A 16-element phased-array receiver IC for 60-GHz communications in SiGe BiCMOS
- 格式:pdf
- 大小:437.54 KB
- 文档页数:4
RHD-电生理放大器芯片可检测并获取来自活组织的微弱电信号。
每个集成电路都包含具有可编程带宽的低噪声放大器组,适用于各种生物电势监测应用。
这是使用RHD2000芯片获取的实际生物信号。
创新的电路架构将放大器,滤波器,16位ADC和阻抗测量结合到单个硅芯片上。
多达64个记录电极直接连接到芯片,数字数据流通过标准SPI总线流出。
可编程寄存器配置放大器的上限和下限带宽。
这种灵活性使芯片可以针对许多不同类型的电生理信号进行优化,包括EKG,EMG,ECoG,EEG,神经尖峰和局部场电势。
通过将弱电极信号直接转换为数字数据流,RHD2000芯片取代了电生理记录系统中的所有模拟仪器和数字化电路。
Intan Technologies提供了一个开源API,可将来自多个RHD2000芯片的数字数据实时流式传输到主机。
我们的RHD记录系统使用RHD2216,RHD2132和RHD2164芯片提供了各种前端。
该系统通过即插即用的USB接口和开放源代码的多平台GUI软件提供了一种评估这些芯片性能的快速方法。
RHD2000系列RHD2216具有双极(差分)输入的16通道放大器芯片RHD2132具有单极性输入和公共基准的32通道放大器芯片RHD2164具有单极性输入和公共基准的64通道放大器芯片特征具有16位ADC和行业标准串行外围设备接口(SPI)的完全集成的电生理放大器ADC对每个通道的放大器采样速率高达30 kSamples / s低本底噪声:典型值为2.4μVrmszui高截止频率可配置为100 Hz至20 kHz较低的截止频率可配置为0.1 Hz至500 Hz集成的多频原位电极阻抗测量功能辅助ADC输入,用于连接其他片外传感器应用领域用于神经记录的微型多通道探头大规模并行神经记录,用于高级大脑活动映射用于电生理实验的低功率无线讲台或背包“智能培养皿”体外记录系统同时记录微电极的动作电位和局部场电位(LFP)便携式多通道EKG或EMG监控系统先进的假肢控制器前端。
Zonghe Yanjiu♦综合研究|经颅聚焦超声技术在神经外科中的应用与研究进展庄晓鹏刘佳运(广东工业大学,广东广州510006)摘要:对国内外经颅聚焦超声技术的最新进展进行综述,介绍了在经颅聚焦超声中常用的换能器类型、刺激参数与超声作用机理,并对经颅聚焦超声在神经外科中的应用进行了分析,探讨了未来可能的研究方向。
关键词:经颅聚焦超声;超声换能器;神经外科0引言大脑是一个结构和功能复杂的系统,大脑区域的细胞结构和。
脑的往往与大脑的异常放电、神经元丢或神经的有。
神经与刺激是的方,可脑作并。
常神经调节与刺激方脑电刺激(DCS)、经颅磁刺激(TMS)和经颅直流电刺激(tDCS)。
对于DCS,其需要进行神经外科手术将刺激器脑内,可能术并,刺激焦,了技术在神经外科域的进一应用。
TMS电应理,的能在大脑内应电流,使大脑中的神经元或轴突去tDCS的电电,电进入大脑,是TMS是-DCS,在大脑中的电是分,对大脑作用,现紧密的聚焦和对脑核团的刺激。
经颅聚焦超声因其无创伤、可对脑深部核团进行特异性刺激和双向可逆神经的特点,得到了广泛的关注。
目前,国内外己经开展多项动验和临床研究来证明该技术的性和安全性。
本文总结了在经颅聚焦超声中常用的超声换能器、刺激参数与作用机理,并对经颅聚焦超声在神经外科中的应用进行了研究。
1超声换能器常用于经颅聚焦超声的换能器主要有单阵元聚焦换能器、阵列换能器和声全息透镜。
Samoudi等人了下丘脑区域的神经元活动,根据聚焦的深度和神经核团的大小,设计了一种单阵元聚焦换能器,相较于阵列换能器,对驱动电求,控电简单,成本低[1],该换能器现焦斑的电子转向和控,只能通过机械扫描的方式进行扫描移动。
同时,由于只一个阵元,所相控聚焦的方式补偿颅骨和软组织的相位畸变,进影响果。
Yang等人了实现更好的电子聚焦和更大的偏转角度,开发了一种可用于非人灵长类经颅聚焦超声的可扩展二维平面阵列凹。
Chaplin等人设计了一种磁共系统兼容的聚焦机阵列换能器,用向刺激的S1区域),在中,可通过磁共振成像系统进行监测和引导。
相控阵扫描时增益下降公式英文回答:When a phased array is scanned, the gain of the array decreases. This is because the energy from the individual elements is no longer focused in the same direction. The amount of gain loss depends on the scan angle and the number of elements in the array.The gain loss due to scanning can be calculated using the following formula:Gain loss = 10 log(1 (sin(θ/2)/sin(θ))^N)。
where:θ is the scan angle.N is the number of elements in the array.For example, a 16-element phased array will have a gain loss of 0.5 dB when scanned to 30 degrees.The gain loss due to scanning can be compensated for by increasing the power of the individual elements. However, this can lead to increased power consumption and heat dissipation.中文回答:当相控阵扫描时,阵列的增益会下降。
这是因为各个单元格的能量不再聚焦在同一个方向上。
增益损失量取决于扫描角度和阵列中单元格的数量。
由于扫描造成的增益损失可以用以下公式计算:增益损失= 10 log(1 (sin(θ/2)/sin(θ))^N)。
radar 术语全文共四篇示例,供读者参考第一篇示例:雷达是目前在军事和民用领域广泛使用的一种探测和跟踪目标的技术。
它通过向目标发射电磁波并接收目标反射的波来确定目标的位置、速度和其他相关信息。
雷达术语是在雷达领域常用的术语,了解这些术语对于理解雷达技术和运作原理至关重要。
1. 雷达系统:雷达系统是由雷达发射器、接收器、天线和信号处理器等组件组成的系统。
它们一起工作来探测和跟踪目标,并将信息传递给操作员或自动控制系统。
2. 发射器:雷达系统中的发射器用于发射电磁波信号。
这些信号通过天线发送到目标,并在目标上产生反射。
3. 接收器:雷达系统中的接收器用于接收从目标反射回来的电磁波信号。
接收器将这些信号转换成可供处理的数据。
4. 天线:雷达系统中的天线用于发射和接收电磁波信号。
天线的设计对雷达系统的性能有着重要影响。
6. 工作模式:雷达系统可以处于不同的工作模式,包括搜索模式和跟踪模式。
搜索模式用于在广阔范围内搜索目标,而跟踪模式用于精确跟踪已发现的目标。
7. 极坐标:雷达系统中常用的坐标系,用于描述目标的位置和距离。
极坐标通常由方位角和仰角组成。
8. 方位角:雷达系统中用于描述目标在水平方向上的位置的角度。
方位角通常从雷达系统正前方开始计算。
10. 系统灵敏度:雷达系统的灵敏度指的是系统能够检测到的最小信号强度。
灵敏度越高,系统可以探测到更小的目标。
11. 脉冲宽度:雷达系统发射的脉冲信号的宽度。
脉冲宽度影响雷达系统对目标的分辨能力。
13. 探测范围:雷达系统可以检测到目标的最大距离。
探测范围受到雷达系统功率、天线性能和目标反射特性的影响。
15. 杂波抑制:雷达系统通过对接收信号进行处理来抑制杂波的干扰。
杂波抑制能力影响雷达系统的性能和准确性。
16. 脉冲压缩:雷达系统通过脉冲压缩技术可以提高雷达系统的分辨率和目标跟踪能力。
17. 后向散射截面:后向散射截面是描述目标对雷达系统反射效果的物理量,它影响雷达系统对目标的探测和跟踪能力。
一种小规模超宽带相控阵天线设计柏艳英【摘要】目前基于阵元间强耦合效应已设计出超宽带相控阵天线,但是其规模较大.针对规模小或者在扫描方向上规模小,如何增强阵元间耦合而实现超宽带相控阵天线的问题,采用平衡对踵Vivaldi天线(BAVA)作为天线单元,优化天线单元辐射金属的形状,并采用镜像法布阵天线单元设计出一个小规模4×16的斜极化超宽带相控阵天线.仿真和试验结果表明,采用的方法可以增强小规模超宽带相控阵天线的阵元间耦合效应,实现频率0.8f0~2.0f0(f0为工作频率)驻波比小于2,法向增益达17.34~23.0 dBi,在±45°范围内实现无栅瓣扫描.该小规模超宽带相控阵天线已在实际工程中应用.%At present,a lot of ultra-wideband(UWB) phased arrays have been designed based on the strong mutual coupling between the array elements.But the UWB phased arrays are large.For a small scale or a small scale array in the scanning direction,the problem of how to achieve the ultra-wideband perform-ances by enhancing the mutual coupling between the array elements is necessary to be developed.In this paper,Balanced Antipodal Vivaldi Antennas (BAVAs) are adopted. By optimizing the radiation metal shape and arranging the direction of the antenna elements with mirroring technique,a small 4×16 oblique polarization UWB phased array is designed.The simulation and experiment results show that this method can enhance the mutual coupling between the small UWB array elements. The array has a good voltage standing-wave ratio(VSWR) less than 2.0 in the frequency 0.8f0~2.0f0(f0is the operation frequency), norm gain 17.34 ~23.0 dBi,and large scanning angle beyond 45° without gratinglobes. The designed small scale UWB phased array antenna has been applied in engineering.【期刊名称】《电讯技术》【年(卷),期】2018(058)002【总页数】5页(P214-218)【关键词】超宽带相控阵天线;平衡对踵Vivaldi天线(BAVA);阵元耦合;镜像技术;大角度扫描【作者】柏艳英【作者单位】中国西南电子技术研究所,成都610036【正文语种】中文【中图分类】TN822.81 引言超宽带相控阵天线是天线综合技术发展的一个重要方向,有利于满足成本、尺寸、重量、性能要求,减少传感器综合的天线总数,实现天线资源的高度综合和高效共享。
2ˑ2phased array consisting of square loop antennas for high gain wide angle scanning with low grating lobes [J].IEEE Transactions on Microwave Theory and Tech-niques,2017,65(2):576-583.[4]㊀WEN Y Q,WANG B Z,DING X.A wide -angle scanning and low sidelobe level microstrip phased array based on genetic algorithm optimization[J].IEEE Transactions on Antennas and Propagation,2016,64(2):805-810.[5]㊀MAILLOUX R J.Phased array antenna handbook[M].2nd ed.New York:Artech,2008.[6]㊀薛永,栾珊,王晓婷,等.相控阵天线在通信卫星中的应用分析[C]//中国飞行器测控学术年会论文集.北京:清华大学出版社,2018:20-29.[7]㊀朱文冰.星载合成孔径雷达的可靠性设计[J].现代雷达,2006,28(4):75-78.[8]㊀侯雪风,祝大龙,刘德喜,等.用于星际数传的S 波段四通道T 组件[J].遥测遥控,2018,39(3):43-47.[9]㊀KROENING A M.Advances in ferrite redundancy switc-hing for Ka -band receiver applications[J].IEEE Trans-actions on Microwave Theory and Techniques,2016,64(6):1911-1917.[10]㊀SINHA S,BANSA1D,RANGRA K J.RF MEMS com-pact t -type switch design for switch matrix applications in space telecommunication[C]//Proceedings of ICAE-SM -2012.Nagapattin:IEEE,2012:130-135.[11]㊀ZAHR1A H,ZHANG L Y,DORION C,et al.Long -term actuation demonstration of RF -MEMS switches for spaceapplications [C]//Proceedings of 2018Symposium on Design,Test,Integration and Packaging of MEMS and MOEMS.Roman:IEEE,2018:130-135.[12]㊀龚秀丽,孙绍强,李鑫.射频开关在高低温电测试试验中的失效分析及改进[J].电子设计工程,2016,24(23):115-121.[13]㊀严丰庆,钱澄.射频开关及其在通信系统中的应用[J].电子器件,2005,28(1):97-100.[14]㊀张凯,延波,徐锐敏.Ka 频段上变频模块的设计[J].电讯技术,2007,47(5):100-103.[15]㊀陈红卫.双频和3-6GHz 宽带功分器及其小型化研究与设计[D].昆明:云南大学,2015.[16]㊀SHI J,QIANG J,XU K,et al.A balanced branch -line coupler with arbitrary power division ratio [J ].IEEE Transactions on Microwave Theory and Techniques,2017,65(1):IEEE,2018:78-85.[17]㊀李东亚,薛红喜.新型3dB 电桥的设计[J].电讯技术,2009,49(11):90-93.[18]㊀POZAR D M.微波工程[M].张肇仪,周乐柱,吴德明,等译.3版.北京:电子工业出版社,2006.作者简介:姚亚利㊀女,1989年生于河南洛阳,2017年获博士学位,现为工程师,主要研究方向为相控阵天线㊂简讯‘电讯技术“继续入选中国科技核心期刊2020年12月29日,中国科学技术信息研究所(简称中信所)以在线会议方式召开 2020年中国科技论文统计结果发布会 ,发布了‘2020年版中国科技期刊引证报告(核心版)自然科学卷“㊂根据该报告,‘电讯技术“继续被收录为 中国科技核心期刊 (中国科技论文统计源期刊),且核心总被引频次㊁核心影响因子和综合评价总分等关键指标明显提升㊂‘2020年版中国科技核心期刊引证报告(核心版)自然科学卷“以‘中国科技论文与引文数据库(CST-PCD)“为基础,采用科学客观的研究方法与评价方式,通过定量评价与专家评审,遴选出了中国自然科学领域各个学科分类的重要期刊作为统计来源期刊㊂该卷收录了在中国(不含港澳台地区)正式出版的1949种中文期刊和121种英文期刊,共2070种 中国科技核心期刊 ㊂与2019年版相比,总量增加了21种,有26种中文期刊和10种英文期刊新入选,部分期刊因不符合学术质量和水平要求以及存在违规和学术不端行为被淘汰,体现了科技核心期刊的继承性与动态性㊂中信所的科技核心期刊遴选每年一次,选出的中国科技核心期刊是中国各学科领域中较重要的㊁能反映本学科发展水平的科技期刊,相关成果被科技管理部门和学术界广泛应用㊂四川省有87种自然科学类期刊入选,中国电子科技集团有限公司(中国电科)有17种期刊名列其中㊂本刊编辑部㊀赵勇㊃14㊃第61卷姚亚利:高可靠低功耗Ka 频段星载有源相控阵冗余备份技术第1期。
美军雷达命名规范按老美军用标准MIL-STD-196D规定,其军用电子设备(包括雷达)根据联合电子类型命名系统(JETDS)。
名称由字母AN(陆军-海军联合命名系统),一条斜线和另外三个字母组成。
三个字母表示设备安装位置,设备类型和设备用途。
比如AN/SPS-49表示舰载警戒雷达。
数字49标识特定装备,并且表示该设备时JETDS规定的SPS类的第49种。
经过一次修改F 地面固定G 地面通用K 水陆两用M 地面移动式U 通用V 地面车载W 水面或水下Z 有人和无人驾驶空中备C 载波设备D 放射性检测,指示,计算设备E 激光设备G 电报,电传设备I 内部通信和有线广播J 机电设备T 电话(有线)设备V 目视和可见光设备W 武器特有设备X 传真和电视设备H 记录K 计算M 维修或测试工具N 导航(测高,信标,有源滤波器Active filter有源校正网络Active corrective network有源干扰Active jamming 机载引导雷达Airborne director radar机载动目标显示 Airborne MTI机载雷达 Airborne radar机载截击雷达Airborne-intercept radar机载警戒雷达Airborne warning radar模拟信号 Analog signal战场侦察雷达 Battle-field search radar 盲区 Blind zone闪烁干扰 Blinking jamming击穿功率 Breakdown power 体效应二极管本地振荡器Bulk effect diode local oscillator宽带中频放大器Broad band intermediate frequency amplifier 机柜、分机结构Cabinet,器信道化接收机 Channelized receiver 圆极化平面波 Circularly polarized plane wave闭环控制系统(反馈控制系统)Close-loop control system (feed-back control system)杂波抑制 Clutter suppression同轴电缆 Coaxial cable 同轴谐振腔 Coaxial cavity连续波雷达接收机 Continuous-wave radar receiver对比度Contrast 卷积器Convolutor 变频损耗 Conversion loss 相关时间Correlation time抗反辐射导弹措施Counter anti-radiation missile measures正交场器件(M型器件)截数据处理 Data processing偏转线圈 Deflection coil延时充电电路Delayed charging circuit介质移相器Dielectric phase shifter介质干扰杆 Dielectric chaff rod数字滤波器 Digital filterE面(H面)折叠双T E plane (H plane) magic-T天线的有效面积 Effective area of an antenna电液伺服阀Electro-hydraulic Servo value电磁兼容性Electromagnetic compatibility电子抗干扰Electronic anti-jamming)radar快速付里叶变换Fast Fourier Transform馈电网络 Feed network 相控阵馈电网络Feed networks For Phased Array铁氧体移相器Ferrite phase shifter火控雷达 Fire control radar 频率炮瞄雷达 Gun directing radar 回旋管 Gyrotron测高雷达 Height-finding radar水平极化场矢量Horizontally polarized field vector喇叭天线 Horn antenna 环行电桥Hybrid ring液压泵 Hydraulic pumpa干扰调制样式 Jamming modulation type干扰信号带宽 Jamming signal band width速调管 Klystron激光雷达Laser radar 线阵天线Linear array antenna 负载阻抗Load impedance低空搜索雷达Low altitude微波带通滤波器Microwave band-pass filter微波场效应晶体管放大器 Microwave field effect transistor amplifier 微波全息雷达 Microwave hologram radar微波低通滤波器 Microwave low-pass filter副瓣电平 Minor (side) lobe level归一化差斜率Normalized difference slope单通道单脉冲雷达One-channel Monopulse Radar开环系统频率特性 Open-loop system frequency characteristic运算放大器 Operational Amplifier 超视距雷达 Over-the-horizon radar脉冲压缩雷达Pulse compression radar 脉冲雷达接收机 Pulse radar receiver相控阵的量化误差Quantization error of a phased array雷达精度 Radar accuracy 雷达反侦察 Radar anti-reconnaissance天线罩 Radome达三通道单脉冲雷达接收机Three-channel monopulse radar receiverT型(Y型)环行器(结环行器) T-type (Y-type) circulator (junctioncirculator)静电控制超高频电子管(栅控管) UHF electronstatic control tubeV形波束雷达 V-beam radar 座 X-Y type antenna pedestal八木天线 Yagi antenna雷达覆盖范围Zone of radar coverage。
联发科技,在大陆地区被习惯称呼为“联发科”,是著名IC设计生产厂商,专注于无线通讯及数字多媒体等技术领联发科的MT6575 Android平台嵌入式芯片域。
其提供的芯片整合系统解决方案,包含无线通讯、高清数字电视、光储存、DVD及蓝光等相关光电产品领域。
联发科技成立于1997 年,已在台湾证券交易所公开上市,股票代号为2454。
总部设于台湾,并设有销售或研发团队于中国大陆、印度、美国、日本、韩国、新加坡、丹麦、英国及迪拜等国家。
[1]联发科技提供创新的芯片系统整合解决方案,包括光储存、数字家庭(含高清数字电视、DVD播放器及蓝光播放器)及移动通讯等产品,为全球唯一提供IC解决方案横跨资讯科技(IT)、消费性电子及无线通讯领域的IC设计公司,同时也是全球IC设计公司前十名中唯一的亚洲公司。
联发科技致力提供高性能及稳定的芯片解决方案予客户,透过高度整合及深度定制化,不仅提供客户差异化空间、亦可大幅缩短产品上市时间,并与客户一起打造更好的用户体验。
自2006年起联发科技投入大量资源于「精品计划」,致力提供全球客户高整合、低功耗的高性能手机解决方案。
藉由多项硬件测试,与客户一起努力将消费者最关心的如通话/收讯质量、待机时间等项目质量共同开发臻世界水平。
编辑本段发展历史2012年2012年6月22日联发科与晨星宣布了合并的计划,根据双方的公开讯息,联发科将公开收购晨星股权,公开收购案将分2阶段进行,预定收购晨星40%至48%股权。
[2]2011年●荣获2011年度《电子设计技术》通信与网络“优秀产品奖”●荣获2011年度《通信世界》中国通信业年度龙虎榜“技术创新大奖-芯片创新奖”●荣获2011年度《电子产品世界》编辑推荐奖“最佳手机/便携处理平台”●荣获印度"多媒体通信基础设施协会"(CMAI Association of India)颁发 2011年第五届国家电信奖- “最佳移动电话技术“●荣获英国《金融时报》评选之“最具勇气企业奖”●荣获《中国电子报》颁发 "2010年度最受中国市场欢迎的半导体品牌"●2011年3月16日,联发科(MTK)通过换股并购Ralink雷凌公司,将Ralink 作为联发科旗下的无线技术事业群,2011年10月1日并购正式生效●2011年 5篇ISSCC 论文发表, 刷新国内产业界论文发表记录——- An Injection-Locked Ring PLL with Self-Aligned Injection Window- A 70Mb/s -100.5dBm Sensitivity 65nm lP MIMO Chipset for WiMaX Portable Router (Industrial Demo)- A Saw-Less GSM/GPRS/EDGE Receiver Embedded in a 65nm CMOS Soc (Industrial Demo)- A Receiver for WCDMA/EDGE Mobile Phones with Inductorless Front-End in 65nm CMOS- A GPS/Galileo Soc with Adaptive in-Band Blocker Cancellation in 65nm CMOS2010年●2010年12月成立联发科软件(武汉)有限公司手机单芯片解决方案荣获《EDN China 2010 年度创新奖》颁发“最佳通信产品奖”获《华尔街日报》评选为“2010年度亚洲最受尊敬企业200强”Top 10●2010年9月成立联发芯软件设计(成都)有限公司获美国《商业周刊》评选为世界科技100强第12名●获世界杰出华商协会评选为“2010全球最具成长性的华商上市公司”荣获WAPI产业联盟颁发“WAPI芯片贡献奖”ISSCC 论文发表--「23.6 A 1V 17.9dBm 60GHz Power Amplifier in Standard 65nm CMOS」及「11.3 A SiGe BiCMOS 16-Element Phased-Array Transmitter for 60GHz Communications」荣获TD-SCDMA产业联盟(TDiA)颁发TD芯片技术创新奖2009年●荣获2009年度科学工业园区创新产品奖 (High Sensitivity GPS SOC)手机单芯片解决方案荣获《通信产业报》颁发“编辑选择奖”荣获《通信产业报》评选为最佳终端芯片平台获《手机圈》传媒选为2009中国手机芯片企业金品奖十佳●( Global Semiconductor AllianceGSA20091. A Multi-Format Blu-ray Player SoC in 90nm CMOS2. A 1.2V 2MHz BW 0.084mm2 CT ΔΣADC with -97.7dBc THD and 80dB DR Using Low-Latency DEM3. A 250Mb/s-to-3.4Gb/s HDMI Receiver with Adaptive Loop Updating Frequencies and an Adaptive Equalizer4. A 110nm RFCMOS GPS SoC with 34mW -165dBm Tracking Sensitivity●荣获赛迪顾问评为"2009中国3G产业芯片领域最具竞争力企业” 获《天下杂志》评为第二届“天下企业公民TOP 50"2008年●连续第三年获全球半导体联盟 ( Global Semiconductor Alliance;GSA)选为2008“最佳财务管理的IC设计公司”●《天下杂志》评为第二届“天下企业公民TOP 50”●《远见杂志》评为第四届“远见企业社会责任奖”●首创台湾科技公司连续五年发表于IEEE ISSCC纪录——“A 1V 11b 200MS/s Pipelined ADC with Digital Background Calibration in 65nm CMOS”和“A F ractional Spur Free All-Digital PLL with Loop Gain Calibration and Phase Noise Cancellation for GSM/GPRS/EDGE”●荣获赛迪顾问评为"2008年中国手机芯片市场-成功企业" 荣获《中国电子报》选为 "2008年度最受中国市场欢迎的半导体品牌" 获世界杰出华商协会评选为2008全球华商高科技500强荣获2008年度科学工业园区创新产品奖(Full HD ATSC iDTV SOC)2007年●连续第二年获IC设计产业协会( Fabless Semiconductor Association;FSA)选为2007「最佳财务管理的IC设计公司」●ISSCC论文发表--「A 1V 11b 200MS/s Pipelined ADC with Digital Background Calibration in 65nm CMOS」和「A Fractional Spur Free All-Digital PLL with Loop Gain Calibration and Phase Noise Cancellation for GSM/GPRS/EDGE」(创台湾科技公司首位连续五年,共计七篇论文获选发表的纪录,也是今年台湾唯一入选的业界代表)●IEEE IRPS (International Reliability Physics Symposium)论文发表--「A new device reliability evaluation method for overdrive voltage circuit application」●获《Forbes Asia》杂志列为《亚洲企业50强》之一●获第十五届《经济部产业科技发展奖》之”卓越创新成就奖”●获《天下杂志》评为第十二届“台湾最佳声望标竿企业”●获《远见杂志》评为第三届“远见企业社会责任奖”●获《天下杂志》评为第一届“天下企业公民TOP 50”2006年●获IC设计产业协会( Fabless Semiconductor Association;FSA)选为2006「最佳财务管理的IC设计公司」●荣获2006年度科学工业园区创新产品奖( Blu-ray晶片组)●获《Forbes Asia》杂志列为《亚洲企业50强》之一●推出DTV数位电视晶片、Blu-ray晶片●ISSCC论文发表--Fully Integrated CMOS SoC for 56/18/16 CD/DVD-dual/RAM Applications●HDTV-reading SOC, Super-multi SOC●荣获2005年科学工业园区创新产品奖(Multimedia GSM/GPRS Mobile Phone Chipset)●ISSCC论文发表--Multi-Format Read/Write SoC for 7x Blu-ray/16xDVD/56xCD DLL-Based Clock Recovery In a PRML Channel●获《Forbes Asia》杂志列为《亚洲企业50强》之一●获《天下杂志》评为第十届“台湾最佳声望标竿企业”2004年●荣获2004年科学工业园区创新产品奖(DVD-Recorder Backend单晶片)●获Euromoney 04年全球最佳治理典范企业调查,排名居台湾地区高科技企业第三名●ISSCC论文发表--Combo Driver Applications●获《天下杂志》评为第九届“台湾最佳声望标竿企业”2003年●荣获2003年科学工业园区创新产品奖(8倍速DVD dual复写型光碟机晶片组) ●荣获第15届行政院国家品质奖●推出DVD-Dual晶片组●获选“数位时代双周刊”台湾科技100强第一2002年●荣获2002年科学工业园区创新产品奖(高倍数COMBI复合型光碟机晶片组) ●推出48XCD-RW晶片组●推出COMBI晶片组2001年●荣获2001年度科学工业园区创新产品奖(高整合度DVD-Player晶片组)●荣获第9届经济部产业科技发展奖之卓越成就奖●于台湾证券交易所正式挂牌上市,股票代号24542000年●荣获2000年科学工业园区创新产品奖(12/8/40倍数CD-R/RW晶片组)●推出12XCD-R/RW晶片组1999年●荣获1999年科学工业园区创新产品奖(12倍速DVD-ROM晶片组)●推出12X DVD-ROM晶片组●荣获1998年科学工业园区创新产品奖(CD-ROM Digital data/servo processor 产品)●推出全球最快速的48X CD-ROM晶片组1997年●五月公司成立编辑本段业务领域光储存领域◆光储存领域,联发科技领先全球推出包含CD-ROM、DVD-ROM、DVD-Player、CD-R/RW、Combi、DVD-RW等相关控制芯片组。
毕业设计(论文)外文文献翻译翻译(1)题目相控阵和雷达技术的突破翻译(2)题目发射KU-波段的相控阵天线在FSS通信系统中的应用学院电子信息学院专业英文译文1:相控阵和雷达技术的突破【摘要】许多人认为雷达是一个成熟的领域,不会发生任何新的变化,这种看法存在很久了,没有比这个看法更错误的了。
当我1950年参与到雷达领域的时候,我也有过同样的看法,例如,我认为麻省理工学院的雷达丛书已经是包罗万象了,不需要增加任何新的内容。
然而我是多么的错啊,从那时起雷达技术领域中已经发生了许多令人眼花缭乱的发展,雷达一直受益于Moore s定律和许多新的技术上的成果,例如,MMIC GaAs T/R组件和相控阵组件。
现在雷达技术发展得更快了,在这篇文章里,我将给出某些最近突破的例子。
【关键词】雷达;有源相控阵;MMIC;MEMS;T/R组件;相控阵;AESA;电扫;GaAs;GaN;SiC;CMOS;数字波束形成;自适应阵列;旁瓣对消器;超宽带天线;金属材料;电子管;真空电子器件;回旋管;磁控管;速调管;行波管;微波功率组件;MPM;功率放大组件;SBX;GBR—P0:SEA-BASED X-波段雷达24层楼高的SEA-BASED X-波段相控阵雷达是一个世界奇迹。
1:GaAs MMIC T/R模块(单片微波集成电路)在过去的十年成功和广泛的应用了MMIC和AESA(有源电子扫描阵)2:低成本¥19K AESA谁说AESA是非常昂贵的,在DARPA(Defense Advanced Research Projects Agency美国国防部先进研究项目局)的低资金¥19K资助下使35GHZ相控阵成为可能。
DARPA 已经资助发展了¥10 X-band,10’smW,单T/R芯片模块。
3:低成本的MEMS(微机电系统)相控阵即使我们只有一个低损耗的移相器,那么就能够用在一个模块上安装很多的移相而MEMS提供了这个可能。
A 16-Element Phased-Array Receiver IC for 60-GHzCommunications in SiGe BiCMOSScott K. Reynolds1, Arun S. Natarajan1, Ming-Da Tsai2, Sean Nicolson3, Jing-Hong Conan Zhan2, Duixian Liu1, Dong G. Kam1, Oscar Huang2, Alberto Valdes-Garcia1, Brian A. Floyd1 1IBM T. J. Watson Research Center, Yorktown Heights, New York, USA2MediaTek Inc., HsinChu, Taiwan3MediaTek Inc., San Jose, California, USAAbstract — A 0.12-µm SiGe phased-array Rx IC forbeam-steered wireless communication in the 60-GHz band is described. It has 16 RF phase-shifting front-ends with 11º digital phase resolution and hybrid passive-active RF signalcombining. It achieves 7.4-7.9 dB NF (not including 12-dB array gain) over the 4 IEEE channels. The IC has a double-conversion superheterodyne Rx core with a maximum of 72dB of power gain in 1-dB steps, and the on-chip synthesizer achieves < -90 dBc/Hz Rx phase noise at 1MHz offset. The IC draws 1.8 W at 2.7 V with a die area of 38 mm2. It has been packaged with 16 antennas in a 288-pin organic BGA and phased-array beamsteering has been demonstrated, along with 5+ Gb/s wireless links using 16-QAM OFDM.Index Terms — Phased-arrays, beam steering, 60 GHz, millimeter-wave, receiver, SiGe.I. I NTRODUCTIONThe 57 to 66-GHz band supports extremely high-rate (1-10 Gb/s) wireless digital communication; however, fixed-antenna 60-GHz systems are sensitive to obstructions in the line-of-sight (LOS). Multi-element phased-array systems can overcome LOS limitations of the 60-GHz band and have recently attracted widespread research interest [1]-[2]. This paper presents a 16-element phased-array receiver (Rx) IC implemented in 0.12-µm SiGe BiCMOS (f T = 200 GHz). Compared to other reports in the literature, it offers low NF, precision phase shifting, and very high integration level. Combined with a 16-element antenna, the overall phased-array system enables non-LOS communication and can significantly improve either system SNR or link budget.II. C HIP A RCHITECTUREFig. 1 shows a block diagram of the Rx, which employs RF-path phase shifting followed by mostly-passive RF signal combining. Each of the 16 Rx inputs is applied to an RF front-end consisting of a stepped-gain LNA, a digitally-controlled phase shifter, a balun, and a phase-inverting (0/180) VGA (PIVGA), similar to the phase-shifting front-end in [3]. Fine phase control (11±3º digital resolution, 0º to 180º) is achieved through a reflection-type phase shifter (RTPS), which consists of varactor-adjusted loads on a 90º-hybrid coupler. An additional 180º phase shift is achieved by inverting the output phase in the differential PIVGA following the passive phase shifter. The PIVGA also compensates for the phase-shift dependent loss of the RTPS, ensuring constant front-end gain across phase shift settings. Each of the (N = 16) RF front-ends draws 22 mA from 2.7 V, while the system SNR (in dB) improves as )(log1010N×.Following the front-ends is a 4-stage binary RF power-combining tree, detailed in Fig. 2. The passive power combining uses a modified Gysel combiner. By introducing a cross-coupled t-line between the outputs as shown, the combiner achieves isolation between them, while a) not requiring the outputs to be colocated as in a differential Wilkinson divider, and b) reducing the required t-line length required in a Gysel divider [4]. The reduced signal routing saves 0.5-1.0 dB per combining level, and the overall combining tree area is reduced about 50% compared to a Wilkinson tree. An active combiner provides gain and buffering in the third stage of combining to compensate for the passive losses, and also allows for power down and isolation of groups of 4 front-ends. A final modified Gysel combiner provides the input signals for the RF down-conversion mixer and IF circuits.In the case of the 16-element array, the input power intothe RF mixer can be theoretically 12 dB higher (8-10 dB including losses) than in the case of a single-element Rx [5]; hence, the system required an RF mixer and IF strip with wide dynamic range. The double-balanced Gilbert mixer has iP1dBof -4 dBm and SSB NF of 11 dB. The 50-55.5 GHz LO is provided by a frequency tripler operating from the 16.7-18.5 GHz synthesizer output.RTU2C-3The 1st mixer output passes through a tunable IF filter and a coarse (6-dB step) attenuator before being buffered and converted to a baseband signal by a second set of quadrature (IQ) mixers. The 2nd LO for the IQ mixers is provided by a divide-by-2 operating from the synthesizer output. A phase rotator following the divide-by-2 allows IQ accuracy to be adjusted to within ±1º. An IF loop-back calibration scheme with the companion Tx IC [6] permits finer IQ adjustment in the baseband.The IQ calibration VGA in Fig. 1 allows path gain to be adjusted so calibration can be performed over baseband gain settings. The baseband signal passes through a cascade of coarse and fine (1-dB) step attenuators and 16-dB fixed gain amplifiers to provide the required gain range. The baseband output buffer has 100 ohm differential output impedance and is designed to drive > 500 mVppd into a 100 ohm differential load in the baseband ADC. Overall, the Rx core (Fig. 1) provides +50 to -10 dB of gain in 1-dB steps. For fast AGC, all Rx gain control bits are grouped into 2 registers, which can be written in two 7.5-ns clock cycles.III. M EASUREMENT S UMMARYFig. 3 shows Rx RF response along with the responses for each of the 4 IEEE channels, measured from a single input at maximum gain to output. RF response is measured by sweeping both the LO and RF frequencies to maintain constant 100MHz baseband output frequency. The Rx channel responses are measured for constant LO and swept RF input frequency. Explicit baseband low-pass filters (for adjacent-channel rejection) have not been included, but IF filters and baseband amplifier bandwidths together produce very nearly the desired ±1 GHz channel responses.Fig. 4 illustrates performance of the phase-shifting front-ends. Each front-end achieves 360° phase shift in all channels, and gain is equalized over all phase-shifter settings by adjusting the PIVGA. Normalized output power for 8 individual elements across phase shift settings is shown, demonstrating constant gain. Fig. 4 also shows two-element combined output power with the phase settings of one element held constant while the phase shift in the other element is varied. As expected, there is a 6dB increase in output power when the two elements are in phase while minimum output power occurs when the two elements have a relative phase difference of 180°. This measurement was repeated pair-wise across 16 elements with worst-case peak-to-null ratio of 19 dB. Matching of phase shift and gain over phase-shifter settings wasFig. 1. Block diagram of the 16-Element RF-Combined Phased-Array Receiver. Signals following the 0/180 VGA are differential.λ/4λ/4DACDACλ/4λ/4OutIn2RFig. 2. Architecture of the mostly-passive RF power combining tree, with inset schematics of the active power combiner and modified Gysel combiner, and simplified layoutRF68678910111213Front-EndNF,dBGainCh 1Ch 2Ch 3Ch 4FrontEndNF Receiver RF Gain, Channel Response, Front-End NFFigure 3: Measured receiver RF gain, along with the responses for each of the four IEEE channels, and front-end NF over frequency.measured across a wafer, with σ = 1.4º and 0.8 dB, respectively.Fig. 5 combines several measurements to illustrate Rx dynamic range performance, as attenuator settings are increased from 0 to 69 dB. The middle curve is the input 1-dB compression point (iP 1dB , referred to a single input) at each attenuator step, assuming all 16 inputs are driven at the same power level, and the top curve is the corresponding output 1-dB compression point (oP 1dB ). The attenuation sequence avoids compressing internal stages while maintaining the best possible sensitivity. Since we cannot simultaneously drive all 16 inputs, this data is compiled from measurements on the full Rx, Rx core, and RF front-ends.For phased-array NF, we follow the approach of Lee [7] and do not include array gain in the Rx NF determination. For link budgeting, array gain is best allocated to the antenna gain. Overall Rx NF is specified when all inputs are driven at the same power level. Since such a measurement is impractical, the NF is computed from front-end NF and single-element Rx NF measurements [7]. The Rx NF versus attenuation setting is shown in the lower curve in Fig. 5 (22ºC, Ch. 2, max. phase-shifter loss). The abrupt increases in NF as Rx gain is reduced occur as LNA gain is reduced in 8 and 18-dB steps.Table 1 summarizes Rx performance. Higher power consumption at 65ºC is due primarily to increased front-end bias current to partially counteract the decrease in LNA gain as temperature rises. The 330k FETs are mostlyFig. 4. Two-element phase shifter measurements, showing equalized gain over phase shifter settings for each element individually, as well as the power-combined response with one element swept while the other is held constant.Figure 5: Receiver input compression point (iP 1dB , referred to a single input), output compression point (oP 1dB , with combined power from 16 inputs), and NF versus receiver gain, as the digital attenuation settings are increased in 1-dB steps from 0 to 69 dB.Table 1. Table summarizing Rx performance over the 4 IEEE channels at 22ºC and 65ºC. Measured by wafer probing.Front-End NF, max. phase shifter oIP3, in-channel 500-GHzGHzGHz -GHz Channel bandwidth (3 dB), 22ºIQ Gain and Phase Error (before fine iIP3, in-channel 300-Rx NF, max phase shifter loss Maximum Rx Power Gain 64.80 62.64 60.48 58.32 6.5 dB 6.9 dB 7.3 dB 7.9 dB 6.8 dB 7.7 dB 6.8 dB 7.4 dBloss 222ºC 65ºC+7.7 dBm & 600-MHz tones, max. Rx gain6.08 x 6.2 mm 2, 1.94k NPNs, 330kFETsSize, Device Count1.8 W,2.0 W (2.7-V supply)Power 22ºC, 65ºC < -90 dBc/HzRx Phase Noise, 1-MHz offset ≥±1 ≥±1 >+1 0.9 GHz≥±1 C & 65ºC±1 dB, ±1ºcal)> 360º, ≈11ºPhase tuning range and resolution -23 dBm& 400-MHz tones, 12-dB total Rx gain, max. LNA gain 1-1 dBm oP 1dB , max. Rx gain-16 dBm iP 1dB , 0-dB Rx gain, min. LNA gain 17.6 dB 8.5 dB7.9 dB 8.7 dB7.4 dB 8.4 dB7.4 dB 8.2 dB 322ºC 65ºC68 dB 70 dB 71 dB 70 dB 1Ch 4GHz Ch 3GHz Ch 2GHz Ch 1GHz1. Total output power divided by total input power, assuming all 16 inputs aredriven at the same power.2. Measured on a separate testsite.3. Overall Rx NF, referred to a single input, assuming all inputs are driven at thesame power, not including 12-dB array gain.4. All data for 22ºC unless otherwise stated.used for memory to store programmed beam directions; in Fig. 6, the registers are hidden under the front-ends.In Fig. 7, the Rx IC is shown packaged with 16 planar antennas. Fig. 8 shows phased-array antenna patterns for the packaged IC, recorded in our antenna chamber. A beam direction of 0º is normal to the package plane.The Rx IC (with the companion Tx IC) has been used in beam-steered, non-line-of-sight, 4.5-m, 5.3 Gb/s, 16-QAM wireless links, in each of the 4 IEEE channels. The links used 6 Tx elements and 12 Rx elements, and occupied the bandwidth of a single 2.16-GHz IEEE channel.IV. C ONCLUSIONThis 16-element phased-array Rx uses a novel modified-Gysel power combiner and achieves high integration level and low NF. Packaged ICs with antennas have been used in beam-steered, NLOS wireless links at >5 Gb/s data rates in each of the 4 IEEE channels.A CKNOWLEDGEMENTThe authors acknowledge John Zhongxuan Zhang, Young Kim, Hsin-Hung Chen, Sammi Chan, Rodel Anonuevo, Lay-Poh Loh, and Doris Lee of MediaTek, and Ben Parker, Sakshi Dhawan, Don Beisser, Sudhir Gowda, and Mehmet Soyuer of IBM for their contributions.R EFERENCES[1] E. Cohen, C. akobson, S. Ravid, and D. Ritter, “Abidirectional TX/RX four element phased-array at 60GHz with RF-IF conversion block in 90nm CMOS process”, IEEE RFIC Symp., pp. 207-210, June 2009.[2] Y. Yu, P. Baltus, A. von Roermund, A. de Graauw, E. vander Heijden, M. Collados, and C. Vaucher, “A 60GHzDigitally Controlled RF-Beamforming Rx Front-end in 65 nm CMOS”, IEEE RFIC Symp., pp. 211-214, June 2009. [3] A. Natarajan, M.-D. Tsai, and B. Floyd, “60GHz RF-pathPhase-shifting Two-element Phased-array Front-end in Silicon”, IEEE VLSI Symp., pp. 250-251, June 2009.[4] U. H. Gysel , “A New N-Way Power Divider/CombinerSuitable for High-Power Applications,” IEEE MTT-S IMS Digest , May 1975, pp. 116-118.[5] S. Reynolds, B. Floyd, U. Pfeiffer, T. Beukema, J. Grzyb,C. Haymes, B. Gaucher, and M. Soyuer, “A Silicon 60-GHz Receiver and Transmitter Chipset”, IEEE JSSC , v.41, n. 12, pp. 2820-2831, Dec. 2006.[6] A. Valdes-Garcia, S. Nicolson, J.-W. Lei, A. Natarajan, P.-Y. Chen, S. Reynolds, J.-H. C. Zhan, and B. Floyd, “A SiGe BiCMOS 16-Element Phased-Array Transmitter for 60-GHz Communications”, ISSCC Dig. Tech. Papers, pp. 218-219, Feb. 2010.[7] J. J. Lee, “G/T and Noise Figure of Active ArrayAntennas”, IEEE Trans. Ant. Prop., v. 41, n. 2, pp. 241-244, Feb. 1993.Fig. 6. Chip photo, 6.08 x 6.2 mm 2 die size.Fig. 7. The Rx IC packaged with 16 antennas in a 288-pin (28x28 mm 2) organic BGA. The white material is thermally conductive paste.Beam Direction, degreesFig. 8. Normalized 8-element antenna patterns, as the beam is steered from 0º to 30º and 45º.。