2021高考数学一轮复习第十章第3讲二项式定理学案含解析.doc
- 格式:doc
- 大小:284.50 KB
- 文档页数:10
2021年高考数学一轮复习 10.3 二项式定理时作业 理(含解析)新人教A 版一、选择题1.(xx·烟台市适应性练习(一))在⎝ ⎛⎭⎪⎫x 3-3x 6的二项展开式中,x 2的系数为( )A .-427B .-227 C.227 D.427解析:由二项展开式的通项式T r +1=C r6⎝ ⎛⎭⎪⎫136-r·(-3)r ·x 3-r ,令3-r =2,得r =1.则x 2项的系数为C 16·⎝ ⎛⎭⎪⎫135·(-3)1=-227.答案:B2.(xx·青岛市高三自评试题)若(1-x )n=1+a 1x +a 2x 2+a 3x 3+…+a n x n (n ∈N *),且a 1∶a 3=1∶7,则n =( )A .8B .9C .7D .10解析:由二项式定理知a 1=C 1n ,a 3=C 3n ,故C 3nC 1n=7⇒(n -1)(n -2)=42,得(n -8)(n +5)=0⇒n =8或n =-5(舍),故选A.答案:A3.(xx·郑州第三次质量预测)设a =⎠⎛0πsin x d x 则二项式⎝⎛⎭⎪⎫ax -1x 8的展开式中x 2项的系数是( )A .-1 120B .1 120C .-1 792D .1 792解析:由题意a =⎠⎛0πsin x d x =-cos x ⎪⎪⎪π0=2,则二项式⎝⎛⎭⎪⎫2x -1x 8展开式的通项式为T r +1=C r8(2x)8-r·⎝⎛⎭⎪⎫-1x r =C r 8(-1)r 28-r·x8-32 r ,令8-32r =2,得r =4,所以x 2项的系数为C 4824=1 120,故选B .答案:B4.(xx·济宁市模拟)设a =⎠⎛12(3x 2-2x)d x ,则二项式⎝ ⎛⎭⎪⎫ax 2-1x 6展开式中的第4项为( )A .-1 280x 3B .-1 280C .240D .-240解析:a =⎠⎛12(3x 2-2x)d x =(x 3-x 2)⎪⎪⎪21=4,所以⎝⎛⎭⎪⎫4x 2-1x 6展开式第四项为C 36(4x 2)3⎝ ⎛⎭⎪⎫-1x 3=-1 280 x 3,选A .答案:A5.(xx·山东滨州联考)在⎝⎛⎭⎪⎪⎫x 2-13x n的展开式中,只有第5项的二项式系数最大,则展开式中常数项是( )A .-7B .-28C .7D .28解析:依题意,n 2+1=5,∴n=8.二项式为⎝⎛⎭⎪⎪⎫x 2-13x 8,易得常数项为C 68⎝ ⎛⎭⎪⎫x 22⎝ ⎛⎭⎪⎪⎫-13x 6=7. 答案:C6.若(x +y)9按x 的降幂排列的展开式中,第二项不大于第三项,且x +y =1,xy<0,则x 的取值范围是( )A .⎝ ⎛⎭⎪⎫-∞,15 B .⎣⎢⎡⎭⎪⎫45,+∞ C .⎝⎛⎦⎥⎤-∞,-45D .(1,+∞)解析:二项式(x +y)9的展开式的通项是T r +1=C r9·x9-r·y r.依题意有⎩⎪⎨⎪⎧C 19·x 9-1·y≤C 29·x 9-2·y 2x +y =1xy<0,由此得⎩⎪⎨⎪⎧x 8·1-x -4x 7·1-x 2≤0x 1-x <0,由此解得x>1,即x 的取值范围是(1,+∞).答案:D7.(xx·3月襄阳市普通高中调研)若(1-2x)2 013=a 0+a 1x +…+a 2 013x2 013(x ∈R ),则a 12+a 222+…+a 2 01322 013的值为( ) A .2 B .0 C .-1 D .-2 解析:观察所求数列和的特点,令x =12可得a 0+a 12+a 222+…+a 2 01322 013=0,所以a 12+a 222+…+a 2 01322 013=-a 0,再令x =0可得a 0=1,因此a 12+a 222+…+a 2 01322 013=-1.答案:C8.(xx·湖北武汉调研测试)⎝ ⎛⎭⎪⎫x +12x 8的展开式中常数项为( )A.3516 B.358 C.354D .105 解析:⎝ ⎛⎭⎪⎫x +12x 8=2x +182x8=1+2x 828x4,展开式中常数项即为(1+2x )8中含x4的项为C 48(2x )4,故常数项为C 482428=C 48·2-4=358.答案:B9.(xx·安徽省“江南十校”高三联考)若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 1+a 3+…+a 9)2-(a 0+a 2+…+a 8)2=-39,则实数m 的值为( )A .1或-3B .-1或3C .1D .-3 解析:(a 1+a 3+…+a 9)2-(a 0+a 2+…+a 8)2=(a 0+a 1+…+a 9)(a 1-a 0+a 3-a 2+…+a 9-a 8)=-39令x =0得a 0+a 1+…+a 9=(2+m )9令x =-2,得a 0-a 1+a 2-a 3+…+a 8-a 9=m 9所以(a 0+a 1+…+a 9)(a 0-a 1+a 2-a 3+…+a 8-a 9)=(m 2+2m )9=39所以m 2+2m =3,解得m =-3或m =1,选A. 答案:A 二、填空题10.(xx·陕西卷)(a +x )5展开式中x 2的系数为10,则实数a 的值为________. 解析:因为(a +x )5=C 05a 5+C 15a 4x +C 25a 3x 2+C 35a 2x 3+C 45ax 4+C 55x 5, 所以C 25a 3=10a 3=10.所以a 3=1,a =1. 答案:111.(xx·山西大学附属中学高三月考)设a =⎠⎛0π(sin x +cos x )dx ,则二项式(a x -1x)6展开式中含x 2项的系数是________.解析:a =⎠⎛0π(sin x +cos x )dx =(-cos x +sin x )⎪⎪⎪π0=2sin(x -π4)⎪⎪⎪π=2,二项式⎝⎛⎭⎪⎫2x -1x 6展开式中含x 2项为:C 16(2x )5·⎝⎛⎭⎪⎫-1x =-192x 2, 所以x 2的系数为:-192. 答案:-19212.(xx·贵州省六校第一次联考)(x +1)(1-2x )5展开式中,x 3的系数为________(用数字作答).解析:本题是二项式定理计算系数的题,可以从以下角度来思考:x 3的来源有两种,一种是从第一个括号里面取出一个x ,从第二个括号里面取出x 2,此时x 3的系数为C 25(-2)2=40;另外一种是第一个括号取出常数,第二个括号取出x 3,此时x 3的系数为C 35(-2)3=-80,故总的系数为-40.答案:-4013.(xx·黄冈质检)已知a =⎠⎛1-1(1+1-x 2)d x ,则⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a -π2x -1x 6展开式中的常数项为________.解析:令y =1+1-x 2,则x 2+(y -1)2=1(y≥1),如图可看出a =⎠⎛1-1(1+1-x 2)d x 表示的面积是a =2×1+π2=2+π2,∴⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a -π2x -1x 6=⎝ ⎛⎭⎪⎫2x -1x 6,由二项式定理,T r +1=(-1)r·C r6·26-r·x6-r·x -r =(-1)r ·C r 6·26-r·x6-2r,要求展开式的常数项,则6-2r =0,即r =3,∴(-1)3·C 36·26-3=-20×8=-160.答案:-16014.(1+x +x 2)⎝ ⎛⎭⎪⎫x -1x 6的展开式中的常数项为________. 解析:⎝ ⎛⎭⎪⎫x -1x 6的通项为T r +1=C r 6(-1)r x 6-2r ,当r =3时,T 4=-C 36=-20,当r =4时,T 5=C 46=15,因此常数项为-20+15=-5.答案:-515.(xx·安徽省江南十校高三开学第一考)二项式⎝ ⎛⎭⎪⎫ 2x -1x 4的展开式中所有有理项的系数和等于________.(用数字作答)解析:T r +1=C r6·(2x)6-r·(-1)r ·x -r =(-1)r C r 626-rx6-3r2,r =0,1,2,3,4,5,6,当r =0,2,4,6时,T r +1=(-1)r C r 626-rx6-3r2为有理项,则所有有理项的系数 和为C 0626+C 2624+C 4622+C 6620=365. 答案:36516.(xx·山东烟台高三测试)若⎝⎛⎭⎪⎫x 2-1x n 的展开式中含x 的项为第6项,设(1-3x)n=a 0+a 1x +a 2x 2+…+a n x n,则a 1+a 2+…+a n 的值为________.解析:T 6=C 5n (x 2)n -5(-x -1)5=-C 5n x2n -15,其中2n -15=1,∴n=8,令x =1得(1-3)8=256=a 0+a 1+…+a 8,令x =0得(1-0)8=1=a 0,∴a 1+a 2+…+a 8=256-1=255.答案:255 [热点预测]17.(1)(xx·马鞍山高中毕业班第一次教学质量检测)已知⎝⎛⎭⎪⎫x 2-1x n的展开式中第三项与第五项的系数之比为314,则展开式中常数项是________.(2)(xx·郑州市高中毕业年级第二次质量预测)在二项式⎝⎛⎭⎪⎪⎫x +124x n 的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为( )A .16B .14C .13D .512解析:(1)第三项的系数a 2=C 2n(-1)2=C 2n,第五项的系数a 4=C 4n(-1)4=C 4n,C 2nC 4n=12n -2n -3=314,∴n=10,T r +1=C r 10x 2(10-r)(-x - 12 )r =C r 10(-1)r ,由20-52r =0得r =8,所以常数项为C 810(-1)8=45.(2)展开式中前三项的系数分别为a 1=C 0n =1,a 2=C 1n ⎝ ⎛⎭⎪⎫12=n 2,a 3=C 2n ⎝ ⎛⎭⎪⎫122=n n -18,a 1,a 2,a 3成等差数列,所以有2×n 2=1+n n -18,解得n =8或n =1(舍),则T r +1=C r 8⎝ ⎛⎭⎪⎫12x - 14 r=C r 8⎝ ⎛⎭⎪⎫12r,其中r =0,1,2,…,8,当r =0,4,8时为有理项,其展开式共有9项,重新排成一排,有理项互不相邻的概率为A 66A 37A 99=512,故选D .答案:(1)45 (2)D |P?36834 8FE2 迢36387 8E23 踣u32453 7EC5 绅28966 7126 焦35132 893C 褼f(26649 6819 栙;22184 56A8 嚨9。
§10.3二项式定理1.二项式定理二项式定理(a+b)n=C0n a n+C1n a n-1b1+…+C r n a n-r b r+…+C n n b n(n∈N*)二项展开式T r+1=C r n a n-r b r,它表示第r+1项的通项公式二项式系数二项展开式中各项的系数C0n,C1n,…,C n n2.二项式系数的性质+C m n.(1)C0n=1,C n n=1,C m n+1=C m-1n(0≤m≤n).C m n=C n-mn(2)二项式系数先增后减中间项最大.当n 为偶数时,第n 2+1项的二项式系数最大,最大值为2Cnn,当n 为奇数时,第n +12项和第n +32项的二项式系数最大,最大值为12Cn n -或12Cn n+.(3)各二项式系数和:C 0n +C 1n +C 2n +…+C n n =2n ,C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n+…=2n -1. 概念方法微思考1.(a +b )n 与(b +a )n 的展开式有何区别与联系?提示 (a +b )n 的展开式与(b +a )n 的展开式的项完全相同,但对应的项不相同而且两个展开式的通项不同.2.二项展开式中二项式系数最大时该项的系数就最大吗?提示 不一定最大,当二项式中a ,b 的系数为1时,此时二项式系数等于项的系数,否则不一定.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)C r n an -r b r是(a +b )n 的展开式的第r 项.( × ) (2)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( √ ) (3)二项展开式中,系数最大的项为中间一项或中间两项.( × )(4)(a +b )n 某项的系数是该项中非字母因数部分,包括符号等,与该项的二项式系数不同.( √ ) 题组二 教材改编2.(1+2x )5的展开式中,x 2的系数等于( ) A .80 B .40 C .20 D .10 答案 B解析 T r +1=C r 5(2x )r =C r 52r x r ,当r =2时,x 2的系数为C 25·22=40. 3.若⎝⎛⎭⎫x +1x n 展开式的二项式系数之和为64,则展开式的常数项为( ) A .10 B .20 C .30 D .120 答案 B解析 二项式系数之和2n =64,所以n =6,T r +1=C r 6·x 6-r ·⎝⎛⎭⎫1x r =C r 6x 6-2r,当6-2r =0,即当r =3时为常数项,T 4=C 36=20.4.若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为( ) A .9 B .8 C .7 D .6 答案 B解析 令x =1,则a 0+a 1+a 2+a 3+a 4=0,令x =-1,则a 0-a 1+a 2-a 3+a 4=16,两式相加得a 0+a 2+a 4=8.题组三 易错自纠5.(x -y )n 的二项展开式中,第m 项的系数是( )A .C m nB .C m +1n C .C m -1nD .(-1)m -1C m -1n答案 D解析 (x -y )n 二项展开式第m 项的通项为T m =C m -1n(-y )m -1x n-m +1,所以系数为C m -1n(-1)m -1. 6.已知⎝⎛⎭⎪⎫x +a 3x n (a 为常数)的展开式的二项式系数之和为32,常数项为80,则a 的值为( ) A .1 B .±1 C .2 D .±2 答案 C解析 根据题意,该二项式的展开式的二项式系数之和为32,则有2n =32,可得n =5,则二项式的展开式通项为T r +1=C r 5(x )5-r ·⎝ ⎛⎭⎪⎫a 3x r =a r C r 51556rx -,令15-5r 6=0,得r =3,则其常数项为C 35a 3,根据题意,有C 35a 3=80,可得a =2.7.在⎝⎛⎭⎫2x 2-1x n 的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为________. 答案 1解析 因为所有二项式系数的和是32,所以2n =32,解得n =5. 在⎝⎛⎭⎫2x 2-1x 5中,令x =1可得展开式中各项系数的和为(2-1)5=1.多项展开式的特定项命题点1 二项展开式问题例1 (1)(2020·山东模拟)⎝⎛⎭⎫1x -x 10的展开式中x 4的系数是( ) A .-210 B .-120 C .120 D .210答案 B解析 由二项展开式,知其通项为T r +1=C r 10⎝⎛⎭⎫1x 10-r (-x )r =(-1)r C r 10x 2r -10, 令2r -10=4,解得r =7. 所以x 4的系数为(-1)7C 710=-120.(2)(2019·浙江)在二项式(2+x )9的展开式中,常数项是________,系数为有理数的项的个数是________. 答案 162 5解析 该二项展开式的第r +1项为T r +1=C r 9(2)9-r x r ,当r =0时,第1项为常数项,所以常数项为(2)9=162;当r =1,3,5,7,9时,展开式的项的系数为有理数,所以系数为有理数的项的个数为5.命题点2 两个多项式积的展开式问题例2 (1)(1+2x 2)(1+x )4的展开式中x 3的系数为( ) A .12 B .16 C .20 D .24 答案 A解析 展开式中含x 3的项可以由“1与x 3”和“2x 2与x ”的乘积组成,则x 3的系数为C 34+2C 14=4+8=12.(2)⎝⎛⎭⎫1+1x 2(1+x )6的展开式中x 2的系数为( )A .15B .20C .30D .35 答案 C解析 因为(1+x )6的通项为C r 6x r ,所以⎝⎛⎭⎫1+1x 2(1+x )6的展开式中含x 2的项为1·C 26x 2和1x 2·C 46x 4. 因为C 26+C 46=2C 26=2×6×52×1=30, 所以⎝⎛⎭⎫1+1x 2(1+x )6的展开式中x 2的系数为30. 故选C.命题点3 三项展开式问题例3 (1)(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30 D .60 答案 C解析 方法一 利用二项展开式的通项求解. (x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3·y 2. 其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2的系数为C 25C 13=30.故选C.方法二 利用排列组合知识求解.(x 2+x +y )5为5个x 2+x +y 之积,其中有两个因式取y ,剩余的三个因式中两个取x 2,一个取x 即可,所以x 5y 2的系数为C 25C 23C 11=30.故选C.(2)(2020·合肥检测)⎝⎛⎭⎫x -1x +15展开式中的常数项为( ) A .1 B .11 C .-19 D .51 答案 B解析 ⎝⎛⎭⎫x -1x +15=⎣⎡⎦⎤⎝⎛⎭⎫x -1x +15 展开式的通项为T r +1=C r 5⎝⎛⎭⎫x -1x 5-r 当r =5时,常数项为C 55=1,当r =3时,常数项为-C 12C 35=-20, 当r =1时,常数项为C 45C 24=30.综上所述,常数项为1-20+30=11.思维升华 (1)求二项展开式中的特定项,一般是化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数r +1,代回通项公式即可.(2)对于几个多项式积的展开式中的特定项问题,一般都可以根据因式连乘的规律,结合组合思想求解,但要注意适当地运用分类方法,以免重复或遗漏. (3)对于三项式问题一般先变形化为二项式再解决.跟踪训练1 (1)(x 2+x +1)(x -1)4的展开式中,x 3的系数为( ) A .-3 B .-2 C .1 D .4 答案 B解析 (x -1)4的通项为T r +1=C r 4x 4-r (-1)r ,(x 2+x +1)(x -1)4的展开式中,x 3的系数为C 34(-1)3+C 24(-1)2+C 14(-1)=-2,故选B.(2)(x +a )10的展开式中,x 7项的系数为15,则a =______.(用数字填写答案) 答案 12解析 通项为T r +1=C r 10x 10-r a r ,令10-r =7, ∴r =3,∴x 7项的系数为C 310a 3=15,∴a 3=18,∴a =12.(3)(1+2x -3x 2)5展开式中x 5的系数为________. 答案 92解析 方法一 (1+2x -3x 2)5=[(1+2x )-3x 2]5=C 05(1+2x )5+C 15(1+2x )4(-3x 2)+C 25(1+2x )3(-3x 2)2+…+C 55(-3x 2)5, 所以x 5的系数为C 05C 5525+C 15C 34×23×(-3)+C 25C 13×2×(-3)2=92.方法二 (1+2x -3x 2)5=(1-x )5(1+3x )5,所以x 5的系数为C 05C 5535+C 15(-1)C 4534+C 25(-1)2C 3533+C 35(-1)3C 2532+C 45(-1)4C 1531+C 55(-1)5C 0530=92.二项式系数的和与各项系数的和问题命题点1 二项式系数和与系数和例4 (1)(2019·郑州一中测试)若二项式⎝⎛⎭⎫x 2-2x n 的展开式的二项式系数之和为8,则该展开式每一项的系数之和为( ) A .-1 B .1 C .27 D .-27 答案 A解析 依题意得2n =8,解得n =3.取x =1得,该二项展开式每一项的系数之和为(1-2)3=-1.(2)(2019·宣城调研)若(2-x )7=a 0+a 1(1+x )+a 2(1+x )2+…+a 7(1+x )7,则a 0+a 1+a 2+…+a 6的值为( ) A .1 B .2 C .129 D .2 188答案 C解析 令x =0得a 0+a 1+a 2+…+a 7=27=128, 又(2-x )7=[3-(x +1)]7,则a 7(1+x )7=C 77·30·[-(x +1)]7,解得a 7=-1. 故a 0+a 1+a 2+…+a 6=128-a 7=128+1=129. 命题点2 二项式系数的最值问题例5 (2019·马鞍山模拟)二项式⎝⎛⎭⎪⎫3x +13x n的展开式中只有第11项的二项式系数最大,则展开式中x 的指数为整数的项的个数为( ) A .3 B .5 C .6 D .7 答案 D解析 根据⎝⎛⎭⎪⎫3x +13x n的展开式中只有第11项的二项式系数最大,得n =20,∴⎝ ⎛⎭⎪⎫3x +13x n 的展开式的通项为T r +1=C r 20·(3x )20-r ·⎝ ⎛⎭⎪⎫13x r =(3)20-r ·C r 20·420-3rx ,要使x 的指数是整数,需r 是3的倍数,∴r =0,3,6,9,12,15,18,∴x 的指数是整数的项共有7项. 思维升华 (1)形如(ax +b )n ,(ax 3+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常采用赋值法,只需令x =1即可.(2)当n 为偶数时,展开式中第n 2+1项的二项式系数最大,最大值为2Cn n;当n 为奇数时,展开式中第n +12项和第n +32项的二项式系数最大,最大值为12Cn n -或12Cn n+.跟踪训练2 (1)(2019·山西八校联考)已知(1+x )n 的展开式中第5项和第7项的二项式系数相等,则奇数项的二项式系数和为( ) A .29 B .210 C .211 D .212 答案 A解析 由题意知C 4n =C 6n ,由组合数性质得n =10,则奇数项的二项式系数和为2n -1=29. (2)已知m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m 等于( ) A .5 B .6 C .7 D .8 答案 B解析 由题意可知,a =C m 2m ,b =C m 2m +1,∵13a =7b ,∴13·(2m )!m !m !=7·(2m +1)!m !(m +1)!,即137=2m +1m +1,解得m =6. (3)(2019·合肥质检)已知m 是常数,若(mx -1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0且a 1+a 2+a 3+a 4+a 5=33,则m =________. 答案 3解析 当x =0时,(-1)5=-1=a 0.当x =1时,(m -1)5=a 0+a 1+a 2+a 3+a 4+a 5=33-1=32,则m -1=2,m =3.。
1.(2020·湖北龙泉中学、钟祥一中、京山一中,沙洋中学联考)在⎝⎛⎭⎫x 2-2x 6的展开式中,常数项为( )A .-240B .-60C .60D .240答案 D解析 ⎝⎛⎭⎫x 2-2x 6的二项展开式的通项为T r +1=C r 6·(x 2)6-r ⎝⎛⎭⎫-2x r =C r 6(-2)r x 12-3r , 令12-3r =0得r =4,即常数项为T 5=C 46(-2)4=240.2.⎝⎛⎭⎫2x -1x 5的展开式中x 3项的系数为( ) A .80 B .-80 C .-40 D .48答案 B解析 ⎝⎛⎭⎫2x -1x 5的展开式的通项为T r +1=C r 5(2x )5-r ·⎝⎛⎭⎫-1x r =(-1)r ·25-r ·C r 5·x 5-2r ,令5-2r =3,得r =1.于是展开式中x 3项的系数为(-1)·25-1·C 15=-80,故选B.3.(2019·十堰调研)若⎝⎛⎭⎫x 6+1x x n 的展开式中含有常数项,则n 的最小值等于( ) A .3 B .4 C .5 D .6答案 C解析 ⎝⎛⎭⎫x 6+1x x n 展开式的通项为 C r n (x 6)n -r 32r x -⎛⎫ ⎪⎝⎭=C r n 1562n r x - ,r =0,1,2,…n ,则依题设,由6n -152r =0, 得n =54r ,∴n 的最小值等于5. 4.(2020·广州海珠区模拟)(x +y )(2x -y )6的展开式中x 4y 3的系数为( )A .-80B .-40C .40D .80答案 D解析 (2x -y )6的展开式的通项为T r +1=C r 6(2x )6-r (-y )r ,当r =2时,T 3=240x 4y 2,当r =3时,T 4=-160x 3y 3,故x 4y 3的系数为240-160=80,故选D.5.(2019·江淮十校考前最后一卷)已知(x +1)(2x +a )5的展开式中各项系数和为2,则其展开式中含x 3项的系数是( )A .-40B .-20C .20D .40答案 D解析 令x =1,可得(x +1)(2x +a )5的展开式中各项系数和为2(2+a )5=2.∴a =-1.二项式(2x -1)5的展开式的通项为T r +1=C r 5(2x )5-r ·(-1)r =25-r ·(-1)r ·C r 5·x 5-r , 所以(x +1)(2x -1)5的展开式中含x 3项的系数为22(-1)3C 35+23(-1)2C 25=40. 6.在⎝⎛⎭⎫x +3x n 的展开式中,各项系数和与二项式系数和之比为32∶1,则x 2的系数为( ) A .50 B .70 C .90 D .120答案 C解析 令x =1,则⎝⎛⎭⎫x +3x n =4n ,所以⎝⎛⎭⎫x +3x n 的展开式中,各项系数和为4n ,又二项式系数和为2n,所以4n2n =2n =32,解得n =5. 二项展开式的通项T r +1=C r 5x 5-r ⎝⎛⎭⎫3x r =C r 53r 352r x -,令5-32r =2,得r =2,所以x 2的系数为C 2532=90. 7.(多选)二项式(2x -1)7的展开式的各项中,二项式系数最大的项是( )A .第2项B .第3项C .第4项D .第5项答案 CD解析 本题考查二项式系数的性质.因为二项式(2x -1)7展开式的各项的二项式系数为C r 7(r =0,1,2,3,4,5,6,7),易知当r =3或r =4时,C r 7最大,即二项展开式中,二项式系数最大的为第4项和第5项.8.(多选)对于二项式⎝⎛⎭⎫1x +x 3n (n ∈N *),以下判断正确的有( ) A .存在n ∈N *,展开式中有常数项B .对任意n ∈N *,展开式中没有常数项C .对任意n ∈N *,展开式中没有x 的一次项D .存在n ∈N *,展开式中有x 的一次项答案 AD解析 该二项展开式的通项为T r +1=C r n ⎝⎛⎭⎫1x n -r (x 3)r =C r n x 4r -n , ∴当n =4r 时,展开式中存在常数项,A 选项正确,B 选项错误;当n =4r -1时,展开式中存在x 的一次项,D 选项正确,C 选项错误.故选AD.9.(2020·镇江质检)(x -x )6的展开式中,含x 5项的系数为________.答案 15解析 展开式的通项为T r +1=C r 6·(-1)r ·62r x -,令6-r 2=5,得r =2, 故含x 5的系数为C 26=15. 10.(2019·晋城模拟)(2-3x )2(1-x )7的展开式中,x 3的系数为________.答案 -455解析 依题意,x 3的系数为4C 37×(-1)3-12C 27(-1)2+9C 17(-1)=-455.11.已知⎝⎛⎭⎫ax +1x (2x +1)5(a ≠0),若其展开式中各项的系数和为81,则a =________,展开式中常数项为________.答案 -2310 解析 在⎝⎛⎭⎫ax +1x (2x +1)5中, 令x =1,得(a +1)·35=81,解得a =-23, 所以⎝⎛⎭⎫-23x +1x (2x +1)5的展开式中的常数项为 1x ·C 45·2x =10. 12.(2019·怀化模拟)若在⎝⎛⎭⎫2x +1x n 的二项展开式中,第3项和第4项的二项式系数相等且最大,则⎝⎛⎭⎫x -2x ·⎝⎛⎭⎫2x +1x n 的展开式中的常数项为________. 答案 -120解析 由⎝⎛⎭⎫2x +1x n 的二项展开式中二项式系数的最大项是第3项和第4项, 则展开式共6项,即n =6-1=5,又⎝⎛⎭⎫2x +1x n 展开式的通项为T r +1=C r 5(2x )5-r ⎝⎛⎭⎫1x r =25-r C r 5x 5-2r ,则⎝⎛⎭⎫x -2x ·⎝⎛⎭⎫2x +1x n 的展开式中的常数项为22C 35-2·23C 25=-120.13.已知(x cos θ+1)5的展开式中x 2的系数与⎝⎛⎭⎫x +544的展开式中x 3的系数相等,且θ∈(0,π),则θ等于( )A.π4B.π4或3π4C.π3D.π3或2π3答案 B 解析 由二项式定理知(x cos θ+1)5的展开式中x 2的系数为C 35cos 2θ,⎝⎛⎭⎫x +544的展开式中x 3的系数为C 14×54,所以C 35cos 2θ=C 14×54,解得cos 2θ=12,解得cos θ=±22,又θ∈(0,π),所以θ=π4或3π4,故选B. 14.⎝⎛⎭⎫2x +1x -35的展开式中常数项是________. 答案 -1 683解析 ⎝⎛⎭⎫2x +1x -35表示五个⎝⎛⎭⎫2x +1x -3相乘,则展开式中的常数项由三种情况产生,第一种是从五个⎝⎛⎭⎫2x +1x -3中分别抽取2x ,2x ,1x ,1x,-3,则此时的常数项为C 25·C 23·22·(-3)=-360,第二种情况是从五个⎝⎛⎭⎫2x +1x -3中都抽取-3,则此时的常数项为(-3)5=-243,第三种情况是从五个⎝⎛⎭⎫2x +1x -3中分别抽取2x ,1x,-3,-3,-3,则此时的常数项为C 15·C 14·21·(-3)3=-1 080,则展开式中常数项为-360-243-1 080=-1 683.15.(2019·衡水中学调研卷)设a ,b ,m 为整数(m >0),若a 和b 被m 除得的余数相同,则称a和b 对模m 同余,记为a ≡b (mod m ).若a =C 020+C 120·2+C 220·22+…+C 2020·220,a ≡b (mod10),则b 的值可以是( )A .2 018B .2 019C .2 020D .2 021答案 D解析 a =C 020+C 120·2+C 220·22+…+C 2020·220=(1+2)20=320=(80+1)5,它被10除所得余数为1,又a ≡b (mod10),所以b 的值可以是2 021.16.若⎝ ⎛⎭⎪⎫x +24x n 展开式中前三项的系数和为163,求: (1)展开式中所有x 的有理项;(2)展开式中系数最大的项.解 易求得展开式前三项的系数为1,2C 1n ,4C 2n .由题意得1+2C 1n +4C 2n =163,可得n =9.(1)设展开式中的有理项为T r +1,由T r +1=C r 9(x )9-r ⎝ ⎛⎭⎪⎫24x r =2r C r 91834r x -, 又∵0≤r ≤9,∴r =2,6.故有理项为T 3=22C 29·18324x -⨯=144x 3, T 7=26·C 69·18364x -⨯=5 376. (2)设展开式中T r +1项的系数最大,则 ⎩⎪⎨⎪⎧2r C r 9≥2r +1C r +19,2r C r 9≥2r -1C r -19, ∴173≤r ≤203, 又∵r ∈N ,∴r =6,故展开式中系数最大的项为T 7=5 376.。
第3讲二项式定理一、知识梳理1.二项式定理(1)定理:(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k b k+…+C n n b n(n∈N*).(2)通项:第k+1项为T k+1=C k n a n-k b k.(3)二项式系数:二项展开式中各项的二项式系数为:C k n(k=0,1,2,…,n).2.二项式系数的性质常用结论1.两个常用公式(1)C0n+C1n+C2n+…+C n n=2n.(2)C0n+C2n+C4n+…=C1n+C3n+C5n+…=2n-1.2.二项展开式的三个重要特征(1)字母a的指数按降幂排列由n到0.(2)字母b的指数按升幂排列由0到n.(3)每一项字母a的指数与字母b的指数的和等于n.3.三个易错点(1)二项式定理中,通项公式T k +1=C k n a n -k b k是展开式的第k +1项,不是第k 项. (2)二项式系数与展开式中项的系数是两个不同的概念,在T k +1=C k n a n -k b k 中,C k n 是该项的二项式系数,该项的系数还与a ,b 有关.(3)二项式系数的最值与指数n 的奇偶性有关.当n 为偶数时,中间一项的二项式系数最大;当n 为奇数时,中间两项的二项式系数相等,且同时取得最大值.二、习题改编1.(选修2-3P31例2(1)改编)(1+2x )5的展开式中,x 2的系数为________.解析:T k +1=C k 5(2x )k =C k 52k x k ,当k =2时,x 2的系数为C 25·22=40.答案:402.(选修2-3P31例2(2)改编)若⎝⎛⎭⎫x +1x n展开式的二项式系数之和为64,则展开式的常数项为________.解析:二项式系数之和2n=64,所以n =6,T k +1=C k 6·x6-k ·⎝⎛⎭⎫1x k=C k 6x 6-2k ,当6-2k =0,即当k =3时为常数项,T 4=C 36=20.答案:203.(选修2-3P41B 组T5改编)若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为________.解析:令x =1,则a 0+a 1+a 2+a 3+a 4=0,令x =-1,则a 0-a 1+a 2-a 3+a 4=16,两式相加得a 0+a 2+a 4=8.答案:8一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)(a +b )n 的展开式中的第r 项是C r n an -r b r.( ) (2)在二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)在(a +b )n 的展开式中,每一项的二项式系数与a ,b 无关.( )(4)通项T r +1=C r n an -r b r 中的a 和b 不能互换.( ) (5)(a +b )n 展开式中某项的系数与该项的二项式系数相同.( ) 答案:(1)× (2)× (3)√ (4)√ (5)×二、易错纠偏 常见误区|K(1)混淆“二项式系数”与“系数”致误;(2)配凑不当致误.1.在二项式⎝⎛⎭⎫x 2-2x n,的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为________.解析:由题意得2n =32,所以n =5.令x =1,得各项系数的和为(1-2)5=-1. 答案:-12.已知(1+x )10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,则a 8=________.解析:因为(1+x )10=[2-(1-x )]10,所以其展开式的通项为T r +1=(-1)r 210-r ·C r 10(1-x )r,令r =8,得a 8=4C 810=180.答案:1803.(x +1)5(x -2)的展开式中x 2的系数为________.解析:(x +1)5(x -2)=x (x +1)5-2(x +1)5展开式中含有x 2的项为-20x 2+5x 2=-15x 2.故x 2的系数为-15.答案:-15求二项展开式的特定项或系数(师生共研)(1)在⎝⎛⎭⎫x -12x 5的展开式中,x 2的系数为________.(2)在二项式⎝⎛⎭⎫ax 2+1x 5的展开式中,若常数项为-10,则a =________.【解析】 (1)⎝⎛⎭⎫x -12x 5的展开式的通项T r +1=C r 5x 5-r ⎝⎛⎭⎫-12x r=⎝⎛⎭⎫-12rC r 5x 5-3r 2,令5-32r =2,得r =2,所以x 2的系数为C 25⎝⎛⎭⎫-122=52.(2)⎝⎛⎭⎫ax 2+1x 5的展开式的通项T r +1=C r 5(ax 2)5-r ×⎝⎛⎭⎫1x r=C r 5a 5-r x 10-5r 2,令10-5r 2=0,得r =4,所以C 45a5-4=-10,解得a =-2. 【答案】 (1)52(2)-2求二项展开式中的特定项的系数问题的步骤(1)利用通项将T k +1项写出并化简.(2)令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出k .(3)代回通项得所求.1.⎝⎛⎭⎫x 2-12x 6的展开式中,常数项是( ) A .-54B .54C .-1516D .1516解析:选D.T r +1=C r 6(x 2)6-r⎝⎛⎭⎫-12x r =⎝⎛⎭⎫-12rC r 6x12-3r ,令12-3r =0,解得r =4,所以常数项为⎝⎛⎭⎫-124C 46=1516. 2.⎝ ⎛⎭⎪⎪⎫3x -123x 10的展开式中所有的有理项为________. 解析:二项展开式的通项为T k +1=C k 10⎝⎛⎭⎫-12kx10-2k3,由题意10-2k3∈Z ,且0≤k ≤10,k∈N .令10-2k 3=r (r ∈Z ),则10-2k =3r ,k =5-32r ,因为k ∈N ,所以r 应为偶数.所以r可取2,0,-2,即k 可取2,5,8,所以第3项,第6项与第9项为有理项,它们分别为454x 2,-638,45256x -2.答案:454x 2,-638,45256x -2二项式系数与各项系数和问题(师生共研)(1)在⎝⎛⎭⎫x +3x n的展开式中,各项系数和与二项式系数和之比为64∶1,则x 3的系数为( )A .15B .45C .135D .405(2)若(1-x )9=a 0+a 1x +a 2x 2+…+a 9x 9,则|a 1|+|a 2|+|a 3|+…+|a 9|=( ) A .1 B .513 C .512D .511【解析】 (1)由题意知4n 2n =64,得n =6,展开式的通项为T r +1=C r 6x 6-r ⎝⎛⎭⎫3x r =3r C r 6x 6-3r 2,令6-3r2=3,得r =2,则x 3的系数为32C 26=135.故选C. (2)令x =0,得a 0=1,令x =-1,得|a 1|+|a 2|+|a 3|+…+|a 9|=[1-(-1)]9-1=29-1=511.【答案】 (1)C (2)D“赋值法”普遍应用于恒等式,是一种处理与二项式相关问题的比较常用的方法.对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,只需令x =1即可.1.⎝⎛⎭⎪⎫x +13x n的展开式中各项系数之和大于8,但小于32,则展开式中系数最大的项是( )A .63x B .4x C .4x 6xD .4x或4x 6x 解析:选A.令x =1,可得⎝⎛⎭⎪⎫x +13x n的展开式中各项系数之和为2n ,即8<2n<32,解得n =4,故第3项的系数最大,所以展开式中系数最大的项是C 24(x )2⎝ ⎛⎭⎪⎫13x 2=63x . 2.若(1+x )(1-2x )8=a 0+a 1x +…+a 9x 9,x ∈R ,则a 1·2+a 2·22+…+a 9·29的值为( ) A .29 B .29-1 C .39D .39-1解析:选D.(1+x )(1-2x )8=a 0+a 1x +a 2x 2+…+a 9x 9,令x =0,得a 0=1;令x =2,得a 0+a 1·2+a 2·22+…+a 9·29=39,所以a 1·2+a 2·22+…+a 9·29=39-1.故选D.多项式的展开式问题(多维探究) 角度一 几个多项式的和的展开式问题在(1+x )+(1+x )2+(1+x )3+…+(1+x )11的展开式中,x 2项的系数是( )A .55B .66C .165D .220【解析】 展开式中x 2项的系数是C 22+C 23+C 24+…+C 211=C 33+C 23+C 24+…+C 211=C 34+C 24+…+C 211=…=C 312,所以x 2项的系数是C 312=220.故选D. 【答案】 D几个多项式和的展开式中的特定项(系数)问题的处理方法:先分别求出每一个多项式中的特定项,再合并.通常要用到方程或不等式的知识求解.角度二 几个多项式的积的展开式问题(1)(2019·高考全国卷Ⅲ)(1+2x 2)(1+x )4的展开式中x 3的系数为( )A .12B .16C .20D .24(2)(2020·南昌模拟)已知(x -1)(ax +1)6的展开式中含x 2项的系数为0,则正实数a =________.【解析】 (1)展开式中含x 3的项可以由“1与x 3”和“2x 2与x ”的乘积组成,则x 3的系数为C 34+2C 14=4+8=12.(2)(ax +1)6的展开式中x 2项的系数为C 46a 2,x 项的系数为C 56a ,由(x -1)(ax +1)6的展开式中含x 2项的系数为0,可得-C 46a 2+C 56a =0,因为a 为正实数,所以15a =6,所以a =25. 【答案】 (1)A (2)25求解形如(a +b )m (c +d )n 的展开式问题的思路(1)若m ,n 中有一个比较小,可考虑把它展开,如(a +b )2·(c +d )n =(a 2+2ab +b 2)(c +d )n ,然后分别求解.(2)观察(a +b )(c +d )是否可以合并,如(1+x )5·(1-x )7=[(1+x )(1-x )]5(1-x )2=(1-x 2)5(1-x )2.(3)分别得到(a +b )m ,(c +d )n 的通项,综合考虑.角度三 三项展开式的定项问题(1)(x 2-x +1)10的展开式中x 3项的系数为( )A .-210B .210C .30D .-30(2)(x 2+x +y )5的展开式中x 5y 2的系数为( ) A .10 B .20 C .30D .60【解析】 (1)(x 2-x +1)10=[x 2-(x -1)]10=C 010(x 2)10-C 110(x 2)9(x -1)+…-C 910x 2(x -1)9+C 1010(x -1)10,所以含x 3项的系数为:-C 910C 89+C 1010(-C 710)=-210.(2)(x 2+x +y )5的展开式的通项为T r +1=C r 5(x 2+x )5-r ·y r ,令r =2,则T 3=C 25(x 2+x )3y 2,又(x 2+x )3的展开式的通项为T k +1=C k 3(x 2)3-k ·x k =C k 3x 6-k ,令6-k =5,则k =1,所以(x 2+x +y )5的展开式中,x 5y 2的系数为C 25C 13=30,故选C.【答案】 (1)A (2)C三项展开式中的特定项(系数)问题的处理方法(1)通常将三项式转化为二项式积的形式,然后利用多项式积的展开式中的特定项(系数)问题的处理方法求解.(2)将其中某两项看成一个整体,直接利用二项式定理展开,然后再分类考虑特定项产生的所有可能情形.1.已知(1+x )+(1+x )2+…+(1+x )n =a 0+a 1x +a 2x 2+…+a n x n (n ∈N *),若a 0+a 1+…+a n =62,则log n 25等于________.解析:令x =1可得a 0+a 1+a 2+…+a n =2+22+23+ (2)=2(2n -1)2-1=2n +1-2=62,解得n =5,所以log n 25=2.答案:22.在⎝⎛⎭⎫x -1x (2x -1)6的展开式中,x 3的系数是_________________________________. (用数字作答)解析:由题意得,⎝⎛⎭⎫x -1x (2x -1)6的展开式中含x 3的项为x C 46(2x )2(-1)4+⎝⎛⎭⎫-1x C 26(2x )4(-1)2=-180x 3,所以展开式中x 3的系数为-180.答案:-1803.在⎝⎛⎭⎫2+x -x 2 0182 01712的展开式中,x 5项的系数为________. 解析:T r +1=C r 12(2+x )12-r ·⎝⎛⎭⎫-x 2 0182 017r,要出现x 5项,则r =0,T 1=(2+x )12,所以x 5项的系数为22C 1012=4C 1012=264.答案:264[基础题组练]1.⎝⎛⎭⎫2x 2-x 43的展开式中的常数项为( ) A .-3 2 B .3 2 C .6D .-6解析:选D.通项T r +1=C r 3⎝⎛⎭⎫2x 23-r(-x 4)r =C r 3(2)3-r ·(-1)r x -6+6r ,当-6+6r =0,即r =1时为常数项,T 2=-6,故选D.2.(1+x )5+(1+x )6+(1+x )7的展开式中x 4的系数为( ) A .50 B .55 C .45D .60解析:选B.(1+x )5+(1+x )6+(1+x )7的展开式中x 4的系数是C 45+C 46+C 47=55.故选B. 3.(2020·四川成都实验外国语学校二诊)已知⎝⎛⎭⎪⎫x +33x n的展开式中,各项系数的和与其各项二项式系数的和之比为64,则n =( )A .4B .5C .6D .7解析:选C.二项式⎝ ⎛⎭⎪⎫x +33x n 的各项系数的和为(1+3)n =4n,二项式⎝ ⎛⎭⎪⎫x +33x n的各项二项式系数的和为2n,因为各项系数的和与其各项二项式系数的和之比为64,所以4n 2n =2n=64,n =6.故选C.4.在(1-x )5(2x +1)的展开式中,含x 4项的系数为( ) A .-5 B .-15 C .-25D .25解析:选B.因为(1-x )5=(-x )5+5x 4+C 35(-x )3+…,所以在(1-x )5·(2x +1)的展开式中,含x 4项的系数为5-2C 35=-15.故选B.5.1+(1+x )+(1+x )2+…+(1+x )n 的展开式的各项系数之和为( ) A .2n -1 B .2n -1 C .2n +1-1D .2n解析:选C.令x =1,得1+2+22+…+2n =1×(2n +1-1)2-1=2n +1-1.6.(2020·湖南岳阳二模)将多项式a 6x 6+a 5x 5+…+a 1x +a 0分解因式得(x -2)(x +2)5,则a 5=( )A .8B .10C .12D .1解析:选A.(x -2)(x +2)5=(x 2-4)·(x +2)4,所以(x +2)4的展开式中x 3的系数为C 14·21=8,所以a 5=8.故选A.7.(x 2+2)⎝⎛⎭⎫1x -15展开式中的常数项是( )A .12B .-12C .8D .-8解析:选B.⎝⎛⎭⎫1x -15展开式的通项公式为T r +1=C r 5⎝⎛⎭⎫1x 5-r(-1)r =(-1)r C r 5xr -5,当r -5=-2或r -5=0,即r =3或r =5时,展开式的常数项是(-1)3C 35+2(-1)5C 55=-12.故选B.8.⎝⎛⎭⎫x +1x +15展开式中的常数项为( ) A .1 B .21 C .31D .51解析:选D.因为⎝⎛⎭⎫x +1x +15=⎣⎡⎦⎤(x +1)+1x 5=C 05(x +1)5+C 15(x +1)4·1x+C 25(x +1)3·⎝⎛⎭⎫1x 2+C 35(x +1)2·⎝⎛⎭⎫1x 3+C 45(x +1)1·⎝⎛⎭⎫1x 4+C 55⎝⎛⎭⎫1x 5. 所以⎝⎛⎭⎫x +1x +15展开式中的常数项为C 05·C 55·15+C 15·C 34·13+C 25·C 13·12=51.故选D. 9.已知(2x -1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则|a 0|+|a 1|+…+|a 5|=( )A .1B .243C .121D .122解析:选B.令x =1,得a 5+a 4+a 3+a 2+a 1+a 0=1,① 令x =-1,得-a 5+a 4-a 3+a 2-a 1+a 0=-243,② ①+②,得2(a 4+a 2+a 0)=-242, 即a 4+a 2+a 0=-121.①-②,得2(a 5+a 3+a 1)=244, 即a 5+a 3+a 1=122.所以|a 0|+|a 1|+…+|a 5|=122+121=243.故选B. 10.(2020·海口调研)若(x 2-a )⎝⎛⎭⎫x +1x 10的展开式中x 6的系数为30,则a 等于( ) A.13 B .12C .1D .2解析:选D.由题意得⎝⎛⎭⎫x +1x 10的展开式的通项公式是T k +1=C k 10·x 10-k ·⎝⎛⎭⎫1x k=C k 10x 10-2k ,⎝⎛⎭⎫x +1x 10的展开式中含x 4(当k =3时),x 6(当k =2时)项的系数分别为C 310,C 210,因此由题意得C 310-a C 210=120-45a =30,由此解得a =2,故选D.11.若(1+x +x 2)n =a 0+a 1x +a 2x 2+…+a 2n x 2n ,则a 0+a 2+a 4+…+a 2n 等于( ) A .2nB .3n -12C .2n +1D .3n +12解析:选D.设f (x )=(1+x +x 2)n , 则f (1)=3n =a 0+a 1+a 2+…+a 2n ,① f (-1)=1=a 0-a 1+a 2-a 3+…+a 2n ,②由①+②得2(a 0+a 2+a 4+…+a 2n )=f (1)+f (-1), 所以a 0+a 2+a 4+…+a 2n =f (1)+f (-1)2=3n +12.12.已知(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9,则(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2的值为( )A .39B .310C .311D .312解析:选D.对(x +2)9= a 0+a 1x +a 2x 2+…+a 9x 9两边同时求导,得9(x +2)8=a 1+2a 2x +3a 3x 2+…+8a 8x 7+9a 9x 8,令x =1,得a 1+2a 2+3a 3+…+8a 8+9a 9=310,令x =-1,得a 1-2a 2+3a 3-…-8a 8+9a 9=32.所以(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2=(a 1+2a 2+3a 3+…+8a 8+9a 9)(a 1-2a 2+3a 3-…-8a 8+9a 9)=312,故选D.13.(x y -y x )4的展开式中,x 3y 3项的系数为________.解析:二项展开式的通项是T k +1=C k 4(x y )4-k ·(-y x )k =(-1)k C k 4x 4-k 2y 2+k 2,令4-k 2=2+k 2=3,解得k =2,故展开式中x 3y 3的系数为(-1)2C 24=6. 答案:614.⎝⎛⎭⎫x 2+1x +25(x >0)的展开式中的常数项为________. 解析:⎝⎛⎭⎫x 2+1x +25(x >0)可化为⎝ ⎛⎭⎪⎫x 2+1x 10,因而T r +1=C r 10⎝⎛⎭⎫1210-r (x )10-2r ,令10-2r =0,则r =5,故展开式中的常数项为C 510·⎝⎛⎭⎫125=6322. 答案:6322 15.已知二项式⎝ ⎛⎭⎪⎫x +124x n的展开式中,前三项的二项式系数之和为37,则n =________,展开式中的第五项为________. 解析:二项式⎝ ⎛⎭⎪⎫x +124x n的展开式中,前三项的二项式系数之和为C 0n +C 1n +C 2n =1+n +n (n -1)2=37,则n =8,故展开式中的第五项为C 48·124·x =358x . 答案:8 358x 16.设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m+1展开式的二项式系数的最大值为b .若13a =7b ,则m =________.解析:(x +y )2m 展开式中二项式系数的最大值为C m 2m ,所以a =C m 2m .同理,b =C m +12m +1. 因为13a =7b ,所以13·C m 2m =7·C m +12m +1.所以13·(2m )!m !m !=7·(2m +1)!(m +1)!m !. 所以m =6.答案:6[综合题组练]1.已知C 0n -4C 1n +42C 2n -43C 3n +…+(-1)n 4n C n n =729,则C 1n +C 2n +…+C n n 的值等于( )A .64B .32C .63D .31解析:选C.因为C 0n -4C 1n +42C 2n -43C 3n +…+(-1)n 4n C n n=729,所以(1-4)n =36,所以n =6,因此C 1n +C 2n +…+C n n =2n -1=26-1=63,故选C.2.设a ∈Z ,且0≤a <13,若512 018+a 能被13整除,则a =( )A .0B .1C .11D .12解析:选D.512 018+a =(52-1)2 018+a =C 02 018522 018-C 12 018522 017+…+C 2 0172 018×52×(-1)2 017+C 2 0182 018×(-1)2 018+a .因为52能被13整除,所以只需C 2 0182 018×(-1)2 018+a 能被13整除,即a +1能被13整除,所以a =12.3.已知(x +1)10=a 1+a 2x +a 3x 2+…+a 11x 10.若数列a 1,a 2,a 3,…,a k (1≤k ≤11,k ∈N *)是一个单调递增数列,则k 的最大值是________.解析:由二项式定理知,a n =C n -110(n =1,2,3,…,11).又(x +1)10展开式中二项式系数最大项是第6项,所以a 6=C 510,则k 的最大值为6.答案:64.设a =⎠⎛012x d x ,则二项式⎝⎛⎭⎫ax 2-1x 6的展开式中的常数项为________. 解析:a =⎠⎛012x d x =x 2⎪⎪⎪10=1,则二项式⎝⎛⎭⎫ax 2-1x 6=⎝⎛⎭⎫x 2-1x 6,其展开式的通项公式为T r +1=C r 6(x 2)6-r ·⎝⎛⎭⎫-1x r=(-1)r C r 6x 12-3r , 令12-3r =0,解得r =4.所以常数项为(-1)4C 46=15.答案:155.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,求:(1)a 1+a 2+…+a 7;(2)a 1+a 3+a 5+a 7;(3)a 0+a 2+a 4+a 6;(4)|a 0|+|a 1|+|a 2|+…+|a 7|.解:令x =1,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=-1.①令x =-1,则a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37.②(1)因为a 0=C 07=1,所以a 1+a 2+a 3+…+a 7=-2.(2)(①-②)÷2,得a 1+a 3+a 5+a 7=-1-372=-1 094. (3)(①+②)÷2,得a 0+a 2+a 4+a 6=-1+372=1 093. (4)因为(1-2x )7的展开式中a 0,a 2,a 4,a 6大于零,而a 1,a 3,a 5,a 7小于零, 所以|a 0|+|a 1|+|a 2|+…+|a 7|=(a 0+a 2+a 4+a 6)-(a 1+a 3+a 5+a 7)=1 093-(-1 094)=2 187.6.已知⎝ ⎛⎭⎪⎫x +124x n的展开式中,前三项的系数成等差数列.(1)求n ;(2)求展开式中的有理项;(3)求展开式中系数最大的项.解:(1)由二项展开式知,前三项的系数分别为C 0n ,12C 1n ,14C 2n , 由已知得2×12C 1n =C 0n +14C 2n , 解得n =8(n =1舍去).(2)⎝ ⎛⎭⎪⎫x +124x 8的展开式的通项T r +1=C r 8(x )8-r ·⎝ ⎛⎭⎪⎫124x r =2-r C r 8x 4-3r 4 (r =0,1,…,8),要求有理项,则4-3r4必为整数,即r=0,4,8,共3项,这3项分别是T1=x4,T5=358x,T9=1256x2.(3)设第r+1项的系数为a r+1最大,则a r+1=2-r C r8,则a r+1a r=2-r C r82-(r-1)C r-18=9-r2r≥1,a r+1 a r+2=2-r C r82-(r+1)C r+18=2(r+1)8-r≥1,解得2≤r≤3.当r=2时,a3=2-2C28=7,当r=3时,a4=2-3C38=7,因此,第3项和第4项的系数最大,故系数最大的项为T3=7x52,T4=7x74.。
学案65 二项式定理导学目标: 1.能用计数原理证明二项式定理.2.会用二项式定理解决与二项展开式有关的简单问题.自主梳理1.二项式定理的有关概念(1)二项式定理:(a +b )n =C 0n a n +C 1n a n -1b 1+…+C k n a n -k b k +…+C n n b n (n ∈N *),这个公式叫做______________.①二项展开式:右边的多项式叫做(a +b )n的二项展开式. ②项数:二项展开式中共有________项.③二项式系数:在二项展开式中各项的系数________(k =______________)叫做二项式系数.④通项:在二项展开式中的________________叫做二项展开式的通项,用T k +1表示,即通项为展开式的第k +1项:T k +1=____________________.2.二项式系数的性质(1)对称性:与首末两端________的两个二项式系数相等.(2)增减性与最大值:当n 是偶数时,中间的一项二项式系数________________取得最大值;当n 为奇数时,中间的两项二项式系数____________、________________________相等,且同时取得最大值.(3)各二项式系数和:C 0n +C 1n +C 2n +…+C n n =______,C 0n +C 2n +C 4n +…+C 偶n =________,C 1n +C 3n +C 5n +…+C 奇n =________.自我检测1.(2011·福建)(1+2x )5的展开式中,x 2的系数等于( ) A .80 B .40 C .20 D .102.(2011·陕西)(4x -2-x )6(x ∈R )展开式中的常数项是( ) A .-20 B .-15 C .15 D .203.(x -2y )10的展开式中x 6y 4项的系数是( )A .840B .-840C .210D .-2104.(2010·四川)⎝⎛⎭⎪⎪⎫2-13x 6的展开式中的第四项是______. 5.(2011·山东)若(x -a x2)6展开式的常数项为60,则常数a 的值为________.6.(2011·烟台期末)已知n 为正偶数,且⎝⎛⎭⎪⎫x 2-12x n的展开式中第4项的二项式系数最大,则第4项的系数是__________.(用数字作答)探究点一 二项展开式及通项公式的应用例1 已知在⎝⎛⎭⎪⎪⎫3x -123x n 的展开式中,第6项为常数项. (1)求n ;(2)求含x 2的项的系数;(3)求展开式中所有的有理项.变式迁移1 (2010·湖北)在(x+43y)20的展开式中,系数为有理数的项共有________项.探究点二二项式系数的性质及其应用例2 (1)求证:C1n+2C2n+3C3n+…+n C n n=n·2n-1;(2)求S=C127+C227+…+C2727除以9的余数.变式迁移2 (2011·上海卢湾区质量调研)求C22n+C42n+…+C2k2n+…+C2n2n的值.探究点三求系数最大项例3 已知f(x)=(3x2+3x2)n展开式中各项的系数和比各项的二项式系数和大992.(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项.变式迁移3 (1)在(x +y )n的展开式中,若第七项系数最大,则n 的值可能等于( ) A .13,14 B .14,15 C .12,13 D .11,12,13(2)已知⎝ ⎛⎭⎪⎫12+2x n,(ⅰ)若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数的最大项的系数;(ⅱ)若展开式前三项的二项式系数和等于79,求展开式中系数最大的项.1.二项式系数与项的系数是不同的,如(a +bx )n(a ,b ∈R )的展开式中,第r +1项的二项式系数是C r n ,而第r +1项的系数为C r n a n -r b r.2.通项公式主要用于求二项式的指数,求满足条件的项或系数,求展开式的某一项或系数.在运用公式时要注意:C r n a n -r b r是第r +1项,而不是第r 项.3.在(a +b )n 的展开式中,令a =b =1,得C 0n +C 1n +…+C n n =2n;令a =1,b =-1,得C 0n -C 1n +C 2n -C 3n +…=0,∴C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1,这种由一般到特殊的方法是“赋值法”.4.二项式系数的性质有:(1)在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即C 0n =C n n ,C 1n =C n -1n ,C 2n =C n -2n ,…,C r n =C n -rn .(2)如果二项式的幂指数是偶数,中间一项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大.5.二项式定理的一个重要作用是近似计算,当n 不是很大,|x |比较小时,(1+x )n≈1+nx .利用二项式定理还可以证明整除性问题或求余数问题,证题时要注意变形的技巧.(满分:75分)一、选择题(每小题5分,共25分)1.(2011·山东实验中学模拟)在⎝⎛⎭⎪⎪⎫x +13x 24的展开式中,x 的幂指数是整数的项共有( )A .3项B .4项C .5项D .6项2.(2011·重庆)(1+3x )n (其中n ∈N 且n ≥6)的展开式中x 5与x 6的系数相等,则n 等于( )A .6B .7C .8D .9 3.(2011·黄山期末)在⎝⎛⎭⎪⎪⎫x 2-13x n的展开式中,只有第5项的二项式系数最大,则展开式中常数项是( )A .-7B .7C .-28D .28 4.(2010·烟台高三一模)如果⎝⎛⎭⎪⎪⎫3x -13x 2n 的展开式中二项式系数之和为128,则展开式中1x3的系数是( )A .7B .-7C .21D .-215.在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是( ) A .74 B .121 C .-74 D .-121 二、填空题(每小题4分,共12分)6.(2011·湖北)(x -13x)18的展开式中含x 15的项的系数为__________.(结果用数值表示)7.(2011·济南高三模拟)已知a =⎠⎛0π(sin t +cos t )d t ,则⎝ ⎛⎭⎪⎫x -1ax 6的展开式中的常数项为________.8.⎝ ⎛⎭⎪⎫1+x +1x 210的展开式中的常数项是________.三、解答题(共38分)9.(12分)(1)设(3x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4. ①求a 0+a 1+a 2+a 3+a 4; ②求a 0+a 2+a 4; ③求a 1+a 2+a 3+a 4;(2)求证:32n +2-8n -9能被64整除(n ∈N *).10.(12分)利用二项式定理证明对一切n ∈N *,都有2≤⎝⎛⎭⎪⎫1+1n n <3.11.(14分)(2011·泰安模拟)已知⎝ ⎛⎭⎪⎫x -2x 2n (n ∈N *)的展开式中第五项的系数与第三项的系数的比是10∶1.(1)求展开式中各项系数的和;(2)求展开式中含32x 的项;(3)求展开式中系数最大的项和二项式系数最大的项.学案65 二项式定理自主梳理1.(1)二项式定理 ②n +1 ③C k n 0,1,2,…,n ④C k n a n -k b kC k nan -k b k 2.(1)等距离 (2)2n n C 12n nC + 12n nC -(3)2n2n -12n -1自我检测1.B [(1+2x )5的第r +1项为T r +1=C r 5(2x )r =2r C r 5x r ,令r =2,得x 2的系数为22·C 25=40.]2.C [设展开式的常数项是第r +1项,则T r +1=C r 6·(4x )r ·(-2-x )6-r ,即T r +1=C r6·(-1)6-r ·22rx ·2rx -6x =C r 6·(-1)6-r ·23rx -6x ,∴3rx -6x =0恒成立.∴r =2,∴T 3=C 26·(-1)4=15.∴选C.]3.A4.-160x5.4 解析 (x -a x2)6展开式的通项为T r +1=C r 6x6-r(-1)r ·(a )r ·x-2r=C r 6x6-3r(-1)r·(a )r.令6-3r =0,得r =2.故C 26(a )2=60,解得a =4.6.-52课堂活动区例1 解题导引 (1)通项T r +1=C r n a n -r b r 是(a +b )n的展开式的第r +1项,而不是第r项;二项式系数与项的系数是完全不同的两个概念,二项式系数是指C rn ,r =0,1,2,…,n ,与a ,b 的值无关;而项的系数是指该项中除变量外的常数部分.(2)求二项展开式中的有理项,一般是根据通项公式所得到的项,其所有的未知数的指数恰好都是整数的项.解这种类型的问题必须合并通项公式中同一字母的指数,根据具体要求,令其属于整数,再根据数的整除性来求解.若求二项展开式中的整式项,则其通项公式中同一字母的指数应是非负整数,求解方式与求有理项的方式一致.解 (1)通项公式为T r +1=C r n3n r x-⎝ ⎛⎭⎪⎫-12r 3rx - =C r n⎝ ⎛⎭⎪⎫-12r23n r x-,因为第6项为常数项,所以r =5时,有n -2r3=0,即n =10.(2)令n -2r 3=2,得r =12(n -6)=12×(10-6)=2,∴所求的系数为C 210⎝ ⎛⎭⎪⎫-122=454. (3)根据通项公式,由题意得⎩⎪⎨⎪⎧10-2r 3∈Z ,0≤r ≤10,r ∈N .令10-2r3=k (k ∈Z ),则10-2r =3k , 即r =5-32k ,∵r ∈N ,∴k 应为偶数.∴k 可取2,0,-2,即r 可取2,5,8.所以第3项,第6项与第9项为有理项,它们分别为C 210⎝ ⎛⎭⎪⎫-122x 2,C 510⎝ ⎛⎭⎪⎫-125,C 810⎝ ⎛⎭⎪⎫-128x -2. 变式迁移1 6解析 展开式的通项T r +1=C r 20·x 20-r·(43y )r=C r20·x20-r·y r·43r .由0≤r ≤20,r4∈Z 得r =0,4,8,12,16,20.所以系数为有理数的项共有6项.例2 解题导引 (1)在有关组合数的求和问题中,经常用到形如C 0n =C n n =C n +1n +1,C k n =C n -kn ,k C k n =n C k -1n -1等式子的变形技巧;(2)利用二项式定理解决整除问题时,关键是进行合理地变形构造二项式.求余数问题时,应明确被除式f (x )、除式g (x )[g (x )≠0]、商式q (x )与余式的关系及余式的范围.(1)证明 方法一 设S =C 1n +2C 2n +3C 3n +…+(n -1)·C n -1n +n C nn ,①∴S =n C n n +(n -1)C n -1n +(n -2)C n -2n +…+2C 2n +C 1n=n C 0n +(n -1)C 1n +(n -2)C 2n +…+2C n -2n +C n -1n ,②①+②得2S =n (C 0n +C 1n +C 2n +…+C n -1n +C n n )=n ·2n.∴S =n ·2n -1.原式得证.方法二 ∵k n C k n =k n ·n !k !n -k !=n -1!k -1!n -k !=C k -1n -1,∴k C k n =n C k -1n -1.∴左边=n C 0n -1+n C 1n -1+…+n C n -1n -1=n (C 0n -1+C 1n -1+…+C n -1n -1)=n ·2n -1=右边.(2)解 S =C 127+C 227+…+C 2727=227-1=89-1=(9-1)9-1 =C 09×99-C 19×98+…+C 89×9-C 99-1=9(C 09×98-C 19×97+…+C 89)-2=9(C 09×98-C 19×97+…+C 89-1)+7, 显然上式括号内的数是正整数. 故S 被9除的余数为7.变式迁移2 解 (1+x )2n =C 02n +C 12n x +C 22n x 2+C 32n x 3+…+C 2n 2n x 2n.令x =1得C 02n +C 12n +…+C 2n -12n +C 2n 2n =22n;再令x =-1得C 02n -C 12n +C 22n -…+(-1)r C r 2n +…-C 2n -12n +C 2n2n =0.两式相加,再用C 02n =1,得C 22n +C 42n +…+C 2n 2n =22n 2-1=22n -1-1.例3 解题导引 (1)求二项式系数最大的项:如果n 是偶数,则中间一项[第⎝ ⎛⎭⎪⎫n2+1项]的二项式系数最大;如果n 是奇数,则中间两项[第n +12项与第⎝ ⎛⎭⎪⎫n +12+1项]的二项式系数相等且最大;(2)求展开式系数最大的项:如求(a +bx )n(a ,b ∈R )的展开式中系数最大的项,一般是采用待定系数法.设展开式各项系数分别为A 1,A 2,…,A n +1,且第r +1项系数最大,应用⎩⎪⎨⎪⎧A r ≥A r -1A r ≥A r +1解出r 来,即得系数最大的项.解 (1)令x =1,则二项式各项系数的和为f (1)=(1+3)n =4n ,又展开式中各项的二项式系数之和为2n.由题意知,4n -2n=992.∴(2n )2-2n -992=0,∴(2n +31)(2n-32)=0, ∴2n =-31(舍),或2n=32,∴n =5.由于n =5为奇数,所以展开式中二项式系数最大的项为中间两项,它们分别是T 3=C 2523x 骣琪琪桫3(3x 2)2=90x 6, T 4=C 3523x 骣琪琪桫2(3x 2)3=270223x .(2)展开式的通项公式为T r +1=C r 53r·()2523r x +.假设T r +1项系数最大,则有⎩⎪⎨⎪⎧C r 53r ≥C r -15·3r -1,C r 53r ≥C r +15·3r +1,∴⎩⎪⎨⎪⎧5!5-r !r !×3≥5!6-r !r -1!,5!5-r !r !≥5!4-r !r +1!×3.∴⎩⎪⎨⎪⎧3r ≥16-r ,15-r ≥3r +1.∴72≤r ≤92,∵r ∈N ,∴r =4. 变式迁移3 (1)D [(1)分三种情况:①若仅T 7系数最大,则共有13项,n =12;②若T 7与T 6系数相等且最大,则共有12项,n =11;③若T 7与T 8系数相等且最大,则共有14项,n =13,所以n 的值可能等于11,12,13,故选D.](2)解 (ⅰ)∵C 4n +C 6n =2C 5n ,∴n 2-21n +98=0.∵n =7或n =14,当n =7时,展开式中二项式系数最大的项是T 4和T 5.∴T 4的系数为C 37⎝ ⎛⎭⎪⎫12423=352,T 5的系数为C 47⎝ ⎛⎭⎪⎫12324=70,当n =14时,展开式中二项式系数的最大的项是T 8.∴T 8的系数为C 714⎝ ⎛⎭⎪⎫12727=3 432.(ⅱ)∵C 0n +C 1n +C 2n =79,∴n 2+n -156=0. ∴n =12或n =-13(舍去). 设T k +1项的系数最大, ∵⎝ ⎛⎭⎪⎫12+2x 12=⎝ ⎛⎭⎪⎫1212(1+4x )12, ∴⎩⎪⎨⎪⎧C k124k≥C k -1124k -1,C k 124k ≥C k +1124k +1.∴9.4≤k ≤10.4.∴k =10.∴展开式中系数最大的项为T 11, T 11=⎝ ⎛⎭⎪⎫1212C 1012410x 10=16 896x 10. 课后练习区 1.C2.B [(1+3x )n 的展开式中x 5的项为C 5n (3x )5=C 5n 35x 5,展开式中含x 6的项为C 6n 36x 6,由两项的系数相等得C 5n ·35=C 6n ·36,解得n =7.]3.B 4.C 5.D 6.17解析 二项展开式的通项为T r +1=C r 18x 18-r(-13x)r=(-1)r(13)r C r 183182rx-.令18-3r2=15,解得r =2.∴含x 15的项的系数为(-1)2(13)2C 218=17.7.-528.4 351解析 ⎝ ⎛⎭⎪⎫1+x +1x 210=⎣⎢⎡⎦⎥⎤1+x +1x 210=C 010(1+x )10+C 110(1+x )91x2+C 210(1+x )81x 4+C 310(1+x )71x 6+C 410(1+x )61x8+…,从第五项C 410(1+x )61x8起,后面各项不再出现常数项,前四项的常数项分别是C 010×C 010,C 110×C 29,C 210×C 48,C 310×C 67.故原三项展开式中常数项为 C 010C 010+C 110C 29+C 210C 48+C 310C 67=4 351. 9.(1)解 ①令x =1,得a 0+a 1+a 2+a 3+a 4=(3-1)4=16.(2分) ②令x =-1得,a 0-a 1+a 2-a 3+a 4=(-3-1)4=256,而由(1)知a 0+a 1+a 2+a 3+a 4=(3-1) 4=16, 两式相加,得a 0+a 2+a 4=136.(4分)③令x =0得a 0=(0-1)4=1,得a 1+a 2+a 3+a 4=a 0+a 1+a 2+a 3+a 4-a 0 =16-1=15.(6分)(2)证明 ∵32n +2-8n -9=32·32n-8n -9=9·9n -8n -9=9(8+1)n-8n -9=9(C 0n 8n +C 1n 8n -1+…+C n -1n ·8+C nn ·1)-8n -9 (8分)=9(8n +C 1n 8n -1+…+C n -2n 82)+9·8n +9-8n -9=9×82×(8n -2+C 1n ·8n -3+…+C n -2n )+64n=64[9(8n -2+C 1n 8n -3+…+C n -2n )+n ], 显然括号内是正整数,∴原式能被64整除.(12分)10.证明 因为⎝ ⎛⎭⎪⎫1+1n n=C 0n +C 1n ·1n +C 2n ·⎝ ⎛⎭⎪⎫1n 2+C 3n ·⎝ ⎛⎭⎪⎫1n 3+…+C nn ·⎝ ⎛⎭⎪⎫1n n =1+1+12!·⎝ ⎛⎭⎪⎫n -1n +13!·⎝ ⎛⎭⎪⎫n -1n ⎝ ⎛⎭⎪⎫n -2n +…+1n !·⎝ ⎛⎭⎪⎫n -1n ⎝ ⎛⎭⎪⎫n -2n …⎝ ⎛⎭⎪⎫1n .(4分) 所以2≤⎝ ⎛⎭⎪⎫1+1n n<2+12!+13!+…+1n !(6分)<2+11·2+12·3+…+1n -1n=2+⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =3-1n<3,(9分)仅当n =1时,⎝ ⎛⎭⎪⎫1+1n n=2;当n ≥2时,2<⎝ ⎛⎭⎪⎫1+1n n<3.(11分)故对一切n ∈N *,都有2≤⎝ ⎛⎭⎪⎫1+1n n <3.(12分)11.解 由题意知,第五项系数为C 4n ·(-2)4,第三项的系数为C 2n ·(-2)2,则有C 4n ·-24C 2n ·-22=101,化简得n 2-5n -24=0,解得n =8或n =-3(舍去).(2分)(1)令x =1得各项系数的和为(1-2)8=1.(4分)(2)通项公式T r +1=C r 8·(x )8-r·⎝ ⎛⎭⎪⎫-2x 2r=C r 8·(-2)r·82r x--2r ,令8-r 2-2r =32,则r =1.故展开式中含32x 的项为T 2=-1632x .(8分)(3)设展开式中的第r 项,第r +1项,第r +2项的系数绝对值分别为C r -18·2r -1,C r 8·2r,C r +18·2r +1,若第r +1项的系数绝对值最大,则⎩⎪⎨⎪⎧C r -18·2r -1≤C r 8·2r ,C r +18·2r +1≤C r 8·2r, 解得5≤r ≤6.(12分) 又T 6的系数为负,∴系数最大的项为T 7=1 792x -11. 由n =8知第5项二项式系数最大.此时T 5=1 120x -6.(14分)。
§10.3 二项式定理考试要求 能用多项式运算法则和计数原理证明二项式定理,会用二项式定理解决与二项展开式有关的简单问题.知识梳理1.二项式定理二项式定理(a +b )n =C 0n a n +C 1n a n -1b 1+…+C k n a n -k b k +…+C n b n (n ∈N *)二项展开式的通项T k +1=C k n a n -k b k ,它表示展开式的第k +1项二项式系数C k n(k =0,1,…,n )2.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等.(2)增减性与最大值:当n 是偶数时,中间的一项2C n n 取得最大值;当n 是奇数时,中间的两项12C n n -与12C n n +相等,且同时取得最大值.(3)各二项式系数的和:(a +b )n 的展开式的各二项式系数的和等于2n .常用结论1.两个常用公式(1)C 0n +C 1n +C 2n +…+C n =2n .(2)C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1.2.二项展开式的三个重要特征(1)字母a 的指数按降幂排列由n 到0.(2)字母b 的指数按升幂排列由0到n .(3)每一项字母a 的指数与字母b 的指数的和等于n .思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)C k na n -kb k 是(a +b )n 的展开式的第k 项.( × )(2)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( √ )(3)二项展开式中,系数最大的项为中间一项或中间两项.( × )(4)(a +b )n 的展开式中,某项的系数与该项的二项式系数不同.( × )教材改编题1.(x -1)10的展开式的第6项的系数是( )A .C 610B .-C 610C .C 510D .-C 510答案 D解析 T 6=C 510x 5(-1)5,所以第6项的系数是-C 510.2.(多选)已知(a +b )n 的展开式中第5项的二项式系数最大,则n 的值可以为( )A .7B .8C .9D .10答案 ABC解析 ∵(a +b )n 的展开式中第5项的二项式系数C 4n 最大,∴n =7或n =8或n =9.3.在(1-2x )10的展开式中,各项系数的和是________.答案 1解析 令x =1可得各项系数的和为(1-2)10=1.题型一 通项公式的应用命题点1 形如(a +b )n (n ∈N *)的展开式的特定项例1 (1)(2022·烟台模拟)(1-2x )8展开式中x 项的系数为( )A .28B .-28C .112D .-112答案 C解析 (1-2x )8展开式的通项公式为T k +1=C k 8(-2x )k =28(-2)C k k kx .要求x 项的系数,只需k 2=1,解得k =2,所以x 项系数为(-2)2C 28=4×8×72×1=112.(2)(2022·德州模拟)若n ∈Z ,且3≤n ≤6,则(x +1x 3)n 的展开式中的常数项为______.答案 4解析 (x +1x 3)n 的通项公式为T k +1=C k n x n -k (1x 3)k =C k n x n -4k ,因为3≤n ≤6,令n -4k =0,解得n =4,k =1,所以(x +1x 3)n 的展开式中的常数项为4.命题点2 形如(a +b )m (c +d )n (m ,n ∈N *)的展开式问题例2 (1)(2022·泰安模拟)(x 3-2)(x +1x )6的展开式中x 6的系数为( )A .6 B .10 C .13 D .15答案 C解析 由于(x +1x )6的展开式的通项为T k +1=36-26C k kx ,令6-3k 2=3,求得k =2;令6-3k 2=6,求得k =0,故(x 3-2)(x +1x )6的展开式中x 6的系数为C 26-2C 06=15-2=13.(2)(2022·合肥模拟)二项式(2-x a )(1-2x )4的展开式中x 3项的系数是-70,则实数a 的值为( )A .-2B .2C .-4D .4答案 D解析 因为(2-x a )(1-2x )4=2×(1-2x )4-x a×(1-2x )4,(1-2x )4的展开式的通项公式为T k +1=C k 4(-2x )k =(-2)k C k 4x k ,k =0,1,2,3,4,所以2×(1-2x )4展开式中x 3项的系数是2×(-2)3C 34=-64,x a×(1-2x )4展开式中x 3项的系数是1a ×(-2)2C 24=24a ,所以-64-24a=-70,解得a =4.教师备选1.(2022·菏泽模拟)已知正整数n ≥7,若(x -1x )(1-x )n 的展开式中不含x 5的项,则n 的值为( )A .7B .8C .9D .10答案 D 解析 (1-x )n 的二项展开式中第k +1项为T k +1=C k n(-1)k x k ,又因为(x -1x )(1-x )n =x (1-x )n -1x(1-x )n 的展开式不含x 5的项,所以x C 4n (-1)4x 4-1xC 6n (-1)6x 6=0,C 4n x 5-C 6n x 5=0,即C 4n =C 6n ,所以n =10.2.(2022·烟台模拟)在(x 2+2x +y )5的展开式中,x 5y 2的系数为( )A .60B .30C .15D .12答案 A解析 由(x 2+2x +y )5=[(x 2+2x )+y ]5,由通项公式可得T k +1=C k 5(x 2+2x )5-k y k ,∵要求x 5y 2的系数,故k =2,此时(x 2+2x )3=x 3·(x +2)3,其对应x 5的系数为C 1321=6.∴x 5y 2的系数为C 25×6=60.思维升华 (1)求二项展开式中的特定项,一般是化简通项后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k +1,代回通项即可.(2)对于几个多项式积的展开式中的特定项问题,一般都可以根据因式连乘的规律,结合组合思想求解,但要注意适当地运用分类方法,以免重复或遗漏.跟踪训练1 (1)(2021·北京)(x 3-1x )4的展开式中常数项为________.答案 -4解析 (x 3-1x )4的展开式的通项T k +1=C k 4(x 3)4-k ·(-1x )k =(-1)k C k 4x 12-4k ,令k =3得常数项为T 4=(-1)3C 34=-4.(2)(2022·攀枝花模拟)(1-1x 2)(1+2x )5的展开式中,含x 3的项的系数是( )A .-112B .-48C .48D .112答案 C解析 由(1-1x 2)(1+2x )5=(1+2x )5-1x 2(1+2x )5,(1+2x )5展开式的通项公式为T k +1=C k 5(2x )k =2k C k 5x k ,其中k =0,1,2,3,4,5,(1+2x )5展开式中含x 3项的系数为23C 35=80,1x 2(1+2x )5展开式中含x 3项的系数为25C 5=32,所以(1-1x 2)(1+2x )5的展开式中,含x 3的项的系数为80-32=48.题型二 二项式系数与项的系数的问题命题点1 二项式系数和与系数和例3 (1)(多选)(2022·十堰调研)在(3x -1x )n 的展开式中,各项系数和与二项式系数和之和为128,则( )A .二项式系数和为64B .各项系数和为64C .常数项为-135D .常数项为135答案 ABD解析 在(3x -1x )n 的展开式中,各项系数和与二项式系数和之和为128,令x =1,得各项系数和为2n ,二项式系数和为2n ,则2×2n =128,得n =6,即二项式系数和为64,各项系数和也为64,故A ,B 正确;(3x -1x )6展开式的通项为T k +1=C k 6·(3x )6-k ·(-1x)k =36-626C (-1)3k kk k x -⋅⋅,令6-32k =0,得k =4,因此展开式中的常数项为T 5=C 46·(-1)4·32=135.故D 正确.(2)已知多项式(1-2x )+(1+x +x 2)3=a 0+a 1x +a 2x 2+…+a 6x 6,则a 1=______,a 2+a 3+a 4+a 5+a 6=______.答案 1 23解析 根据题意,令x =1,则(1-2)+(1+1+1)3=a 0+a 1+a 2+…+a 6=26,令x =0,a 0=1+1=2,由于(1-2x )+(1+x +x 2)3=a 0+a 1x +a 2x 2+…+a 6x 6,a 1为展开式中x 项的系数,考虑一次项系数a 1=-2+C 13C 2×12=1,所以a 2+a 3+a 4+a 5+a 6=26-1-2=23.命题点2 系数与二项式系数的最值问题例4 (y -2x 2)6的展开式中二项式系数最大的项为第________项,系数最大的项为________.答案 4 240x -8y 2解析 因为(y -2x2)6的展开式中二项式系数的最大值为C 36,所以二项式系数最大的项为第4项.因为(y -2x 2)6的展开式的通项为T k +1=C k 6·y 6-k (-2x 2)k =C k 6·(-2)k x -2k y 6-k ,所以展开式中系数最大的项为奇数项.展开式中第1,3,5,7项的系数分别为C 06·(-2)0,C 26·(-2)2,C 46·(-2)4,C 6·(-2)6,即1,60,240,64,所以展开式中系数最大的项为240x -8y 2.教师备选1.(多选)已知(1-2x )2 022=a 0+a 1x +a 2x 2+…+a 2 022x 2 022,下列命题中正确的是( )A .展开式中所有项的二项式系数的和为22 022B .展开式中所有奇次项系数的和为32 022-12C .展开式中所有偶次项系数的和为32 022+12D.a 12+a 222+a 323+…+a 2 02222 022=-1答案 ACD解析 选项A ,由二项式知,C 02 022+C 12 022+…+C 2 022=(1+1)2 022=22 022,A 正确;当x =1时,有a 0+a 1+a 2+…+a 2 022=1,当x =-1时,有a 0-a 1+a 2-a 3+…-a 2 021+a 2 022=32 022,选项B ,由上可得a 1+a 3+a 5+…+a 2 021=1-32 0222,B 错误;选项C ,由上可得a 0+a 2+a 4+…+a 2 022=32 022+12,C 正确;选项D ,令x =12可得a 0+a 12+a 222+a 323+…+a 2 02222 022=0,又a 0=1,所以a 12+a 222+a 323+…+a 2 02222 022=-1,D 正确.2.(多选)已知(x -3)8=a 0+a 1(x -2)+a 2(x -2)2+…+a 8(x -2)8,则下列结论正确的有( )A .a 0=1B .a 6=-28C.a 12+a 222+…+a 828=-255256D .a 0+a 2+a 4+a 6+a 8=128答案 ACD解析 对于A ,取x =2,得a 0=1,A 正确;对于B ,(x -3)8=[-1+(x -2)]8展开式中第7项为C 68(-1)2(x -2)6=28(x -2)6,即a 6=28,B 不正确;对于C ,取x =52,得a 0+a 12+a 222+…+a 828=(52-3)8=1256,则a12+a222+…+a828=1256-a0=-255256,C正确;对于D,取x=3,得a0+a1+a2+a3+…+a7+a8=0,取x=1,得a0-a1+a2-a3+…-a7+a8=(-2)8=256,两式相加得2(a0+a2+a4+a6+a8)=256,即a0+a2+a4+a6+a8=128,D正确.思维升华 赋值法的应用一般地,对于多项式(a+bx)n=a0+a1x+a2x2+…+a n x n,令g(x)=(a+bx)n,则(a+bx)n的展开式中各项的系数和为g(1),(a+bx)n的展开式中奇数项的系数和为12[g(1)+g(-1)],(a+bx)n的展开式中偶数项的系数和为12[g(1)-g(-1)].跟踪训练2 (1)已知(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则|a0|+|a1|+…+|a5|等于( )A.1 B.243C.121 D.122答案 B解析 令x=1,得a5+a4+a3+a2+a1+a0=1,①令x=-1,得-a5+a4-a3+a2-a1+a0=-243,②①+②,得2(a4+a2+a0)=-242,即a4+a2+a0=-121.①-②,得2(a5+a3+a1)=244,即a5+a3+a1=122.所以|a0|+|a1|+…+|a5|=122+121=243.(2)(多选)(2022·济南模拟)在(2x-x)6的展开式中,下列说法正确的是( )A.常数项为160B.第4项的二项式系数最大C.第3项的系数最大D.所有项的系数和为64答案 BC解析 展开式的通项为T k+1=C k6·(2x)6-k·(-x)k=26-k(-1)k·C k6x2k-6,由2k-6=0,得k=3,所以常数项为23(-1)3C36=-160,A错误;展开式共有7项,所以第4项二项式系数最大,B正确;第3项的系数最大,C正确;令x=1,得(2x-x)6=1,所有项的系数和为1,D 错误.题型三 二项式定理的综合应用例5 (1)设a∈Z,且0≤a≤13,若512 021+a能被13整除,则a等于( )A.0 B.1 C.11 D.12答案 B解析 因为a∈Z,且0≤a≤13,所以512 021+a=(52-1)2 021+a,2 02152-C2 021+a,=C02 021522 021-C12 021522 020+C22 021522 019-…+C2 020因为512 021+a能被13整除,结合选项,所以-C2 021+a=-1+a能被13整除,所以a=1.(2)利用二项式定理计算1.056,则其结果精确到0.01的近似值是( )A.1.23 B.1.24C.1.33 D.1.34答案 D解析 1.056=(1+0.05)6=C06+C16×0.05+C26×0.052+C36×0.053+…+C6×0.056=1+0.3+0.037 5+0.002 5+…+0.056≈1.34.教师备选已知n为满足S=n+C127+C227+C327+…+C27(n≥3)能被9整除的正数n的最小值,则(x-1x)n 的展开式中,系数最大的项为( )A.第6项B.第7项C.第11项D.第6项和第7项答案 B解析 S=n+C127+C227+C327+…+C27=n+(1+1)27-C027=(9-1)9+n-1=9(98-C1997+…+C89)+n-2,∵n≥3,∴S能被9整除的正数n的最小值是n-2=9,∴n=11.∴(x-1x)11的展开式中的通项公式为T k+1=C k11x11-k(-1x)k=(-1)k C k11x11-2k,只考虑k为偶数的情况,由T5=C411x3,T7=C611x-1,T9=C811x-5,可知系数最大的项为第7项.思维升华 二项式定理应用的题型及解法(1)在证明整除问题或求余数问题时要进行合理的变形,使被除式(数)展开后的每一项都含有除式的因式.(2)二项式定理的一个重要用途是做近似计算:当n不很大,|x|比较小时,(1+x)n≈1+nx.跟踪训练3 (1)设n为奇数,那么11n+C1n·11n-1+C2n·11n-2+…+C n-1n·11-1除以13的余数是( )A.-3 B.2C.10 D.11答案 C解析 11n+C1n·11n-1+C2n·11n-2+…+C n-1n·11-1=C0n·11n+C1n·11n-1+C2n·11n-2+…+C n-1n·11+C n-2=(11+1)n-2=12n-2=(13-1)n-2=C0n·13n-C1n·13n-1+…+(-1)n-1·C n-1n·13+(-1)n·C n-2,因为n为奇数,则上式=C0n·13n-C1n·13n-1+…+(-1)n-1·C n-1n·13-3=[C0n·13n-C1n·13n-1+…+(-1)n-1·C n-1n·13-13]+10,所以11n+C1n·11n-1+C2n·11n-2+…+C n-1n·11-1除以13的余数是10.(2)0.996的计算结果精确到0.001的近似值是( )A.0.940 B.0.941C.0.942 D.0.943答案 B解析 (0.99)6=(1-0.01)6=C06×1-C16×0.01+C26×0.012-C36×0.013+…+C6×0.016=1-0.06+0.001 5-0.000 02+…+0.016≈0.941.课时精练1.(2022·济南模拟)(x +1x)6的展开式中,含x 4项的系数为( )A .4B .6C .10D .15答案 B 解析 (x +1x)6的展开式通项为T k +1=C k 6·x 6-k ·(1x)k =C k 6·x 6-2k ,令6-2k =4,解得k =1,因此,展开式中含x 4项的系数为C 16=6.2.(2022·武汉部分重点中学联考)在(x 2-1x)n 的展开式中,只有第7项的二项式系数最大,则展开式常数项是( )A.552B .-552C .-28 D .28答案 B解析 展开式中,只有第7项的二项式系数最大,可得展开式有13项,所以n =12,展开式的通项为T k +1=C k 12(x 2)12-k ·(-1x)k=12-412-3121C (-1) 2kk k k x⎛⎫⎪⎝⎭,若为常数项,则12-43k =0,所以k =9 ,得常数项为T 10=C 912(-1)9(12)12-9=-2208=-552.3.(2022·邯郸模拟)(x 2-x )(1+x )6的展开式中x 3项的系数为( )A .-9 B .9C .-21D .21答案 A解析 展开式中x3项的系数为C16-C26=-9.4.(2022·芜湖质检)已知(x-m)(x+2)5=a0+a1x+a2x2+…+a6x6,其中m为常数,若a4=30,则a0等于( )A.-32 B.32C.64 D.-64答案 A解析 由多项式乘法知,第一个因式中x乘以(x+2)5展开式中的x3项得一个x4项,第一个因式中的常数-m乘以(x+2)5展开式中的x4项得另一个x4项,两项合并同类项得系数即为a4,所以a4=C25×22-m×C15×2=30,解得m=1,再令x=0,得a0=-25=-32.5.(2022·大连模拟)(ax-y)(x+y)4的展开式中x3y2的系数为-2,则实数a的值为( )A.-13B.-1 C.1 D.13答案 D解析 化简得(ax-y)(x+y)4=ax·(x+y)4-y·(x+y)4,∵(x+y)4的展开式的通项公式T k+1=C k4x4-k y k,当k=2时,ax·(x+y)4的展开式中x3y2的系数为C24a=6a,当k=1时,-y·(x+y)4的展开式中x3y2的系数为-C14=-4,综上,(ax-y)(x+y)4的展开式中x3y2的系数为6a-4=-2,∴a=1 3 .6.已知在(2x-1)n的二项展开式中,奇次项系数的和比偶次项系数的和小38,则C1n+C2n+C 3n+…+C n的值为( )A.28B.28-1C.27D.27-1答案 B解析 设(2x-1)n=a0+a1x+a2x2+…+a n x n,且奇次项的系数和为A,偶次项的系数和为B.则A=a1+a3+a5+…,B=a0+a2+a4+a6+….由已知得,B-A=38,令x=-1,得a0-a1+a2-a3+…+a n(-1)n=(-3)n,即(a0+a2+a4+a6+…)-(a1+a3+a5+a7+…)=(-3)n,即B-A=(-3)n,∴(-3)n=38=(-3)8,∴n=8,由二项式系数性质可得C1n+C2n+C3n+…+C n=2n-C0n=28-1.7.(多选)(2022·邯郸模拟)已知(5x-3x)n的展开式中,二项式系数之和为64,下列说法正确的是( )A.2,n,10成等差数列B.各项系数之和为64C.展开式中二项式系数最大的项是第3项D.展开式中第5项为常数项答案 ABD解析 由(5x-3x)n的二项式系数之和为2n=64,得n=6,得2,6,10成等差数列,A正确;令x=1,(5x-3x)6=26=64,则(5x-3x)6的各项系数之和为64,B正确;(5x-3x)6的展开式共有7项,则二项式系数最大的项是第4项,C不正确;(5x-3x)6的展开式中的第5项为C46(5x)2(-3x)4=15×25×81为常数项,D正确.8.(多选)(2022·烟台模拟)已知(2-3x)6=a0+a1x+a2x2+…+a6x6,则下列选项正确的是( ) A.a3=-360B.(a0+a2+a4+a6)2-(a1+a3+a5)2=1C.a1+a2+…+a6=(2-3)6D.展开式中系数最大的为a2答案 BD解析 (2-3x)6的展开式通项为T k+1=C k6·26-k·(-3x)k=C k6·(-3)k·26-k·x k,对于A,令k=3,则a3=C36×23×(-3)3=-4803,A错误;对于B,令x=1,则a0+a1+…+a6=(2-3)6;令x=-1,则a0-a1+a2-…+a6=(2+3)6,∴(a0+a2+a4+a6)2-(a1+a3+a5)2=(a0+a1+a2+…+a6)(a0-a1+a2-…+a6)=[(2-3)×(2+3)]6=1,B正确;对于C,令x=0,得a0=26,∴a1+a2+…+a6=(2-3)6-26,C错误;对于D,∵a0,a2,a4,a6为正数,a1,a3,a5为负数,又a0=26=64,a2=C26×24×3=720,a4=C46×22×32=540,a6=33=27,∴展开式中系数最大的为a2,D正确.9.(2021·天津)在(2x3+1x)6的展开式中,x6的系数是________.答案 160解析 (2x3+1x)6的展开式的通项为T k+1=C k6(2x3)6-k·(1x)k=26-k C k6·x18-4k,令18-4k=6,解得k=3,所以x6的系数是23C36=160.10.(2022·济宁模拟)已知(x-2x)n的展开式中各项的二项式系数的和为128,则这个展开式中x3项的系数是________.答案 84解析 依题意,2n=128,解得n=7,(x-2x)7的展开式的通项为T k+1=C k7x7-k·(-2x)k=(-2)k C k7x7-2k(k∈N,k≤7),由7-2k=3得k=2,所以所求展开式中x3项的系数是(-2)2C27=4×7×62×1=84.11.(2022·温州模拟)若(x +2x)n 的展开式中共有7项,则常数项为________(用数字作答).答案 240解析 因为(x +2x)n 的展开式中共有7项,所以n +1=7,可得n =6,所以(x +2x)6展开式的通项为T k +1=1626C 2k k kkxx--=3626C 2k k kx-令6-32k =0,可得k =4,所以常数项为C 4624=15×16=240.12.(2021·浙江)已知多项式(x -1)3+(x +1)4=x 4+a 1x 3+a 2x 2+a 3x +a 4,则a 1=________,a 2+a 3+a 4=________.答案 5 10解析 (x -1)3展开式的通项T r +1=C r 3x 3-r ·(-1)r ,(x +1)4展开式的通项T k +1=C k 4x 4-k ,则a 1=C 03+C 14=1+4=5;a 2=C 13(-1)1+C 24=3;a 3=C 23(-1)2+C 34=7;a 4=C 3(-1)3+C 4=0.所以a 2+a 3+a 4=3+7+0=10.13.已知n 为正整数,若1.1510∈[n ,n +1),则n 的值为( )A .2 B .3 C .4 D .5答案 C解析 因为1.155=(1+320)5=C 05·(320)0+C 15·(320)1+C 25·(320)2+C 35·(320)3+C 45·(320)4+C 5·(320)5=1+34+940+27800+(5×320+9400)(320)3=2+7800+309400×(320)3,而2<2+7800+309400×(320)3<2+7800+278 000<2+7800+308 000=2+180<2.1,所以2<1.155<2.1,因此4<1.1510<4.41,又n 为正整数,1.1510∈[n ,n +1),所以n =4.14.(2022·浙江Z20名校联盟联考)设(x -1)(2+x )3=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 1=________,2a 2+3a 3+4a 4=________.答案 -4 31解析 因为x ·C 03·23·x 0-C 13·22·x 1=-4x ,所以a 1=-4,对所给等式,两边对x 求导,可得(2+x )3+3(x -1)(2+x )2=a 1+2a 2x +3a 3x 2+4a 4x 3,令x =1,得27=a 1+2a 2+3a 3+4a 4,所以2a 2+3a 3+4a 4=31.15.已知S n 是数列{a n }的前n 项和,若(1-2x )2 022=b 0+b 1x +b 2x 2+…+b 2 022x 2 022,数列{a n }的首项a 1=b 12+b 222+…+b 2 02222 022,a n +1=S n ·S n +1,则S 2 022等于( )A .-12 022B.12 022C .2 022 D .-2 022答案 A解析 令x =12,得(1-2×12)2 022=b 0+b 12+b 222+…+b2 02222 022=0.又因为b 0=1,所以a 1=b 12+b 222+…+b 2 02222 022=-1.由a n +1=S n S n +1=S n +1-S n ,得S n +1-S n S n S n +1=1S n -1S n +1=1,所以1S n +1-1S n =-1,所以数列{1S n}是首项为1S1=-1,公差为-1的等差数列,所以1Sn =-1+(n -1)·(-1)=-n ,n n所以S2 022=-12 022.16.(多选)(2022·南京模拟)已知n∈N*,n≥2,p,q>0,p+q=1,设f(k)=C k2n p k q2n-k,其中k∈N,k≤2n,则( )A.2n∑k=0f(k)=1 B.2n∑k=0k f(k)=2npqC.若np=4,则f(k)≤f(8) D.n∑k=0f(2k)<12<n∑k=1f(2k-1)答案 AC解析 2n∑k=0f(k)=2n∑k=0C k2n p k q2n-k=(q+p)2n=1,A正确;k C k2n=k(2n)!k!(2n-k)!=2n×(2n-1)!(k-1)![(2n-1)-(k-1)]!=2n C k-12n-1,所以2n∑k=0k f(k)=2n∑k=1k C k2n p k q2n-k=2n∑k=12n C k-12n-1p k q2n-k=2npq2n∑k=1C k-12n-1p k-1q2n-1-k=2np 2n-1∑k=0C k2n-1p k q2n-1-k=2np(q+p)2n-1=2np≠2npq(除非p=0),B错;设f(m)是f(k)中最大项,Error!即Error!注意到C m2nC m-12n=(2n)!m!(2n-m)!(2n)!(m-1)!(2n-m+1)!mC m2n C m+12n =m+12n-m,又np=4,不等式组可解为8-q≤m≤8+p,所以m=8,所以f(k)≤f(8),C正确;例如n=2时,p=13,q=23,n∑k=0f(2k)=(13)4+6(13)2(23)2+(23)4=4181,n∑k=1f(2k-1)=4081,D错误.。
1.二项式定理二项式定理 (a +b )n=C 0n a n +C1n a n -1b +…+C r n a n -r b r +…+C n nb n (n ∈N +) 二项开放式的通项公式 T r +1=C r n an -rb r ,它表示第r +1项二项式系数二项开放式中各项的系数C r n (r ∈{0,1,2,…,n })2.(1)0≤r ≤n时,C r n 与C n -rn 的关系是C r n =C n -rn .(2)二项式系数先增后减中间项最大当n 为偶数时,第n 2+1项的二项式系数最大,最大值为2Cnn;当n 为奇数时,第n +12项和n +32项的二项式系数最大,最大值为12Cn n -和12Cn n+.(3)各二项式系数和:C 0n +C 1n +C 2n +…+C n n =2n , C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n+…=2n -1. 【学问拓展】二项开放式形式上的特点 (1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开头,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从C 0n ,C 1n ,始终到C n -1n ,C n n .【思考辨析】推断下面结论是否正确(请在括号中打“√”或“×”)(1)C r n an -r b r是二项开放式的第r 项.( × ) (2)二项开放式中,系数最大的项为中间一项或中间两项.( × ) (3)(a +b )n 的开放式中某一项的二项式系数与a ,b 无关.( √ ) (4)在(1-x )9的开放式中系数最大的项是第五、第六两项.( × )(5)若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 6+…+a 1的值为128.( × )1.(教材改编)(x -y )n 的二项开放式中,第m 项的系数是( )A .C m nB .C m +1nC .C m -1nD .(-1)m -1C m -1n答案 D解析 (x -y )n 开放式中第m 项的系数为C m -1n(-1)m -1. 2.已知n =6e 11dxx ⎰,那么⎝⎛⎭⎫x -3x n 开放式中含x 2项的系数为( )A .130B .135C .121D .139答案 B解析 依据题意,n =6e 11dx x ⎰=6e 1ln x =6,则⎝⎛⎭⎫x -3x 6中,由二项式定理得通项公式为T r +1=C r 6(-3)r x 6-2r ,令6-2r =2,得r =2,所以系数为C 26×9=135.3.已知C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =729,则C 1n +C 2n +C 3n +…+C n n等于( ) A .63 B .64 C .31 D .32答案 A解析 逆用二项式定理得C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =(1+2)n =3n =729,即3n =36,所以n =6,所以C 1n +C 2n +C 3n +…+C n n =26-C 0n=64-1=63.故选A. 4.(教材改编)⎝⎛⎭⎫x 2-2x 35开放式中的常数项为________. 答案 40解析 T r +1=C r 5(x 2)5-r ⎝⎛⎭⎫-2x 3r=C r 5(-2)r x10-5r . 令10-5r =0,则r =2.∴常数项为T 3=C 25(-2)2=40.5.(1+x )8(1+y )4的开放式中x 2y 2的系数是________. 答案 168解析 ∵(1+x )8的通项为C r 8x r ,(1+y )4的通项为C t 4y t ,∴(1+x )8(1+y )4的通项为C r 8C t 4x r y t ,令r =2,t =2,得x 2y 2的系数为C 28C 24=168.题型一 二项开放式命题点1 求二项开放式中的特定项或指定项的系数例1 (1)(2021·广东)在(x -1)4的开放式中,x 的系数为________. (2)(2021·课标全国Ⅰ)(x 2+x +y )5的开放式中,x 5y 2的系数为( ) A .10 B .20 C .30D .60答案 (1)6 (2)C 解析 (1)由题意可知T r +1=C r 4(x )4-r (-1)r =42C(1)rr x--,令4-r 2=1解得r =2,所以开放式中x 的系数为C 24(-1)2=6. (2)方法一 利用二项开放式的通项公式求解. (x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3·y 2. 其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2的系数为C 25C 13=30.故选C.方法二 利用组合学问求解.(x 2+x +y )5为5个x 2+x +y 之积,其中有两个取y ,两个取x 2,一个取x 即可,所以x 5y 2的系数为C 25C 23=30.故选C.命题点2 已知二项开放式某项的系数求参数例2 (2021·课标全国Ⅱ)(a +x )(1+x )4的开放式中x 的奇数次幂项的系数之和为32,则a =____________.答案 3解析 设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5, 令x =1,得16(a +1)=a 0+a 1+a 2+a 3+a 4+a 5,① 令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5.② ①-②,得16(a +1)=2(a 1+a 3+a 5),即开放式中x 的奇数次幂的系数之和为a 1+a 3+a 5=8(a +1),所以8(a +1)=32,解得a =3.思维升华 求二项开放式中的特定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数r +1,代回通项公式即可.(1)(2022·课标全国Ⅰ)(x -y )(x +y )8的开放式中x 2y 7的系数为________.(用数字填写答案)(2)(2022·课标全国Ⅱ)(x +a )10的开放式中,x 7的系数为15,则a =________.(用数字填写答案) 答案 (1)20 (2)12解析 (1)x 2y 7=x ·(xy 7),其系数为C 78, x 2y 7=y ·(x 2y 6),其系数为-C 68,∴x 2y 7的系数为C 78-C 68=8-28=-20. (2)设通项为T r +1=C r 10x 10-r a r ,令10-r =7, ∴r =3,∴x 7的系数为C 310a 3=15,∴a 3=18,∴a =12.题型二 二项式系数的和或各项系数的和的问题 例3 在(2x -3y )10的开放式中,求: (1)二项式系数的和; (2)各项系数的和;(3)奇数项的二项式系数和与偶数项的二项式系数和;(4)奇数项系数和与偶数项系数和; (5)x 的奇次项系数和与x 的偶次项系数和.解 设(2x -3y )10=a 0x 10+a 1x 9y +a 2x 8y 2+…+a 10y 10,(*)各项系数的和为a 0+a 1+…+a 10,奇数项系数和为a 0+a 2+…+a 10,偶数项系数和为a 1+a 3+a 5+…+a 9,x 的奇次项系数和为a 1+a 3+a 5+…+a 9,x 的偶次项系数和为a 0+a 2+a 4+…+a 10. 由于(*)是恒等式,故可用“赋值法”求出相关的系数和.(1)二项式系数的和为C 010+C 110+…+C 1010=210.(2)令x =y =1,各项系数和为(2-3)10=(-1)10=1.(3)奇数项的二项式系数和为C 010+C 210+…+C 1010=29, 偶数项的二项式系数和为C 110+C 310+…+C 910=29.(4)令x =y =1,得到a 0+a 1+a 2+…+a 10=1,① 令x =1,y =-1(或x =-1,y =1), 得a 0-a 1+a 2-a 3+…+a 10=510,② ①+②得2(a 0+a 2+…+a 10)=1+510, ∴奇数项系数和为1+5102;①-②得2(a 1+a 3+…+a 9)=1-510, ∴偶数项系数和为1-5102.(5)x 的奇次项系数和为a 1+a 3+a 5+…+a 9=1-5102;x 的偶次项系数和为a 0+a 2+a 4+…+a 10=1+5102.思维升华 (1)“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n 、(ax 2+bx +c )m (a 、b ∈R )的式子求其开放式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其开放式各项系数之和,只需令x =y =1即可.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )开放式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2. 已知f (x )=(1+x )m+(1+2x )n(m ,n ∈N +)的开放式中x 的系数为11.(1)求x 2的系数取最小值时n 的值;(2)当x 2的系数取得最小值时,求f (x )开放式中x 的奇次幂项的系数之和.解 (1)由已知得C 1m +2C 1n =11,∴m +2n =11,x 2的系数为C 2m +22C 2n =m (m -1)2+2n (n -1) =m 2-m 2+(11-m )⎝ ⎛⎭⎪⎫11-m 2-1=⎝⎛⎭⎫m -2142+35116. ∵m ∈N +,∴m =5时,x 2的系数取得最小值22,此时n =3. (2)由(1)知,当x 2的系数取得最小值时,m =5,n =3, ∴f (x )=(1+x )5+(1+2x )3. 设这时f (x )的开放式为f (x )=a 0+a 1x +a 2x 2+…+a 5x 5,令x =1,a 0+a 1+a 2+a 3+a 4+a 5=25+33=59, 令x =-1,a 0-a 1+a 2-a 3+a 4-a 5=-1, 两式相减得2(a 1+a 3+a 5)=60,故开放式中x 的奇次幂项的系数之和为30. 题型三 二项式定理的应用例4 (1)已知2n +2·3n +5n -a 能被25整除,求正整数a 的最小值; (2)求1.028的近似值.(精确到小数点后三位) 解 (1)原式=4·6n +5n -a =4(5+1)n +5n -a=4(C 0n 5n +C 1n 5n -1+…+C n -2n 52+C n -1n 5+C n n )+5n -a =4(C 0n 5n +C 1n 5n -1+…+C n -2n52)+25n +4-a , 明显正整数a 的最小值为4.(2)1.028=(1+0.02)8≈C 08+C 18·0.02+C 28·0.022+C 38·0.023≈1.172. 思维升华 (1)整除问题和求近似值是二项式定理中两类常见的应用问题,整除问题中要关注开放式的最终几项,而求近似值则应关注开放式的前几项.(2)二项式定理的应用基本思路是正用或逆用二项式定理,留意选择合适的形式.1-90C 110+902C 210-903C 310+…+(-1)r 90r C r 10+…+9010C 1010除以88的余数是( )A.-1 B.1 C.-87 D.87答案 B解析1-90C110+902C210-903C310+…+(-1)r90r C r10+…+9010C1010=(1-90)10=8910=(88+1)10=8810+C110889+…+C91088+1,∵前10项均能被88整除,∴余数是1.17.混淆二项开放式的系数与二项式系数致误典例(12分)(1)已知(x+1)6(ax-1)2的开放式中含x3的项的系数是20,求a的值;(2)设(5x-x )n的开放式的各项系数之和为M,二项式系数之和为N,若M-N=240,求开放式中二项式系数最大的项.易错分析解答此题时易将二项式系数之和与各项系数和混淆,从而导致计算错误;另外,也要留意项与项的系数,项的系数与项的系数确定值的区分与联系.规范解答解(1)(x+1)6(ax-1)2的开放式中x3的系数是C36+C26×(-1)×a+C16a2=6a2-15a+20,∵x3的系数为20,∴6a2-15a+20=20,∴a=0,a=52.[4分](2)依题意得,M=4n=(2n)2,N=2n,于是有(2n )2-2n=240,(2n+15)(2n-16)=0,∴2n=16=24,解得n=4.[8分]要使二项式系数C r4最大,只有r=2,[10分]故开放式中二项式系数最大的项为T3=C24(5x)2·(-x)2=150x3.[12分]温馨提示(1)对于(ax+b)n开放式中,第r+1项的二项式系数是指C r n,第r+1项的系数是C r n a n-r b r.(2)对于(ax+b)n开放式中各项系数之和,令x=1即得:(a+b)n;(ax+b)n开放式的二项式系数之和为C0n+C1n+…+C n n=2n. [方法与技巧]1.通项T r+1=C r n a n-r b r是(a+b)n的开放式的第r+1项,而不是第r项,这里r=0,1,…,n.2.二项式系数与项的系数是完全不同的两个概念.二项式系数是指C0n,C1n,…,C n n,它只与各项的项数有关,而与a,b的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a,b 的值有关.3.由于二项式定理中的字母可取任意数或式,所以在解题时依据题意,给字母赋值,是求解二项开放式各项系数和的一种重要方法.4.运用通项求开放式的一些特殊项,通常都是由题意列方程求出r,再求所需的某项;有时需先求n,计算时要留意n和r的取值范围及它们之间的大小关系.[失误与防范]1.项的系数与a、b有关,二项式系数只与n有关,大于0.2.求二项式全部系数的和,可接受“赋值法”.3.关于组合式的证明,常接受“构造法”——构造函数或构造同一问题的两种算法.4.开放式中第r+1项的二项式系数与第r+1项的系数一般是不相同的,在具体求各项的系数时,一般先处理符号,对根式和指数的运算要细心,以防出错.A组专项基础训练(时间:40分钟)1.已知(1-2x)n开放式中,奇数项的二项式系数之和为64,则(1-2x)n(1+x)的开放式中含x2项的系数为() A.71 B.70C.21 D.49答案 B解析由于奇数项的二项式系数之和为2n-1,所以2n-1=64,n=7,因此(1-2x)n(1+x)的开放式中含x2项的系数为C27(-2)2+C17(-2)=70,故选B.2.(2021·湖南)已知⎝⎛⎭⎫x-ax5的开放式中含32x的项的系数为30,则a等于()A. 3 B.- 3C.6 D.-6答案 D解析 ⎝⎛⎭⎫x -a x 5的开放式通项T r +1=522C r rx-()21r rra x--⋅=()5251C r rrr a x--,令52-r =32,则r =1,∴T 2=3215C a x-,∴-a C 15=30,∴a =-6,故选D.3.(4x -2-x )6(x ∈R )开放式中的常数项是( ) A .-20 B .-15 C .15 D .20答案 C解析 设开放式中的常数项是第r +1项,则T r +1=C r 6·(4x )6-r ·(-2-x )r =C r 6·(-1)r ·212x -2rx ·2-rx =C r 6·(-1)r ·212x -3rx ,∵12x -3rx =0恒成立,∴r =4, ∴T 5=C 46·(-1)4=15. 4.若在(x +1)4(ax -1)的开放式中,x 4的系数为15,则a 的值为( ) A .-4 B.52 C .4 D.72答案 C解析 ∵(x +1)4(ax -1)=(x 4+4x 3+6x 2+4x +1)(ax -1),∴x 4的系数为4a -1=15,∴a =4.5.若(1+x )+(1+x )2+…+(1+x )n =a 0+a 1(1-x )+a 2·(1-x )2+…+a n (1-x )n ,则a 0-a 1+a 2-…+(-1)n a n 等于( ) A.34(3n -1) B.34(3n -2) C.32(3n -2) D.32(3n -1) 答案 D解析 在开放式中,令x =2得3+32+33+…+3n =a 0-a 1+a 2-a 3+…+(-1)n a n , 即a 0-a 1+a 2-a 3+…+(-1)n a n =3(1-3n )1-3=32(3n -1). 6.(2021·安徽)⎝⎛⎭⎫x 3+1x 7的开放式中x 5的系数是________(用数字填写答案). 答案 35解析 ⎝⎛⎭⎫x 3+1x 7的开放式的第r +1项为T r +1=C r 7(x 3)7-r ·⎝⎛⎭⎫1x r =C r 7·x 21-4r ,令21-4r =5,得r =4,∴T 5=C 47x 5=35x 5.7.(2021·重庆)⎝⎛⎭⎫x 3+12x 5的开放式中x 8的系数是________(用数字作答).答案 52解析 二项开放式通项为T r +1=C r 5(x 3)5-r ⎝⎛⎭⎫12x r =⎝⎛⎭⎫12r C r 5x 7152r-,令15-7r 2=8,解得r =2,因此x 8的系数为⎝⎛⎭⎫122C 25=52. 8.若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________. 答案 10解析 f (x )=x 5=(1+x -1)5,它的通项为T r +1=C r 5(1+x )5-r ·(-1)r , T 3=C 25(1+x )3(-1)2=10(1+x )3,∴a 3=10.9.设m 为正整数,(x +y )2m 开放式的二项式系数的最大值为a ,(x +y )2m +1开放式的二项式系数的最大值为b ,若13a =7b ,则m =________. 答案 6解析 (x +y )2m 开放式中二项式系数的最大值为C m 2m ,∴a =C m 2m .同理,b =C m +12m +1. ∵13a =7b ,∴13·C m 2m =7·C m +12m +1.∴13·(2m )!m !m !=7·(2m +1)!(m +1)!m !.∴m =6.10.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7. 求:(1)a 1+a 2+…+a 7; (2)a 1+a 3+a 5+a 7; (3)a 0+a 2+a 4+a 6; (4)|a 0|+|a 1|+|a 2|+…+|a 7|.解 令x =1,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7 =-1.①令x =-1,则a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37.② (1)∵a 0=C 07=1,∴a 1+a 2+a 3+…+a 7=-2. (2)(①-②)÷2,得a 1+a 3+a 5+a 7=-1-372=-1094.(3)(①+②)÷2,得a 0+a 2+a 4+a 6=-1+372=1093.(4)方法一 ∵(1-2x )7开放式中,a 0、a 2、a 4、a 6大于零,而a 1、a 3、a 5、a 7小于零, ∴|a 0|+|a 1|+|a 2|+…+|a 7|=(a 0+a 2+a 4+a 6)-(a 1+a 3+a 5+a 7)=1093-(-1094)=2187. 方法二 |a 0|+|a 1|+|a 2|+…+|a 7|,即(1+2x )7开放式中各项的系数和,令x =1, ∴|a 0|+|a 1|+|a 2|+…+|a 7|=37=2187. B 组 专项力量提升 (时间:30分钟)11.(2021·湖北)已知(1+x )n的开放式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ) A .29 B .210 C .211 D .212答案 A 解析由题意,C 3n =C 7n ,解得n =10.则奇数项的二项式系数和为2n -1=29.故选A.12.若(x +a )2(1x -1)5的开放式中常数项为-1,则a 的值为( )A .1B .9C .-1或-9D .1或9答案 D解析 由于(x +a )2=x 2+2ax +a 2,而(1x-1)5的开放式通项为T r +1=()551C rr r x --,其中k =0,1,2,…,5.于是(1x -1)5的开放式中x -2的系数为(-1)3C 35=-10,x -1项的系数为(-1)4C 45=5,常数项为-1,因此(x +a )2(1x -1)5的开放式中常数项为1×(-10)+2a ×5+a 2×(-1)=-a 2+10a -10,依题意-a 2+10a -10=-1,解得a 2-10a +9=0,即a =1或a =9.13.(2022·浙江)在(1+x )6(1+y )4的开放式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)等于( ) A .45 B .60 C .120 D .210答案 C解析 由于f (m ,n )=C m 6C n4,所以f (3,0)+f (2,1)+f (1,2)+f (0,3)=C 36C 04+C 26C 14+C 16C 24+C 06C 34=120.14.求证:1+2+22+…+25n -1(n ∈N +)能被31整除. 证明 ∵1+2+22+…+25n -1=25n -12-1=25n -1=32n -1=(31+1)n -1=C 0n ×31n +C 1n ×31n -1+…+C n -1n ×31+C n n -1 =31(C 0n ×31n -1+C 1n ×31n -2+…+C n -1n ), 明显C 0n ×31n -1+C 1n ×31n -2+…+C n -1n为整数, ∴原式能被31整除. 15.若(x +124x)n 开放式中前三项的系数成等差数列,求:(1)开放式中全部x 的有理项;(2)开放式中系数最大的项.解 易求得开放式前三项的系数为1,12C 1n ,14C 2n . 据题意得2×12C 1n =1+14C 2n ⇒n =8. (1)设开放式中的有理项为T r +1,由T r +1=C r 8(x )8-r (124x)r =163481()C 2rr r x -, ∴r 为4的倍数,又0≤r ≤8,∴r =0,4,8. 故有理项为T 1=(12)0C 08x16304-⨯=x 4,T 5=(12)4C 48x16344-⨯=358x , T 9=(12)8C 88x16384-⨯=1256x 2. (2)设开放式中T r +1项的系数最大,则:(12)r C r 8≥(12)r +1C r +18且(12)r C r 8≥(12)r -1C r -18⇒r =2或r =3. 故开放式中系数最大的项为T 3=(12)2C 28x16324-⨯=7x 52,T 4=(12)3C 38x16334-⨯=7x 74.。
2021届高考数学人教版一轮创新教学案:第10章第3讲二项式定理含解析第3讲二项式定理[考纲解读] 1.会用计数原理证明二项式定理,并会用二项式定理解决与二项展开式有关的简单问题.(重点)2.熟练掌握二项式的展开式、展开式的通项及二项式系数的相关性质.(难点)[考向预测]从近三年高考情况来看,本讲为每年高考的常考知识点.预测2021年将会考查:①求二项式的特定项或项的系数;②求二项式系数的最大项或二项式系数的和;③与其他知识进行综合考查.题型以客观题形式考查,难度不大,属中、低档题型。
1。
二项式定理二项式定理(a+b)n=错误!C错误!a n+C错误!a n-1b1+…+C错误!a n-r b r+…+C错误!b n(n∈N*)二项展开式的通项公式T r+1=错误!C错误!a n-r b r,它表示第错误!r+1项二项式系数二项展开式中各项的二项式系数C0,n,C错误!,…,C错误!性质性质描述对称性与首末两端“等距离”的两个二项式系数相等,即错误!C错误!=C错误!增减性二项式系数C错误!当k<错误!错误!(n∈N*)时,是递增的当k>错误!错误!(n∈N*)时,是递减的最大值当n为偶数时,中间的一项□,04取得最大值当n为奇数时,中间的两项错误!C和错误!取得最大值(1)C0n+C错误!+C错误!+…+C错误!=2n。
(2)C错误!+C错误!+C错误!+…=C错误!+C错误!+C错误!+…=2n-1。
(3)C错误!+2C错误!+3C错误!+…+n C错误!=n2n-1。
(4)C错误!C错误!+C错误!C错误!+…+C错误!C错误!=C错误!.(5)(C错误!)2+(C错误!)2+(C错误!)2+…+(C错误!)2=C错误!。
1.概念辨析(1)(a+b)n的展开式中某一项的二项式系数与a,b无关.() (2)二项式错误!6的展开式的第二项系数是C错误!.()(3)二项展开式中,系数最大的项为中间一项或中间两项.()(4)若(x-1)7=a7x7+a6x6+…+a1x+a0,则a7+a6+…+a1的值为0.()答案(1)√(2)×(3)×(4)×2.小题热身(1)错误!8的展开式中常数项为()A.错误!B。
第3讲二项式定理基础巩固1.(1+2)3(1-)5的展开式中x的系数是( )A.-4B.-2C.2D.4【答案】C【解析】(1+2)3的通项公式为T r+1=2r,(1-)5的通项公式为T k+1=(-1)k,要求展开式中x的系数,只需(1+2)3中的常数项及一次项系数与(1-)5中的一次项系数及常数项分别相乘再求和,即1×(-10)+12×1=2.2.若展开式中含项的系数为-560,则n等于( )A.4B.6C.7D.11【答案】C【解析】展开式的通项为T r+1=(-1)r2n-r,令=-1,则n=3r-2.又(-1)r2n-r=-560,显然r必为奇数,n亦为奇数,经验证n=7.3.已知(1+2x)4=a0+a1x+a2x2+a3x3+a4x4,则a1-2a2+3a3-4a4等于( )A.8B.-8C.16D.-16【答案】B【解析】由二项展开式的通项公式得:a1=×13×21=8,a2=×12×22=24,a3=×11×23=32,a4=×10×24=16,从而可知a1-2a2+3a3-4a4=-8.4.在的展开式中,所有奇数项的系数之和为1024,则中间项系数是( )A.330B.462C.682D.792【答案】B【解析】∵二项式的展开式的所有项的二项式系数和为2n,而所有偶数项的二项式系数和与所有奇数项的二项式系数和相等.由题意,得2n-1=1024,∴n=11.∴展开式共有12项,中间项为第六项、第七项,系数为==462.5.设(1+x+x2)n=a0+a1x+…+a2n x2n,则a2+a4+…+a2n的值为( )A. B. C.3n-2 D.3n【答案】B【解析】根据二项式定理,令x=1,则a0+a1+a2+…+a2n=3n,又令x=-1,则a0-a1+a2-…+a2n=1,两式相加得2(a0+a2+…+a2n)=3n+1,又a0=1,所以a2+a4+…+a2n==.6.(1+ax+by)n展开式中不含x的项的系数绝对值的和为243,不含y的项的系数绝对值的和为32,则a,b,n的值可能为( )A.a=2,b=-1,n=5B.a=-2,b=-1,n=6C.a=-1,b=2,n=6D.a=1,b=2,n=5【答案】D【解析】令x=0,y=1,得(1+b)n=243=35;令x=1,y=0,得(1+a)n=32=25,则可取a=1,b=2,n=5,故选D.7.二项式(1-x)4n+1的展开式中,系数最大的项是( )A.第2n+1项B.第2n+2项C.第2n项D.第2n+1项和第2n+2项【答案】A【解析】由二项展开式的通项公式T k+1=(-x)k=(-1)k x k,可知系数为(-1)k,与二项式系数只有符号之差,故先找中间项为第2n+1项和第2n+2项,又由第2n+1项系数为(-1)2n=,第2n+2项系数为(-1)2n+1=-<0,故系数最大项为第2n+1项.8.若x+x2+…+x n=(1+x)n-1能被7整除,则x,n的值可能分别为、.(写出一组数即可)【答案】5 4【解析】x+x2+…+x n=(1+x)n-1,当x=5,n=4时,(1+x)n-1=64-1=35×37能被7整除.9.已知(1+kx2)6(k是正整数)的展开式中,x8的系数小于120,则k= .【答案】1【解析】由T r+1=(kx2)6-r=k6-r x2(6-r)得x8的系数为k4=15k4,由15k4<120得k4<8,由于k为正整数,于是k=1.10.(2012·浙江卷,14)若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…,a5为实数,则a3= .【答案】10【解析】由x5=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5可得,可解得11.(1+2x)n的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项.【解】∵T6=(2x)5,T7=(2x)6,依题意有·25=·26⇒n=8,∴(1+2x)8的展开式中二项式系数最大的项为T5=(2x)4=1120x4.设第r+1项系数最大,则有即⇒⇒5≤r≤6.又∵r∈N,∴r=5或r=6.∴系数最大的项为T6=1792x5,T7=1792x6.12.已知(n∈N*)的展开式中第五项的系数与第三项的系数的比是10∶1.(1)求展开式中各项系数的和;(2)求展开式中含的项;(3)求展开式中系数最大的项和二项式系数最大的项.【解】由题意知,第五项系数为·(-2)4,第三项的系数为·(-2)2,则有=,化简得n2-5n-24=0,解得n=8或n=-3(舍去).(1)令x=1得各项系数的和为(1-2)8=1.(2)通项公式T k+1=·()8-k·=·(-2)k·,令-2k=,则k=1,故展开式中含的项为T2=-16.(3)由于展开式中的第k项,第k+1项,第k+2项的系数绝对值分别为·2k-1,·2k,·2k+1,若第k+1项的系数绝对值最大,则解得5≤k≤6.又∵T6的系数为负,∴系数最大的项为T7=1792x-11.由n=8知第5项二项式系数最大,此时T5=1120x-6.13.设(2-x)100=a0+a1x+a2x2+…+a100x100.求下列各式的值:(1)a0;(2)a1+a2+…+a100;(3)a1+a3+a5+…+a99;(4)(a0+a2+…+a100)2-(a1+a3+…+a99)2.【解】(1)由(2-x)100展开式中的常数项为·2100,即a0=2100,或令x=0,则展开式可化为a0=2100.(2)令x=1,可得a0+a1+a2+…+a100=(2-)100.①所以a1+a2+…+a100=(2-)100-2100.(3)令x=-1,可得a0-a1+a2-a3+…+a100=(2+)100,②与①联立相减,可得a1+a3+…+a99=.(4)原式=[(a0+a2+…+a100)+(a1+a3+…+a99)][(a0+a2+…+a100)-(a1+a3+…+a99)]=(a0+a1+a2+…+a100)·(a0-a1+a2-a3+…+a98-a99+a100)=(2-)100(2+)100=1.拓展延伸14.(1)求证:1+2+22+…+25n-1(n∈N*)能被31整除;(2)求S=++…+除以9的余数.【解】(1)证明:∵1+2+22+…+25n-1==25n-1=32n-1=(31+1)n-1=×31n+×31n-1+…+×31+-1=31(×31n-1+×31n-2+…+),显然×31n-1+×31n-2+…+为整数,∴原式能被31整除.(2)S=++…+=227-1=89-1=(9-1)9-1=×99-×98+…+×9--1=9(×98-×97+…+)-2.∵×98-×97+…+是正整数,∴S被9除的余数为7.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
第三节二项式定理[考纲] 1.能用计数原理证明二项式定理.2.会用二项式定理解决与二项展开式有关的简单问题.1.二项式定理(1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C r n a n-r b r+…+C n n b n(n∈N*);(2)二项式通项:T r+1=C r n a n-r b r,它表示第r+1项;(3)二项式系数:二项展开式中各项的系数C r n(r=0,1,2,…,n).2.二项式系数的性质性质性质描述对称性与首末等距离的两个二项式系数相等,即C k n=C n-kn增减性二项式系数C k n 当k<n+12(n∈N*)时,是递增的当k>n+12(n∈N*)时,是递减的二项式系数最大值当n为偶数时,中间的一项Cn2n取得最大值当n为奇数时,中间的两项Cn-12n与Cn+12n取最大值3.各二项式系数和(1)(a+b)n展开式的各二项式系数和:C0n+C1n+C2n+…+C n n=2n.(2)偶数项的二项式系数的和等于奇数项的二项式系数的和,即C0n+C2n+C4n +…=C1n+C3n+C5n+…=2n-1.1.(思考辨析)判断以下结论的正误.(正确的打“√〞,错误的打“×〞)(1)C k n a n-k b k是(a+b)n的展开式中的第k项.()(2)二项展开式中,系数最大的项为中间一项或中间两项.()(3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( )(4)假设(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,那么a 7+a 6+…+a 1的值为128.( )[解析] (1)错误.应为第k +1项.(2)错误.当n 为偶数时,为中间一项;n 为奇数时,为中间的两项. (3)正确.二项式系数只与n 和项数有关.(4)错误.令x =1,可得a 7+a 6+…+a 1+a 0=27=128. [答案] (1)× (2)× (3)√ (4)×2.(教材改编)二项式(x +1)n (n ∈N *)的展开式中x 2的系数为15,那么n =( )A .7B .6C .5D .4B [(x +1)n =(1+x )n =1+C 1n +C 2n x 2+…+C n n x n .依题意,得C 2n =15,解得n=6(n =-5舍去).]3.在⎝ ⎛⎭⎪⎪⎫x 2-13x n的展开式中,只有第5项的二项式系数最大,那么展开式中常数项是( )A .-7B .7C .-28D .28B [由题意知n2+1=5,解得n =8,⎝ ⎛⎭⎪⎪⎫x 2-13x 8的展开式的通项T k +1= C k 8⎝ ⎛⎭⎪⎫x 28-k ⎝⎛⎭⎪⎪⎫-13x k=(-1)k 2k -8C k 8x 8-43k . 令8-4k3=0得k =6,那么展开式中的常数项为(-1)626-8C 68=7.] 4.(2021·北京高考)在(1-2x )6的展开式中,x 2的系数为________.(用数字作答)60 [依二项式定理,含x 2的项为展开式的第3项.∴展开式中T 3=C 26(-2x )2=60x 2,那么x 2的系数为60.]5.(2021·济南模拟)(1+ax )(1+x )5的展开式中x 2的系数为5,那么a =________.-1 [(1+x )5=1+C 15x +C 25x 2+C 35x 3+C 45x 4+C 55x 5. ∴(1+ax )(1+x )5的展开式中x 2的项为(C 25+C 15a )x 2,依题意得10+5a =5,解得a =-1.]通项公式及其应用(1)(2021 ·全国卷Ⅰ)(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30 D .60(2)(2021·山东高考)假设⎝ ⎛⎭⎪⎫ax 2+1x 5的展开式中x 5的系数是-80,那么实数a=________.(1)C (2)-2 [(1)法一:(x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3·y 2. 其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2的系数为C 25C 13=30.应选C.法二:(x 2+x +y )5为5个x 2+x +y 之积,其中有两个取y ,两个取x 2,一个取x 即可,所以x 5y 2的系数为C 25C 23C 11=30.应选C.(2)T r +1=C r 5·(ax 2)5-r ⎝ ⎛⎭⎪⎫1x r=C r 5·a 5-rx 10-52r .令10-52r =5,解得rx 5的系数为-80,那么有C 25·a 3=-80,解得a =-2.] [规律方法] 1.二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.2.求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.[变式训练1] (1)(2021·东北四校联考)假设⎝ ⎛⎭⎪⎫x 6+1x x n的展开式中含有常数项,那么正整数n 的最小值等于( )A .3B .4C .5D .6(2)(2021·全国卷Ⅰ)(2x +x )5的展开式中,x 3的系数是________.(用数字填写答案)(1)C (2)10 [(1)二项展开式的通项 T r +1=C r n (x 6)n -r ⎝ ⎛⎭⎪⎫1x x r=C rnx 6n -15r 2, 假设T r +1是常数项,那么6n -15r 2=0,即n =54r . 又n ∈N *,故n 的最小值为5.(2)(2x +x )5展开式的通项为T r +1=C r 5(2x )5-r(x )r =25-r ·C r 5·x 5-r 2. 令5-r2=3,得r =4.故x 3的系数为25-4·C 45=2C 45=10.]二项式系数与各项系数和(1)(2021·武汉调研)(1+x )n 的展开式中第4项与第8项的二项式系数相等,那么奇数项的二项式系数和为( )【导学号:57962456】A .212B .211C .210D .29(2)(2021·福州质检)假设(1-2x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,那么a 1+a 2+a 3+a 4=________.(1)D (2)0 [(1)∵(1+x )n 的展开式中第4项与第8项的二项式系数相等,∴C 3n =C 7n ,解得n =10.从而C 010+C 110+C 210+…+C 1010=210,∴奇数项的二项式系数和为C 010+C 210+…+C 1010=29.(2)令x =1,得a 0+a 1+a 2+a 3+a 4=(1-2)4=1. 又令x =0,得a 0=(1-0)4=1. 因此a 1+a 2+a 3+a 4=0.][迁移探究1] 假设本例(2)中条件不变,问题变为“求a 0+a 2+a 4的值〞,那么结果如何?[解] 在(1-2x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4中, 令x =1,得a 0+a 1+a 2+a 3+a 4=1. ①4分 令x =-1,得a 0-a 1+a 2-a 3+a 4=34. ②8分 由①+②,可得a 0+a 2+a 4=12(34+1)=41. 12分[迁移探究2] 假设将本例(2)变为“假设(1-2x )2 016=a 0+a 1x +a 2x 2+…+a 2 016x 2 016(x ∈R ),那么a 12+a 222+…+a 2 01622 016的值为________.〞-1 [令x =0,得a 0=(1-0)2 016=1. 令x =12,那么a 0+a 12+a 222+…+a 2 01622 016=0, ∴a 12+a 222+…+a 2 01622 016=-1.][规律方法] 1.第(1)小题求解的关键在于求n ,此题常因把“n 的等量关系表示为C 4n =C 8n 〞,错求n =12;第(2)小题主要是“赋值〞求出a 0与各项系数的和. 2.求解这类问题要注意:(1)区别二项式系数与展开式中项的系数,灵活利用二项式系数的性质; (2)根据题目特征,恰当赋值代换,常见的赋值方法是使得字母因式的值或目标式的值为1,-1.[变式训练2] (2021 ·全国卷Ⅱ)(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,那么a =________.3 [设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5. 令x =1,得(a +1)×24=a 0+a 1+a 2+a 3+a 4+a 5.① 令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5.②①-②,得16(a +1)=2(a 1+a 3+a 5)=2×32,∴a =3.]二项式定理的应用(1)(2021·豫东名校模拟)设复数x =2i1-i(i 是虚数单位),那么C 12 017x +C 22 017x 2+C 32 017x 3+…+C 2 0172 017x2 017=( ) A .i B .-i C .-1+iD .-1-i(2)设a ∈Z ,且0≤a <13,假设512 012+a 能被13整除,那么a =( )A .0B .1C .11D .12(1)C (2)D [(1)x =2i1-i=-1+i , C 12 017x +C 22 017x 2+C 32 017x 3+…+C 2 0172 017x2 017=(1+x )2 017-1=i 2 017-1=-1+i. (2)512 012+a =(52-1)2 012+a =C 02 012·522 012-C 12 012·522 011+…+C 2 0112 012·52·(-1)2 011+ C 2 0122 012·(-1)2 012+a , ∵C 02 012·522 012-C 12 012·522 011+…+C 2 0112 012·52·(-1)2 011能被13整除. 且512 012+a 能被13整除,∴C 2 0122 012·(-1)2 012+a =1+a 也能被13整除. 因此a 可取值12.][规律方法] 1.第(1)题将二项式定理的应用与坐标系中图像点的坐标交汇渗透,命题角度新颖;将图表信息转化为运用二项展开式的系数求待定字母参数,表达数形结合和方程思想的应用.2.第(2)题求解的关键在于将512 012变形为(52-1)2 012,使得展开式中的每一项与除数13建立联系.3.运用二项式定理要注意两点:①余数的范围,a =cr +b ,其中余数b ∈[0,r ),r 是除数;②二项式定理的逆用.[变式训练3] 设a ≠0,n 是大于1的自然数,⎝ ⎛⎭⎪⎫1+x a n的展开式为a 0+a 1x +a 2x 2+…+a n x n .假设点A i (i ,a i )(i =0,1,2)的位置如图10-3-1所示,那么a =________.图10-3-13 [由题意知A 0(0,1),A 1(1,3),A 2(2,4).故a 0=1,a 1=3,a 2=4.又⎝ ⎛⎭⎪⎫1+x a n的通项公式T r +1=C r n ⎝ ⎛⎭⎪⎫x a r(r =0,1,2,…,n ). 故C 1n a =3,C 2na 2=4,解得a =3.][思想与方法]1.二项式定理(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *)提醒二项展开式的规律,一定要牢记通项T r +1=C r n an -r b r 是展开式的第r +1项,不是第r 项.2.通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等(常用待定系数法).3.展开式的应用:(1)可求解与二项式系数有关的求值问题,常采用赋值法.(2)可证明整除问题(或求余数).(3)有关组合式的求值证明,常采用构造法.[易错与防范]1.二项式的通项易误认为是第k 项,实质上是第k +1项.2.(a +b )n 与(b +a )n 虽然一样,但具体到它们展开式的某一项时是不一样的,所以公式中的第一个量a 与第二个量b 的位置不能颠倒.3.易混淆二项式中的“项〞“项的系数〞“项的二项式系数〞等概念,注意项的系数是指非字母因数所有局部,包含符号,二项式系数仅指C k n (k =0,1,…,n ).。
第3讲二项式定理[考纲解读] 1.会用计数原理证明二项式定理,并会用二项式定理解决与二项展开式有关的简单问题.(重点)2.熟练掌握二项式的展开式、展开式的通项及二项式系数的相关性质.(难点)[考向预测]从近三年高考情况来看,本讲为每年高考的常考知识点.预测2021年将会考查:①求二项式的特定项或项的系数;②求二项式系数的最大项或二项式系数的和;③与其他知识进行综合考查.题型以客观题形式考查,难度不大,属中、低档题型.1.二项式定理二项式定理(a+b)n=□01C0na n+C1n a n-1b1+…+C r n a n-rb r+…+C n n b n(n∈N*)二项展开式的通项公式T r+1=□02C r n a n-r b r,它表示第□03r+1项二项式系数二项展开式中各项的二项式系数C0n,C1n,…,C n n2.二项式系数的性质性质性质描述对称性与首末两端“等距离”的两个二项式系数相等,即□01C mn =C n-mn增减性二项式系数C k n当k<□02n+12(n∈N*)时,是递增的当k>□03n+12(n∈N*)时,是递减的最大值当n为偶数时,中间的一项□04Cn2n取得最大值当n为奇数时,中间的两项□05Cn-12n和□06Cn+12n取得最大值3.常用结论(1)C0n+C1n+C2n+…+C n n=2n.(2)C0n+C2n+C4n+…=C1n+C3n+C5n+…=2n-1.(3)C1n+2C2n+3C3n+…+n C n n=n2n-1.(4)C r m C 0n +C r -1m C 1n +…+C 0m C rn =C r m +n . (5)(C 0n )2+(C 1n )2+(C 2n )2+…+(C n n )2=C n 2n .1.概念辨析(1)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( ) (2)二项式⎝⎛⎭⎫x +2x 6的展开式的第二项系数是C 16.( ) (3)二项展开式中,系数最大的项为中间一项或中间两项.( )(4)若(x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 6+…+a 1的值为0.( ) 答案 (1)√ (2)× (3)× (4)×2.小题热身 (1)⎝⎛⎭⎫x +12x 8的展开式中常数项为( ) A.3516 B.358 C.354 D .105 答案 B解析 二项展开式的通项为 T k +1=C k 8(x )8-k·⎝⎛⎭⎫12x k =⎝⎛⎭⎫12k C k 8x 4-k ,令4-k =0,解得k =4,所以T 5=⎝⎛⎭⎫124C 48=358.(2)若二项式⎝⎛⎭⎫x 2-2x n 展开式的二项式系数之和为8,则该展开式的系数之和为( ) A .-1 B .1 C .27 D .-27 答案 A解析 依题意,得二项式系数的和为2n =8,所以n =3,故二项式为⎝⎛⎭⎫x 2-2x 3,令x =1,可求得系数之和为(1-2)3=-1.(3)(2-x )5的展开式中x 的系数为________. 答案 -80解析 (2-x )5的展开式中x 的系数为C 15×24×(-1)=-80.(4)已知(1+3x )n 的展开式中含有x 2项的系数是54,则n =________. 答案 4解析 (1+3x )n 的展开式的通项为T r +1=C r n (3x )r ,令r =2,得T 3=9C 2n x 2.由题意,得9C 2n =54,解得n =4.题型一 二项展开式角度1 求二项展开式中的特定项或系数1.(2018·全国卷Ⅲ)⎝⎛⎭⎫x 2+2x 5的展开式中x 4的系数为( ) A .10 B .20 C .40 D .80 答案 C解析 由题意可得T r +1=C r 5(x 2)5-r ⎝⎛⎭⎫2x r =C r 5·2r ·x 10-3r .令10-3r =4,则r =2,所以C r 5·2r =C 25×22=40,故选C.2.(2020·广东六校联考)在二项式⎝⎛⎭⎫ax 2+1x 5的展开式中,若常数项为-10,则a =________.答案 -2解析 ⎝⎛⎭⎫ax 2+1x 5的展开式的通项T r +1=C r 5(ax 2)5-r ×⎝⎛⎭⎫1x r =C r 5a 5-r x 10-5r2 ,令10-5r 2=0,得r =4,所以C 45a5-4=-10,解得a =-2. 角度2 求多项展开式的特定项或系数3.(2019·全国卷Ⅲ)(1+2x 2)(1+x )4的展开式中x 3的系数为( ) A .12 B .16 C .20 D .24 答案 A解析 解法一:(1+2x 2)(1+x )4的展开式中x 3的系数为1×C 34+2C 14=12.故选A. 解法二:∵(1+2x 2)(1+x )4=(1+2x 2)(1+4x +6x 2+4x 3+x 4),∴x 3的系数为1×4+2×4=12.故选A.4.(2020·陕西黄陵中学模拟)⎝⎛⎭⎫x +1x +25的展开式中x 2的系数为( ) A .120 B .80 C .20 D .45 答案 A解析 ⎝⎛⎭⎫x +1x +25=⎣⎡⎦⎤⎝⎛⎭⎫x +1x 25=⎝⎛⎭⎫x +1x 10.T r +1=C r 10(x )10-r ⎝⎛⎭⎫1x r=C r 10x 5-r. 令5-r =2解得r =3.T 4=C 310x 2=120x 2,所以⎝⎛⎭⎫x +1x +25的展开式中x 2的系数为120. 角度3 已知二项展开式某项的系数求参数5.(2019·黄山模拟)已知(1+x )(1-ax )5的展开式中x 2的系数为-58,则a =( )A .1 B.12 C.13 D.14答案 D解析 (1+x )(1-ax )5=(1+x )(1-5ax +10a 2x 2-10a 3x 3+5a 4x 4-a 5x 5)的展开式中x 2的系数为10a 2-5a =-58,解得a =14.1.求二项展开式中的特定项或项的系数问题的思路 (1)利用通项公式将T r +1项写出并化简.(2)令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出r .(3)代回通项得所求.见举例说明1,2.2.求解形如(a +b )m (c +d )n 的展开式问题的思路(1)若m ,n 中有一个比较小,可考虑把它展开,如(a +b )2(c +d )n =(a 2+2ab +b 2)(c +d )n ,然后分别求解.(2)观察(a +b )(c +d )是否可以合并,如(1+x )5(1-x )7=[(1+x )(1-x )]5(1-x )2=(1-x 2)5(1-x )2.(3)分别得到(a +b )m ,(c +d )n 的通项公式,综合考虑. 3.求形如(a +b +c )n 的展开式中特定项的四步骤1.(2019·华中师范大学第一附中模拟)已知(x+1)5+(x-2)9=a0+a1(x-1)+a2(x-1)2+…+a9(x-1)9,则a7=()A.9 B.36 C.84 D.243答案B解析令t=x-1,则(x+1)5+(x-2)9=(t+2)5+(t-1)9,只有(t-1)9的展开式中含有t7项,所以a7=C29(-1)2=36.2.若(1+ax)7(a≠0)的展开式中x5与x6的系数相等,则a=________.答案3解析展开式的通项为T r=C r7(ax)r,因为x5与x6的系数相等,所以C57a5=C67a6,解得+1a=3.3.(2019·浙江高考)在二项式(2+x)9的展开式中,常数项是________,系数为有理数的项的个数是________.答案1625解析由二项展开式的通项公式可知T r=C r9·(2)9-r·x r,r∈N,0≤r≤9,当为常数项时,+1r=0,T1=C09·(2)9·x0=(2)9=16 2.当项的系数为有理数时,9-r为偶数,可得r=1,3,5,7,9,即系数为有理数的项的个数是5.题型二二项式系数的性质或各项系数的和1.(2019·东北三校联考)若(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则|a0|-|a1|+|a2|-|a3|+|a4|-|a5|=()A.0 B.1 C.32 D.-1答案A解析由(1-x)5的展开式的通项T r=C r5(-x)r=C r5(-1)r x r,可知a1,a3,a5都小于0.+1则|a0|-|a1|+|a2|-|a3|+|a4|-|a5|=a0+a1+a2+a3+a4+a5.在原二项展开式中令x=1,可得a0+a1+a2+a3+a4+a5=0.结论探究1本例中的条件不变,则|a0|+|a1|+|a2|+|a3|+|a4|+|a5|=________.答案32解析因为(1+x)5的展开式的各项系数之和为|a0|+|a1|+|a2|+|a3|+|a4|+|a5|,令x=1,得|a 0|+|a 1|+|a 2|+|a 3|+|a 4|+|a 5|=25=32.结论探究2 本例中的条件不变,则a 0+a 2+a 4=________. 答案 16解析 令x =1,得0=a 0+a 1+a 2+a 3+a 4+a 5,令x =-1,得25=a 0-a 1+a 2-a 3+a 4-a 5,两式相加,得32=2(a 0+a 2+a 4),所以a 0+a 2+a 4=16.2.已知⎝⎛⎭⎪⎫x +124x n的展开式中,前三项的系数成等差数列.(1)求n ;(2)求展开式中的有理项; (3)求展开式中系数最大的项.解 (1)由二项展开式,知前三项的系数分别为C 0n ,12C 1n ,14C 2n ,由已知,得2×12C 1n=C 0n +14C 2n,解得n =8(n =1舍去). (2)⎝ ⎛⎭⎪⎫x +124x 8的展开式的通项T r +1=C r 8(x )8-r ·⎝ ⎛⎭⎪⎫124x r =2-r C r 8x 4-3r 4(r =0,1,…,8), 要求有理项,则4-3r 4必为整数,即r =0,4,8,共3项,这3项分别是T 1=x 4,T 5=358x ,T 9=1256x 2.(3)设第r +1项的系数为a r +1最大,则a r +1=2-r C r 8, 则a r +1a r =2-r C r 82-(r -1)C r -18=9-r 2r ≥1, a r +1a r +2=2-r C r 82-(r +1)C r +18=2(r +1)8-r ≥1, 解得2≤r ≤3.当r =2时,a 3=2-2C 28=7, 当r =3时,a 4=2-3C 38=7, 因此,第3项和第4项的系数最大, 故系数最大的项为T 3=7x 52 ,T 4=7x 74.1.赋值法的应用二项式定理给出的是一个恒等式,对于a ,b 的一切值都成立.因此,可将a ,b 设定为一些特殊的值.在使用赋值法时,令a ,b 等于多少时,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如:(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可.见举例说明1.(2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式的各项系数之和,只需令x =y =1即可. 2.二项展开式的各项系数和、奇数项系数和与偶数项系数和的求法(1)一般地,若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )的展开式中各项系数之和为f (1). (2)奇数项系数之和为 a 0+a 2+a 4+…=f (1)+f (-1)2.(3)偶数项系数之和为 a 1+a 3+a 5+…=f (1)-f (-1)2.3.求解二项式系数或展开式系数的最值问题的一般步骤第一步,要弄清所求问题是“展开式系数最大”“二项式系数最大”两者中的哪一个. 第二步,若是求二项式系数的最大值,则依据(a +b )n 中n 的奇偶及二次项系数的性质求解.若是求展开式系数的最大值,有两个思路,如下:思路一:由于二项展开式中的系数是关于正整数n 的式子,可以看作关于n 的数列,通过判断数列增减性的方法从而判断系数的增减性,并根据系数的增减性求出系数的最值.见举例说明2.思路二:由于展开式系数是离散型变量,因此在系数均为正值的前提下,求最大值只需解不等式组⎩⎨⎧a k ≥a k -1,a k ≥a k +1即可求得答案.1.(2020·广东揭阳模拟)已知(2x +2)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2=________.答案 16解析 解法一:由题意,取x =1, 得(2+2)4=(a 0+a 2+a 4)+(a 1+a 3);①取x =-1,得(2-2)4=(a 0+a 2+a 4)-(a 1+a 3).②①②相乘,得(a 0+a 2+a 4)2-(a 1+a 3)2=(2+2)4×(2-2)4=[(2)2-22]4=16. 解法二:由题意及二项式定理,得a 0=4,a 1=162,a 2=48,a 3=322,a 4=16.所以(a 0+a 2+a 4)2-(a 1+a 3)2=(4+48+16)2-(162+322)2=16.2.(2020·石家庄模拟)已知(3x +x 2)2n 的展开式的二项式系数和比(3x -1)n 的展开式的二项式系数和大992,则在⎝⎛⎭⎫2x -1x 2n 的展开式中,二项式系数最大的项为________,系数的绝对值最大的项为________.答案 -8064 -15360x 4解析 由题意,知22n -2n =992,即(2n -32)(2n +31)=0,故2n =32,解得n =5.由二项式系数的性质,知⎝⎛⎭⎫2x -1x 10的展开式中第6项的二项式系数最大,故二项式系数最大的项为T 6=C 510·(2x )5⎝⎛⎭⎫-1x 5=-8064. 设第k +1项的系数的绝对值最大,则T k +1=C k 10·(2x )10-k ·⎝⎛⎭⎫-1x k =(-1)k C k 10·210-k ·x 10-2k , 令⎩⎨⎧C k 10·210-k ≥C k -110·210-k +1,C k 10·210-k ≥C k +110·210-k -1,得 ⎩⎨⎧C k 10≥2C k -110,2C k10≥C k +110, 即⎩⎨⎧11-k ≥2k ,2(k +1)≥10-k ,解得83≤k ≤113.∵k ∈Z ,∴k =3.故系数的绝对值最大的项是第4项, T 4=-C 310·27·x 4=-15360x 4.题型三 二项式定理的应用1.已知n 为满足S =a +C 127+C 227+C 327+…+C 2727(a ≥3)能被9整除的正数a 的最小值,则⎝⎛⎭⎫x -1x n 的展开式中,系数最大的项为( ) A.第6项 B .第7项C.第11项 D .第6项和第7项答案 B解析 由于S =a +C 127+C 227+C 327+…+C 2727=a +227-1=89+a -1=(9-1)9+a -1=C 09×99-C 19×98+…+C 89×9-C 99+a -1=9×(C 09×98-C 19×97+…+C 89)+a -2,a ≥3,所以n=11,从而⎝⎛⎭⎫x -1x 11的展开式中的系数与二项式系数只有符号差异,又中间两项的二项式系数最大,中间两项为第6项和第7项,且第6项系数为负,第7项系数为正,所以第7项系数最大.2.计算1.056.(精确到0.01)解 1.056=(1+0.05)6=1+6×0.05+15×0.052+…≈1+0.3+0.0375≈1.34.二项式定理应用的常见题型及求解策略(1)整除问题和求近似值是二项式定理中两类常见的应用问题,整除问题中关注展开式的最后几项,而求近似值则关注展开式的前几项.见举例说明1,2.(2)二项式定理的应用基本思路是正用或逆用二项式定理,注意选择合适的形式. (3)利用二项式定理进行近似计算:当n 不很大,|x |比较小时,(1+x )n ≈1+nx .若精确度要求较高,则可使用更精确的公式(1+x )n≈1+nx +n (n -1)2x 2.1.(2019·银川模拟)C 1n +2C 2n +4C 3n +…+2n -1C n n等于( ) A.3nB .2·3nC.3n2-1 D.3n -12答案 D解析 C 1n +2C 2n +4C 3n +…+2n -1C n n =12(C 0n +2C 1n +22C 2n +…+2n C n n )-12=12(1+2)n -12=3n -12. 2.883+6被49除所得的余数是( ) A.-14 B .0 C .14 D .35 答案 B解析由二项式定理展开,得883+6=(7+1)83+6=783+C183×782+…+C8183×72+C8283×7+1+6=72M+83×7+7(M是正整数)=49M+49×12=49N(N是正整数).∴883+6被49除所得的余数是0.3.求0.9986的近似值.(精确到0.001)解0.9986=(1-0.002)6=1-6×0.002+15×0.0022+…≈1-0.012+0.00006≈0.988.易错防范二项展开式中项的系数与二项式系数[典例]设(5x-x)n的展开式的各项系数之和为M,二项式系数之和为N,若M-N=240,则展开式中二项式系数最大的项为________.答案150x3解析依题意,得M=4n=(2n)2,N=2n,于是有(2n)2-2n=240,(2n+15)(2n-16)=0,∴2n=16=24,解得n=4.要使二项式系数C r4最大,只有r=2,故展开式中二项式系数最大的项为T3=C24(5x)2·(-x)2=150x3.措施明确二项式系数与项的系数的区别(a+bx)n的展开式中,二项式系数是指C\o\al(0,n),C\o\al(1,n),…,C\o\al(n,n),它们是组合数,只与各项的项数有关,而与a,b的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a,b的值有关.如第r+1项的二项式系数是C\o\al(r,n),而该项的系数是C\o\al(r,n)a n-r b r.当然,在某些特殊的二项展开式(如(1+x)n)中,各项的系数与二项式系数是相等的.。