2013年10月全国自考概率论与数理统计真题
- 格式:doc
- 大小:297.00 KB
- 文档页数:4
2007年4月份全国自考概率论与数理统计(经管类)真题参考答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.A. AB. BC. CD. D答案:B解析:A,B互为对立事件,且P(A)>0,P(B)>0,则P(AB)=0P(A∪B)=1,P(A)=1-P(B),P(AB)=1-P(AB)=1.2.设A,B为两个随机事件,且P(A)>0,则P(A∪B|A)=()A. P(AB)B. P(A)C. P(B)D. 1答案:D解析:A,B为两个随机事件,且P(A)>0,P(A∪B|A)表示在A发生的条件下,A或B发生的概率,因为A发生,则必有A∪B发生,故P(A∪B|A)=1.3.下列各函数可作为随机变量分布函数的是()A. AB. BC. CD. D答案:B解析:分布函数须满足如下性质:(1)F(+∞)=1,F(-∞)=0,(2)F(x)右连续,(3)F(x)是不减函数,(4)0≤F(x)≤1.而题中F1(+∞)=0;F3(-∞)=-1;F4(+∞)=2.因此选项A、C、D中F(x)都不是随机变量的分布函数,由排除法知B正确,事实上B满足随机变量分布函数的所有性质.4.设随机变量X的概率密度为A. AB. BC. CD. D答案:A5.设二维随机变量(X,Y)的分布律为(如下图)则P{X+Y=0}=()A. 0.2B. 0.3C. 0.5D. 0.7答案:C解析:因为X可取0,1,Y可取-1,0,1,故P{X+Y=0}=P{X=0,Y=0}+P{X=1,Y=-1}=0.3+0.2=0.5.6.设二维随机变量(X,Y)的概率密度为A. AB. BC. CD. D答案:A7.设随机变量X服从参数为2的泊松分布,则下列结论中正确的是()A. E(X)=0.5,D(X)=0.5B. E(X)=0.5,D(X)=0.25C. E(X)=2,D(X)=4D. E(X)=2,D(X)=2答案:D解析:X~P(2),故E(X)=2,D(X)=2.8.设随机变量X与Y相互独立,且X~N(1,4),Y~N(0,1),令Z=X-Y,则D(Z)=()A. 1B. 3C. 5D. 6答案:C解析:X~N(1,4),Y~N(0,1),X与Y相互独立,故D(Z)=D(X-Y)=D(X)+D(Y)=4+1=5.9.A. 0.004B. 0.04C. 0.4D. 4答案:C10.A. AB. BC. CD. D答案:B二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
全国2013年10月高等教育自学考试04183LSA .B 是枉》两个f®机班件,则FCAU S )为&设随机变fi X »从参数为4的泊松分布/!1下列姑论中正《的是 A T FCX> = O.S.£>(X) =0. 5 B.蓟X) =0.5.D<X)=0. 2& CE<X)=2<DCX) = 1D.£(X)^1*DCX)=4人设a 机变* X 与 Y 相互趣立>R X-B<36,y 5.则 OCX — Y+12C.9D,10、单项选择题(本大题共 10小题,每小题2分,共20分)d 玖A) +rtB>-F<AB)PCA>+PCBJ-PUa)G, PGA)十- HMB)D. FCA)+ P<B)乱已気随机?^件仏B 満足PtA) -C.3t P(B) =0.5T HA/m. 15*则B. PUMQ M HJOn. P 3|A S> = FWK. P(3|AB>=P(J3>3.做下函®中能成为挟髓机变■分布函数的是(Z T X O I 扎F (云)=■{5 X < 0-0, J < 0.C. F (工)fl - if"",D» FCr) =40,工vm氐设^ELS«tX~NWJhXW#ft 函数为况£ .则PCI X\>2y 的值対B. sets —1C. 2—血(打D. 1 一 2e(2)£ •设二维®机变的分布律与边绦分布律为E 设隧机变盘X 的Ed) = 80001 Pi7&00 < X<fi3OO}的值为 A. 0. 04 a. 0, £0 UA )=1OT,利用切KS 夫不零式tt 计 C. 0. S6 D. 1. 00则扎 ^=0.1SC. <:™ 0.叽 M=a 14久设CX|.Xj,-^.XJ是来自总休X~N33》的一亍样本.X足样木均値•那么C.10. S信度(1 一C表达了暨信邕冏的A.播册性圧箭确度 C.显善性 D.可黨®二、填空题(本大题共15小题,每小题2分,共30分)It «肘手射击的命中舉为a 6■在4次射击扌有且仪有3狀命审的柢率広设人与5是闊个郴互观立随机車件・P<A) =0.2 . PCB)-Q. 7S'J尸(A — B)=口・设A T H是网个剧机爭件’若卩〔人)=0•趴卩(A-B) -a氣则p(a|4)三M.SffiW变ffiX W分布律抑尸CX=k)二畀口4 = 1*2・3) *則a卩严心0,15.谊X的概華密度几为IE参® 0 *vo .^P{X < 11=^0. SPljPtX < 2}=lb设Wft变*X的分布律为IX-2 -1 0 10U 0.2 0.4 0. 1忆设/<Xry>为二维陆机变* CCY)的««函数.则匸匸和jCtyldzdy le.二堆随机变》(x,y》的分布律为则P{-Z<X< 1}=则rfxY =2}=19已知®机證*兀的分布律为X—21CP1 2 1 -4 4 4已a E (;O = l 侧常載C=巴知 E(X)=-l,t)(X)-3,KiJ EQW —2)= 2L —亍二项分布的re 机变ft ”其載学期龟与方蟹之比为W 阳刑该分布的参®22,设总体XJK 从iE 态分布N 〔宀屮〉・X, 刿圧样本・则參数^1^的笔估计值23■设制造某种炉件产品所需工时(璋位訂卜时》服从正蕊分布,为了估计M 造这沖产品所需的单件平均工时.现制造4件,记录每件所帚工时如下* L0.54ML,2若确定置蓿度为0+曹5•则平均工时的淹信国间为C fi,«C5) =2* 3534* (1011(3)工 3. 1624) 24.设总从正毎分布"3, m …“皿 为K 样本.卞輕%已知,丘倉样乘均1S-SW 于服设检腔冋膻H 才尸二丹,Hp 严护H.应薜用的统计®悬 麵已知一元性回归方程为yi +恳上・耳亍=氛y=9・WR L三、计算题(本大题共2小题,每小题8分,共16分)2札对同一目标进行三ft 独立射击,第一欢、第二》:•第三次射击的命中畢分别为0"、 ①5.0.7,衆在这三RBt 击中•恰好有一次击中目标的ft 耶.2匚设髓亂变竄X 在】.2▼氛4四个誥ft 中第可能的取ffi,另一随机变■ Y 在 g X 中 爭可ft 的耽值,试求x-y 的分布律,四、综合题(本大题共2小题,每小题12分,共24分)K<0* 0< j< 1,J m*起、2.试求dD 系数片I(2>X 的《率《度(⑶ p{xXMy .2缶设连aSK 机变* X 的分布函»为尸5)-彳0, AxS A J C羽•设甲・乙两射手.他们的射击技术分别如ffi 貂佔)表.題2900表所示•其中% , Y 分别 «示甲”乙肘手射击耳数的分茹悄况1X8 9 10 Y89 】0 P0.40.20*4P :0. 10.S5 1题295〉表fiS 29(b)表现耍从中选拔一名射手去奮加比奏,试讨邈选派哪位肘手鑫赛比敦合理?五、应用题(10分)30.某《居民日tt 入®从正®幷布,现ffi 机鞠査该K 姑位居民'得知他们的平均收人 i«66. 4元*标准差$ = 15元卜试问I<1: a = 0. 05下*是否可W 认为该镇居毘日平均收人为70 3c? (23ff a = 0,OSTi 是否耶氏认为该镇居民日收入的方签为16’?^fl.MsC24) = Z, 064 ,&耐(24)* 1, 7109*%咄* = 1* 96 * 划,=】* 65 述剛住4〉=39. 4,£M24〉=36. 4述刖二24〉= 12.4,x5.ii<24)=13, 84S金国201:?年・1月高竽教存口学莆试 概率论与数理统计(经管类)试题一、《念选摄题C 本尢H 其山小騒.毎小題2分,冀加分) 在毎小《列出的四个备a 项中只有一个堆符合Hl 目豪求的r 谓将其选出并郸“菩a 壤*的相应代码涤«・»途・茅涤或未滾均无分.L 耶,乙两人向剧一a 标射击* /董示-甲脂中a 極".fl 我示“乙饰中0标”,C* 示-ft 中a 标二wc-A. JB. BC. AB2*设为fifi 机■fb 尺舟・射,2)・0乳则尺4R)-A. 0JB. 02C. OJD ・0.43. ttffi 机$*rfn 分布瞒数为尺Q. W?i(i<rcfr)=A* 恥一0) — 卜'(—0)B, F9-0)-F(G C,尸O)-FGa-O)D.柯)-尸何血设二罐融杭变》CV ■门的分布律为X0 1 2 0 00J *2 10L 403B, 0-1G 0.2W^(v-o>A. 0绝空★考试结東前全国2013年4月高等教育口学考试概率论与数理统计(经管类)试题课程代码:»41«3a 考生按规定用«将所冇试a 的答«涂■写在笞a 維上。
全国2013年1月自考概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
解:本题考查的是和事件的概率公式,答案为C.解:()()(|)1()()P B AB P AB P B AB P AB P AB ⋂===()()()0.50.15(|)0.5()()1()0.7P BA P B P AB P B A P B P A P A --=====- ()()0.15(|)0.3()()()0.5P B AB P AB P AB B P A P B P B ⋂=====()()(|)1()()P A AB P AB P A AB P AB P AB ⋂===故选B.解:本题考查的是分布函数的性质。
由()1F +∞=可知,A 、B 不能作为分布函数。
再由分布函数的单调不减性,可知D 不是分布函数。
所以答案为C 。
解:{||2}{2}{2}1{2}{2}1(2)(2)1(2)1(2)22(2)P X P X P X P X P X >=>+<-=-≤+<-=-Φ+Φ-=-Φ+-Φ=-Φ 故选A 。
解:因为(2)0.20.16P Y c ===+,所以0.04c =又(2)10.80.20.02P X c d ==-==++,所以10.020.040d =--= 故选D 。
解:若~()X P λ,则()()E X D X λ==,故 D 。
解:由方差的性质和二项分布的期望和方差:1512(1)()()3695276633D X Y D X D Y -+=+=⨯⨯+⨯⨯=+=选A 。
解:由切比雪夫不等式2(){|()|}1D X P X E X εε-<>-,可得21600{78008200}{|8000|200}10.96200P X P X <<=-<>-= 选C 。
概率论自考试题及答案一、选择题(每题2分,共10分)1. 随机变量X服从标准正态分布,那么P(X > 1)等于:A. 0.1587B. 0.8413C. 0.1587D. 0.8413答案:B2. 设随机变量X服从二项分布B(n, p),其中n=10,p=0.5,则E(X)等于:A. 5B. 10C. 2D. 1答案:A3. 假设随机变量Y服从泊松分布,其参数λ=3,则P(Y=2)等于:A. 0.3B. 0.6C. 0.9D. 0.4答案:A4. 如果随机变量Z服从均匀分布U(0,1),那么P(0.5 < Z < 0.7)等于:A. 0.2B. 0.1C. 0.3D. 0.5答案:A5. 设随机变量X服从正态分布N(μ, σ^2),其中μ=2,σ^2=1,则P(X > 3)等于:A. 0.1587B. 0.8413C. 0.4772D. 0.6826答案:A二、填空题(每题3分,共15分)1. 随机变量X服从指数分布,其概率密度函数为f(x)=λe^(-λx),其中x≥0。
若已知P(X > 1)=0.5,则λ等于______。
答案:0.52. 设随机变量X服从二项分布B(3, 0.2),则P(X=2)等于______。
答案:0.0963. 随机变量Y服从泊松分布,其参数λ=4,则P(Y=3)等于______。
答案:0.34. 设随机变量Z服从正态分布N(0, 1),若P(Z > 1.96)=0.025,则P(Z < -1.96)等于______。
答案:0.0255. 已知随机变量X服从均匀分布U(a, b),若P(X > 2)=0.2,则a等于______。
答案:1三、解答题(每题10分,共20分)1. 已知随机变量X服从正态分布N(μ, σ^2),其中μ=0,σ^2=4。
求P(-2 < X < 2)。
答案:P(-2 < X < 2) = P((X-0)/2 < 1) = P(Z < 1) - P(Z < -1) =0.8413 - 0.1587 = 0.68262. 设随机变量Y服从二项分布B(5, 0.3),求P(Y=3)。
年10⽉全国⾃考概率论与数理统计真题全国2012年10⽉⾼等教育⾃学考试《概率论与数理统计》(经管类)真题课程代码:04183请考⽣按规定⽤笔将所有试题的答案涂、写在答题纸上。
选择题部分注意事项:1. 答题前,考⽣务必将⾃⼰的考试课程名称、姓名、准考证号⽤⿊⾊字迹的签字笔或钢笔填写在答题纸规定的位置上。
2. 每⼩题选出答案后,⽤2B 铅笔把答题纸上对应题⽬的答案标号涂⿊。
如需改动,⽤橡⽪擦⼲净后,再选涂其他答案标号。
不能答在试题卷上。
⼀、单项选择题(本⼤题共10⼩题,每⼩题2分,共20分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其选出并将“答题纸”的相应代码涂⿊。
错涂、多涂或未涂均⽆分。
1.已知事件A ,B ,A ∪B 的概率分别为0.5,0.4,0.6,则P (A )= A.0.1 B.0.2 C.0.3 D.0.52.设F(x)为随机变量X 的分布函数,则有 A.F (-∞)=0,F (+∞)=0 B.F (-∞)=1,F (+∞)=0 C.F (-∞)=0,F (+∞)=1 D.F (-∞)=1,F (+∞)=13.设⼆维随机变量(X ,Y )服从区域D :x 2+y 2≤1上的均匀分布,则(X ,Y )的概率密度为 A.f(x ,y)=1B. 1(,)0,x y D f x y ∈?=?,(,),其他C.f(x ,y)=1πD. 1(,)0,x y D f x y π?∈?=,(,),其他4.设随机变量X 服从参数为2的指数分布,则E (2X -1)=A.0B.1C.3D.4 5.设⼆维随机变量(X ,Y )的分布律则D (3X )= A.29B.2C.46.设X 1,X 2,…,X n …为相互独⽴同分布的随机变量序列,且E (X 1)=0,D (X 1)=1,则1lim 0n i n i P X →∞=??≤=∑A.0B.0.25C.0.5D.17.设x 1,x 2,…,x n 为来⾃总体N (µ,σ2)的样本,µ,σ2是未知参数,则下列样本函数为统计量的是 A.1ni i x µ=-∑B.211nii x σ=∑C. 211()ni i x n µ=-∑D. 211n i i x n =∑8.对总体参数进⾏区间估计,则下列结论正确的是 A.置信度越⼤,置信区间越长 B.置信度越⼤,置信区间越短 C.置信度越⼩,置信区间越长 D.置信度⼤⼩与置信区间长度⽆关 9.在假设检验中,H 0为原假设,H 1为备择假设,则第⼀类错误是 A. H 1成⽴,拒绝H 0 B.H 0成⽴,拒绝H 0 C.H 1成⽴,拒绝H 1 D.H 0成⽴,拒绝H 110.设⼀元线性回归模型:201(1,2,),~(0,)i i i i y x i n N ββεεσ=++=…,且各相互独⽴.依据样本(,)(1,2,,)i i x y i n =…得到⼀元线性回归⽅程01y x ββ=+,由此得对应的回归值为,的平均值11(0)ni i y y y n ==≠∑,则回归平⽅和为A .21(-)ii y y =∑ B .21?(-)niii y y=∑C .21(-)nii yy =∑ D .21nii y=∑⾮选择题部分注意事项:⽤⿊⾊字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
全国2013年1月高等教育自学考试概率论与数理统计(经管类)试题一、单项选择题(本大题共10小题,每小题2分,共20分)二、填空题(本大题共15小题,每小题2分,共30分)三、计算题(本大题共2小题,每小题8分,共16分)四、综合题(本大题共2小题,每小题12分,共24分)五、应用题(10分)全国2013年1月高等教育自学考试 概率论与数理统计(经管类)答案1、本题考查的是和事件的概率公式,答案为C.2、解:()()(|)1()()P B AB P AB P B AB P AB P AB ⋂===()()()0.50.15(|)0.5()()1()0.7P BA P B P AB P B A P B P A P A --=====- ()()0.15(|)0.3()()()0.5P B AB P AB P AB B P A P B P B ⋂=====()()(|)1()()P A AB P AB P A AB P AB P AB ⋂=== ,故选B.3、解:本题考查的是分布函数的性质。
由()1F +∞=可知,A 、B 不能作为分布函数。
再由分布函数的单调不减性,可知D 不是分布函数。
所以答案为C 。
4、解:选A 。
{||2}{2}{2}1{2}{2}1(2)(2)1(2)1(2)22(2)P X P X P X P X P X >=>+<-=-≤+<-=-Φ+Φ-=-Φ+-Φ=-Φ 5、解:因为(2)0.20.16P Y c ===+,所以0.04c =又(2)10.80.20.02P X c d ==-==++,所以10.020.040.14d =--= ,故选D 。
6、解:若~()X P λ,则()()E X D X λ==,故 D 。
7、解:由方差的性质和二项分布的期望和方差:1512(1)()()3695276633D X Y D X D Y -+=+=⨯⨯+⨯⨯=+= ,选A8、解:由切比雪夫不等式2(){|()|}1D X P X E X εε-<>-,可得21600{78008200}{|8000|200}10.96200P X P X <<=-<>-= ,选C 。
高等教育自学考试概率论与数理统计经管类真题2013年10月(总分:100.00,做题时间:150分钟)一、课程代码:04183 (总题数:10,分数:20.00)(分数:2.00)A.B.C.D. √解析:(分数:2.00)A.B.C.D. √解析:(分数:2.00)A. √B.C.D.解析:(分数:2.00)A. √B.C.D.解析:(分数:2.00)A.B. √C.D.解析:(分数:2.00)A.B. √C.D.解析:(分数:2.00)A. √B.C.D.解析:(分数:2.00)A.B.C. √D.解析:(分数:2.00)A.B. √C.D.解析:(分数:2.00)A.B.C. √D.解析:二、非选择题部分 (总题数:15,分数:30.00)(分数:2.00)填空项1:__________________ (正确答案:0.4)解析:(分数:2.00)填空项1:__________________ (正确答案:0.56)解析:(分数:2.00)填空项1:__________________解析:(分数:2.00)填空项1:__________________解析:(分数:2.00)填空项1:__________________ (正确答案:1)解析:(分数:2.00)填空项1:__________________解析:(分数:2.00)填空项1:__________________ (正确答案:1)解析:(分数:2.00)填空项1:__________________ (正确答案:6)解析:(分数:2.00)填空项1:__________________解析:(分数:2.00)填空项1:__________________ (正确答案:0.5)解析:(分数:2.00)填空项1:__________________解析:(分数:2.00)填空项1:__________________解析:(分数:2.00)填空项1:__________________解析:(分数:2.00)填空项1:__________________解析:(分数:2.00)填空项1:__________________解析:三、计算题(本大题共2小题,每小题8分,共16分)(总题数:2,分数:16.00)(分数:8.00)__________________________________________________________________________________________正确答案: )解析:(分数:8.00)__________________________________________________________________________________________正确答案:()解析:四、综合题(本大题共2小题,每小题12分,共24分)(总题数:2,分数:24.00)(分数:12.00)__________________________________________________________________________________________正确答案:)解析:(分数:12.00)__________________________________________________________________________________________正确答案:)解析:五、应用题(10分)(总题数:1,分数:10.00)(分数:10.00)__________________________________________________________________________________________正确答案:)解析:。
绝密 ★ 考试结束前全国2013年10月高等教育自学考试概率论与数理统计(经管类)试题课程代码:04183请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分注意事项:1. 答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2. 每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.设A,B 为随机事件,则事件“A ,B 至少有一个发生”可表示为 A.AB B.AB C.A B UD.A B U2.设随机变量2~(,)X N μσ,Φ()x 为标准正态分布函数,则{}P X x >= A.Φ(x )B.1-Φ(x )C.Φx μσ-⎛⎫ ⎪⎝⎭D.1-Φx μσ-⎛⎫ ⎪⎝⎭3.设二维随机变量221212(,)~(,,,,)X Y N μμσσρ,则X ~ A.211(,)N μσ B.221()N μσ C.212(,)N μσD.222(,)N μσ4.设二维随机变量(X ,Y )的分布律为Y0 1且{1|0}0.5P Y X ===,则 A. a =0.2, b =0.4 B. a =0.4, b =0.2 C. a =0.1, b =0.5D. a =0.5, b =0.15.设随机变量~(,)X B n p ,且()E X =2.4,()D X =1.44,则 A. n =4, p =0.6 B. n =6, p =0.4 C. n =8, p =0.3D. n =24, p =0.16.设随机变量2~(,)X N μσ,Y 服从参数为(0)λλ>的指数分布,则下列结论中不正确...的是 A.1()E X Y μλ+= B.221()D X Y σλ+=+C.1(),()E X E Y μλ==D.221(),()D X D Y σλ==7.设总体X 服从[0,θ]上的均匀分布(参数θ未知),12,,,n x x x L 为来自X 的样本,则下列随机变量中是统计量的为 A. 11ni i x n =∑B. 11ni i x n θ=-∑C. 11()ni i x E X n =-∑D. 2111()n i x D X n =-∑8.设12,,,n x x x L 是来自正态总体2(,)N μσ的样本,其中μ未知,x 为样本均值,则2σ的无偏估计量为 A. 11()1ni i x n μ=--∑2 B. 11()ni i x n μ=-∑2C. 11()1ni i x x n =--∑ 2 D.11()ni i x x n =-∑ 29.设H 0为假设检验的原假设,则显著性水平α等于 A.P {接受H 0|H 0不成立} B. P {拒绝H 0|H 0成立} C. P {拒绝H 0|H 0不成立}D. P {接受H 0|H 0成立}10.设总体2~(,)X N μσ,其中2σ未知,12,,,n x x x L 为来自X 的样本,x 为样本均值,s 为样本标准差.在显著性水平α下检验假设0010:,:H H μμμμ=≠.令0/x t s n=A. 2||(1)a t t n <-B.2||()a t t n <C. 2||(1)a t t n >-D.2||()a t t n >X0 a 0.2 1 0.2 b非选择题部分注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
第一章自测(每一个题都要写清楚过程,填空选择推导过程或者用到的公式写在题目旁边)1.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误..的是( ) A.P (A )=1-P (B ) B.P (AB )=P (A )P (B ) C.P 1)(=ABD.P (A ∪B )=12.设A ,B 为两个随机事件,且P (A )>0,则P (A ∪B |A )=( ) A.P (AB )B.P (A )C.P (B )D.13.从标号为1,2,…,101的101个灯泡中任取一个,则取得标号为偶数的灯泡的概率为( ) A .10150 B .10151 C .10050 D .10051 4.设事件A 、B 满足P (A B )=0.2,P (B )=0.6,则P (AB )=( )A .0.12B .0.4C .0.6D .0.8 5.设随机变量X~N (1,4),Y=2X+1,则Y 所服从的分布为( ) A .N (3,4) B .N (3,8) C .N (3,16) D .N (3,17)6.设每次试验成功的概率为p(0<p<1),则在3次独立重复试验中至少成功一次的概率为( )A .1-(1-p )3B .p(1-p)2C .213)1(p p C -D .p+p 2+P 37.设A 与B 互为对立事件,且P (A )>0,P (B )>0,下列各式中错误..的是( ) A .0)|(=B A PB .P (B |A )=0C .P (AB )=0D .P (A ∪B )=18.设A ,B 为两个随机事件,且P (AB )>0,则P (A|AB )=( ) A .P (A ) B .P (AB ) C .P (A|B ) D .19.设事件A 与B 相互独立,且P(A)>0,P(B)>0,则下列等式成立的是( ) A.AB=φ B.P(A B )=P(A)P(B ) C.P(B)=1-P(A)D.P(B |A )=010.设A 、B 、C 为三事件,则事件=C B A ( ) A.A C BB.A B CC.( A B )CD.( A B )C11.一批产品共10件,其中有2件次品,从这批产品中任取3件,则取出的3件中恰有一 件次品的概率为( ) A .601 B .457C .51 D .157 12.设随机事件A 与B 互不相容,P (A )=0.2,P(B)=0.4,则P (B|A )=( )A .0B .0.2C .0.4D .1 13.设事件A ,B 互不相容,已知P (A )=0.4,P(B)=0.5,则P(A B )=( ) A .0.1 B .0.4 C .0.9 D .114.已知事件A ,B 相互独立,且P (A )>0,P(B)>0,则下列等式成立的是( )A .P(A B)=P(A)+P(B)B .P(A B)=1-P(A )P(B )C .P(A B)=P(A)P(B)D .P(A B)=115.某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为( )A .0.002B .0.04C .0.08D .0.10416.设A 为随机事件,则下列命题中错误..的是( ) A .A 与A 互为对立事件 B .A 与A 互不相容 C .Ω=⋃A AD .A A =17.设A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,则=)(B A P ( ) A .0.2 B .0.4C .0.6D .0.818.同时抛掷3枚均匀的硬币,则恰好三枚均为正面朝上的概率为( ) A.0.125 B.0.25 C.0.375 D.0.5 19.设A 、B 为任意两个事件,则有( ) A.(A ∪B )-B=A B.(A-B)∪B=A C.(A ∪B)-B ⊂A D.(A-B)∪B ⊂A20.某人射击三次,其命中率为0.7,则三次中至多击中一次的概率为( ) A.0.027 B.0.081 C.0.189 D.0.216 21.设A ,B 为两个互不相容事件,则下列各式错误..的是( ) A .P (AB )=0B .P (A ∪B )=P (A )+P (B )C .P (AB )=P (A )P (B )D .P (B-A )=P (B )22.设事件A ,B 相互独立,且P (A )=31,P (B )>0,则P (A|B )=( )A .151 B .51 C .154 D .31 23.设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有( ) A .P (AB )=lB .P (A )=1-P (B )C .P (AB )=P (A )P (B )D .P (A ∪B )=124.设A 、B 相互独立,且P (A )>0,P (B )>0,则下列等式成立的是( ) A .P (AB )=0B .P (A -B )=P (A )P (B )C .P (A )+P (B )=1D .P (A |B )=025.同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( ) A .0.125 B .0.25 C .0.375 D .0.5026.设在三次独立重复试验中,事件A 出现的概率都相等,若已知A 至少出现一次的概率为19/27,则事件A 在一次试验中出现的概率为( ) A .61 B .41 C .31 D .2127.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅 第一次射击命中目标”,则B =( ) A .A 1A 2 B .21A C .21A AD .21A A28.某人每次射击命中目标的概率为p (0<p <1),他向目标连续射击,则第一次未中第二次命中的概率为( ) A .p 2 B .(1-p )2 C .1-2p D .p (1-p )29.已知P (A )=0.4,P (B )=0.5,且A ⊂B ,则P (A |B )=( ) A .0 B .0.4 C .0.8 D .130.一批产品中有5%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为( ) A .0.20 B .0.30 C .0.38 D .0.57 31.若A 与B 互为对立事件,则下式成立的是( ) A.P (A ⋃B )=Ω B.P (AB )=P (A )P (B ) C.P (A )=1-P (B )D.P (AB )=φ32.将一枚均匀的硬币抛掷三次,恰有一次出现正面的概率为( )A.81B.41C.83 D.21 33.设A ,B 为两事件,已知P (A )=31,P (A|B )=32,53)A |B (P =,则P (B )=( )A. 51B.52 C.53 D. 54 34.设A 与B 是任意两个互不相容事件,则下列结论中正确的是( ) A .P (A )=1-P (B ) B .P (A -B )=P (B ) C .P (AB )=P (A )P (B )D .P (A -B )=P (A )35.设A ,B 为两个随机事件,且0)(,>⊂B P A B ,则P (A |B )=( ) A .1 B .P (A )C .P (B )D .P (AB )35.设A 、B 为两事件,已知P (B )=21,P (B A )=32,若事件A ,B 相互独立,则P (A )=( ) A .91 B .61 C .31 D .2136.对于事件A ,B ,下列命题正确的是( ) A .如果A ,B 互不相容,则B ,A 也互不相容 B .如果B A ⊂,则B A ⊂ C .如果B A ⊃,则B A ⊃D .如果A ,B 对立,则B ,A 也对立37.每次试验成功率为p (0<p <1),则在3次重复试验中至少失败一次的概率为( ) A .(1-p )3 B .1-p 3 C .3(1-p ) D .(1-p )3+p (1-p )2+p 2(1-p )38.设事件A ,B 相互独立,且P (A )=0.2,P (B )=0.4,则P (A ∪B )=___________。
概率论与数理统计自考题型一、选择题(每题3分,共30分)1. 设随机变量X服从正态分布N(μ,σ²),则P(X ≤ μ)等于()A. 0B. 0.5C. 1D. 取决于μ和σ的值。
答案:B。
解析:正态分布的图像关于x = μ对称,所以P(X ≤ μ) = 0.5。
2. 若事件A与B相互独立,P(A) = 0.4,P(B) = 0.5,则P(A∪B)等于()A. 0.7B. 0.8C. 0.6D. 0.9。
答案:A。
解析:因为A与B相互独立,所以P(A∪B)=P(A)+P(B)-P(A)P(B)=0.4 + 0.5 - 0.4×0.5 = 0.7。
3. 设离散型随机变量X的分布律为P(X = k)=ck,k = 1,2,3,则c的值为()A. 1/6B. 1/3C. 1/2D. 2/3。
答案:A。
解析:根据离散型随机变量分布律的性质,所有概率之和为1,即c+2c+3c = 1,解得c = 1/6。
4. 对于二维随机变量(X,Y),如果X与Y相互独立,则()A. Cov(X,Y) = 0B. D(X + Y)=D(X)+D(Y)C. 以上两者都对D. 以上两者都不对。
答案:C。
解析:当X与Y相互独立时,Cov(X,Y) = 0,且D(X + Y)=D(X)+D(Y)。
5. 设总体X服从参数为λ的泊松分布,X₁,X₂,…,Xₙ是来自总体X的样本,则λ的矩估计量为()A. XB. 1/XC. X²D. 1/X²。
答案:A。
解析:根据泊松分布的期望为λ,由矩估计法,用样本均值X估计总体的期望λ。
6. 样本方差S²是总体方差σ²的()A. 无偏估计B. 有偏估计C. 极大似然估计D. 矩估计。
答案:A。
解析:样本方差S²是总体方差σ²的无偏估计。
7. 设总体X~N(μ,σ²),其中μ未知,σ²已知,X₁,X₂,…,Xₙ是来自总体X的样本,则μ的置信区间为()A. (X - zα/2(σ/√n),X + zα/2(σ/√n))B. (X - tα/2(s/√n),X + tα/2(s/√n))C. (X - zα/2(s/√n),X + zα/2(s/√n))D. (X - tα/2(σ/√n),X + tα/2(σ/√n))。
由于试题为两套,所以两套都分享了,都是同道中人,请大家勿自己知道就行,别到处公布。
部分答案由于操作原因,木有啊,需要自己做了绝密★考试结束前全国2013年10月高等教育自学考试高等数学(一)试题 课程代码:00020请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分注意事项:1.答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题 纸”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.设函数()21f x x x +=+,贝f(x)= A. x (x+1) B .x (x-1)C. (x+1) (x-2)D .(x-1) (x+2)2.若x →0时函数f (x )为x 2的高阶无穷小量,则2()lim x f x x →= A .0 B .12 C .1D .∞3.设函数()()2931f x x x x =++,则高阶导数()(12)f x = A .12! B .11! C .10!D .04.曲线23xy x =+ A .仅有铅直渐近线B .仅有水平渐近线C .既有水平渐近线又有铅直渐近线D .无渐近线5.设函数f (x )连续,()()d a xx tf t t Φ=⎰,则()x 'Φ=A . x f (x )B .a f (x )C .-x f (x )D .-a f (x )非选择题部分注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
二、填空题(本大题共10小题,每小题3分,共30分) 6.设函数()21lg 7x f x -=,则f(x)的定义域为____x>1/2______. 7.极限()212lim l 2x x x→-=______E-2___.8.某商品需求量Q 与价格P 的函数关系为Q =150-2P 2,则P =6时的边际需求为__________. 9.函数()2f x x =在区间[0,1]上满足拉格朗日中值定理的中值ξ=__________.10.函数()43413f x x x =-+在区间[-1,1]上的最小值为__________.11.极限0sin lim(1)ln(1)x xx x →=++__________. 12.定积分11cos d x x x -=⎰__________.13.微分方程xy y '=的通解为__________. 14.若()3d 3e xf x x C =+⎰,则f(x)=__________. 15.设函数z=()e sin y x y -,则zy∂∂=__________. 三、计算题(一)(本大题共5小题,每小题5分,共25分) 16.讨论函数31e cos2,0()(13),x x x f x x x ⎧≥⎪-⎨⎪+<⎩在x =0处的连续性.17.设函数arcsin e x y =,求d y . 18.求不定积分-2e d x x x ⎰.19.设函数21,01()1,0x x f x x x ⎧≥⎪+=⎨⎪+<⎩,计算定积分11()d f x x -I =⎰.20.计算二重积分d d Dx x y I =⎰⎰,其中区域D 由曲线21y y x x==,及直线x =2围成.四、计算题(二)(本大题共3小题,每小题7分,共21分) 21.设函数2011d lnarctan ,12d x x yy x x x=+=--求.22.求曲线2e x y x =的凹凸区间及拐点.23.计算定积分1202d 1x x xI =-⎰.五、应用题(本题9分)24.设某企业生产一定量的某产品时可用两种原料,第一种为x (千吨),第二种为y (千吨),其电能消耗量N (万度)与两种原料使用量的关系为222246105N x xy y x y =++--+问如何使用两种原料方可使电能消耗达到最低,并求此时的最低能耗. 六、证明题(本题5分)25.证明当x>0时,3arctan x-3x x >.绝密 ★ 考试结束前全国2013年10月高等教育自学考试高等数学(一)试题课程代码:00020试卷总体分析:第一章 第二章 第三章 第四章 第五章 第六章 合计一、单项选择题(2*5) 22 2 2 2 0 10 二、填空题(3*10)3 3 6 6 9 3 30 三、计算题(一)(5*5) 0 5 5 0 10 5 25 四、计算题(二)(7*3) 0 0 7 7 7 0 21 五、应用题(9*1) 0 0 0 0 0 9 9 六、证明题(5*1)0 0 05 0 0 5试卷详解:请考生按规定用笔将所有试题的答案涂、写在答题纸上。
Ⅱ、综合测试题概率论与数理统计(经管类)综合试题一(课程代码 4183)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.下列选项正确的是 ( B ).A. A B A B +=+B.()A B B A B +-=-C. (A -B )+B =AD. AB AB = 2.设()0,()0P A P B >>,则下列各式中正确的是( D ).A.P (A -B )=P (A )-P (B )B.P (AB )=P (A )P (B )C. P (A +B )=P (A )+P (B )D. P (A +B )=P (A )+P (B )-P (AB )3.同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是 ( D ). A.18 B. 16 C. 14 D. 124.一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1,2,3,4,5顺序的概率为 ( B ).A.1120 B. 160C. 15D. 12 5.设随机事件A ,B 满足B A ⊂,则下列选项正确的是 ( A ).A.()()()P A B P A P B -=-B. ()()P A B P B +=C.(|)()P B A P B =D.()()P AB P A =6.设随机变量X 的概率密度函数为f (x ),则f (x )一定满足( C ). A. 0()1f x ≤≤ B. f (x )连续C.()1f x dx +∞-∞=⎰D. ()1f +∞=7.设离散型随机变量X 的分布律为(),1,2,...2kbP X k k ===,且0b >,则参数b的值为( D ).A.12 B. 13 C. 15D. 1 8.设随机变量X , Y 都服从[0, 1]上的均匀分布,则()E X Y += ( A ). A.1 B.2 C.1.5 D.09.设总体X 服从正态分布,21,()2EX E X =-=,1210,,...,X X X 为样本,则样本均值101110ii X X ==∑~( D ).A.(1,1)N -B.(10,1)NC.(10,2)N -D.1(1,)10N - 10.设总体2123(,),(,,)X N X X X μσ:是来自X 的样本,又12311ˆ42X aX X μ=++ 是参数μ的无偏估计,则a = ( B ).A. 1B.14 C. 12 D. 13二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
概率论与数理统计自考(习题卷4)第1部分:单项选择题,共38题,每题只有一个正确答案,多选或少选均不得分。
1.[单选题]已知随机变量X只能取值-1,0,1,2,其相应的概率依次为,则P{X<1|X≠0}=( )。
A)4/25B)8/25C)12/25D)16/25答案:B解析:① 求c:,解得,得X的分布律2.[单选题]设随机变量X服从参数为2的指数分布, 随机变量Y =2X+2, 则E(Y)=A)0.5B)1C)2D)3答案:D解析:本题考察指数分布的数字特征及随机变量函数的数字特征。
已知~,则,所以,故选择D.3.[单选题]设随机变量X与Y的方差分别为4和9,斜方差为4.2,则相关系数为A)0.7B)0.4C)0.5D)0.9答案:A解析:4.[单选题]已知D(X)=9,D(Y)=16,ρXY=0.4,则D(X+Y)为A)9.4B)16.4C)34.5D)34.6答案:D解析:因为,因此Cov(X,Y)=3×4×0.4=4.8,而D(X+Y)=D(X)+D(Y)+2 Cov(X,Y)=9+16+2×4.8=34.6,因此选D。
5.[单选题]在某大学抽查100个学生,调查他们自觉储蓄的比例,情况如下:A)0.9475B)0.9321C)0.8702D)0.6356答案:A解析:Eξ=7.99, Dξ=0.21,切比雪夫不等式:即学生储蓄率为ξ%与平均水平7.99%相差不足两个百分点(ξ=2)的概率不小于0.94756.[单选题]设X1,…Xn为来自正态总体N(μ,σ2)的简单随机样本,则数学期望等于()。
A)n3(n-1)μ·σ2B)(n-1)μ·σ2C)n2(n-1)μ·σ2D)n3(n-1)μ·σ答案:A解析:由于-X,S 是相互独立的,则7.[单选题]设总体X服从正态分布N(0, σ2), X,S2分别为容量是n的样本的均值和方差,则可以作出服从自由度为n-l的t分布的随机变量()。
绝密 ★ 考试结束前
全国2013年10月高等教育自学考试
概率论与数理统计(经管类)试题
课程代码:04183
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分
注意事项:
1. 答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2. 每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.设A,B 为随机事件,则事件“A ,B 至少有一个发生”可表示为 A.AB B.AB C.A
B
D.A
B
2.设随机变量2~(,)X N μσ,Φ()x 为标准正态分布函数,则{}P X x >= A.Φ(x )
B.1-Φ(x )
C.Φx μσ-⎛⎫ ⎪⎝⎭
D.1-Φx μσ-⎛⎫ ⎪⎝⎭
3.设二维随机变量221212(,)~(,,,,)X Y N μμσσρ,则X ~ A.211(,)N μσ B.221()N μσ C.212(,)N μσ
D.222(,)N μσ
4.设二维随机变量(X ,Y )的分布律为
0 a 0.2
且{1|0}0.5P Y X ===,则 A. a =0.2, b =0.4 B. a =0.4, b =0.2 C. a =0.1, b =0.5
D. a =0.5, b =0.1
5.设随机变量~(,)X B n p ,且()E X =2.4,()D X =1.44,则 A. n =4, p =0.6 B. n =6, p =0.4 C. n =8, p =0.3
D. n =24, p =0.1
6.设随机变量2~(,)X N μσ,Y 服从参数为(0)λλ>的指数分布,则下列结论中不正确...的是 A.1
()E X Y μ
λ
+= B.22
1
()D X Y σλ+=+
C.1
(),()E X E Y μλ
==
D.22
1
(),()D X D Y σλ
==
7.设总体X 服从[0,θ]上的均匀分布(参数θ未知),12,,,n x x x 为来自X 的样本,则下列随机变量中是统计量的为
A. 1
1n
i i x n =∑
B. 11n
i i x n θ=-∑
C. 1
1()n
i i x E X n =-∑
D. 2
11
1()n i x D X n =-∑
8.设12,,,n x x x 是来自正态总体2(,)N μσ的样本,其中μ未知,x 为样本均值,则2σ的无偏估计量为
A. 11()1n
i i x n μ=--∑2 B. 11()n
i i x n μ=-∑2
C. 1
1()1n
i i x x n =--∑ 2 D.1
1()n
i i x x n =-∑ 2
9.设H 0为假设检验的原假设,则显著性水平α等于 A.P {接受H 0|H 0不成立} B. P {拒绝H 0|H 0成立} C. P {拒绝H 0|H 0不成立}
D. P {接受H 0|H 0成立}
10.设总体2~(,)X N μσ,其中2σ未知,12,,
,n x x x 为来自X 的样本,x 为样本均值,s 为样本标准差.在显著性水平
α下检验假设0010:,:H H μμμμ=≠.
令x t =
A. 2
||(1)a t t n <-
B.2
||()a t t n <
C. 2
||(1)a t t n >-
D.2
||()a t t n >
非选择题部分
注意事项:
用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
二、填空题(本大题共15小题,每小题2分,共30分)
11.设随机事件A 与B 相互独立,且()0,(|)0.6P B P A B >=,则()P A =______.
12.甲、乙两个气象台独立地进行天气预报,它们预报准确的概率分别是0.8和0.7,则在一次预报中两个气象台都预报准确的概率是________.
13.设随机变量X 服从参数为1的指数分布,则{1}P X >=__________. 14.设随机变量~(1,1),1X N Y X =-,则Y 的概率密度()Y f y =________. 15.设二维随机变量(X ,Y )的分布函数为(,)F x y ,则(,)F +∞+∞=_________.
16.设随机变量X 与Y 相互独立,且都服从参数为1的泊松分布,则{1,2}P X Y ===_______. 17.设随机变量X 服从区间[0,2]上的均匀分布,则()E X =_______. 18.设随机变量X 与Y 的协方差Cov()=1X,Y -,则Cov(2,3)Y X -=________. 19.设随机变量12,,
,n X X X 相互独立,2
()(1,2,
,)i D X i n σ==,则1
()n
i i D X =∑=________.
20.设X 为随机变量,()1,()0.5E X D X ==,则由切比雪夫不等式可得{|1|1}P X -≥≤______. 21.设总体~(0,1)X N ,123,,x x x 为来自X 的样本,则222123~x x x ++_________. 22.设随机变量~()t t n ,且{()}P t t n αα>=,则{()}P t t n α≤-=_________.
23.设总体12~(,1),,X N x x μ是来自X 的样本.1122122111
ˆˆ,3322
x x x x μμ
=+=+都是μ的估计量,则其中较有效的是_______.
24.设总体20~(,)X N μσ,其中20σ已知,12,,,n x x x 为来自X 的样本,x 为样本均值,
则对假设0010:,:H H μμμμ=≠应采用的检验统计量的表达式为_______. 25.依据样本(,)(1,2,
,)i i x y i n =得到一元线性回归方程01ˆˆˆ,y x ββ=+,x y 为样本均值,令1
()n
xx
i i L x x ==-∑2,1
()()n
xy i i i L x x y y ==--∑,则回归常数0
ˆβ=________. 三、计算题(本大题共2小题,每小题8分,共16分) 26.设二维随机变量(,)X Y 的概率密度为
1
,03,02,
(,)6
0,x y f x y ⎧<<<<⎪=⎨⎪⎩
其他. 求:(1)(,)X Y 关于X ,Y 的边缘概率密度(),()X Y f x f y ;(2){2}P X Y +≤.
27.假设某校数学测验成绩服从正态分布,从中抽出20名学生的分数,算得样本标准差s =4分,求正态分布方差2
σ
的置信度为98%的置信区间.20.01((19)36.191χ=,20.99(19)7.633)χ= 四、综合题(本大题共2小题,每小题12分,共24分)
28.设某人群中患某种疾病的比例为20%.对该人群进行一种测试,若患病则测试结果一定为阳性;而未患病者中也有5%的测试结果呈阳性.
求:(1)测试结果呈阳性的概率;(2)在测试结果呈阳性时,真正患病的概率. 29.设随机变量X 的概率密度为
,04,
()0,.cx x f x <<⎧=⎨⎩
其他
求:(1)常数c ;(2)X 的分布函数()F x ;(3){||2}P X ≤. 五、应用题(10分)
30.某保险公司有一险种,每个保单收取保险费600元,理赔额10000元,在有效期内只理赔一次.设保险公司共卖
出这种保单800个,每个保单理赔概率为0.04.
求:(1)理赔保单数的分布律;(2)保险公司在该险种上获得的期望利润.。