax2+bx+c中得:,解得:,∴二次函数的解析式为:y=x2-4x+3,y=x2-4x+3=(x-2)2-1,顶点坐标为(2,-1).30.解:(1)设抛物线的解析式为y=a(x-h)2+k∵B、C的纵坐标都是-4,∴B、C关于抛物线的对称轴对称,∴抛物线的对称轴为:x=1,即h=1,∴y=a(x-1)2+k,将A(4,0)和B(0,-4)代入上式,解得:∴抛物线的解析式为:y=(x-1)2-(2)由(1)可知:顶点坐标为(1,-)(3)令y=0代入y=(x-1)2-,∴抛物线与x轴的交点坐标为:(4,0)或(-2,0)∵抛物线与y轴的交点坐标为:(0,-4)∴抛物线与坐标轴的交点围成的三角形的面积为:×6×4=1231.x<-3或x>1;-4≤y<032.解:(1)∵二次函数y=x2+(2m+1)x+m2-1与x轴交于A,B两个不同的点,∴一元二次方程x2+(2m+1)x+m2-1=0有两个不相等的实数根,∴△=(2m+1)2-4(m2-1)=4m+5>0,解得:m>-.(2)当m=1时,原二次函数解析式为y=x2+3x,令y=x2+3x=0,解得:x1=-3,x2=0,∴当m=1时,A、B两点的坐标为(-3,0)、(0,0).。
人教版九年级数学上一元二次方程和二次函数综合练习题附答案一、单选题1.已知方程x2−2021x+1=0的两根分别为m、n,则m2−2021n的值为()A.1B.−1C.2021D.−2021【答案】B2.一学生推铅球,铅球行进的高度y(m)与水平距离x(m)之间的关系为y=−112x2+23x+53,则学生推铅球的距离为()A.35mB.3m C.10m D.12m【答案】C3.下列各式中,y是x的二次函数的是()A.B.C.D.【答案】B4.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()A.B.C.D.【答案】D5.将二次函数y=﹣2x2+6x﹣4配成顶点式为()A.B.C.D.【答案】B二、填空题6.在国家政策的宏观调控下,某市的商品房成交均价由去年10月份的7000元/m2下降到12月份的5670元/m2,则11、12两月平均每月降价的百分率是%。
【答案】107.将二次函数y=2x2−4x+3的图象先向左平移3个单位长度,再向下平移1个单位长度,得到函数的图象的表达式是.【答案】y=2(x+2)2或y=2x2+8x+88.已知函数y=x2+4x−5,当−3≤x≤0时,此函数的最大值是,最小值是.【答案】−5;−99.已知抛物线y=x2+(m-4)x-4m的顶点在y轴上,则m=;【答案】4.10.二次函数y=(a−1)x2−x+a2−1的图象经过原点,则a的值为.【答案】-111.如图,点A是抛物线y=x2-4x对称轴上的一点,连接OA,以A为旋转中心将AO逆时针旋转90°得到AO′,当O′恰好落在抛物线上时,点A的坐标为.【答案】(2,-1)或(2,2)12.抛物线y=(x-1)(x+5)的对称轴是直线.【答案】x=-2三、解答题13.某市百货商店服装部在销售中发现“米奇”童装平均每天可售出20件,每件获利40元。
为了迎接“六一”儿童节和扩大销售,增加利润,商场决定采取适当的降价措施,经过市场调查,发现如果每件童装每降价1元,则平均每天可多售出2件,要想平均每天在销售这种童装上获利1200元,并且尽快减少库存,那么每件童装应降价多少元?【答案】解:设每件童装应降价x 元,由题意得:(40-x )(20+2x )=1200, 解得:x 1=20,x 2=10, 当x=20时,20+2x=60(件), 当x=10时,20+2x=40(件), ∵60>40, ∴x 2=10舍去.答:每件童装应降价20元.14.如图,已知二次函数y=x 2+bx+c 过点A (1,0),C (0,-3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P 使△ABP 的面积为10,请直接写出点P 的坐标.【答案】(1)解:∵二次函数y=x 2+bx+c 过点A (1,0),C (0,-3),∴{1+b +c =0c =−3 ,解得 {b =2c =−3,∴二次函数的解析式为y=x 2+2x-3. (2)解:∵当y=0时,x 2+2x-3=0, 解得:x 1=-3,x 2=1; ∴A (1,0),B (-3,0), ∴AB=4, 设P (m ,n ), ∵△ABP 的面积为10, ∴12AB•|n|=10,解得:n=±5,当n=5时,m 2+2m-3=5, 解得:m=-4或2, ∴P (-4,5)(2,5); 当n=-5时,m 2+2m-3=-5, 方程无解,故P (-4,5)(2,5)15.如图,已知抛物线y=ax 2+bx+c 经过A (﹣3,0),B (1,0),C (0,3)三点,其顶点为D ,对称轴是直线l ,l 与x 轴交于点H .(1)求该抛物线的解析式;(2)若点P 是该抛物线对称轴l 上的一个动点,求△PBC 周长的最小值;(3)如图(2),若E 是线段AD 上的一个动点( E 与A .D 不重合),过E 点作平行于y 轴的直线交抛物线于点F ,交x 轴于点G ,设点E 的横坐标为m ,△ADF 的面积为S . ①求S 与m 的函数关系式;②S 是否存在最大值?若存在,求出最大值及此时点E 的坐标; 若不存在,请说明理由. 【答案】(1)解:由题意可知: {a +b +c =09a −3b +c =0c =3解得: {a =−1b =−2c =3∴抛物线的解析式为:y=﹣x 2﹣2x+3(2)解:∵△PBC 的周长为:PB+PC+BC ∵BC 是定值,∴当PB+PC 最小时,△PBC 的周长最小,∵点A.点B关于对称轴I对称,∴连接AC交l于点P,即点P为所求的点∵AP=BP∴△PBC的周长最小是:PB+PC+BC=AC+BC∵A(﹣3,0),B(1,0),C(0,3),∴AC=3 √2,BC=√10∴△PBC的周长最小是:3√2+√10.(3)解:①∵抛物线y=﹣x2﹣2x+3顶点D的坐标为(﹣1,4)∵A(﹣3,0)∴直线AD的解析式为y=2x+6∵点E的横坐标为m,∴E(m,2m+6),F(m,﹣m2﹣2m+3)∴EF=﹣m2﹣2m+3﹣(2m+6)=﹣m2﹣4m﹣3∴S=S△DEF+S△AEF=EF•GH+EF•AC=EF•AH=(﹣m2﹣4m﹣3)×2=﹣m2﹣4m﹣3;②S=﹣m2﹣4m﹣3=﹣(m+2)2+1;∴当m=﹣2时,S最大,最大值为1此时点E的坐标为(﹣2,2)16.如图,已知抛物线经过点A(﹣1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式;(2)点M 是线段BC 上的点(不与B 、C 重合),过M 作NM△y 轴交抛物线于N ,若点M 的横坐标为m ,请用含m 的代数式表示MN 的长;(3)在(2)的条件下,连接NB ,NC ,是否存在点m ,使△BNC 的面积最大?若存在,求m 的值和△BNC 的面积;若不存在,说明理由.【答案】(1)解:∵抛物线经过点A(−1,0),B(3,0),C(0,3)三点,∴设抛物线的解析式为:y=a(x+1)(x−3), 把C(0,3)代入得:3=a(0+1)(0−3), a=−1,∴抛物线的解析式:y =-x 2+2x +3 (2)解:设直线BC 的解析式为:y=kx+b , 把B(3,0),C(0,3)代入得: {3k +b =0b =3 ,解得: {k =−1b =3, ,∴直线BC 的解析式为y =-x +3, ∴M(m ,-m +3), 又∵MN△x 轴,∴N(m ,-m 2+2m +3),∴MN =(-m 2+2m +3)-(-m +3)=-m 2+3m(0<m <3)(3)解:S △BNC =S △CMN +S △MNB = 12|MN|·|OB|,∴当|MN|最大时,△BNC 的面积最大, MN =-m 2+3m =-(m - 32 )2+ 94,所以当m = 32 时,△BNC 的面积最大为 12 × 94 ×3= 27817.某商场销售一批名牌衬衫:平均每天可售出20件,每件盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经市场调查发现:如果每件衬衫降价1元,那么平均每天就可多售出2件.若商场想平均每天盈利达1200元,那么每件衬衫应降价多少元?你若是商场经理,为获得最大利润,每件衬衫应降价多少元,此时最大利润是多少?【答案】解:设每件衬衫应降价x 元,则每天多销售2x 件,由题意,得(40−x)(20+2x)=1200, 解得:x1=20,x2=10,∵要扩大销售,减少库存,∴每件衬衫应降价20元;设商场每天的盈利为W元,由题意,得W=(40−x)(20+2x),W=−2(x−15) 2+1250∴a=−2<0,∴x=15时,W最大=1250元.答:每件衬衫应降价15元时,商场平均每天盈利最多,每天最多盈利1250元.18.如图,人工喷泉有一个竖直的喷水枪AB,喷水口A距地面2m,喷出水流的运动路线是抛物线. 如果水流的最高点P到喷水枪AB所在直线的距离为1m,且到地面的距离为3.6m,求水流的落地点C到水枪底部B的距离.【答案】解:建立平面直角坐标系,如图,于是抛物线的表达式可以设为y=a(x−ℎ)2+k,根据题意,得出A,P两点的坐标分别为A(0,2),P(1,3.6),∵点P为抛物线顶点,∴ℎ=1,k= 3.6,∵点A在抛物线上,∴a+3.6=2,a=−1.6,∴它的表达式为y=−1.6(x−1)2+3.6,当点C的纵坐标y=0时,有−1.6(x−1)2+3.6=0,x1=−0.5(舍去),x2=2.5,∴BC=2.5,∴水流的落地点C到水枪底部B的距离为2.5m19.已知抛物线的顶点坐标(1,2)且过点(3,0),求该抛物线的解析式.【答案】解:由题意,设y=a(x−1)2+2,∵抛物线过点(3,0),∴a(3−1)2+2=0,解得a=−1 2,∴y=−12(x−1)2+2即y=−12x2+x+32.20.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)的函数关系式为y1={k1x(0≤x<600)k2x+b(600≤x≤1000),其图象如图所示:栽花所需费用y2(元)与x(m2)的函数关系式为y2=﹣0.01x2﹣20x+30000(0≤x≤1000).(1)请直接写出k1、k2和b的值;(2)设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用W的最大值;(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.【答案】(1)解:将x=600、y=18000代入y1=k1x,得:18000=600k1,解得:k1=30;将x=600、y=18000和x=1000、y=26000代入y2=k2x+b,得:{600k2x+b=180001000k2+b=26000,解得:{k2=20b=6000(2)解:当0≤x<600时,W=30x+(﹣0.01x2﹣20x+30000)=﹣0.01x2+10x+30000,∵﹣0.01<0,W=﹣0.01(x﹣500)2+32500,∴当x=500时,W取得最大值为32500元;当600≤x≤1000时,W=20x+6000+(﹣0.01x2﹣20x+30000)=﹣0.01x2+36000,∵﹣0.01<0,∴当600≤x≤1000时,W随x的增大而减小,∴当x=600时,W取最大值为32400,∵32400<32500,∴W取最大值为32500元(3)解:由题意得:1000﹣x≥100,解得:x≤900,由x≥700,则700≤x≤900,∵当700≤x≤900时,W随x的增大而减小,∴当x=900时,W取得最小值。
2021-2022学年人教版九年级数学上册《22.2二次函数与一元二次方程》同步基础达标训练(附答案)一.选择题(共8小题)1.已知A=x2+a,B=2x,若对于所有的实数,A的值始终比B的值大,则a的值可能是()A.﹣1B.0C.1D.22.直线y=x+2m经过第一、三、四象限,则抛物线y=x2+2x+1﹣m与x轴的交点个数为()A.0个B.1个C.2个D.1个或2个3.抛物线y=x2﹣2x﹣3与x轴的一个交点是(﹣1,0),那么抛物线与x轴的另一个交点坐标是()A.(0,0)B.(3,0)C.(﹣3,0)D.(0,﹣3)4.将抛物线y=x2﹣4x+1向左平移至顶点落在y轴上,如图所示,则两条抛物线、直线y =﹣3和x轴围成的图形的面积S(图中阴影部分)是()A.5B.6C.7D.85.若二次函数y=x2+2x+kb+1图象与x轴有两个交点,则一次函数y=kx+b的大致图象可能是()A.B.C.D.6.若二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y0的解;③x1<x0<x2④a(x0﹣x1)(x0﹣x2)<0;⑤x0<x1或x0>x2,其中正确的有()A.①②B.①②④C.①②⑤D.①②④⑤7.如图,二次函数y=ax2+bx+c的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y<0时,自变量x的取值范围是()A.x<﹣2B.x>4C.﹣2<x<4D.x<﹣2或x>4 8.二次函数y=﹣x2+bx+c的部分图象如图所示,若y>0,则自变量x的取值范围是()A.x<﹣3B.x>0C.﹣3<x<1D.x>1二.填空题(共8小题)9.如图,抛物线y=﹣x2﹣x+与x轴相交于点A,B,与y轴相交于点C,则△ABC的面积为.10.下列关于二次函数y=x2﹣(m+1)x+m(m为常数)的结论:①该函数图象是开口向上的抛物线;②该函数图象一定经过点(1,0);③该函数图象与x轴有两个公共点;④该函数图象的顶点在函数y=﹣(x﹣1)2的图象上.其中所有正确结论的序号是.11.已知二次函数y=2x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则m=.12.对于任意实数a,抛物线y=x2+2ax+a+b与x轴都有公共点,则b的取值范围是.13.已知抛物线y=x2﹣2x﹣3与x轴交于A,B两点(点A在点B的左侧)与y轴交于点C,点D(4,y)在抛物线上,E是该抛物线对称轴上一动点,当BE+DE的值最小时,△ACE的面积为.14.抛物线y=a(x﹣)2+k经过A(﹣3,0),B(m,0)两点,则关于x的一元二次方程a(x﹣)2+k=0的解是.15.如图,二次函数y=ax2+bx﹣4的图象与x轴的交点A的坐标为(n,0),顶点D的坐标为(m,t),若m+n=0,则t=.16.已知函数y=(a﹣1)x2﹣2ax+a﹣3的图象与两坐标轴共有两个交点,则a的值为.三.解答题(共6小题)17.已知关于x的一元二次方程x2+x﹣m=0.(1)若方程有两个不相等的实数根,求m的取值范围;(2)二次函数y=x2+x﹣m的部分图象如图所示,求一元二次方程x2+x﹣m=0的解.18.已知抛物线y=x2﹣2x﹣3与x轴交于B,C两点(点C在点B的右侧),与y轴交于点D.连接BD、CD,求△BCD的面积.19.如图,已知二次函数y=ax2+bx+c的图象过A(2,0)、B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标.20.如图,已知经过原点的抛物线y=2x2+mx与x轴交于另一点A(2,0).(1)求m的值和抛物线顶点M的坐标;(2)求直线AM的解析式.21.如图,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,连接BC,与抛物线的对称轴交于点E,顶点为点D.(1)求抛物线的解析式;(2)求△BOC的面积.22.如图,抛物线y=﹣(x﹣m)2+9交x轴于A,B两点,点A在点B左侧,点C的坐标为(6,0),AC<BC,过点C作CD⊥x轴交抛物线于点D,过点D作DE⊥CD交抛物线于点E.(1)若点A的坐标为(4,0),求DE的长.(2)当DE=AB时,求m的值.参考答案一.选择题(共8小题)1.解:由题可得:∵A的值始终比B的值大,∴有x2+a>2x,即x2﹣2x+a>0,即y=x2﹣2x+a的函数图象与x轴无交点,∴△=4﹣4a<0,∴a>1.故选:D.2.解:∵直线y=x+2m经过第一、三、四象限,∴2m<0,又由抛物线y=x2+2x+1﹣m的解析式可知,△=22﹣4(1﹣m)=4m<0,∴抛物线与x轴无交点.故选:A.3.解:由抛物线y=x2﹣2x﹣3=(x﹣3)(x+1)知,抛物线与x轴的交点坐标是(3,0)和(﹣1,0),故选:B.4.解:B,C分别是顶点,A、D是抛物线与x轴的两个交点,连接CD,AB,如图,阴影部分的面积就是平行四边形ABCD的面积,S=2×3=6;故选:B.5.解:∵二次函数y=x2+2x+kb+1图象与x轴有两个交点,∴△=22﹣4×1(kb+1)>0,解得:kb<0.当k>0,b<0时,一次函数y=kx+b的图象经过第一、三、四象限;当k<0,b>0时,一次函数y=kx+b的图象经过第一、二、四象限.故选:A.6.解:①∵二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,∴方程ax2+bx+c=0有两个不相等的实数根,∴△=b2﹣4ac>0,①正确;②∵图象上有一点M(x0,y0),∴a+bx0+c=y0,∴x=x0是方程ax2+bx+c=y0的解,②正确;③当a>0时,∵M(x0,y0)在x轴下方,∴x1<x0<x2;当a<0时,∵M(x0,y0)在x轴下方,∴x0<x1或x0>x2,③错误;④∵二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1,0),(x2,0),∴y=ax2+bx+c=a(x﹣x1)(x﹣x2),∵图象上有一点M(x0,y0)在x轴下方,∴y0=a(x0﹣x1)(x0﹣x2)<0,④正确;⑤根据③即可得出⑤错误.综上可知正确的结论有①②④.故选:B.7.解:∵二次函数y=ax2+bx+c的图象与x轴交于(﹣2,0)和(4,0)两点,函数开口向下,∴函数值y<0时,自变量x的取值范围是x<﹣2或x>4,故选:D.8.解:∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点坐标为(1,0),∴抛物线与x轴的另一个交点坐标为(﹣3,0),∴当﹣3<x<1时,y<0.故选:C.二.填空题(共8小题)9.解:∵抛物线y=﹣x2﹣x+,∴当y=0时,x1=﹣3,x2=1,当x=0时,y=,∴点A的坐标为(﹣3,0),点B的坐标为(1,0),点C的坐标为(0,),∴AB=1﹣(﹣3)=1+3=4,OC=,∴△ABC的面积为:=3,故答案为:3.10.解:①抛物线系数a=1,∴开口向上正确;②当x=1时代入抛物线解析式y=12﹣(m+1)×1+m=0,∴该函数图象一定经过点(1,0)正确;③令x2﹣(m+1)x+m=0,△=(m+1)2﹣4m=(m﹣1)2,当m=1时该函数图象与x轴只有一个公共点,故该函数图象与x轴有两个公共点不正确;④∵y=x2﹣(m+1)x+m=(x﹣)2+,∴二次函数y=x2﹣(m+1)x+m(m为常数)的顶点坐标为(,),又∵=﹣=﹣(﹣1)2,∴函数图象的顶点在函数y=﹣(x﹣1)2的图象上正确,故答案为①②④.11.解:∵二次函数y=2x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),∴0=2×12﹣3×1+m,解得,m=1,故答案为:1.12.解:∵对于任意实数a,抛物线y=x2+2ax+a+b与x轴都有交点,∴△≥0,则(2a)2﹣4(a+b)≥0,整理得b≤a2﹣a,∵a2﹣a=(a﹣)2﹣,∴a2﹣a的最小值为﹣,∴b≤﹣,故答案为b≤﹣.13.解:当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),抛物线的对称轴为直线x=1,当x=0时,y=x2﹣2x﹣3=﹣3,则C(0,﹣3),当x=4时,y=x2﹣2x﹣3=5,则D(4,5),连接AD交直线x=1于E,交y轴于F点,如图,∵BE+DE=EA+DE=AD,∴此时BE+DE的值最小,设直线AD的解析式为y=kx+b,把A(﹣1,0),D(4,5)代入得,解得,∴直线AD的解析式为y=x+1,当x=1时,y=x+1=2,则E(1,2),当x=0时,y=x+1=1,则F(0,1),∴S△ACE=S△ACF+S△ECF=×4×1+×4×1=4.故答案为4.14.解:∵抛物线y=a(x﹣)2+k的对称轴为直线x=,而抛物线与轴的交点为A(﹣3,0),B(m,0),∴m﹣=﹣(﹣3),解得m=4,即B(4,0),∴关于x的一元二次方程a(x﹣)2+k=0的解是x1=﹣2,x2=5.故答案为x1=﹣2,x2=5.15.解:∵m+n=0,∴m=﹣n,∴抛物线的对称轴为直线x=﹣n,∵A点坐标为(n,0),∴B点坐标为(﹣3n,0),∴抛物线的解析式为y=a(x﹣n)(x+3n),即y=ax2+2anx﹣3an2,∴﹣3an2=﹣4,∴an2=,当x=﹣n时,t=an2﹣2an2﹣3an2=﹣4an2=﹣4×=﹣.故答案为﹣.16.解:当a﹣1=0时,即a=1,函数为y=﹣2x﹣2,此一次函数与坐标轴共有两个交点;当a﹣1≠0,此函数为二次函数,若a﹣3=0,抛物线解析式为y=2x2﹣6x,抛物线经过原点且抛物线与x轴有两个交点;若△=0,抛物线的顶点在x轴上,即△=(﹣2a)2﹣4(a﹣1)(a﹣3)=0,解得a=,抛物线解析式为y=﹣x2﹣x﹣=﹣(x+3)2,抛物线的顶点为(﹣3,0),则抛物线与两坐标轴共有两个交点.综上所述,a的值为1或3或.故答案为1或3或.三.解答题(共6小题)17.解:(1)∵一元二次方程x2+x﹣m=0有两个不相等的实数根,∴△>0,即1+4m>0,∴m>﹣;(2)二次函数y=x2+x﹣m图象的对称轴为直线x=﹣,∴抛物线与x轴两个交点关于直线x=﹣对称,由图可知抛物线与x轴一个交点为(1,0),∴另一个交点为(﹣2,0),∴一元二次方程x2+x﹣m=0的解为x1=1,x2=﹣2.18.解:令y=0,则x2﹣2x﹣3=0,解得,x1=﹣1,x2=3,∴C(﹣1,0),B(3,0),∴BC=3﹣(﹣1)=4;当x=0时,代入y=x2﹣2x﹣3,得y=﹣3,∴D(0,﹣3),∴OD=3,∴.19.解:(1)将A(2,0)、B(0,﹣1)和C(4,5)三点代入二次函数y=ax2+bx+c得:,解得:,∴二次函数的解析式为y=;(2)当y=0时,=0,∴x1=2,x2=﹣1,∴点D的坐标为(﹣1,0).20.解:(1)∵抛物线y=2x2+mx与x轴交于另一点A(2,0),∴2×22+2m=0,∴m=﹣4,∴y=2x2﹣4x=2(x﹣1)2﹣2,∴顶点M的坐标为(1,﹣2),(2)设直线AM的解析式为y=kx+b(k≠0),∵图象过A(2,0),M(1,﹣2),∴,解得,∴直线AM的解析式为y=2x﹣4.21.解:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),∴,解得,∴抛物线的解析式为y=﹣x2﹣2x+3;(2)由(1)知,y=﹣x2﹣2x+3,∴点C的坐标为(0,3),∴OC=3,∵点B的坐标为(﹣3,0),∴OB=3,∵∠BOC=90°,∴△BOC的面积是==.22.解:(1)把A(4,0)代入y=﹣(x﹣m)2+9得﹣(4﹣m)2+9=0,解得m=1或m =7,∵点A在点B左侧,∴m=7,即抛物线的对称轴为直线x=7,∵CD⊥x轴,DE⊥CD,∴点E与点D关于直线x=7对称,而D点的横坐标为6,∴DE=2×(7﹣6)=2;(2)当y=0时,﹣(x﹣m)2+9=0,解得x1=m﹣3,x2=m+3,∴A(m﹣3,0),B(m+3,0),∴AB=m+3﹣(m﹣3)=6,∴DE=AB=3,∵D点的横坐标为6,∴2(m﹣6)=3,∴m=.。
中考数学总复习《二次函数图像与一元二次方程的综合应用》练习题-附带答案一、单选题(共12题;共24分)1.如果二次函数y=ax2+bx+c(a>0)的顶点在x轴的上方,那么()A.b2−4ac≥0B.b2−4ac<0C.b2−4ac>0D.b2−4ac=02.在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则当物体经过的路程是88米时该物体所经过的时间为()A.2秒B.4秒C.6秒D.8秒3.抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+ 3−t=0(t为实数)在−1<x<3的范围内有实数根,则t的取值范围是()A.2≤t<11B.t≥2C.6<t<11D.2≤t<64.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②9a+c>0;③ax2+bx+c=0的两个根是x1=−2,x2=4;④b:c=1:4其中正确的有()A.1个B.2个C.3个D.4个5.已知抛物线y=ax2+bx+c经过点(1,0)和点(0,−3),且对称轴在y轴的左侧,有下列结论:①a>0;②a+b=3;③抛物线经过点(−1,0);④关于x的一元二次方程ax2+bx+c=−1有两个不相等的实数根.其中正确结论的个数是()A.0B.1C.2D.3 6.已知抛物线y=ax2+bx+c经过点(−1,0),(3,0),则关于x的一元二次方程a(x+1)2−cx=a+2b的解为()A.x=−1或x=−4B.x=−1或x=−2C.x=−4或x=−2D.x=−1或x=37.已知二次函数y=a(x−x1)(x−x2)与x轴的交点是(1,0)和(3,0),关于x的方程a(x−x1)(x−x2)=m(其中m>0)的两个解分别是−1和5,关于x的方程a(x−x1)(x−x2)=n(其中0<n<m)也有两个整数解,这两个整数解分别是()A.1和4B.2和5C.0和4D.0和5 8.二次函数y=ax2+bx+c(a≠0)的y与x的部分对应值如下表:下列结论错误的是()x-5-4-202y60-6-46B.若点(-8,y1),点(8,y2)在二次函数图象上,则y1<y2C.当x=-2时函数值最小,最小值为-6D.方程ax2+bx+c=-5有两个不相等的实数根.9.已知二次函数y=ax2+bx+c的部分图象如图,则关于x的一元二次方程ax2+bx+c=0的解为()A.x1=﹣4,x2=2B.x1=﹣3,x2=﹣1C.x1=﹣4,x2=﹣2D.x1=﹣2,x2=210.如图是函数y=x2+bx+c与y=x的图象,有下列结论:(1)b2﹣4c>0;(2)b+c+1=0;(3)方程x2+(b﹣1)x+c=0的解为x1=1,x2=3;(4)当1<x<3时x2+(b﹣1)x+c<0.其中正确结论的个数为()A.1B.2C.3D.4 11.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是()A.ab<0B.一元二次方程ax2+bx+c=0的正实数根在2和3之间C.a=m+23D.点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t>13时y1<y212.已知二次函数y=ax2+bx+c的图象经过(−1,0)与(3,0)两点,关于x 的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是5.则关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根是()A.-2或4B.-2或0C.0或4D.-2或5二、填空题(共6题;共6分)13.将二次函数y=x2−4x+a的图象向左平移1个单位,再向上平移1个单位若得到的函数图象与直线y=2有两个交点,则a的取值范围是.14.如图,已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是.15.若二次函数y=x2﹣2x+k的部分图象如图所示,则关于x的一元二次方程x2﹣2x+k =0的解一个为x1=3,则方程x2﹣2x+k=0另一个解x2=.16.已知二次函数y=−x2+2x+m的部分图象如图所示,则关于x的一元二次方程−x2+2x+m=0的解为.17.二次函数y=−x2+bx+c的部分图象如图所示,由图象可知,方程−x2+bx+c=0的解为;不等式−x2+bx+c<0的解集为.18.已知一元二次方程ax2+bx+c=0的两根为﹣5和3,则二次函数y=ax2+bx+c图象对称轴是直线.三、综合题(共6题;共66分)19.在直角坐标系中设函数y=ax2+bx+1(a,b是常数,a≠0)。
5.4《二次函数与一元二次方程》同步练习一.选择题1.若函数y=x2﹣2x+b的图象与坐标轴有三个交点,则b的取值范围是()A.b<1且b≠0B.b>1C.0<b<1D.b<12.若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x 的方程x2+bx=5的解为()A.x1=0,x2=4B.x1=1,x2=5C.x1=1,x2=﹣5D.x1=﹣1,x2=5 3.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个4.下表是满足二次函数y=ax2+bx+c的五组数据,x1是方程ax2+bx+c=0的一个解,则下列选项中正确的是()x 1.6 1.8 2.0 2.2 2.4y﹣0.80﹣0.54﹣0.200.220.72A.1.6<x1<1.8B.1.8<x1<2.0C.2.0<x1<2.2D.2.2<x1<2.4 5.已知二次函数y=ax2+bx+c中,y与x的部分对应值如下:x 1.1 1.2 1.3 1.4 1.5 1.6y﹣1.59﹣1.16﹣0.71﹣0.240.250.76则一元二次方程ax2+bx+c=0的一个解x满足条件()A.1.2<x<1.3B.1.3<x<1.4C.1.4<x<1.5D.1.5<x<1.6 6.根据关于x的一元二次方程x2+px+q=0,可列表如下:则方程x2+px+q=0的正数解满足()x00.51 1.1 1.2 1.3x2+px+q﹣15﹣8.75﹣2﹣0.590.84 2.29A.解的整数部分是0,十分位是5B.解的整数部分是0,十分位是8C.解的整数部分是1,十分位是1D.解的整数部分是1,十分位是27.二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx ﹣t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A.t>﹣5B.﹣5<t<3C.3<t≤4D.﹣5<t≤48.在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A.M=N﹣1或M=N+1B.M=N﹣1或M=N+2C.M=N或M=N+1D.M=N或M=N﹣19.二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t =0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()A.t≥﹣1B.﹣1≤t<3C.﹣1≤t<8D.3<t<810.如图,一次函数y1=kx+n(k≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于A(﹣1,5)、B(9,2)两点,则关于x的不等式kx+n≥ax2+bx+c的解集为()A.﹣1≤x≤9B.﹣1≤x<9C.﹣1<x≤9D.x≤﹣1或x≥9 11.如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.其中正确的有()A.4个B.3个C.2个D.1个二.填空题12.若关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,则实数k的值为.13.已知关于x的函数y=(m﹣1)x2+2x+m图象与坐标轴只有2个交点,则m=.14.关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是.15.根据下列表格中y=ax2+bx+c的自变量x与函数值y的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是.x 6.17 6.18 6.19 6.20y=ax2+bx+c﹣0.03﹣0.010.020.0416.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是.17.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,且b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x =﹣1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4.其中正确结论的个数是.18.如图,双曲线y=与抛物线y=ax2+bx+c交于点A(x1,y1),B(x2,y2),C(x3,y3),由图象可得不等式组0<+bx+c的解集为.三.解答题19.已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根;(2)当抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围;(3)已知抛物线y=kx2+(2k+1)x+2恒过定点,求出定点坐标.20.设二次函数y=ax2+bx﹣(a+b)(a,b是常数,a≠0).(1)判断该二次函数图象与x轴的交点的个数,说明理由.(2)若该二次函数图象经过A(﹣1,4),B(0,﹣1),C(1,1)三个点中的其中两个点,求该二次函数的表达式.(3)若a+b<0,点P(2,m)(m>0)在该二次函数图象上,求证:a>0.21.如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C 关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A (﹣1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.22.我们可以通过下列步骤估计方程x2﹣2x﹣2=0方程的根所在的范围.第一步:画出函数y=x2﹣2x﹣2=0的图象,发现函数图象是一条连续不断的曲线,且与x轴的一个交点的横坐标在0,﹣1之间.第二步:因为当x=0时,y=﹣2<0,当x=﹣1时,y=1>0,所以可确定方程x2﹣2x﹣2=0的一个根x1所在的范围是﹣1<x1<0第三步:通过取0和﹣1的平均数缩小x1所在的范围:取x=,因为当x=时,y<0.又因为当x=﹣1时,y>0,所以(1)请仿照第二步,通过运算验证方程x2﹣2x﹣2=0的另一个根x2所在的范围是2<x2<3.(2)在2<x2<3的基础上,重复应用第三步中取平均数的方法,将x2所在的范围缩小至a<x2<b,使得.参考答案一.选择题1.解:∵函数y=x2﹣2x+b的图象与坐标轴有三个交点,如果b=0,那么此二次函数与两坐标轴的其中一个交点重合了,那么就只有2个交点,则于题意不符,∴,解得b<1且b≠0.故选:A.2.解:∵对称轴是经过点(2,0)且平行于y轴的直线,∴﹣=2,解得:b=﹣4,∴关于x的方程为x2﹣4x=5,解得x1=﹣1,x2=5,故选:D.3.解:∵b>a>0∴﹣<0,所以①正确;∵抛物线与x轴最多有一个交点,∴b2﹣4ac≤0,∴关于x的方程ax2+bx+c+2=0中,△=b2﹣4a(c+2)=b2﹣4ac﹣8a<0,所以②正确;∵a>0及抛物线与x轴最多有一个交点,∴x取任何值时,y≥0∴当x=﹣1时,a﹣b+c≥0;所以③正确;当x=﹣2时,4a﹣2b+c≥0,a+b+c≥3b﹣3a,a+b+c≥3(b﹣a),≥3所以④正确.故选:D.4.解:如图由图象可以看出二次函数y=ax2+bx+c在区间(2.0,2.2)上可能与x轴有交点,即2.0<x1<2.2.∴故选C.5.解:由表可以看出,当x取1.4与1.5之间的某个数时,y=0,即这个数是ax2+bx+c=0的一个根.ax2+bx+c=0的一个解x的取值范围为1.4<x<1.5.故选:C.6.解:根据表中函数的增减性,可以确定函数值是0时,x应该是大于1.1而小于1.2.所以解的整数部分是1,十分位是1.故选:C.7.解:如图,关于x的一元二次方程﹣x2+mx﹣t=0的解就是抛物线y=﹣x2+mx与直线y =t的交点的横坐标,由题意可知:m=4,当x=1时,y=3,当x=5时,y=﹣5,由图象可知关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5的范围内有解,直线y=t在直线y=﹣5和直线y=4之间包括直线y=4,∴﹣5<t≤4.故选:D.8.解:∵y=(x+a)(x+b),a≠b,∴函数y=(x+a)(x+b)的图象与x轴有2个交点,∴M=2,∵函数y=(ax+1)(bx+1)=abx2+(a+b)x+1,∴当ab≠0时,△=(a+b)2﹣4ab=(a﹣b)2>0,函数y=(ax+1)(bx+1)的图象与x轴有2个交点,即N=2,此时M=N;当ab=0时,不妨令a=0,∵a≠b,∴b≠0,函数y=(ax+1)(bx+1)=bx+1为一次函数,与x轴有一个交点,即N=1,此时M=N+1;综上可知,M=N或M=N+1.故选:C.另一解法:∵a≠b,∴抛物线y=(x+a)(x+b)与x轴有两个交点,∴M=2,又∵函数y=(ax+1)(bx+1)的图象与x轴有N个交点,而y=(ax+1)(bx+1)=abx2+(a+b)x+1,它至多是一个二次函数,至多与x轴有两个交点,∴N≤2,∴N≤M,∴不可能有M=N﹣1,故排除A、B、D,故选:C.9.解:对称轴为直线x=﹣=1,解得b=﹣2,所以二次函数解析式为y=x2﹣2x,y=(x﹣1)2﹣1,x=1时,y=﹣1,x=4时,y=16﹣2×4=8,∵x2+bx﹣t=0的解相当于y=x2+bx与直线y=t的交点的横坐标,∴当﹣1≤t<8时,在﹣1<x<4的范围内有解.故选:C.10.解:由图形可以看出:抛物线y2=ax2+bx+c(a≠0)和一次函数y1=kx+n(k≠0)的交点的横坐标分别为﹣1,9,当y1≥y2时,x的取值范围正好在两交点之内,即﹣1≤x≤9.故选:A.11.解:∵抛物线与y轴的交点在x轴上方,∴c>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,∴2a+b+c=2a﹣2a+c=c>0,所以①正确;∵抛物线与x轴的一个交点在点(3,0)左侧,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣1,0)右侧,∴当x=﹣1时,y<0,∴a﹣b+c<0,所以②正确;∵x=1时,二次函数有最大值,∴ax2+bx+c≤a+b+c,∴ax2+bx≤a+b,所以③正确;∵直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,∴x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,而b=﹣2a,∴9a﹣6a<﹣3,解得a<﹣1,所以④正确.故选:A.二.填空题12.解:令y=0,则kx2+2x﹣1=0.∵关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,∴关于x的方程kx2+2x﹣1=0只有一个根.①当k=0时,2x﹣1=0,即x=,∴原方程只有一个根,∴k=0符合题意;②当k≠0时,△=4+4k=0,解得,k=﹣1.综上所述,k=0或﹣1.故答案为:0或﹣1.13.解:(1)当m﹣1=0时,m=1,函数为一次函数,解析式为y=2x+1,与x轴交点坐标为(﹣,0);与y轴交点坐标(0,1).符合题意.(2)当m﹣1≠0时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与x 轴有两个不同的交点,于是△=4﹣4(m﹣1)m>0,解得,(m﹣)2<,解得m<或m>.将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与x轴只有一个交点,与y轴交于交于另一点,这时:△=4﹣4(m﹣1)m=0,解得:m=.故答案为:1或0或.14.解:∵关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根∴△=(﹣3)2﹣4×a×(﹣1)>0,解得:a>设f(x)=ax2﹣3x﹣1,如图,∵实数根都在﹣1和0之间,∴﹣1,∴a,且有f(﹣1)<0,f(0)<0,即f(﹣1)=a×(﹣1)2﹣3×(﹣1)﹣1<0,f(0)=﹣1<0,解得:a<﹣2,∴<a<﹣2,故答案为:<a<﹣2.15.解:由表格中的数据看出﹣0.01和0.02更接近于0,故x应取对应的范围.故答案为:6.18<x<6.19.16.解:观察函数图象可知:当x<﹣1或x>4时,直线y=mx+n在抛物线y=ax2+bx+c的上方,∴不等式mx+n>ax2+bx+c的解集为x<﹣1或x>4.故答案为:x<﹣1或x>4.17.解:①∵(﹣1,0),(3,0)和(0,3)坐标都满足函数y=|x2﹣2x﹣3|,∴①是正确的;②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线x=1,因此②也是正确的;③根据函数的图象和性质,发现当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大,因此③也是正确的;④函数图象的最低点就是与x轴的两个交点,根据y=0,求出相应的x的值为x=﹣1或x=3,因此④也是正确的;⑤从图象上看,当x<﹣1或x>3,函数值要大于当x=1时的y=|x2﹣2x﹣3|=4,因此⑤是不正确的;故答案是:418.解:由图可知,x2<x<x3时,0<<ax2+bx+c,所以,不等式组0<<ax2+bx+c的解集是x2<x<x3.故答案为:x2<x<x3.三.解答题19.(1)证明:①当k=0时,方程为x+2=0,所以x=﹣2,方程有实数根,②当k≠0时,∵△=(2k+1)2﹣4k×2=(2k﹣1)2≥0,即△≥0,∴无论k取任何实数时,方程总有实数根;(2)解:令y=0,则kx2+(2k+1)x+2=0,解关于x的一元二次方程,得x1=﹣2,x2=﹣,∵二次函数的图象与x轴两个交点的横坐标均为整数,且k为正整数,∴k=1.∴该抛物线解析式为y=x2+3x+2,由图象得到:当y1>y2时,a>1或a<﹣4.(3)依题意得kx2+(2k+1)x+2﹣y=0恒成立,即k(x2+2x)+x﹣y+2=0恒成立,则,解得或.所以该抛物线恒过定点(0,2)、(﹣2,0).20.解:(1)设y=0∴0=ax2+bx﹣(a+b)∵△=b2﹣4•a[﹣(a+b)]=b2+4ab+4a2=(2a+b)2≥0∴方程有两个不相等实数根或两个相等实根.∴二次函数图象与x轴的交点的个数有两个或一个(2)当x=1时,y=a+b﹣(a+b)=0∴抛物线不经过点C把点A(﹣1,4),B(0,﹣1)分别代入得解得∴抛物线解析式为y=3x2﹣2x﹣1(3)当x=2时m=4a+2b﹣(a+b)=3a+b>0①∵a+b<0∴﹣a﹣b>0②①②相加得:2a>0∴a>021.解:(1)∵抛物线y=(x+2)2+m经过点A(﹣1,0),∴0=1+m,∴m=﹣1,∴抛物线解析式为y=(x+2)2﹣1=x2+4x+3,∴点C坐标(0,3),∵对称轴x=﹣2,B、C关于对称轴对称,∴点B坐标(﹣4,3),∵y=kx+b经过点A、B,∴,解得,∴一次函数解析式为y=﹣x﹣1,(2)由图象可知,写出满足(x+2)2+m≥kx+b的x的取值范围为x≤﹣4或x≥﹣1.22.解:(1)因为当x=2时,y=﹣2<0,当x=3时,y=1>0,所以可确定方程x2﹣2x﹣2=0的一个根x2所在的范围是2<x2<3;(2)取x==2.5,因为当x=2.5时,y<0.又因为当x=3时,y>0,所以2.5<x2<3,取x==2.75,因为当x=2.75时,y>0.又因为当x=2.5时,y<0,所以2.5<x2<2.75,因为2.75﹣2.5=.取x==2.625,因为当x=2.625时,y<0.又因为当x=2.75时,y>0,所以2.625<x2<2.75,因为2.75﹣2.625=<,所以2.625<x2<2.75即为所求x2的范围。
21.3二次函数与一元二次方程一、选择题(本题包括8小题.每小题只有1个选项符合题意)1﹒下列抛物线,与x轴有两个交点的是()A.y=3x2-5x+3B.y=4x2-12x+9C.y=x2-2x+3D.y=2x2+3x-42﹒函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是()A.k<3B.k<3且k≠0C.k≤3D.k≤3且k≠03﹒已知抛物线y=ax2-2x+1与x轴没有交点,,那么该抛物线的顶点所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限4﹒已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是()A.x1=1,x2=-1B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=35﹒下列关于二次函数y=ax2-2ax+1(a>1)的图象与x轴交点的判断,下确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧6﹒如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(1,0),对称轴为直线x=-1,则方程ax2+bx+c=0的解是()A.x1=-3,x2=1B.x1=3,x2=1C.x=-3D.x=-27﹒如图,二次函数y=ax2+bx+c的图象与x轴相交于(-2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<-2B.-2<x<4C.x>0D.x>48.如图,已知顶点为(-3,6)的抛物线y=ax2+bx+c经过点(-1,-4),则下列结论中错误的是()A.b2>4acB.ax2+bx+c≥-6C.若点(-2,m),(-5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=-4的两根为-5和-1二、填空题(本题包括8小题)9.一元二次方程ax2+bx+c=0的根就是抛物线y=ax2+bx+c与直线_________的交点的_______坐标.10.抛物线y=-3(x-2)(x+5)与x轴的交点坐标为______________.11.已知二次函数y=x2+2mx+2,当x>2时,y的值随x的增大而增大,则实数m的取值范围是___________.12.若关于x的函数y=kx2+2x-1的图象与x轴仅有一个公共点,则实数k的值为_________.13.已知关于x的函数y=(m+6)x2+2(m-1)x+m+1的图象与x轴有交点,则m的取值范围为_______________.14.二次函数y=ax2-2ax+3的图象与x轴有两个交点,其中一个交点坐标为(-1,0),则一元二次方程ax2-2ax+3=0的解为__________________________.15.抛物线y=x2-2x-3在x轴上截得的线段长度是__________.16.关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根都在-1和0之间(不包括-1和0),则a的取值范围是______________________.三、解答题(本题包括6小题)17.已知抛物线y=(x-m)2-(x-m),其中m是常数.(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=52.①求该抛物线的函数解析式;②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.18.已知二次函数y=-x2+2x+m .(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.19.如图,抛物线y=x2+bx+c经过点A(-1,0),B(3,0).请解答下列问题:(1)求抛物线的解析式;(2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE中点,连接FH,求线段FH的长.20.如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点.(1)求二次函数的表达式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.21.已知函数y=mx2-6x+1(m是常数).(1)求证:不论m为何值,该函数的图象都经过y轴上的一个定点;(2)若该函数的图象与x轴只有一个交点,求m的值.22.如图,抛物线与x轴交于A,B两点,与y轴交于C点,点A的坐标为(2,0),点C的坐标为(0,3),抛物线的对称轴是直线x=-12.(1)求抛物线的解析式;(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求点M的坐标.21.3二次函数与一元二次方程参考答案一、选择题(本题包括10小题.每小题只有1个选项符合题意)1.D 分析:A.y=3x2-5x+3,△=(-5)2-4×3×3=-9<0,抛物线与x轴没有交点,故A错误;B.y=4x2-12x+9,△=(-12)2-4×4×9=0,抛物线与x轴有一个交点,故B错误;C.y=x2-2x+3,△=(-2)2-4×1×3=-8<0,抛物线与x轴没有交点,故C错误;D.y=2x2+3x-4,△=32-4×2×(-4)=41>0,抛物线与x轴有两个交点,故D正确. 故选D.2.C 分析:∵函数y=kx2-6x+3的图象与x轴有交点,∴当k≠0时,△=(-6)2-4k×3≥0,解得:k≤3,当k=0时,函数y=kx2-6x+3为一次函数,则它的图象与x轴有交点,综合上述,k的取值范围是k≤3.故选C.3.D 分析:∵抛物线y=ax2-2x+1与x轴没有交点,∴△=(-2)2-4a×1<0,且a≠0,解得a>1,∴-22a-=1a>0,241(2)4aa⨯--=1-1a<0,∴抛物线顶点在第四象限.故选D.4.B 分析:抛物线y=x2-3x+m的对称轴是x=32,且与x轴的一个交点为(1,0),∵a=1,∴抛物线的开口向上,∴抛物线与x轴的另一个交点为(2,0),∴一元二次方程x2-3x+m=0的两实数根是x1=1,x2=2.故选B.5.D 分析:当y=0时,ax2-2ax+1=0,∵a>1,∴△=4a2-4a=4a(a-1)>0,∴方程ax2-2ax+1=0有两个实数根,则抛物线与x轴有两个交点.∵x>0,∴抛物线与x轴的两个交点均在y轴的右侧.故选D.6.A 分析:由图象可知:抛物线与x轴的另一个交点坐标为(-3,0),∴方程ax2+bx+c=0的解是x1=-3,x2=1.故选A.7.B 分析:∵当函数值y>0时,二次函数图象在x轴的上方,∴当-2<x<4时,y>0,即自变量x的取值范围是-2<x<4 .故选B.8.C 分析:由图象可知:抛物线与x轴有两个交点,∴△=b2-4ac>0,则b2>4ac,故A正确;∵抛物线开口向上,且顶点坐标为(-3,-6),∴函数y的最小值是-6,则ax2+bx+c≥-6,故B正确;∵抛物线的对称轴为直线x=-3,∴点(-2,m)离对称轴的距离比点(-5,n)离对称轴距离近,∴m<n,故C错误;根据抛物线的对称性可知:(-1,-4)关于对称轴对称的对称称点为(-5,-4),∴一元二次方程ax2+bx+c=-4的两根为-5和-1,故D正确.故选C.二、填空题(本题包括8小题)9. 0,横 分析:一元二次方程ax 2+bx +c =0的根就是抛物线y =ax 2+bx +c 与直线x =0的交点的横坐标.10. (2,0),(-5,0)分析:令y =0,则-3(x -2)(x +5)=0,解这个方程得:x 1=2,x 2=-5,∴此抛物线与x 的交点坐标为(2,0),(-5,0).11. m ≥-2 分析:∵a =1>0,∴抛物线开口向上,又∵当x >2时,y 的值随x 的增大而增大,∴-221m⨯≤2,解得m ≥-2. 12. k =0或k =-1 分析:①当k =0时,此函数为一次函数,则直线y =2x -1与x 轴只有一个公共点;②当k ≠0时,△=22-4k ×(-1)=0,解得k =-1,此时抛物线与x 轴只有一个公共点, 综合上述,实数k 的值为k =0或k =-1. 13. m ≤-59分析:当m +6=0,即m =-6时,此函数为一次函数,这时图象必与x 轴有交点; 当m +6≠0,即m ≠-6时,△=4(m -1)2-4(m +6)(m +1)=-20-36m ≥0, 解得m ≤-59.综合上述,m 的取值范围是m ≤-59. 14. x 1=-1,x 2=3 分析:抛物线y =ax 2-2ax +3的对称轴为直线x =-22aa-=1,∵抛物线与x 轴的一个交点坐标为(-1,0),∴抛物线与x 轴的另一个交点坐标为(3,0),∴一元二次方程ax 2-2ax +3=0的解为x 1=-1,x 2=3.15.4 分析:设抛物线与x 轴的交点分别为(x 1,0),(x 2,0),则x 1+x 2=2,x 1x 2=-3,∴12x x -=4,即此抛物线在x 轴上截得的线段长度为4.16. -94<a <-2 分析:∵关于x 的一元二次方程ax 2-3x -1=0的两个不相等的实数根,∴△=(-3)2-4a ×(-4)>0,解得:a >-94,设y =ax 2-3x -1,则可画出图象如图.∵实数根都在-1和0之间,∴-1<-32a -<0,解得a <-32.由图象可知:当x =-1时,y <0,当x =0时,y <0,即a ×(-1)2-3×(-1)-1<0,-1<0,解得a <-2.∴-94<a <-2, 三、解答题(本题包括6小题)17.(1)证明:y =(x -m )2﹣(x ﹣m )=x 2-(2m +1)x +m 2+m , ∵△=(2m +1)2﹣4(m 2+m )=1>0,∴不论m为何值,该抛物线与x轴一定有两个公共点;(2)解:①∵x=-(21)2m-+=52,∴m=2,∴抛物线解析式为y=x2﹣5x+6;②设抛物线沿y轴向上平移k个单位长度后,得到的抛物线与x轴只有一个公共点,则平移后抛物线解析式为y=x2﹣5x+6+k,∵抛物线y=x2﹣5x+6+k与x轴只有一个公共点,∴△=52-4(6+k)=0,∴k=14,即把该抛物线沿y轴向上平移14个单位长度后,得到的抛物线与x轴只有一个公共点.18.解:(1)∵二次函数的图象与x轴有两个交点,∴△=22+4m>0∴m>﹣1,即m的取值范围是m>﹣1;(2)∵二次函数的图象过点A(3,0),∴0=﹣9+6+m∴m=3,∴二次函数的解析式为:y=﹣x2+2x+3,令x=0,则y=3,∴B(0,3),设直线AB的解析式为:y=kx+b,∴303k bb+=⎧⎨=⎩,解得:13kb=-⎧⎨=⎩,∴直线AB的解析式为:y=﹣x+3,∵抛物线y=﹣x2+2x+3,的对称轴为:x=1,∴把x=1代入y=﹣x+3得y=2,∴P(1,2).19.解:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0),∴10930b cb c-+=⎧⎨++=⎩,解得:23bc=-⎧⎨=-⎩,∴抛物线的解析式为:y=x2﹣2x﹣3;(2)∵点E(2,m)在抛物线上,∴m =4﹣4﹣3=﹣3,∴E(2,﹣3), ∴BE =22(32)(03)-++=10,∵点F 是AE 中点,抛物线的对称轴与x 轴交于点H ,即H 为AB 的中点, ∴FH 是三角形ABE 的中位线, ∴FH =12BE =12×10=102.20.解:(1)∵二次函数y =ax 2+bx +c 的图象过A (2,0),B (0,-1)和C (4,5)三点,∴42011645a b c c a b c ++=⎧⎪=-⎨⎪++=⎩,解得12121a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩,∴二次函数的表达式为y =12x 2-12x -1; (2)当y =0时,则12x 2-12x -1=0,解得:x 1=2,x 2=-1, ∴点D 的坐标为(-1,0);(3)图象如图所示,当-1<x <4时,一次函数的值大于二次函数的值.21.解:(1)令x =0,则y =1,故不论m 为何值,该函数的图象都经过y 轴上的定点(0,1); (2)①当m =0时,函数y =mx 2-6x +1为y =-6x +1, ∵函数y =-6x +1图象为一条直线, ∴此时函数图象与x 轴只有一个交点;②当m ≠0时,∵函数y =mx 2-6x +1与x 轴只有一个交点, ∴方程mx 2-6x +1=0有两个相等的实数根,∴△=(-6)2-4m=0,解得:m=9,综合上述,该函数的图象与x轴只有一个交点时,m的值为0或9.22.解:(1)设抛物线的解析式为y=a(x+12)2+k,把(2,0),(0,3)代入上式得:250 4134a ka k⎧+=⎪⎪⎨⎪+=⎪⎩,解得:a=-12,k=258,∴y=-12(x+12)2+258,即y=-12x2-12x+3,(2)令y=0,则-12x2-12x+3=0,解得:x1=2,x2=-3,∴B(-3,0),①当CM=BM时,∵BO=CO=3,即△BOC是等腰直角三角形,∴当M点在坐标原点O处时,△MBC是等腰三角形,∴M(0,0);②当BC=BM时,在Rt△BOC中, BO=CO=3,由勾股定理得:BC,∴BM=,∴M(-3,0),综合上述,点M的坐标为(0,0)或(-3,0).。
人教版九年级上册《一元二次方程与二次函数》专题测试卷(附答卷)时间:120分钟 总分:120分一、选择题(每小題3分.共30分)1.下列方程中,是关于x 的一元二次方程的是 ( ) A. 3(x +1)2 = 2(x +l) B.21x +x1-2=0 C. ax 2+ bx + c =O D. x 2-x (x +7)=02.方程x 2-2x =0的根是( )A.x 1=O, x 2=2B.x 1=O, x 2=-2C.x =0D.x =23.方程x 2-x +2=0的根的情况是 ( ) A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数据根D .没有实数根4.若a 是不等于零的实数,对于二次函数y =|a |x 2的图象有如下判断:①开口方向向上;②与函数y =x 2形状相同;③以y 轴为对称轴;④以原点为顶点;⑤无论x 为何实数,函数y 总是非负数.其中判断正确的有 ( ) A. 1个B. 2个C. 3个D. 4个5 .把抛物线y =-x 2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为 ( ) A. y =-(x -1)2-3 B. y =-(x +l)2-3 C. y =-(x -1)2+3D. y =-(x +1)2+36.关于x 的方程x 2+mx -1=0的两根互为相反数,则m 的值为 ( ) A .0B. 2C. ID.-27.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示.则点M (cb, a )在 ( )A.第一象限B.第二象限C.第三象限D.第四象限8.三角形两边的长分别是8和6,第三边的长是方程x 2-7x +10=0的一个实数根,则这个三角形的周长是 ( ) A. 19B. 19 或 16C. 16D. 229.若二次函数y =ax 2+c (a ≠0)当x 分别取x 1,x 2(x 1≠x 2)时, 函数值相等,则当x 取x 1+x 2时,函数值为 ( ) A. a +cB. a -cC. -cD. c10.某饲料厂今年一月份生产伺料5OOt .三月份生产伺群720t,若二月份和三月份这两个月的月平均增长率为x ,则有 ( ) A. 500 (l+2x )=720 B. 500 (l+x )2=720 C. 500 (1+x 2)=720D. 720 (1+x 2)=500二、填空题(每小题3分.共30分)1.若方程(4-m )x | m |-2+3x -2=0是一元二次方程.则m = ______.2.用配方法解一元二次方程2x 2+3x +1=0 变形为(x +m )2=k ,则m = , k = .3.若抛物线y =x 2-kx +k -1的顶点在x 轴上,则k = .4.若关于x 的方程x 2-2x +m =0有两个相等的实数根. 则m =_____ ,5.若二次函数y =ax 2+2x +a 2-1(a ≠0)的图象如图所示. 则a 的值是________ .6.巳知关于x 的一元二次方程x 2+(2m -3)x +m 2=0的两个不相等的实数根α,β满足α1+β1=1则M 的值为 _____.7.如果二次函数y =ax 2+bx +c (a ≠0)图象的顶点为(-2. 4).且过点(-3. 0), 则其图象在x =-1 的右侧y 随x 的増大而 _______.8.一个长为10m 的梯子料靠在墙上.梯子的顶端距地面的垂直距离为8m ,如果梯子的顶端下滑1m .梯子的底端下滑xm ,可得方程___________________.9.定义新运算“※”:规则a ※b = 如1※2=2,(-5)※2=2.若x 2+x -1=0的两根x 1,x 2,则x 1※x 2=_______.10.对于某个二次函数的图象,三位学生分别说出了它的一个特点:甲:对称轴是直线x =4;乙:与x 轴两个交点的横坐标都是整数;丙:与y 轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积是3.满足上述全部特点的一个二次函数的解析式为 .a (a ≥b ), b (a ˂b ),三、解答通(共60分)1.(8分)用适当的方法解下列方程: (1)(6x -1)2=25; (2) 4x 2-1=12x ;⑶x 2-x 22=-81; ⑷ x (x -7)=8(7-x ).2.(8分)用配方法写出下列拋物线的对称轴和顶点坐标.(1)y =2x 2-4x +1 (2) y =-21x 2+x -43. (10分)已知关于x 的一元二次方mx 2-(2m +1)x +m +3=0.4. (10分)某商场将某种商品的售价从原来的每件40元经两次调价后调至每件32.4元. (1) 若该商场两次调价的降价率相同,求这个降价率;(2) 经调查.该商品每降价0.2元,即可多销售10件.若该商品原来每月可销售500件,那么两次调价后,每月可销售该商品多少件?5. (12分)星光中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围绕成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米.(1)若平行于墙的一边的长为y 米,直接写出y 与x 之间的函数关系式及其自变量x 的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大?求出这个最大值; (3)当这个苗圃园的面积不小于88平方米时,试结合函数图象,直接写出x 的取值范围.(1) 如果方程有两个不相等的实数根,求m 的取值范围;(2)如果方程的一个根x 1=-1.求另一个根x 2及(x 1-3)(x 2-3)的值.6.(12分)如图,已知点O (0, 0), A(-5, 0), B(2, 1),抛物线l:y=-(x-h)2+ 1(h为常数)与y轴的交点为C.(1)l经过点B, 求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y c,求y c的最大值,此时l上有两点(x1, y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.人教版九年级上册《一元二次方程与二次函数》专题测试卷(答卷)时间:120分钟 总分:120分一、选择题(每小題3分.共30分)1.下列方程中,是关于x 的一元二次方程的是 (A ) A. 3(x +1)2 = 2(x +l) B.21x +x1-2=0 C. ax 2+ bx + c =O D. x 2-x (x +7)=02.方程x 2-2x =0的根是(A )A.x 1=O, x 2=2B.x 1=O, x 2=-2C.x =0D.x =23.方程x 2-x +2=0的根的情况是 (D ) A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数据根D .没有实数根4.若a 是不等于零的实数,对于二次函数y =|a |x 2的图象有如下判断:①开口方向向上;②与函数y =x 2形状相同;③以y 轴为对称轴;④以原点为顶点;⑤无论x 为何实数,函数y 总是非负数.其中判断正确的有 (D ) A. 1个B. 2个C. 3个D. 4个5 .把抛物线y =-x 2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为 (D ) A. y =-(x -1)2-3 B. y =-(x +l)2-3 C. y =-(x -1)2+3D. y =-(x +1)2+36.关于x 的方程x 2+mx -1=0的两根互为相反数,则m 的值为 (A ) A .0B. 2C. ID.-27.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示.则点M (cb, a )在 (A )A.第一象限B.第二象限C.第三象限D.第四象限8.三角形两边的长分别是8和6,第三边的长是方程x 2-7x +10=0的一个实数根,则这个三角形的周长是 (A ) A. 19B. 19 或 16C. 16D. 229.若二次函数y =ax 2+c (a ≠0)当x 分别取x 1,x 2(x 1≠x 2)时, 函数值相等,则当x 取x 1+x 2时,函数值为 (D ) A. a +cB. a -cC. -cD. c10.某饲料厂今年一月份生产伺料5OOt .三月份生产伺群720t,若二月份和三月份这两个月的月平均增长率为x ,则有 (B ) A. 500 (l+2x )=720 B. 500 (l+x )2=720 C. 500 (1+x 2)=720D. 720 (1+x 2)=500二、填空题(每小题3分.共30分)1.若方程(4-m )x | m |-2+3x -2=0是一元二次方程.则m2.用配方法解一元二次方程2x 2+3x +1=0 变形为(x +m )2=k ,则m = , k = .3.若抛物线y =x 2-kx +k -1的顶点在x 轴上,则k = .4.若关于x 的方程x 2-2x +m =0有两个相等的实数根.则m =_____ ,5.若二次函数y =ax 2+2x +a 2-1(a ≠0)的图象如图所示.则a 的值是________ .6.巳知关于x 的一元二次方程x 2+(2m -3)x +m 2=0的两个不相等的实数根α,β满足α1+β1=1则M 的值为 _____.7.如果二次函数y =ax 2+bx +c (a ≠0)图象的顶点为(-2. 4).且过点(-3. 0), 则其图象在x =-1的右侧y 随x 的増大而 _______.8.一个长为10m 的梯子料靠在墙上.梯子的顶端距地面的垂直距离为8m ,如果梯子的顶端下滑1m .梯子的底端下滑xm ,可得方程___________________.9.定义新运算“※”:规则a ※b = 如1※2=2,(-5)※2=2.若x 2+x -1=0的两根x 1,x 2,则x 1※x 2=_______.10.对于某个二次函数的图象,三位学生分别说出了它的一个特点:甲:对称轴是直线x =4;乙:与x 轴两个交点的横坐标都是整数;丙:与y 3.y =51x 2-58x +3 .a (a ≥b ), b (a ˂b ),-4 43 1612 1 -1 -3 减小 72+(6+x )2=102 215三、解答通(共60分)1.(8分)用适当的方法解下列方程: (1)(6x -1)2=25; (2) 4x 2-1=12x ;⑶x 2-x 22=-81; ⑷x (x -7)=8(7-x ).2.(8分)用配方法写出下列拋物线的对称轴和顶点坐标.(1)y =2x 2-4x +1 (2) y =-21x 2+x -4解:6x -1=±5 6x =1±5 x 1=1 , x 2=﹣32解:4x 2﹣12x ﹣1=0 a =4 , b =﹣12, c =﹣1b 2﹣4ac =(﹣12)2﹣4×4×(﹣1) =160x =4216012⨯± ∴ x 1=2103+ x 2=2103-解:x 2-22x +81=0 △=(-22)2﹣4×81=0 x =12022⨯± ∴x 1=x 2=42解:x (x ﹣7)+8(x ﹣7)=0(x ﹣7)(x +8)=0X ﹣7=0或x +8=0∴x 1=7 x 2=﹣83. (10分)已知关于x 的一元二次方mx 2-(2m +1)x +m +3=0.5. (10分)某商场将某种商品的售价从原来的每件40元经两次调价后调至每件32.4元. (3) 若该商场两次调价的降价率相同,求这个降价率;(4) 经调查.该商品每降价0.2元,即可多销售10件.若该商品原来每月可销售500件,那么两次调价后,每月可销售该商品多少件?5. (12分)星光中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围绕成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米.(1)若平行于墙的一边的长为y 米,直接写出y 与x 之间的函数关系式及其自变量x 的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大?求出这个最大值; (3)当这个苗圃园的面积不小于88平方米时,试结合函数图象,直接写出x 的取值范围.(3) 如果方程有两个不相等的实数根,求m 的取值范围;(4)如果方程的一个根x 1=-1.求另一个根x 2及(x 1-3)(x 2-3)的值.6.(12分)如图,已知点O (0, 0), A(-5, 0), B(2, 1),抛物线l:y=-(x-h)2+ 1(h为常数)与y轴的交点为C.(1)l经过点B, 求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y c,求y c的最大值,此时l上有两点(x1, y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.。
人教版九年级上册数学22.3二次函数与一元二次方程同步练习一、单选题1.某学校要组织一次篮球比赛,赛制为单循环形式(每两队之间都要赛一场),计划安排21场比赛,设参赛队数为x ,列方程为( )A .x (x ﹣1)=21B .12x (x ﹣1)=21 C .2x (x ﹣1)=21 D .x (x +1)=21 2.如图,在长为30m ,宽为15m 的长方形地面上修筑同样宽的道路(图中阴影部分),其余部分铺设草坪,要使草坪的面积为406m 2,则小路的宽度应为多少( )A .1B .1.5C .2D .4 3.小颖初一时体重是30kg ,到初三时体重增加到43.2kg ,则她的体重平均每年增加的百分率为( )A .10%B .15%C .20%D .22% 4.某种药品原价为40元/盒,经过连续两次降价后售价为28元/盒,设平均每次降价的百分率为x ,根据题意所列方程正确的是( )A .240(1)4028x -=-B .()401228x -=C .240(1)28x -=D .()240128x -=5.两年前生产1套学生课桌凳的成本是200元.随着生产技术的进步,现在生产1套相同的课桌凳的成本是128元.求生产成本的年平均下降率x ,列方程正确的是( )A .200(1﹣x 2)=128B .200(1﹣x )2=128C .200(1﹣2x )=128D .200(1﹣2x 2)=128 6.某商品原价200元,连续两次降价后,售价为108元,若设每次降价的百分率都是x ,则下列所列方程正确的是( )A .200(1+x )2=108B .200(1+x )=108C .200(1-x )=108D .200(1-x )2=1087.如图,在一幅长80cm ,宽为50cm 的矩形风景画的四周,镶一条宽度相等的金色纸边制成矩形挂图,如果要使整个挂图的面积为5400cm 2,设金色纸边的宽为x cm ,则可列方程( ).A .()()80505400x x ++=B .()()8025025400x x ++=C .()()80505400x x --=D .()()8025025400x x --=8.2022年北京冬奥会吉祥物“冰墩墩”敦厚可爱,深受大家欢迎.某生产厂家1月份平均日产量为20000个,随着冬奥会的举行,“冰墩墩”一路走红,供不应求.为满足市场需求,工厂决定扩大产能,3月份平均日产量达到33800个,设1至3月份冰墩墩日产量的月平均增长率为x ,则可列方程为( )A .20000(1)33800x +=B .20000(12)33800x +=C .220000(1)33800x +=D .220000(1)33800x +=二、填空题9.一次座谈会上,每两个参加会议的人都互相握手一次,经统计,一共握手36次,则这次会议与会人数是共_________人.10.随着新冠疫情趋于缓和,口罩市场趋于饱和,某N 95口罩每盒原价为200元,连续两次降价后每盒的售价为72元,则平均每次下降的百分率为___________. 11.如图,在一块长22m ,宽为14m 的矩形空地内修建三条宽度相等的小路,其余部分种植花草.若花草的种植面积为240m 2,则小路宽为______m .12.某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加21%,则这两年平均绿地面积的增长率为______.13.在美丽乡村建设中,某村2017年新增绿化面积为20000平方米,计划到2019年新增绿化面积要达到28800平方米.如果每年新增绿化面积的增长率相同,那么这个增长率是________.14.由于许多国外国家直接放开防空政策,导致新冠肺炎疫情至今没能得到缓解,疫情难以消停.新冠肺炎具有人传人的特性,若一人携带病毒,未尽进行有效隔离,经过两轮传染后共有121人患新冠肺炎(假设每轮传染的人数相同),则每轮传染中平均每个人传染了__________人.15.“疫情”期间,某商场积压了一批商品,现欲尽快清仓.老板决定在抖音直播间降价促销,据调查发现,若每件商品盈利50元,可售出500件,商品单价每下降1元,则可多售出20件,设每件商品降价x元若要使销售该商品的总利润达到28000元,并能尽快清仓,则每件商品应降价_____元.16.随着国内新冠疫情逐步得到控制,人们的口罩储备逐渐充足,市场的口罩需求量在逐渐减少,某口罩厂六月份的口罩产量为100万只,由于市场需求量减少,八月份的产量减少到81万只,则该厂七八月份的口罩产量的月平均减少率为_______.三、解答题17.金都百货某小家电经销商销售一种每个成本为40元的台灯,当每个台灯的售价定为60元时,每周可卖出100个,经市场调查发现,该台灯的售价每降低2元.其每周的销量可增加20个.(1)台灯单价每降低4元,平均每周的销售量为个.(2)如果该经销商每周要获得利润2240元,那么这种台灯的售价应降价多少元?(3)在(2)的条件下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?18.最近上海疫情爆发,防护服极度匮乏,上海许多企业都积极地生产防护服以应对疫情,某工厂决定引进若干条某种防护服生产线.经调查发现:1条防护服生产线最大产能是780件/天,每增加1条生产线,每条生产线的最大产能将减少20件/天.设该工厂共引进x条生产线.(1)每条生产线的最大产能是_______件/天(用含x的代数式表示).(2)若该工厂引进的生产线每天恰好能生产防护服7020件,为了尽量控制成本,该工厂引进了多少条生产线?19.一商店销售某种商品,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间的销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价a元,则平均每天的销售数量为件(用含a的代数式表示).(2)当每件商品降价多少元时,该商店每天的销售利润为1200元?(3)该商店每天的销售利润可能达到1450元吗?请说明理由.20.某童装专卖店在销售中发现,一款童装每件进价为60元,当销售价为90元时,每天可售出40件,为了迎接“六一”儿童节,商店决定采取适当的降价措施,以扩大销售量,尽快减少库存,增加利润.经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售____件,每件盈利_____元.(用含x的代数式表示)(2)为了扩大销售量,尽快减少库存,每件童装降价多少元时,平均每天盈利1248元.(3)平均每天盈利1500元,可能吗?请说明理由.参考答案:1.B2.A3.C4.C5.B6.D7.B8.C9.910.40%11.212.10%13.20%14.1015.1516.10%17.(1)140(2)4或6元(3)九折18.(1)()80020x -(2)该工厂引进了13条口罩生产线19.(1)202a +(2)10元(3)不可能20.(1)()402x +,()30x -;(2)每件童装降价6元时,平均每天盈利1248元;(3)不可能每天赢利1500元。
2.10—2.11 二次函数与一元二次方程学校:___________姓名:___________班级:___________考号:___________A 卷(基础巩固)一、单选题1.(2021·安徽淮北九年级月考)若二次函数2y ax bx c =++的部分图象如图所示,则方程20ax bx c ++=的解是( ).A .1x =B .1x =或3-C .11x =,23x =-D .11x =-,22x =-第1题图 第2题图2.(2021·福建省福州市九年级月考)函数2y ax bx c =++的图象如图所示,关于x 的一元二次方程240ax bx c ++-=的根的情况是( ) A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根3.(2021·安徽安庆市第四中学九年级期中)下列表格是二次函数2y ax bx c =++中x 与y 的对应值,则方程20ax bx c ++=(a 、b 、c 为常数,0a ≠)的一个近似解是( )x6.17 6.18 6.19 6.20 2y ax bx c =++ −0.03 −0.010.02 0.06 A .6.17 B .6.18C .6.19D .6.20 4.(2021·陕西延安市九年级月考)如图是二次函数2y ax bx c =++() 0a ≠的图象,以下结论:①0abc >;②90a c +<;③20ax bx c ++=的两个根是12x =-,24x =;④:1:4b c =,其中正确的是( ) A .①③④ B .①② C .②③④ D .①②③④第4题图 第8题图5.(2021·湖北武汉市九年级月考)抛物线y =x 2-(4a +1)x +3a 2+3a (a 为常数)与x 轴交于A 、B 两点,若AB =2,则a 的值是( )A .32B .-12C .-32或32D .-12或326.(2021·福建省福州市九年级月考)抛物线y =﹣x 2+2x +6在直线y =﹣9上截得的线段长度为( ) A .6 B .7 C .8 D .97.(2021·江苏南通九年级月考)若二次函效242y kx x =--与x 轴有两个不同的交点,则k 的取值范围是( )A .2k >-B .2k >-且0k ≠C .2k <D .2k ≥-且0k ≠8.(2021·四川成都锦江区九年级期末)二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示,下列结论:①abc <0;②9a +3b +c <0;③a >3c ;④若方程ax 2+bx +c =0两个根x 1和x 2,则3<|x 1﹣x 2|<4,其中正确的结论有( )A .①②③B .①②④C .①③④D .②③④二、填空题9.(2021·武汉市九年级月考)若函数y =(k ﹣3)x 2+2x +1与x 轴有两个交点,则k 的取值范围为 ___. 10.(2021·内蒙古呼和浩特九年级月考)若函数y =(m ﹣1)x 2﹣6x 32+m 的图象与x 轴有且只有一个交点,则m 的值为____.11.(2021·山东青岛中学二模)抛物线222(1)y x k x k =-++-(k 为常数)与x 轴交点的个数是______. 12.(2021·陕西延安市九年级月考)下列表格是二次函数2y ax bx c =++()0a ≠中x ,y 的部分对应值,则一元二次方程20ax bx c ++=()0a ≠的一个近似解是______.(精确度0.1)第12题图 第14题图13.(2021·北京市人大附中九年级月考)若二次函数22y ax ax c =-+与x 轴的一个交点坐标为()3,0,则关于x 的方程220x ax c α-+=的实数根是______.14.(2021·浙江杭州市九年级月考)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,根据图象回答: (1)当y >0时,写出自变量x 的取值范围 ___;(2)若方程ax 2+bx +c ﹣k =0有两个不相等的实数根,则k 的取值范围___.三、解答题15.(2021·江苏通州九年级月考)已知二次函数()233y x k x k =-++(k 为常数).(1)求证:无论k 为何值,该函数的图象与x 轴总有公共点;(2)当k 取什么值时,该函数的图象与y 轴的交点在x 轴上方.16.(2021·天津市九年级月考)二次函数()20y ax bx c a =++≠的图象如图所示,根据图象回答下列问题 (1)方程20ax bx c ++=的两个根是______.(2)不等式20ax bx c ++<的解集是______.(3)y 随x 的增大而减小的自变量x 的取值范围是______.(4)若方程2ax bx c k ++=无实根,则k 的取值范围是______.x 6.1 6.2 6.3 6.4 y 0.3- 0.1- 0.20.417.(2021·北京五十五中九年级月考)在平面直角坐标系xOy 中,抛物线()2440y ax ax a =-+≠与y 轴交于点A .(1)求点A 的坐标和抛物线的对称轴;(2)过点()0,3B 作y 轴的垂线l ,若抛物线()2440y ax ax a =-+≠与直线l 有两个交点,设其中靠近y 轴的交点的横坐标为m ,且1m <,结合函数的图象,求a 得取值范围.18.(2020·安徽省安庆市九年级月考)已知抛物线y =(x ﹣m )2﹣(x ﹣m ),其中m 是常数.(1)求证:不论m 为何值,该抛物线与x 轴一定有两个公共点;(2)若该抛物线的对称轴为直线x =2.5.把该抛物线沿y 轴向上平移多少个单位长度后,得到的抛物线与x 轴只有一个公共点?。
《二次函数与一元二次方程》 同步练习题
1、抛物线2
283y x x =--与x 轴有 个交点,因为其判别式2
4b ac -=
0,相应二次方程
23280
x x -+=的根的情况为 .
2、 函数2
2y mx x m =+-(m 是常数)的图像与x 轴的交点个数为( )
A.0个
B.1个
C.2个 D.1个或2个
3、关于二次函数2
y ax bx c =++的图像有下列命题:①当0c =时,函数的图像经过原点;②当0c >,且函数的图像开口向下时,方程2
0ax bx c ++=必有两个不相等的实根;③函数图像最高点的纵坐标是
2
44ac b a
-;④当0b =时,函数的图像关于y 轴对称. 其中正确命题的个数是( )
A.1个
B.2个
C.3个
D.4个
4、 关于x 的方程2
5mx mx m ++=有两个相等的实数根,则相应二次函数2
5y mx mx m =++-与x 轴必然相交于
点,此时m =
.
5、 抛物线2
(21)6y x m x m =---与x 轴交于两点1(0)x ,
和2(0)x ,,若121249x x x x =++,要使抛物线经过原点,应将它向右平移
个单位.
6、关于x 的二次函数2
2(81)8y mx m x m =+++的图像与x 轴有交点,则m 的范围是( )
A.1
16
m <-
B.1
16
m -
≥且0m ≠ C.116
m =-
D.1
16
m >-
且0m ≠ 7、 若二次函数2
y ax c =+,当x 取1x 、2x (12x x ≠)时,函数值相等,则当x 取12x x +时,函数值为( )
A.a c + B.a c - C.c - D.c
8、 下列二次函数中有一个函数的图像与x 轴有两个不同的交点,这个函数是( ) A.2
y x =
B.2
4y x =+ C.2325y x x =-+
D.2
351y x x =+-
9、 函数2
y ax bx c =++的图象如图所示,那么关于x
2
)
A.有两个不相等的实数根 B.有两个异号的实数根 C.有两个相等的实数根
D.没有实数根
10、抛物线2
321y x x =-+-的图象与坐标轴交点的个数是( )
A.没有交点
B.只有一个交点 C.有且只有两个交点
D.有且只有三个交点
11、已知二次函数212y x bx c =-
++,关于x 的一元二次方程21
02
x bx c -++=的两个实 根是1-和5-,则这个二次函数的解析式为
12、 已知二次函数2
(0)y ax bx c a =++≠的顶点坐标(1 3.2)--,及部分图象(如图4所示),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别是1 1.3x =和2x = .
13、已知抛物线21()3
y x h k =--+的顶点在抛物线2
y x =上,且抛物线在x
轴上截得的线段长是h 和k 的值.
14、 已知函数2
2y x mx m =-+-.
(1)求证:不论m 为何实数,此二次函数的图像与x 轴都有两个不同交点; (2)若函数y 有最小值5
4
-,求函数表达式.
15、下图是二次函数2
y ax bx c =++的图像,与x 轴交于B ,C 两点,与y 轴交于A 点. (1)根据图像确定a ,b ,c 的符号,并说明理由;
(2)如果A 点的坐标为(03)-,,45ABC ∠=
,60ACB ∠=
16、 已知抛物线22
2m y x mx =-+与抛物线22
34
m y x mx =+-在直角坐标系中的位置如图所示,其中一条
与x 轴交于A ,B 两点.
(1)试判断哪条抛物线经过A ,B 两点,并说明理由; (2)若A ,B 两点到原点的距离AO ,OB 满足条件112
3
OB OA -=,求经过A ,B 两点的这条抛物线的函数式.
17、 已知二次函数2
2
24y x mx m =-+.
(1)求证:当0m ≠时,二次函数的图像与x 轴有两个不同交点;
(2)若这个函数的图像与x 轴交点为A ,B ,顶点为C ,且△ABC
的面积为表达式.
18
如图所示,函数2
(2)(5)y k x k =-+-的图像与x 轴只有一个交点,则交点的横坐标0x =
.
19、 已知抛物线2
y ax bx c =++与y 轴交于C 点,与x 轴交于1(0)A x ,
,212(0)()B x x x <,两点,顶点M 的纵坐标为4-,若1x ,2x 是方程2
2
2(1)70x m x m --+-=的两根,且2
2
1210x x +=.
(1)求A ,B 两点坐标; (2)求抛物线表达式及点C 坐标;
(3)在抛物线上是否存在着点P ,使△PAB 面积等于四边形ACMB 面积的2倍,若存在,求出P 点坐标;若不存在,请说明理由.
20、如图是二次函数2
246y x x =--的图像,那么方程2
2460x x --=的两根之和 0.
21、一元二次方程2
0ax bx c ++=的两根为1x ,2x ,且214x x +=,点(38)A -,在抛物线2y ax bx c
=++上,求点A 关于抛物线的对称轴对称的点的坐标.。