数值分析上机报告
- 格式:pdf
- 大小:221.75 KB
- 文档页数:4
数值分析实验报告(数值积分)姓名:学号:2006231011专业:材料学学院:云南省新材料制备与加工重点实验室授课教师:昆明理工大学06工科硕士 《数值分析》上机实验报告专业: 材料物化 姓名: 学号: 2006231011 任课教师: 作业完成实验室:实验内容:1.题目/要求:1、 利用Lagrange 插值公式()k n ki i ik in k n y x x x x x L ⎪⎪⎪⎭⎫ ⎝⎛--∑=∏≠==00 编写出插值多项式程序; 2、 给出插值多项式或分段三次插值多项式的表达式;3、 根据节点选取原则,对问题(2)用三点插值或二点插值,其结果如何; 对此插值问题用Newton 插值多项式其结果如何2.作业环境(包括选用的程序语言、运行环境) Visual C++ 6.03.数学(理论背景)描述1. Lagrange 插值多项式定义:若n 次多项式上满足条件个节点在,1),1,0)((10n j x x x n n j x l ⋅⋅⋅<+⋅⋅⋅=: 当0)(1)(=≠==k j k j x l j k x l j k 时;当时, 其中n k j ⋅⋅⋅=1,0, ,就称这1+n个次多项式)(),(),(10x l x l x l n ⋅⋅⋅为节点n x x x ⋅⋅⋅10,上的n 次插值基函数。
插值多项式可 表示为:)()(0x ly x L knk k n ∑==,称为Lagrange 插值多项式。
2.分段线形插值就是通过插值点用折线段连接起来逼近).(x f 设已知节点b x x x a n =<⋅⋅⋅<=10上的函数值n f f f ⋅⋅⋅,,21,记k kk k k h h x x h ma x ,1=-=+求一折线函数)(x I h 满足:[][]为分段线形插值函数上是线形函数,则称在每个区间记)(,)(3),,2,1,0()(2,,)(11000x I x x x I k f x I b a C x I h k k h k h h +==∈4.数值计算公式Lagrange 插值多项式()k nki i ik in k n y x x x x x L ⎪⎪⎪⎭⎫ ⎝⎛--∑=∏≠==00; 分段线形插函数,在每个小区间[]1,+k k x x 上可表示为:1111)(++++--+--=k kk kk k k k h f x x x x f x x x x h I (1+≤≤k k x x x )在整个区间[]b a ,上为:)()(0x lf x I jnj j h ∑==其中基函数),1,0,()(n k j x l jk k j ⋅⋅⋅==δ,其形式是:[][],.,,,,0);(,);0(,)(11111111⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧∉∈=≤≤--=≤≤--=+-+++---j j j j j j j j j j j j j x x x b a x n j x x x x x x x j x x x x x x x x l5.算法程序流程图Lagrange插值算法程序流程图分段低次插值算法程序流程图6.程序结构(程序中的函数调用关系图6.实验数据和实验结果(打印或用屏幕图形拷屏表示,可加为附页)(1)Lagrange 插值算法,62573238.0)596.0(=f 05422977.0)99.0(=f 分段低次插值算法,63270600.0)596.0(=f 10152800.1)99.0(=f (2Lagrange 插值算法16476189.0)8.1(=f 00126583.0)15.6(=f分段低次插值算法18160000.0)8.1(=f 00185000.0)15.6(=f7.讨论(包括题目要求的讨论和方法的适用性讨论)对于插值多项式L n (x),当∞→n 时,L n (x)不一定收敛到f(x),此时需用分段线性插值比L n (x)逼近f(x)好得多,题(2)就是一例。
数值分析2024上机实验报告数值分析是计算数学的一个重要分支,它研究如何用数值方法来解决数学问题。
在数值分析的学习过程中,学生需要通过上机实验来巩固理论知识,并学会使用相应的数值方法来解决实际问题。
本篇报告将详细介绍2024年度数值分析上机实验的内容和结果。
一、实验内容2024年度数值分析上机实验分为四个部分,分别是:方程求根、插值与拟合、数值积分和常微分方程的数值解。
1.方程求根这部分实验要求使用数值方法求解给定的非线性方程的根。
常见的数值方法有二分法、牛顿法、割线法等。
在实验过程中,我们需要熟悉这些数值方法的原理和实现步骤,并对不同方法的收敛性进行分析和比较。
2.插值与拟合这部分实验要求使用插值和拟合方法对给定的一组数据进行拟合。
插值方法包括拉格朗日插值、牛顿插值等;拟合方法包括最小二乘拟合、多项式拟合等。
在实验中,我们需要熟悉插值和拟合方法的原理和实现步骤,并对不同方法的精度和稳定性进行比较。
3.数值积分这部分实验要求使用数值方法计算给定函数的积分。
常见的数值积分方法有梯形法则、辛普森法则、龙贝格积分等。
在实验过程中,我们需要熟悉这些数值积分方法的原理和实现步骤,并对不同方法的精度和效率进行比较。
4.常微分方程的数值解这部分实验要求使用数值方法求解给定的常微分方程初值问题。
常见的数值方法有欧拉法、改进的欧拉法、四阶龙格-库塔法等。
在实验中,我们需要熟悉这些数值解方法的原理和实现步骤,并对不同方法的精度和稳定性进行比较。
二、实验结果在完成2024年度数值分析上机实验后,我们得到了以下实验结果:1.方程求根我们实现了二分法、牛顿法和割线法,并对比了它们的收敛速度和稳定性。
结果表明,割线法的收敛速度最快,但在一些情况下可能会出现振荡;二分法和牛顿法的收敛速度相对较慢,但稳定性较好。
2.插值与拟合我们实现了拉格朗日插值和最小二乘拟合,并对比了它们的拟合效果和精度。
结果表明,拉格朗日插值在小区间上拟合效果较好,但在大区间上可能出现振荡;最小二乘拟合在整体上拟合效果较好,但可能出现过拟合。
第一题:1、已知A 与b12.38412 2.115237 -1.061074 1.112336 -0.1135840.718719 1.742382 3.067813 -2.031743 2.11523719.141823 -3.125432 -1.012345 2.189736 1.563849-0.784165 1.112348 3.123124 -1.061074 -3.125A =43215.567914 3.123848 2.031454 1.836742-1.056781 0.336993 -1.010103 1.112336 -1.012345 3.12384827.108437 4.101011-3.741856 2.101023 -0.71828 -0.037585 -0.1135842.189736 2.031454 4.10101119.8979180.431637-3.111223 2.121314 1.784317 0.718719 1.563849 1.836742 -3.741856 0.4316379.789365-0.103458 -1.103456 0.238417 1.742382 -0.784165 -1.056781 2.101023-3.111223-0.10345814.7138465 3.123789 -2.213474 3.067813 1.112348 0.336993-0.71828 2.121314-1.103456 3.12378930.719334 4.446782 -2.031743 3.123124 -1.010103-0.037585 1.7843170.238417-2.213474 4.44678240.00001[ 2.1874369 33.992318 -25.173417 0.84671695 1.784317 -86.612343 1.1101230 4.719345 -5.6784392]TB ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=(1)用Househloser 变换,把A 化为三对角阵(并打印B )。
数值分析第一次上机练习实验报告一、实验目的本次实验旨在通过上机练习,加深对数值分析方法的理解,并掌握实际应用中的数值计算方法。
二、实验内容1. 数值计算的基本概念和方法在本次实验中,我们首先回顾了数值计算的基本概念和方法。
数值计算是一种通过计算机进行数值近似的方法,其包括近似解的计算、误差分析和稳定性分析等内容。
2. 方程求解的数值方法接下来,我们学习了方程求解的数值方法。
方程求解是数值分析中非常重要的一部分,其目的是找到方程的实数或复数解。
我们学习了二分法、牛顿法和割线法等常用的数值求解方法,并对它们的原理和步骤进行了理论学习。
3. 插值和拟合插值和拟合是数值分析中常用的数值逼近方法。
在本次实验中,我们学习了插值和拟合的基本原理,并介绍了常见的插值方法,如拉格朗日插值和牛顿插值。
我们还学习了最小二乘拟合方法,如线性拟合和多项式拟合方法。
4. 数值积分和数值微分数值积分和数值微分是数值分析中的两个重要内容。
在本次实验中,我们学习了数值积分和数值微分的基本原理,并介绍了常用的数值积分方法,如梯形法和辛卜生公式。
我们还学习了数值微分的数值方法,如差商法和牛顿插值法。
5. 常微分方程的数值解法常微分方程是物理和工程问题中常见的数学模型,在本次实验中,我们学习了常微分方程的数值解法,包括欧拉法和四阶龙格-库塔法。
我们学习了这些方法的步骤和原理,并通过具体的实例进行了演示。
三、实验结果及分析通过本次实验,我们深入理解了数值分析的基本原理和方法。
我们通过实际操作,掌握了方程求解、插值和拟合、数值积分和数值微分以及常微分方程的数值解法等数值计算方法。
实验结果表明,在使用数值计算方法时,我们要注意误差的控制和结果的稳定性。
根据实验结果,我们可以对计算结果进行误差分析,并选择适当的数值方法和参数来提高计算的精度和稳定性。
此外,在实际应用中,我们还需要根据具体问题的特点和条件选择合适的数值方法和算法。
四、实验总结通过本次实验,我们对数值分析的基本原理和方法有了更加深入的了解。
数值分析上机实验报告摘要:本报告是对数值分析课程上机实验的总结和分析,涵盖了多种算法和数据处理方法,通过对实验结果的分析,探究了数值计算的一般过程和计算的稳定性。
1. 引言数值计算是数学的一个重要分支,广泛应用于物理、金融、工程等领域。
本次实验是对数值分析课程知识的实际应用,通过上机实现算法,探究数值计算的可靠性和误差分析。
2. 实验方法本次实验中,我们实现了多种算法,包括:(1)牛顿迭代法求方程的根;(2)高斯消元法求线性方程组的解;(3)最小二乘法拟合数据点;(4)拉格朗日插值法估计函数值;(5)梯形公式和辛普森公式求积分近似值。
对于每个算法,我们都进行了多组数值和不同参数的实验,并记录了相关数据和误差。
在实验过程中,我们着重考虑了算法的可靠性和计算的稳定性。
3. 实验结果与分析在实验中,我们得到了大量的实验数据和误差分析,通过对数据的展示和分析,我们得到了以下结论:(1)牛顿迭代法求解非线性方程的根能够对算法的初始值和迭代次数进行适当的调整,从而达到更高的稳定性和可靠性。
(2)高斯消元法求解线性方程组的解需要注意到矩阵的奇异性和精度的影响,从而保证计算的准确性。
(3)最小二乘法拟合数据点需要考虑到拟合的函数形式和数据的误差范围,采取适当的数据预处理和拟合函数的选择能够提高计算的准确性。
(4)拉格朗日插值法估计函数值需要考虑到插值点的选择和插值函数的阶数,防止出现龙格现象和插值误差过大的情况。
(5)梯形公式和辛普森公式求积分近似值需要考虑到采样密度和拟合函数的选择,从而保证计算的稳定性和收敛速度。
4. 结论通过本次实验的分析和总结,我们得到了深入的认识和理解数值计算的一般过程和算法的稳定性和可靠性,对于以后的数值计算应用也提供了一定的指导和参考。
数值分析上机实验理学院11级统计01班41108030125鲁庆实验报告一一.实验名称误差与误差估计二.实验目的掌握数值运算的误差估计方法三.数学原理 1.绝对误差(*)e x设某一量的准确值为x ,近似值为x*,则x*与x 之差叫做近似值x*的绝对误差(简称误差),记为*(*)*e e x x x ==- 2.绝对误差限适当小的正数,使|(*)||*|*e x x x ε=-≤则称*ε为近似值 x * 的绝对误差限。
(有时用*x x ε*=±表示近似值x *的精度或准确值的所在范围。
3.相对误差(*)r e x绝对误差与准确值之比*(*)*(*),0r r e x x xe e x x x x-===≠称为x *的相对 误差。
4.相对误差限(*)r x ε若指定一个适当小的正数 (*)r x ε,使|(*)||(*)|(*)||r r e x e x x x ε=≤则称(*)r x ε为近似值 x *的相对误差限。
5.有效数字若近似值x*的绝对误差限是某一位的半个单位,该位到x*的第一位非零数字一共有n 位,则称近似值x*有n 位有效数字,或说x*精确到该位。
6.绝对误差的运算:)()()(2121x x x x εεε+=± )()()(122121x x x x x x εεε+≈22122121+=x x x x x x x )()()(εεε (f(x))()(x)f x εε'≈四.实验内容1. 计算I n=e 1-⎰10nxe x 2dx (n=0,1,...)并估计误差。
解: >> I0 = exp(-1)*quad('(x.^0).*exp(x.^2)',0,1,10^(-10));>> vpa(I0,10) ans =.5380795069>> I1= exp(-1)*quad('(x.^1).*exp(x.^2)',0,1,10^(-10)); >> vpa(I1,10) ans =.3160602794>> I2 = exp(-1)*quad('(x.^2).*exp(x.^2)',0,1,10^(-10)); >> vpa(I2,10) ans =.2309602465>> I3 = exp(-1)*quad('(x.^3).*exp(x.^2)',0,1,10^(-10)); >> vpa(I3,10) ans =.1839397206>> I4 = exp(-1)*quad('(x.^4).*exp(x.^2)',0,1,10^(-10)); >> vpa(I4,10) ans =.1535596302>> I5 = exp(-1)*quad('(x.^5).*exp(x.^2)',0,1,10^(-10)); >> vpa(I5,10) ans =.1321205588>> I6 = exp(-1)*quad('(x.^6).*exp(x.^2)',0,1,10^(-10)); >> vpa(I6,10) ans =.1161009245>> I7 = exp(-1)*quad('(x.^7).*exp(x.^2)',0,1,10^(-10)); >> vpa(I7,10) ans =.1036383235>> I8 = exp(-1)*quad('(x.^8).*exp(x.^2)',0,1,10^(-10)); >> vpa(I8,10) ans =.9364676413e-1>> I9 = exp(-1)*quad('(x.^9).*exp(x.^2)',0,1,10^(-10)); >> vpa(I9,10) ans =.8544670595e-1 2.计算x255的值。
目录1 绪论 (1)2 实验题目(一) (2)2.1 题目要求 (2)2.2 NEWTON插值多项式 (3)2.3 数据分析 (4)2.3.1 NEWTON插值多项式数据分析 (4)2.3.2 NEWTON插值多项式数据分析 (6)2.4 问答题 (6)2.5 总结 (7)3 实验题目(二) (8)3.1 题目要求 (8)3.2 高斯-塞德尔迭代法 (8)3.3 高斯-塞德尔改进法—松弛法 (9)3.4 松弛法的程序设计与分析 (9)3.4.1 算法实现 (9)3.4.2 运算结果 (9)3.4.3 数据分析 (11)4 实验题目(三) (13)4.1 题目要求 (13)4.2 RUNGE-KUTTA 4阶算法 (13)4.3 RUNGE-KUTTA 4阶算法运算结果及数值分析 (14)总结 (16)附录A (17)1绪论数值分析是计算数学的一个主要部分,它主要研究各类数学问题的数值解法,以及分析所用数值解法在理论上的合理性。
实际工程中的数学问题非常复杂,所以往往需要借助计算机进行计算。
运用数值分析解决问题的过程:分析实际问题,构建数学模型,运用数值计算方法,进行程序设计,最后上机计算求出结果。
数值分析这门学科具有面向计算机、可靠的理论分析、好的计算复杂性、数值实验、对算法进行误差分析等特点。
本学期开设了数值分析课程,该课程讲授了数值分析绪论、非线性方程的求解、线性方程组的直接接法、线性方程组的迭代法、插值法、函数逼近与曲线拟合、数值积分和数值微分、常微分方程初值问题的数值解法等内容。
其为我们解决实际数学问题提供了理论基础,同时我们也发现课程中很多问题的求解必须借助计算机运算,人工计算量太大甚至无法操作。
所以学好数值分析的关键是要加强上机操作,即利用计算机程序语言实现数值分析的算法。
本报告就是基于此目的完成的。
本上机实验是通过用计算机来解答数值分析问题的过程,所用的计算工具是比较成熟的数学软件MATLAB。
数值分析上机实践报告一、实验目的本次实验主要目的是通过上机操作,加深对数值分析算法的理解,并熟悉使用Matlab进行数值计算的基本方法。
在具体实验中,我们将实现三种常见的数值分析算法:二分法、牛顿法和追赶法,分别应用于解决非线性方程、方程组和线性方程组的求解问题。
二、实验原理与方法1.二分法二分法是一种常见的求解非线性方程的数值方法。
根据函数在给定区间端点处的函数值的符号,不断缩小区间的长度,直到满足精度要求。
2.牛顿法牛顿法是求解方程的一种迭代方法,通过构造方程的泰勒展开式进行近似求解。
根据泰勒展式可以得到迭代公式,利用迭代公式不断逼近方程的解。
3.追赶法追赶法是用于求解三对角线性方程组的一种直接求解方法。
通过构造追赶矩阵,采用较为简便的向前追赶和向后追赶的方法进行计算。
本次实验中,我们选择了一组非线性方程、方程组和线性方程组进行求解。
具体的实验步骤如下:1.调用二分法函数,通过输入给定区间的上下界、截止误差和最大迭代次数,得到非线性方程的数值解。
2.调用牛顿法函数,通过输入初始迭代点、截止误差和最大迭代次数,得到方程组的数值解。
3.调用追赶法函数,通过输入追赶矩阵的三个向量与结果向量,得到线性方程组的数值解。
三、实验结果与分析在进行实验过程中,我们分别给定了不同的参数,通过调用相应的函数得到了实验结果。
下面是实验结果的汇总及分析。
1.非线性方程的数值解我们通过使用二分法对非线性方程进行求解,给定了区间的上下界、截止误差和最大迭代次数。
实验结果显示,根据给定的输入,我们得到了方程的数值解。
通过与解析解进行比较,可以发现二分法得到的数值解与解析解的误差在可接受范围内,说明二分法是有效的。
2.方程组的数值解我们通过使用牛顿法对方程组进行求解,给定了初始迭代点、截止误差和最大迭代次数。
实验结果显示,根据给定的输入,我们得到了方程组的数值解。
与解析解进行比较,同样可以发现牛顿法得到的数值解与解析解的误差在可接受范围内,说明牛顿法是有效的。
数值分析上机实验报告导言:本次上机实验主要是针对数值分析课程中的一些基本算法进行实验验证。
实验内容包括迭代法、插值法、数值积分和常微分方程的数值解等。
在实验过程中,我们将会使用MATLAB进行算法的实现,并对结果进行分析。
一、迭代法迭代法是解决函数零点、方程解等问题的常用方法。
我们将选择几个常见的函数进行迭代求根的实验。
(1)二分法二分法是一种简单而有效的迭代求根法。
通过函数在区间两个端点处的函数值异号来确定函数在区间内存在零点,并通过不断缩小区间来逼近零点。
(2)牛顿法牛顿法利用函数的一阶导数和二阶导数的信息来逼近零点。
通过不断迭代更新逼近值,可以较快地求得零点。
实验结果表明,对于简单的函数,这两种迭代法都具有很好的收敛性和稳定性。
但对于一些复杂的函数,可能会出现迭代失效或者收敛速度很慢的情况。
二、插值法插值法是在给定一些离散数据点的情况下,通过构造一个插值函数来逼近未知函数的值。
本实验我们将使用拉格朗日插值和牛顿插值两种方法进行实验。
(1)拉格朗日插值拉格朗日插值通过构造一个多项式函数来逼近未知函数的值。
该多项式经过离散数据点,并且是唯一的。
该方法简单易懂,但插值点越多,多项式次数越高,插值函数的精度也就越高。
(2)牛顿插值牛顿插值利用差商的概念,通过构造一个插值多项式来逼近未知函数的值。
与拉格朗日插值相比,牛顿插值的计算过程更加高效。
但同样要求插值点的选择要合理,否则可能出现插值函数不收敛的情况。
实验结果表明,这两种插值方法都能够很好地逼近未知函数的值。
插值点的选择对插值结果有很大的影响,过多或者过少的插值点都可能导致插值结果偏离真实函数的值。
三、数值积分数值积分是一种将定积分问题转化为数值求和的方法。
本实验我们将使用复合梯形求积法和复合辛普森求积法进行实验。
(1)复合梯形求积法复合梯形求积法将定积分区间等分为若干小区间,然后使用梯形公式对每个小区间进行近似求积,最后将结果相加得到整个定积分的近似值。
数值分析上机实验报告《数值分析》上机实验报告1.用Newton 法求方程 X 7-X 4+14=0在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。
1.1 理论依据:设函数在有限区间[a ,b]上二阶导数存在,且满足条件{}αϕ上的惟一解在区间平方收敛于方程所生的迭代序列迭代过程由则对任意初始近似值达到的一个中使是其中上不变号在区间],[0)(3,2,1,0,)(')()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20)()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f ab c f x f b a x f b f x f k k k k k k ==-==∈≤-≠>+令)9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3225333647>⋅''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f故以1.9为起点⎪⎩⎪⎨⎧='-=+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。
当前后两个的差<=ε时,就认为求出了近似的根。
本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。
1.2 C语言程序原代码:#include<stdio.h>#include<math.h>main(){double x2,f,f1;double x1=1.9; //取初值为1.9do{x2=x1;f=pow(x2,7)-28*pow(x2,4)+14;f1=7*pow(x2,6)-4*28*pow(x2,3);x1=x2-f/f1;}while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数printf("计算结果:x=%f\n",x1);}1.3 运行结果:1.4 MATLAB上机程序function y=Newton(f,df,x0,eps,M)d=0;for k=1:Mif feval(df,x0)==0d=2;breakelsex1=x0-feval(f,x0)/feval(df,x0);ende=abs(x1-x0);x0=x1;if e<=eps&&abs(feval(f,x1))<=epsd=1;breakendendif d==1y=x1;elseif d==0y='迭代M次失败';elsey= '奇异'endfunction y=df(x)y=7*x^6-28*4*x^3;Endfunction y=f(x)y=x^7-28*x^4+14;End>> x0=1.9;>> eps=0.00001;>> M=100;>> x=Newton('f','df',x0,eps,M);>> vpa(x,7)1.5 问题讨论:1.使用此方法求方解,用误差来控制循环迭代次数,可以在误差允许的范围内得到比较理想的计算结果。
数值分析上机报告姓名:学号:专业:联系电话:本次数值分析上机实习采用Matlab数学软件。
Matlab是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。
在数值分析应用中可以直接调用Matlab软件中已有的函数,同时用户也可以将自己编写的实用导入到Matlab函数库中方便自己调用。
基于Matlab数学软件的各种实用性功能与优点,本次数值分析实习决定采用其作为分析计算工具。
1.语言简洁,编程效率高因为MATLAB定义了专门用于矩阵运算的运算符,使得矩阵运算就像列出算式执行标量运算一样简单,而且这些运算符本身就能执行向量和标量的多种运算。
利用这些运算符可使一般高级语言中的循环结构变成一个简单的MATLAB语句,再结合MATLAB丰富的库函数可使变得相当简短,几条语句即可代替数十行C语言或Fortran语言语句的功能。
2. 交互性好,使用方便在MATLAB的命令窗口中,输入一条命令,立即就能看到该命令的执行结果,体现了良好的交互性。
交互方式减少了编程和调试的工作量,给使用者带来了极大的方便。
因为不用像使用C语言和Fortran语言那样,首先编写源,然后对其进行编译、连接,待形成可执行文件后,方可运行得出结果。
3. 强大的绘图能力,便于数据可视化MATLAB不仅能绘制多种不同坐标系中的二维曲线,还能绘制三维曲面,体现了强大的绘图能力。
正是这种能力为数据的图形化表示(即数据可视化)提供了有力工具,使数据的展示更加形象生动,有利于揭示数据间的内在关系在新版本中也加入了对C、FORTRAN、c++、JA V A的支持,使用时可以直接调用,也可将编写的实用程序导入到matlab函数库中方便以后使用时调用。
本次编程所用的软件为MATLAB,通过这次作业,对它有了初步的认识,以及对数值分析的体会更为深刻,希望为以后的学习和工作奠定一定的基。
目录1 必做题一插值法 (4)1.1题目 (4)1.2 分析过程 (4)1.3 计算结果 (5)1.4 结果分析 (6)2 必做题二雅格比法迭代与高斯-赛德尔迭代 (6)2.1题目 (6)2.2分析过程 (6)2.3计算结果 (7)2.4 结果分析 (8)3 选做题一 (8)3.1题目三次样条插值 (8)3.2分析过程 (8)3.3计算结果 (9)3.4 结果分析 (9)附录 (10)附录一:必做题一插值法代码 (11)附录二:必做题二雅格比法迭代与高斯-赛德尔迭代代码 (12)附录三:选做题一三次样条插值代码 (14)1 必做题一 插值法1.1题目某过程涉及两变量x 和y, 拟分别用插值多项式和多项式拟合给出其对应规律的近似多项式,已知xi 与yi 之间的对应数据如下,xi=1,2,…,10yi = 34.6588 40.3719 14.6448 -14.2721 -13.3570 24.8234 75.2795 103.5743 97.4847 78.2392(1)请用次数分别为3,4,5,6的多项式拟合并给出最好近似结果f(x)。
一、实验目的通过本次上机实验,掌握数值分析中常用的算法,如二分法、牛顿法、不动点迭代法、弦截法等,并能够运用这些算法解决实际问题。
同时,提高编程能力,加深对数值分析理论知识的理解。
二、实验环境1. 操作系统:Windows 102. 编程语言:MATLAB3. 实验工具:MATLAB数值分析工具箱三、实验内容1. 二分法求方程根二分法是一种常用的求方程根的方法,适用于连续函数。
其基本思想是:从区间[a, b]中选取中点c,判断f(c)的符号,若f(c)与f(a)同号,则新的区间为[a, c],否则为[c, b]。
重复此过程,直至满足精度要求。
2. 牛顿法求方程根牛顿法是一种迭代法,适用于可导函数。
其基本思想是:利用函数在某点的导数值,求出函数在该点的切线方程,切线与x轴的交点即为方程的近似根。
3. 不动点迭代法求方程根不动点迭代法是一种迭代法,适用于具有不动点的函数。
其基本思想是:从初始值x0开始,不断迭代函数g(x)的值,直至满足精度要求。
4. 弦截法求方程根弦截法是一种线性近似方法,适用于可导函数。
其基本思想是:利用两点间的直线近似代替曲线,求出直线与x轴的交点作为方程的近似根。
四、实验步骤1. 二分法求方程根(1)编写二分法函数:function [root, error] = bisection(a, b, tol)(2)输入初始区间[a, b]和精度要求tol(3)调用函数计算根:[root, error] = bisection(a, b, tol)2. 牛顿法求方程根(1)编写牛顿法函数:function [root, error] = newton(f, df, x0, tol)(2)输入函数f、导数df、初始值x0和精度要求tol(3)调用函数计算根:[root, error] = newton(f, df, x0, tol)3. 不动点迭代法求方程根(1)编写不动点迭代法函数:function [root, error] = fixed_point(g, x0, tol)(2)输入函数g、初始值x0和精度要求tol(3)调用函数计算根:[root, error] = fixed_point(g, x0, tol)4. 弦截法求方程根(1)编写弦截法函数:function [root, error] = secant(f, x0, x1, tol)(2)输入函数f、初始值x0和x1,以及精度要求tol(3)调用函数计算根:[root, error] = secant(f, x0, x1, tol)五、实验结果与分析1. 二分法求方程根以方程f(x) = x^2 - 2 = 0为例,输入初始区间[a, b]为[1, 3],精度要求tol 为1e-6。
数值分析matlab上机实验报告matlab软件实验报告数学上机课实验报告matlab实验报告总结数值分析试卷篇一:《MATLAB与数值分析》第一次上机实验报告标准实验报告(实验)课程名称学生姓名:李培睿学号:2013020904026指导教师:程建一、实验名称《MATLAB与数值分析》第一次上机实验二、实验目的1. 熟练掌握矩阵的生成、加、减、乘、除、转置、行列式、逆、范数等运算操作。
(用.m文件和Matlab函数编写一个对给定矩阵进行运算操作的程序)2. 熟练掌握算术符号操作和基本运算操作,包括矩阵合并、向量合并、符号转换、展开符号表达式、符号因式分解、符号表达式的化简、代数方程的符号解析解、特征多项式、函数的反函数、函数计算器、微积分、常微分方程的符号解、符号函数的画图等。
(用.m 文件编写进行符号因式分解和函数求反的程序)3. 掌握Matlab函数的编写规范。
4、掌握Matlab常用的绘图处理操作,包括:基本平面图、图形注释命令、三维曲线和面的填充、三维等高线等。
(用.m 文件编写在一个图形窗口上绘制正弦和余弦函数的图形,并给出充分的图形注释)5. 熟练操作MATLAB软件平台,能利用M文件完成MATLAB的程序设计。
三、实验内容1. 编程实现以下数列的图像,用户能输入不同的初始值以及系数。
并以x,y为坐标显示图像x(n+1) = a*x(n)-b*(y(n)-x(n) ); y(n+1) = b*x(n)+a*(y(n)-x(n) )2. 编程实现奥运5环图,允许用户输入环的直径。
3. 实现对输入任意长度向量元素的冒泡排序的升序排列。
不允许使用sort函数。
四、实验数据及结果分析题目一:①在Editor窗口编写函数代码如下:并将编写的函数文件用“draw.m”储存在指定地址;②在Command窗口输入如下命令:③得到图形结果如下:题目二:①在Editor窗口编写函数代码如下:并将编写的函数文件用“circle.m”储存在指定地址;②再次在Editor窗口编写代码:并将编写的函数文件用“Olympic.m”储存在指定地址;③在Command窗口输入如下指令(半径可任意输入):④按回车执行,将在图形窗口获得五环旗:题目三:①在Editor窗口编写函数代码如下:并用.将编写的函数文件用“qipaofa.m”储存在指定地址;②在Command窗口输入一组乱序数值,则可以得到升序排序结果如下:五、总结及心得体会1. 要熟悉MATLAB编译软件的使用方法,明白有关语法,语句的基本用法,才可以在编写程序的时候游刃有余,不至于寸步难行。
数值分析上机实验报告x k x k - f(X k) f (X k)《数值分析》上机实验报告1. 用Newt on法求方程X7-X4+14=0在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001 )。
1.1理论依据:设函数在有限区间[a,b]上二阶导数存在,且满足条件1. f(x)f(b) 02. f(x)在区间[a, b]上不变号3f(x) = 0;4」f (c)〔f .(x) |,其中c是a,b中使mir(| f .(a), f .(b) |)达到的一个b -a则对任意初始近似值x0• [a,b],由Newton迭代过程込f(x k )X“ M(Xk) = Xk — T^,k = 0,1,2,3…f'(X k)所生的迭代序列 % [平方收敛于方程f(x)=0在区间[a,b]上的惟一解: 令7 4f(x)=x -28x 14, f (0.1) 0, f(1.9) ::0f (x) =7x6-112x3=7x3(x3-16) ::: 0f (x) =42x5-336x2=42x2(x3-8) :: 0f (1.9) f (1.9) 0故以1.9为起点x0 =1.9如此一次一次的迭代,逼近X的真实根。
当前后两个的差<=出寸,就认为求出了近似的根。
本程序用Newton法求代数方程(最高次数不大于10)在(a,b )区间的根//限制循环次数1.2 C 语言程序原代码:#i nclude<stdio.h> #in clude<math.h> mai n() {double x2,f,f1; double x1=1.9; // 取初值为 1.9do {x2=x1;f=pow(x2,7)-28*pow(x2,4)+14; f1=7*pow(x2,6)-4*28*pow(x2,3); x 仁 x2-f/f1;}while(fabs(x1-x2)>=0.00001||x1<0.1); printf("计算结果:x=%f\n",x1);}1.3运行结果:* D:\VC + +\EXERCIS E\Debu g\l1.4 MATLAB上机程序fun cti on y=Newt on( f,df,x0,eps,M)d=0;for k=1:Mif feval(df,x0)==0d=2; breakelsex1=x0-feval(f,x0)/feval(df,x0);ende=abs(x1-x0);x0=x1;if e<=eps&&abs(feval(f,x1))v=epsd=1; breakendendif d==1y=x1;elseif d==0y='迭代M次失败';elsey=奇异’endfun cti on y=df(x)y=7*x A6-28*4*x A3;Endfunction y=f(x) y=x A7-28*x A4+14;End>> x0=1.9;>> eps=0.00001;>> M=100;>> x=Newto n('f,'df,x0,eps,M);>> vpa(x,7)1.5问题讨论:1•使用此方法求方解,用误差来控制循环迭代次数,可以在误差允许的范围内得到比较理想的计算结果。
数值分析上机实验报告数值分析上机实验报告一、引言数值分析是一门研究利用计算机进行数值计算的学科。
通过数值分析,我们可以使用数学方法和算法来解决实际问题,例如求解方程、插值和逼近、数值积分等。
本次上机实验旨在通过编程实现数值计算方法,并应用于实际问题中。
二、实验目的本次实验的目的是掌握数值计算方法的基本原理和实现过程,加深对数值分析理论的理解,并通过实际应用提高编程能力。
三、实验内容1. 数值求解方程首先,我们使用二分法和牛顿迭代法分别求解非线性方程的根。
通过编写程序,输入方程的初始值和精度要求,计算得到方程的根,并与理论解进行对比。
2. 数值插值和逼近接下来,我们使用拉格朗日插值和最小二乘法进行数据的插值和逼近。
通过编写程序,输入给定的数据点,计算得到插值多项式和逼近多项式,并绘制出插值曲线和逼近曲线。
3. 数值积分然后,我们使用梯形法和辛普森法进行定积分的数值计算。
通过编写程序,输入被积函数和积分区间,计算得到定积分的近似值,并与解析解进行比较。
四、实验步骤1. 数值求解方程(1)使用二分法求解非线性方程的根。
根据二分法的原理,编写程序实现二分法求解方程的根。
(2)使用牛顿迭代法求解非线性方程的根。
根据牛顿迭代法的原理,编写程序实现牛顿迭代法求解方程的根。
2. 数值插值和逼近(1)使用拉格朗日插值法进行数据的插值。
根据拉格朗日插值法的原理,编写程序实现数据的插值。
(2)使用最小二乘法进行数据的逼近。
根据最小二乘法的原理,编写程序实现数据的逼近。
3. 数值积分(1)使用梯形法进行定积分的数值计算。
根据梯形法的原理,编写程序实现定积分的数值计算。
(2)使用辛普森法进行定积分的数值计算。
根据辛普森法的原理,编写程序实现定积分的数值计算。
五、实验结果与分析1. 数值求解方程通过二分法和牛顿迭代法,我们成功求解了给定非线性方程的根,并与理论解进行了对比。
结果表明,二分法和牛顿迭代法都能够较好地求解非线性方程的根,但在不同的问题中,二者的收敛速度和精度可能会有所差异。