分子生物学复习整理
- 格式:doc
- 大小:31.00 KB
- 文档页数:5
一、名词解释:1. 基因:基因是位于染色体上的遗传基本单位,是负载特定遗传信息的DNA片段,编码具有生物功能的产物包括RNA和多肽链。
2. 基因表达:即基因负载遗传信息转变生成具有生物学功能产物的过程,包括基因的激活、转录、翻译以及相关的加工修饰等多个步骤或过程。
3.管家基因:在一个生物个体的几乎所有组织细胞中和所有时间段都持续表达的基因,其表达水平变化很小且较少受环境变化的影响。
如GAPDH、β-肌动蛋白基因。
4. 启动子:是指位于基因转录起始位点上游、能够与RNA聚合酶和其他转录因子结合并进而调节其下游目的基因转录起始和转录效率的一段DNA片段。
5.操纵子:是原核生物基因表达的协调控制单位,包括有结构基因、启动序列、操纵序列等。
如:乳糖操纵子、色氨酸操纵子等。
6.反式作用因子:指由其他基因表达产生的、能与顺式作用元件直接或间接作用而参与调节靶基因转录的蛋白因子(转录因子)。
7.顺式作用元件:即位于基因附近或内部的能够调节基因自身表达的特定DNA序列。
是转录因子的结合位点,通过与转录因子的结合而实现对真核基因转录的精确调控。
8. Ct值:即循环阈值(cycle threshold,Ct),是指在PCR扩增过程中,扩增产物的荧光信号达到设定的荧光阈值所经历的循环数。
(它与PCR扩增的起始模板量存在线性对数关系,由此可以对扩增样品中的目的基因的模板量进行准确的绝对和(或)相对定量。
)9.核酸分子杂交:是指核酸分子在变性后再复性的过程中,来源不同但互不配对的核酸单链(包括DNA和DNA,DNA和RNA,RNA和RNA)相互结合形成杂合双链的特性或现象,依据此特性建立的一种对目的核酸分子进行定性和定量分析的技术则称为分子杂交技术。
10. 印迹或转印:是指将核酸或蛋白质等生物大分子通过一定的方法转移并固定至尼龙膜等支持载体上的一种方法,该技术类似于用吸墨纸吸收纸张上的墨迹。
11. 探针:是一种用同位素或非同位素标记核酸单链,通常是人工合成的寡核苷酸片段。
分子生物学总复习分子生物学第1章绪论1、分子生物学发展史上的重大历史事件?①1859年达尔文的《物种起源》的发表;②沃森和克里克DNA 双螺旋结构的揭示;③遗传密码的破译;④信使RNA的发现;⑤操纵子模型的开创;第2章基因概念的演变与发展1、名词解释:断裂基因:真核生物结构基因,由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续氨基酸组成的完整蛋白质,这些基因称为断裂基因重叠基因:指基因组DNA中某些序列被两个或两个以上的基因所共用。
这些基因序列之间互相有重叠,所以称重叠基因(也称基因重叠)。
外显子:基因中编码蛋白质的序列内含子:基因中不编码蛋白质的序列。
变性:是指核酸双螺旋碱基对的氢键断裂,双链变成单链,从而使核酸的天然构象和性质发生改变。
复性:已变性的单链DNA在逐渐降温的条件下,单链的配对碱基由形成新的氢键,恢复到天然DNA的双螺旋结构的过程。
C值:是指某生物单倍体基因组DNA的核苷酸数。
C值矛盾:生物基因组的大小同生物在进化上所处地位的高低没有绝对的相关性的这种现象。
转座:一个转座子从基因组的一个位置转移到另一个位置的过程。
转座子:是基因组中可以转移的一段DNA序列。
自主性转座子:具有自我调控切换和转座的能力的转座因子。
非自主性转座子:只有在被给与转座酶的前提下才能进行被动转运等一系列活动的转座因子。
2、DNA双螺旋结构模型的要点及影响其稳定性的因素要点:1、A=T G=C A+G=T+C;2、DNA分子是由两条反向平行的多聚核苷酸组成的,且以磷酸二酯键连接而成的;3、一条核苷酸链绕纵轴旋转一周的螺距为3.4nm,其中包含10个碱基对,每对碱基对之间相距0.34nm。
影响其稳定性的因素:1、氢键;2、磷酸酯键;3、离子强度;4、碱基堆积力;5、碱基的分子内能。
3、碱基配对规则A=T G=C A+G=T+C4、DNA的多态性:A-DNA(右)、B-DNA(右)、Z-DNA(左)的手性(左手、右手螺旋)5、原核三种转座子:插入序列、复杂型转座子、复合型转座子的结构特点插入序列:(1)含短的末端方向重复序列,(2)含编码转座酶的基因,(3)靶位点存在5-9bp的端正向重复序列。
1、DNA是遗传物质的实验:肺炎双球菌的转化实验、噬菌体侵染细菌实验。
1、影响双螺旋结构稳定性因素:氢键(弱键,可加热解链,氢键堆积,有序排列)、磷酸酯键(强键,需酶促解链)、0.2mol/L NA生理盐条件(消除DNA单链上磷酸基团间的静电斥力)、碱基堆积力(非特异性结合力)、范德华力、疏水作用力。
不稳定性因素:磷酸基团间的静电斥力、碱基内能增加(温度),使氢键因碱基排列有序状态的破坏而减弱。
2、反向重复序列又称回文序列,指在双链DNA序列中按确定方向阅读双链中每条单链的序列都相同的DNA结构。
3、割裂基因:基因的编码顺序由若干非编码区域隔开,使阅读框不连续,这种基因称为割裂/断裂基因。
4、重叠基因:两个基因的核苷酸序列完全重叠或部分重叠的情况,即一段核苷酸片段被两个基因重复使用的现象。
7真核生物DNA序列组织:单拷贝序列、轻度重复序列、中度重复序列、高度重复序列。
5、基因家族:是真核生物基因组中来源相同,结构相似,功能相关的一组基因。
10、基因簇:指基因家族中的各成员紧密成簇排列成大段的串联重复单位,定位于染色体的特殊区域。
他们属于同一祖先的基因扩增产物。
11、基因簇中还包括一些没有功能的假基因,广义的基因家族分为两类,一种是家族成员的全序列至少编码序列的具有高度的同源序列,第二种是各成员间在编码产物上有大段高度保守的氨基酸序列。
12、DNA复制:亲代双链DNA分子在DNA聚合酶的作用下,分别以各单链DNA分子为模板,聚合与自身碱基可以互补配对的游离的dDTP,合成出两条与亲代DNA分子完全相同的子代DNA分子的过程。
13、复制子(复制单位):基因组内能独立进行复制的单位。
14、DNA复制的方式:θ型复制、滚动环式复制、D-环式复制。
15、复制叉:复制开始,在复制起点形成的一个特殊的叉形结构,是复制有关的酶和蛋白质组装成复合物和新链合成的部位。
16、复制叉,DNA的复制至少需要20多种酶和蛋白质结合在复制叉部位,形成复杂的复制体结构。
(完整版)分子生物学期末复习.doc第一讲染色体与DNA一染色体(遗传物质的主要载体)1DNA作为遗传物质的优点:储存遗传信息量大;碱基互补,双螺旋结构使遗传稳定;核糖2′ -OH脱氢使在水中稳定性大于RNA;可以突变以进化,方便修复以稳定遗传2真核细胞染色体特点:①分子结构相对稳定;②能够自我复制,使亲子代之间保持连续性;③能够指导蛋白质的合成,从而控制整个生命过程;④能够产生可遗传的变异。
3 染色体蛋白主要分为组蛋白和非组蛋白两类。
真核细胞的染色体中, DNA与组蛋白的质量比约为 1:14组蛋白是染色体的结构蛋白,分为H1、H2A、H2B、H3及H4五种,与DNA共同组成核小体。
组蛋白含有大量的赖氨酸和精氨酸,其中 H3、H4富含精氨酸, H1富含赖氨酸。
H2A、H2B介于两者之间。
5 组蛋白具有如下特性:①进化上的极端保守性(不同种生物组蛋白的氨基酸组成十分相似)②无组织特异性(只有鸟类、鱼类及两栖类红细胞染色体不含H1而带有 H5)③ 肽链上氨基酸分布的不对称性(碱性氨基酸集中分布在N端的半条链上,而大部分疏水基团都分布在C端。
碱性的半条链易与DNA的负电荷区结合,而另外半条链与其他组蛋白、非组蛋白结合)④存在较普遍的修饰作用(如甲基化、乙基化、磷酸化及ADP核糖基化等。
修饰作用只发生在细胞周期的特定时间和组蛋白的特定位点上)二DNA1 真核细胞基因组的最大特点是它含有大量的重复序列2 C值反常现象:①所谓 C值,通常是指一种生物单倍体基因组DNA的总量②同类生物不同种属之间DNA总量变化很大。
从编码每类生物所需的DNA量的最低值看,生物细胞中的C值具有从低等生物到高等生物逐渐增加的趋势。
3 真核细胞DNA序列可被分为3类:①不重复序列(它占DNA 总量的 10%~80%。
不重复序列长约750~ 2 000bp ,相当于一个结构基因的长度)②中度重复序列(各种rRNA、 tRNA以及某些结构基因如组蛋白基因等都属于这一类)③高度重复序列—卫星 DNA(只存在于真核生物中,占基因组的 10%~60%,由 6~100个碱基组成)三染色体与核小体1 染色质 DNA的 Tm值比自由 DNA高,说明在染色质中DNA极可能与蛋白质分子相互作用2 在染色质状态下,由DNA聚合酶和RNA聚合酶催化的DNA 复制和转录活性大大低于在自由DNA 中的反应3 DNA片段均为 200bp基本单位的倍数,核小体是染色质的基本结构单位,由~200 bpDNA和组蛋白八聚体(由 H2A、H2B、 H3、 H4各两个分子生成)组成四级压缩:第一级(DNA+组蛋白→核小体)第二级(核小体→螺线管)第三级(螺线体→超螺旋)第四级(超螺线体→染色体)4 原核生物基因组原核生物的基因组很小,大多只有一条染色体,且 DNA含量少主要是单拷贝基因整个染色体 DNA几乎全部由功能基因与调控序列所组成;几乎每个基因序列都与它所编码的蛋白质序列呈线性对应状态。
分子生物学复习重点第一章1、蛋白质的三维结构称为构象(conformation),指的是蛋白质分子中所有原子在三维空间中的排布,并不涉及共价键的断裂和生成所发生的变化。
2、维持和稳定蛋白质高级结构的因素有共价键(二硫键)和次级键,次级键有4种类型,即离子键、氢键、疏水性相互作用和范德瓦力。
3、蛋白质的二级结构是指肽链中局部肽段的构象,它们是完整肽链构象(三级结构)的结构单元,是蛋白质复杂的立体结构的基础,因此二级结构也可以称为构象单元。
α螺旋、β折叠是常见的二级结构。
4、一些肽段有形成α螺旋和β折叠两种构象的可能性(或形成势),这类肽段被称为两可肽。
5、两个或几个二级结构单元被连接肽段连接起来,进一步组合成有特殊几何排列的局域立体结构,称为超二级结构(介于二、三级结构间)。
超二级结构的基本组织形式有αα,βαβ和ββ等3类6、蛋白质家族(f amily) :一类蛋白质的一级结构有30%以上同源性,或一级结构同源性很低,但它们的结构和功能相似,它们也属于同一家族。
例如球蛋白的氨基酸序列相差很大,但属于同一家族。
超家族(superfamily):有些蛋白质家族之间,一级结构序列的同源性较低,但在许多情况下,它们的结构和功能存在一定的相似性。
这表明它们可能存在共同的进化起源。
这些蛋白质家族属于同一超家族。
7、结构域是一个连贯的三维结构,是可互换并且半独立的功能单位,在真核细胞中由一个外显子编码,由至少40个以上多至200个残基构成最小、最紧密也最稳定的结构,作为结构和功能单位,会重复出现在同一蛋白质或不同蛋白质中。
8、蛋白质一级结构所提供的信息有哪些?α螺旋、β折叠各自的特点?第二章1、DNA是由脱氧核糖核苷酸组成的长链多聚物,是遗传物质。
具有下列基本特性:①具有稳定的结构,能进行复制,特定的结构能传递给子代;②携带生命的遗传信息,以决定生命的产生、生长和发育;③能产生遗传的变异,使进化永不枯竭。
2、DNA链的方向总是理解为从5’—P端到3’—OH端。
第一章核酸的基本知识及核酸化学遗传物质必须具备的几个条件:(1)自我复制,代代相传。
(2)储备、传递信息的潜在能力。
(3)稳定性强,但能够变异。
(4)细胞分裂时把遗传信息有规律分配到子细胞中。
核酸的发现:1868年,瑞士青年科学家 F.Miescher核酸是遗传信息的载体证明试验:1944,O.Avery肺炎双球菌转化实验1952,A.D Hershey和M.Chase噬菌体感染实验DNA转化实验-DNA是遗传物质的证明结论是:S型菌的DNA将其遗传特性传给了R型菌,DNA就是遗传物质。
从此核酸是遗传物质的重要地位才被确立,人们把对遗传物质的注意力从蛋白质移到了核酸上。
噬菌体的侵染标记实验-DNA是遗传物质的证明烟草花叶病毒的感染和繁殖过程-证实RNA也是重要的遗传物质核酸是生命遗传信息的携带者和传递者核酸的元素组成:C H O N P核酸的元素组成有两个特点:1.一般不含S2.P含量较多,并且恒定(9%-10%)。
因此,实验室中用定磷法进行核酸的定量分析。
(DNA9.9%、RNA9.5%?)核酸(DNA和RNA)是一种线性多聚核苷酸,它的基本结构单元是核苷酸。
DNA A 核苷酸本身由核苷和磷酸组成,而核苷则由戊糖和碱基形成。
组成核酸的戊糖有两种。
DN 所含的戊糖为β-D-2-脱氧核糖;RNA所含的戊糖则为β-D-核糖。
核苷由戊糖和碱基缩合而成,嘌呤的N9或嘧啶的N1与戊糖C-1C-1’’-OH以C-N糖苷键相连接。
核苷酸是核苷的磷酸酯。
作为DNA或RNA结构单元的核苷酸分别是5′-磷酸-脱氧核糖核苷酸和5′-磷酸-核糖核苷酸。
核苷酸的衍生物ATP(腺嘌呤核糖核苷三磷酸)----最广泛;GTP(鸟嘌呤核糖核苷三磷酸);环化核苷酸cAMP 和cGMP主要功能是作为细胞之间传递信息的信使。
辅酶核苷酸:NAD+NADP+FMN FAD CoA生物化学上维生素与辅酶核苷酸的生物学作用(1)参与DNA、RNA的合成、蛋白质的合成、糖与磷脂的合成。
分子生物学1.DNA的一级结构:指DNA分子中核苷酸的排列顺序。
2.DNA的二级结构:指两条DNA单链形成的双螺旋结构、三股螺旋结构以及四股螺旋结构。
3.DNA的三级结构:双链DNA进一步扭曲盘旋形成的超螺旋结构。
4.DNA的甲基化:DNA的一级结构中,有一些碱基可以通过加上一个甲基而被修饰,称为DNA的甲基化。
甲基化修饰在原核生物DNA中多为对一些酶切位点的修饰,其作用是对自身DNA产生保护作用。
真核生物中的DNA甲基化则在基因表达调控中有重要作用。
真核生物DNA中,几乎所有的甲基化都发生于二核苷酸序列5’-CG-3’的C上,即5’-mCG-3’.5.CG岛:基因组DNA中大部分CG二核苷酸是高度甲基化的,但有些成簇的、稳定的非甲基化的CG小片段,称为CG岛,存在于整个基因组中。
“CG”岛特点是G+C含量高以及大部分CG二核苷酸缺乏甲基化。
6.DNA双螺旋结构模型要点:(1)DNA是反向平行的互补双链结构。
(2)DNA双链是右手螺旋结构。
螺旋每旋转一周包含了10对碱基,螺距为3.4nm. DNA 双链说形成的螺旋直径为2 nm。
每个碱基旋转角度为36度。
DNA双螺旋分子表面存在一个大沟和一个小沟,目前认为这些沟状结构与蛋白质和DNA间的识别有关。
(3)疏水力和氢键维系DNA双螺旋结构的稳定。
DNA双链结构的稳定横向依靠两条链互补碱基间的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。
7.核小体的组成:染色质的基本组成单位被称为核小体,由DNA和5种组蛋白H1,H2A,H2B,H3和H4共同构成。
各两分子的H2A,H2B,H3和H4共同构成八聚体的核心组蛋白,DNA双螺旋缠绕在这一核心上形成核小体的核心颗粒。
核小体的核心颗粒之间再由DNA和组蛋白H1构成的连接区连接起来形成串珠样结构。
8.顺反子(Cistron):由结构基因转录生成的RNA序列亦称为顺反子。
9.单顺反子(monocistron):真核生物的一个结构基因与相应的调控区组成一个完整的基因,即一个表达单位,转录物为一个单顺反子。
1、增强子:能提高转录起始效率的序列被成为增强子或强化子。
增强子可位于转录起始点的5’或3’末端,而且一般与所调控的靶基因的距离无关。
2、C值反常:也称C值谬误。
指C值往往与种系的进化复杂性不一致的现象,即基因组大小与遗传复杂性之间没有必然联系,某些较低等的生物C值却很大,如一些两栖动物的C 值甚至比哺乳动物还大。
3、DNA重组技术:又称基因工程,将不同的DNA片段(如某个基因或基因的一部分)按照预先的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状的技术。
4、基因家族:在基因组进化中,一个基因通过基因重复产生了两个或更多的拷贝,这些基因即构成一个基因家族,是具有显著相似性的一组基因,编码相似的蛋白质产物。
5、SD序列:存在于原核生物起始密码子AUG上游7~12个核苷酸处的一种4~7个核苷酸的保守片段,它与16SrRNA3’端反向互补,所以可将mRNA的AUG起始密码子置于核糖体的适当位置以便起始翻译作用。
根据首次识别其功能意义的科学家命名。
6、核酶:是一类具有催化活性的RNA分子,通过催化靶位点RNA链中的磷酸二酯键的断裂,特异性的剪切底物RNA分子,从而阻断基因的表达。
7、RNA干扰:是利用双链小RNA高效、特异性降解细胞内同源mRNA,从而阻断体内靶基因表达,使细胞出现靶基因缺失表型的方法。
8、反式作用因子:是指能直接或间接地识别或结合在各类顺式作用元件核心序列上参与调控靶基因转录效率的蛋白质。
9、操纵子:是指原核生物中由一个或多个相关基因以及转录翻译调控元件组成的基因表达单元。
10、基因组:生物有机体的单倍体细胞中的所有DNA,包括核中的染色体DNA和线粒体、叶绿体等亚细胞器中的DNA。
11、cDNA文库:真核生物基因组DNA非常庞大,而且含有大量重复序列,无论用电泳分离技术还是用杂交方法都难以直接分离到靶基因片段。
为了较快地分离到相关基因,通过反转录mRNA得到的cDNA不含冗余序列,通过特异性探针筛选的cDNA构成的cDNA文库。
分子生物学复习资料全1. 概述- 分子生物学是研究生物体分子层面结构和功能的科学领域。
- 分子生物学主要关注DNA、RNA、蛋白质等生物分子的合成、结构和功能。
2. DNA- DNA是遗传物质,储存了生物体的遗传信息。
- DNA由核苷酸组成,包括脱氧核糖核苷酸和四种碱基:腺嘌呤、鸟嘌呤、胸腺嘧啶和鳕嘧啶。
- DNA的双螺旋结构由两条互补链以螺旋形式相互缠绕而成。
3. RNA- RNA在细胞中起着重要的生物学功能。
- RNA由核苷酸组成,包括核糖核苷酸和四种碱基:腺嘌呤、鸟嘌呤、尿嘧啶和胞嘧啶。
- RNA分为多种类型,包括mRNA、tRNA和rRNA等。
4. 蛋白质合成- 蛋白质合成是通过转录和翻译两个过程完成的。
- 转录是将DNA转录成mRNA的过程。
- 翻译是将mRNA翻译成蛋白质的过程。
5. 基因调控- 基因调控是控制基因表达水平的过程。
- 基因调控包括转录因子的结合、DNA甲基化和染色质重塑等。
6. 克隆技术- 克隆技术是复制生物体基因或DNA序列的方法。
- 主要克隆技术包括限制性内切酶切割、聚合酶链式反应和DNA串联。
7. PCR- PCR是一种通过体外扩增DNA片段的技术。
- PCR包括三个步骤:变性、退火和延伸。
8. 分子遗传学- 分子遗传学研究基因在遗传传递中的分子机制。
- 分子遗传学主要研究基因突变、基因重组和基因表达等。
9. DNA测序- DNA测序是确定DNA序列的方法。
- DNA测序技术包括Sanger测序和高通量测序等。
10. 基因工程- 基因工程是利用DNA技术修改或转移基因的技术。
- 基因工程在农业、医药和生物学研究等领域有着广泛的应用。
以上是关于分子生物学的简要复习资料,希望能对你的学习有所帮助。
分⼦⽣物学复习资料第⼀章1、分⼦⽣物学定义:从分⼦⽔平研究⽣物⼤分⼦的结构与功能从⽽阐明⽣命现象本质的科学,主要指遗传信息的传递(复制)、保持(损伤和修复)、基因的表达(转录和翻译)与调控。
2、Crick提出中⼼法则(P463)第⼆章1、染⾊体的结构和组成原核⽣物:●⼀般只有⼀条⼤染⾊体且⼤都带有单拷贝基因,除少数基因外(如rRNA基因)是以多拷贝形式存在。
●整个染⾊体DNA⼏乎全部由功能基因和调控序列所组成。
●⼏乎每个基因序列都与它所编码蛋⽩质序列呈线性对应关系。
真核⽣物:真核⽣物染⾊体中DNA相对分⼦质量⼀般⼤⼤超过原核⽣物,并结合有⼤量的蛋⽩质,结构⾮常复杂。
其具体组成成分为:组蛋⽩、⾮组蛋⽩、DNA。
2、组蛋⽩⼀般特性:进化上的保守性(不同种⽣物组蛋⽩的氨基酸组成是⼗分相似的。
对稳定真核⽣物的染⾊体结构起着重要的作⽤);⽆组织特异性;肽链氨基酸分布的不对称性(碱性氨基酸集中分布在N端的半条链上。
例如,N端的半条链上净电荷为+16,C端只有+3,⼤部分疏⽔基团都分布在C端);H5组蛋⽩的特殊性:富含赖氨酸(24%);组蛋⽩的可修饰性(包括甲基化、⼄基化、磷酸化)。
3、变性:DNA双链的氢键断裂,最后完全变成单链的过程称为变性。
增⾊效应:在变性过程中,260nm紫外线吸收值先缓慢上升,当达到某⼀温度时骤然上升,称为增⾊效应。
4、复性:热变性的DNA缓慢冷却,单链恢复成双链。
减⾊效应:随着DNA的复性, 260nm紫外线吸收值降低的现象。
5、融解温度(Tm ):变性过程紫外线吸收值增加的中点称为融解温度。
⽣理条件下为85-95℃6、C值反常现象:C值是⼀种⽣物的单倍体基因组DNA的总量,⼀般情况,真核⽣物C值是随着⽣物进化⽽增加,⾼等⽣物的C值⼀般⼤于低等⽣物,但是某些两栖类C值⼤于哺乳动物,这种现象叫C值反常现象。
7、核⼩体是由H2A、H2B、H3、H4各两个分⼦⽣成的⼋聚体和由⼤约200bpDNA组成的。
分子生物学重点1.将外源基因导入的方法常用的基因工程真核细胞包括酵母细胞、动物细胞和植物细胞。
(1)外源基因导入酵母细胞:在对酵母细胞进行外源DNA转化时,一般先需要用酶将其细胞壁消化水解,变成原生质体。
蜗牛消化酶具有纤维素酶、甘露聚糖酶、葡萄糖酸酶以及几丁质酶等,对酵母菌细胞壁有良好水解作用。
原生质体在氯化钙和聚乙二醇存在下,重组DNA能容易地被宿主细胞吸收,转化的原生质体悬浮在营养瓶中,即可再生出新的细胞壁。
(2)外源基因导入动物细胞常用的方法有:1.磷酸钙共沉淀法。
2.DEAE-葡聚糖或聚阳离子,它们能结合DNA并促使细胞吸收;3.脂质体法4.脂质转染法5.电穿孔法6.显微注射法(3)外源基因导入植物细胞常用的方法有:1.转化法2.电穿孔和脂质体法3.显微注射法5.基因枪法4.农杆菌感染法:根瘤农杆菌的Ti质粒上有一段T-DNA ,又称转移DNA,能携带外源基因转移到植物细胞内,并整合到染色体DNA中,因此Ti质粒是目前植物基因工程中最常用的理想的基因载体。
2.核糖体活性中心(核糖体的活性位点)(1)mRNA结合位点(2)P位点(3)A位点(4)肽基转移酶活性位点(转肽酶中心)(5)5SrRNA位点(50S上)(6)E位点(50S上)与氨酰基-tRNA释放有关。
大小亚基在合成中的分工小亚基:对mRNA特殊序列的识别(SD序列)密码子与反密码子的相互作用。
大亚基:AA-tRNA,肽基-tRNA的结合,肽键的形成等。
3.凝胶电泳(操作的主要因素)技术原理流程图目的:分离不同的DNA分子电泳迁移率:电泳分子在电场作用下的迁移速度。
影响迁移率的因素:(1)与电场强度、电泳分子净电荷成正比;(2)与电泳分子的摩擦系数成反比分子摩擦系数为分子大小、极性、介质粘度的函数。
.DNA和RNA在电场中为多聚阴离子,电泳时向正极移动。
速度在于分子大小和构型。
.电泳介质:一般用琼脂糖和聚丙烯酰胺,浓度与所分离的DNA和RNA的大小有关。
分子生物学知识点归纳1.DNA的结构和功能:DNA是生物体内贮存遗传信息的分子,由磷酸、五碱基、脱氧核糖组成。
DNA以双螺旋结构存在,通过序列编码生物体的遗传信息,并在细胞分裂中复制和传递。
2.RNA的结构和功能:RNA是将DNA信息翻译为蛋白质的中间分子,有多种类型,包括信使RNA(mRNA)、转运RNA(tRNA)和核糖体RNA (rRNA)。
RNA具有与DNA类似的结构,但是鸟嘌呤(G)和胸腺嘧啶(T)被腺嘌呤(A)和尿嘧啶(U)所取代。
3.基因表达:基因表达是指将DNA中的遗传信息转录成RNA,然后翻译成蛋白质的过程。
这个过程包括转录、剪接、RNA修饰、起始和终止等多个步骤。
基因表达过程中的调控对于维持生物体的正常功能至关重要。
4.蛋白质合成:蛋白质合成是指RNA翻译成蛋白质的过程。
这个过程包括译码、蛋白质折叠和修饰。
蛋白质的结构和功能由其氨基酸序列决定,但结构和功能的形成还受到其他因素的调控。
5.基因组学:基因组学是研究生物体基因组的学科,包括基因组的结构、功能和演化。
随着高通量测序技术的发展,基因组学成为了分子生物学的前沿领域。
6.分子遗传学:分子遗传学是研究遗传信息传递和表达的分子机制的学科。
它研究遗传物质的结构、复制、易位、突变和修复等,以及遗传信息的传递和表达的分子级机制。
7.基因调控:基因调控是指细胞内基因表达的调节过程。
这个过程包括转录因子与DNA结合、组蛋白修饰、DNA甲基化等多个调控机制。
基因调控决定了细胞的发育、分化和对环境刺激的响应。
9.蛋白质相互作用和信号传导:蛋白质相互作用是指蛋白质之间的物理或化学交互作用。
这些相互作用对于细胞信号传导、代谢调控和细胞活动的协调起着重要作用。
10.DNA修复和细胞凋亡:DNA修复是细胞内修复DNA损伤的过程,以维持遗传稳定性。
细胞凋亡是指细胞主动性死亡的过程,常常发生在DNA 严重损伤和细胞失控增殖时。
以上只是分子生物学的一些知识点,这个领域还有很多其他的重要概念和研究方向,如非编码RNA、表观遗传学和细胞信号转导等。
一.名解1.蛋白质变性:理化因素影响,蛋白质分子结构和性质改变,导致生物活性丧失的过程。
2.SNP:单核苷酸多态性。
包括:个体识别,能力,性格,爱好,环境适应,疾病易感,药物适应。
3.前导链:以3′→5′模板,5′→3′方向连续合成新链。
合成方向与复制叉的方向一致。
4.后随链:以5′→3′为模板,也是按5′→3′方向合成,先合成短的、不连续的片段,(岗崎片段),最终由DNA连接酶连接。
5.回文序列:DNA序列中以某一中心区域为对称轴,其两侧的碱基对顺序正读和反读都相同的双螺旋结构。
即对称轴一侧的片段旋转180°后,与另一侧片段对称重复。
6.基因:细胞内遗传物质的功能单位,本质是DNA序列,表达一定的功能产物(蛋白质和RNA)。
7.基因组:细胞内一套DNA携带的全部遗传信息,决定了一种生物的全部遗传性状。
8.模板链:DNA双链中只有一条链可以作为模板转录合成RNA,这条链称模板链。
与编码链互补。
9.编码链:DNA的另一条链,与合成的RNA链的碱基顺序相同,称为编码链。
带有遗传信息。
10.顺式调控元件:真核生物的调控序列,与结构基因串联,对基因的转录启动和转录效率起重要的DNA 序列。
包括启动子,增强子,沉默子。
(DNA中一段特殊的碱基序列,对基因的表达起到调控作用的基因元件)11.反式作用因子:通过直接结合或间接作用于DNA、RNA等核酸分子,对基因表达发挥不同调节作用(激活或抑制)的各类蛋白质因子。
12.反式作用元件:基因水平的调控序列。
参与调控基因转录效率,可以直接或间接识别或结合顺式作用元件的核心序列,影响基因表达,阻遏或激活。
13.密码子:在m RNA上从编码序列5’→3’每连续的3个碱基,决定一种氨基酸,称为密码子14.SD序列:核糖体结合蛋白,mRNA上,起始密码子上游的共有序列:AGGAGGU,与核糖体的30S小亚基结合位点。
15.Kozak序列:真核生物mRNA上的共有序列,CCRCCAUGG。
第一讲染色体与DNA一染色体(遗传物质的主要载体)1 DNA作为遗传物质的优点:储存遗传信息量大;碱基互补,双螺旋结构使遗传稳定;核糖2′-OH脱氢使在水中稳定性大于RNA;可以突变以进化,方便修复以稳定遗传2 真核细胞染色体特点:①分子结构相对稳定;②能够自我复制,使亲子代之间保持连续性;③能够指导蛋白质的合成,从而控制整个生命过程;④能够产生可遗传的变异。
3 染色体蛋白主要分为组蛋白和非组蛋白两类。
真核细胞的染色体中,DNA与组蛋白的质量比约为1:14 组蛋白是染色体的结构蛋白,分为H1、H2A、H2B、H3及H4五种,与DNA共同组成核小体。
组蛋白含有大量的赖氨酸和精氨酸,其中H3、H4富含精氨酸,H1富含赖氨酸。
H2A、H2B介于两者之间。
5 组蛋白具有如下特性:①进化上的极端保守性(不同种生物组蛋白的氨基酸组成十分相似)②无组织特异性(只有鸟类、鱼类及两栖类红细胞染色体不含H1而带有H5)③肽链上氨基酸分布的不对称性(碱性氨基酸集中分布在N端的半条链上,而大部分疏水基团都分布在C端。
碱性的半条链易与DNA的负电荷区结合,而另外半条链与其他组蛋白、非组蛋白结合)④存在较普遍的修饰作用(如甲基化、乙基化、磷酸化及ADP核糖基化等。
修饰作用只发生在细胞周期的特定时间和组蛋白的特定位点上)二 DNA1 真核细胞基因组的最大特点是它含有大量的重复序列2 C值反常现象:①所谓C值,通常是指一种生物单倍体基因组DNA的总量②同类生物不同种属之间DNA总量变化很大。
从编码每类生物所需的DNA量的最低值看,生物细胞中的C值具有从低等生物到高等生物逐渐增加的趋势。
3 真核细胞DNA序列可被分为3类:①不重复序列(它占DNA总量的10%~80%。
不重复序列长约750~2 000bp,相当于一个结构基因的长度)②中度重复序列(各种rRNA、tRNA以及某些结构基因如组蛋白基因等都属于这一类)③高度重复序列—卫星DNA(只存在于真核生物中,占基因组的10%~60%,由6~100个碱基组成)三染色体与核小体1 染色质DNA的Tm值比自由DNA高,说明在染色质中DNA极可能与蛋白质分子相互作用2 在染色质状态下,由DNA聚合酶和RNA聚合酶催化的DNA复制和转录活性大大低于在自由DNA 中的反应3 DNA片段均为200bp基本单位的倍数,核小体是染色质的基本结构单位,由~200 bpDNA和组蛋白八聚体(由H2A、H2B、H3、H4各两个分子生成)组成四级压缩:第一级(DNA+组蛋白→核小体)第二级(核小体→螺线管)第三级(螺线体→超螺旋)第四级(超螺线体→染色体)4 原核生物基因组原核生物的基因组很小,大多只有一条染色体,且DNA含量少主要是单拷贝基因整个染色体DNA几乎全部由功能基因与调控序列所组成;几乎每个基因序列都与它所编码的蛋白质序列呈线性对应状态。
分子生物学知识经典整理第二章/染色体与DNA名词、1 DNA的一级结构:指4种脱氧核苷酸的连接及其排列顺序,DNA序列是这一概念的简称。
2、DNA 的二级结构:指两条多核苷酸链反向平行盘绕所产生的双螺旋结构。
3、DNA的高级结构:指DNA双螺旋进一步扭曲盘绕所形成的特定空间结构。
是一种比双螺旋更高层次的空间构象。
4、由亲代DNA生成子代DNA时,每个新形成的子代DNA中,一条链来自亲代DNA,而另一条链则是新合成的,这种复制方式称半保留复制5冈崎片段:在DNA复制过程中,前导链能连续合成,而滞后链只能是断续的合成5'→3 '的多个短片段,这些不连续的小片段称为冈崎片段填空1、与DNA复制有关的物质a原料b引物c模板d引物合成酶(引发酶)2、DNA连接酶在DNA复制、损伤修复、重组等过程中起重要作用判断1基因组DNA复制时,先导链的引物是DNA,后随链的引物是RNA (-)选择1原核DNA合成酶中()的主要功能是合成前导链和冈崎片段A、DNA聚合酶ⅠB、DNA聚合酶ⅡC、DNA聚合酶ⅢD、引物酶简答一、真核生物DNA复制与原核生物DNA复制的区别?答1.原核生物基因组DNA有1个复制子,真核生物有多个复制子。
2.原核生物比真核生物DNA复制速度快。
3.真核生物复制一旦启动,在完成本次复制前,不能在再启动新的复制,而原核复制起始位点可以连续开始新的复制,特别是快速繁殖的细胞。
4.原核生物引物由引物酶催化合成的,真核生物引物由DNA聚合酶α催化合成的5.原核生物与真核生物DNA聚合酶不同。
真核生物的聚合酶没有5‘-3’外切酶活性,需要一种叫FEN1的蛋白切除5‘端引物,原核的DNA聚合酶I具有5’-3‘外切酶活性。
6.真核生物端粒DNA的合成由端粒酶催化合成的,原核生物不存在这种情况。
7.真核生物和原核生物的复制调控不同。
二、DNA修复的5种方式及其概念答1错配修复:一旦在DNA复制过程中发生错配的细胞能够通过准确地错配修复系统识别新合成链中的错配并加以校正;2切除修复:包括碱基切除修复和核苷酸切除修复3重组修复:又被称为复制后修复,发生在复制之后,机体细胞对在复制起始时尚未修复的DNA损伤部位可以先复制再由DNA重组来修复;4 DNA的直接修复:是把损伤的碱基回复的原来状态的一种修复;5 SOS反应:是细胞DNA 受到损伤或复制系统受到抑制的紧急情况下,细胞为求生存而产生的一种应急措施。
1、增强子:能提高转录起始效率的序列被成为增强子或强化子。
增强子可位于转录起始点的5’或3’末端,而且一般与所调控的靶基因的距离无关。
2、C值反常:也称C值谬误。
指C值往往与种系的进化复杂性不一致的现象,即基因组大小与遗传复杂性之间没有必然联系,某些较低等的生物C值却很大,如一些两栖动物的C 值甚至比哺乳动物还大。
3、DNA重组技术:又称基因工程,将不同的DNA片段(如某个基因或基因的一部分)按照预先的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状的技术。
4、基因家族:在基因组进化中,一个基因通过基因重复产生了两个或更多的拷贝,这些基因即构成一个基因家族,是具有显著相似性的一组基因,编码相似的蛋白质产物。
5、SD序列:存在于原核生物起始密码子AUG上游7~12个核苷酸处的一种4~7个核苷酸的保守片段,它与16SrRNA3’端反向互补,所以可将mRNA的AUG起始密码子置于核糖体的适当位置以便起始翻译作用。
根据首次识别其功能意义的科学家命名。
6、核酶:是一类具有催化活性的RNA分子,通过催化靶位点RNA链中的磷酸二酯键的断裂,特异性的剪切底物RNA分子,从而阻断基因的表达。
7、RNA干扰:是利用双链小RNA高效、特异性降解细胞内同源mRNA,从而阻断体内靶基因表达,使细胞出现靶基因缺失表型的方法。
8、反式作用因子:是指能直接或间接地识别或结合在各类顺式作用元件核心序列上参与调控靶基因转录效率的蛋白质。
9、操纵子:是指原核生物中由一个或多个相关基因以及转录翻译调控元件组成的基因表达单元。
10、基因组:生物有机体的单倍体细胞中的所有DNA,包括核中的染色体DNA和线粒体、叶绿体等亚细胞器中的DNA。
11、cDNA文库:真核生物基因组DNA非常庞大,而且含有大量重复序列,无论用电泳分离技术还是用杂交方法都难以直接分离到靶基因片段。
为了较快地分离到相关基因,通过反转录mRNA得到的cDNA不含冗余序列,通过特异性探针筛选的cDNA构成的cDNA文库。
12、蛋白质组学:蛋白质组是指一个基因组所表达的全部蛋白质,而蛋白质组学则是指在蛋白质水平上研究蛋白质的特性,包括蛋白质的表达水平、翻译与修饰、蛋白与蛋白相互作用等,并由此获得关于疾病发生、发展及细胞代谢等过程的整体认识。
13、启动子:与基因表达启动相关的顺式作用元件,是结构基因的重要成分。
它是一段位于转录起始位点5’端上游区大约100~200bp以内的具有独立功能的DNA序列,能活化RNA聚合酶,使之与模板DNA准确地相结合并具有转录起始的特异性。
14、载体:能将外源DNA或基因片段携带入宿主细胞内的一个具有自主复制能力的DNA分子。
15、原位杂交:是用标记的核酸探针,经放射自显影或非放射检测体系,在组织、细胞及染色体水平上对核酸进行定位和相对定量研究的一种手段。
通常分为RNA原位杂交和染色体原位杂交两大类。
16、转录单位:是一段可被RNA聚合酶转录成一条连续mRNA链的DNA,包括转录起始和终止信号。
一个简单的转录单位只携带合成一种蛋白的信息,复合转录单位可携带不止一种蛋白质分子的信息。
17、单核苷酸多态性:是指在基因组中不同个体的DNA序列上的单个碱基差异。
同一位置上的每个碱基类型叫做一个等位位点。
18、引物:是指一段较短的单链RNA或DNA,它能与DNA的一条链配对提供游离的3’-OH 末端以作为DNA聚合酶合成脱氧核苷酸链的起始点。
19、信号肽:在起始密码子后,有一段编码疏水性氨基酸序列的RNA区域,被称为信号肽序列,它负责把蛋白质引导到细胞内不同膜结构的亚细胞器内。
20、基因芯片:把大量已知或未知序列的DNA片段点在尼龙膜或玻璃片上,再经过物理吸附作用达到固定化。
也可以直接在玻璃或金属表面进行化学合成,得到寡聚核苷酸芯片。
将芯片与待研究的cDNA或其他样品杂交,经过计算机扫描和数据处理,便可以观察到成千上万个基因在不同组织或同一组织不同发育时期或不同生理条件下的表达模式。
21、无义突变:在DNA序列中任何导致编码氨基酸的三联密码子转变为终止密码子(UAG/UGA/UAA)的突变,它使蛋白质合成提前终止,合成无功能的或无意义的多肽。
22、基因克隆:在分子生物学上,人们把将外源DNA插入具有复制能力的载体DNA中,转入宿主细胞使之得以永久保存和复制的过程叫做基因克隆。
基因工程或重组DNA技术则侧重于验证上述过程所获得遗传物质新组合在宿主细胞内的表达与功能鉴定。
简答题:1、简述乳糖操纵子的调控模型答:①Z、Y、A基因的产物由同一条多顺反子的mRNA分子所编码②这个mRNA分子的启动子紧接着O区,而位于I与O之间的启动子区(P),不能单独起动合成β-半乳糖苷酶和透过酶的生理过程。
③操纵基因是DNA上的一小段序列(仅为26bp),是阻遏物的结合位点。
④当阻遏物与操纵基因结合时,lac mRNA的转录起始受到抑制。
⑤诱导物通过与阻遏物结合,改变它的三维构象,使之不能与操纵基因结合,从而激发lac mRNA的合成。
当有诱导物存在时,操纵基因区没有被阻遏物占据,所以启动子能够顺利起始mRNA的合成。
2、限制性内切酶的概念和分类答:概念:早在二十世纪五十年代发现一些细菌对噬菌体具有免疫性,称为寄主控制的限制。
限制的出现因为在噬菌体复制合成新的颗粒之前,细菌就产生酶降解噬菌体DNA, 而细菌自身的DNA分子的酶识别位点已被甲基化修饰,这种酶被称为限制性内切酶。
限制性核酸内切酶可分为三大类:I 类限制性内切酶:能识别专一的核苷酸顺序,并在识别点附近的一些核苷酸上切割DNA分子中的双链,但是切割的核苷酸顺序没有专一性,是随机的。
代表EcoB、EcoK(II型)限制性内切酶:能识别专一的核苷酸顺序,并在该顺序内的固定位置上切割双链。
II 型限制性内切酶的识别顺序是一个回文对称顺序(palindrome),即有一个中心对称轴,从这个轴朝二个方向“读”都完全相同。
III型限制性内切酶:有专一的识别顺序,但不是对称的回文顺序,在识别顺序旁边几个核苷酸对的固定位置上切割双链3、Western-blot的原理和主要步骤答:采用的是聚丙烯酰胺凝胶电泳,被检测物是蛋白质,“探针”是抗体,“显色”用标记的二抗。
经过PAGE分离的蛋白质样品,转移到固相载体(例如硝酸纤维素薄膜)上,固相载体以非共价键形式吸附蛋白质,且能保持电泳分离的多肽类型及其生物学活性不变。
以固相载体上的蛋白质或多肽作为抗原,与对应的抗体起免疫反应,再与酶或同位素标记的第二抗体起反应,经过底物显色或放射自显影以检测电泳分离的特异性目的基因表达的蛋白成分。
该技术也广泛应用于检测蛋白水平的表达。
4、简述转录终止子翻译终止密码的结构特点答:(1)不依赖ρ因子的终止:①在终止位点上游一段富含GC二重对称区,通过转录形成RNA容易出现发卡结构,该结构阻止RNA聚合酶的前进,破坏RNA-DNA杂化双链的结构②在终止位点上游存在4~8个A组成的序列,转录产物形成不稳定的rU•dA区域,上述两者共同作用,使RNA聚合酶从三元复合物中脱离出来(2)依赖ρ因子的终止:ρ因子为六个相同亚基的聚合物,其能够催化NTP的水解促使新生成的RNA从三元复合物中脱离出来,从而终止转录。
5、简述聚合E链式反应(PCR)的基本原理和步骤答:PCR基本原理:PCR技术实际上是在模板DNA、引物和4种脱氧核糖核苷存在条件下依赖于DNA聚合酶的酶促合成反应。
热变性—复性—延伸的过程就是一个PCR循环。
延伸产物经第二个循环变性后,又作为模板再合成新的DNA。
依此类推,第一循环后的模板均比前一个循环增加1倍。
理论上讲,扩增DNA产量是呈指数上升的,即经过n个循环后,产量为2n拷贝。
而实际上PCR 的平均扩增率仅为75%PCR步骤:1、变性:通过加热使DNA双螺旋的氢键断裂,双链解离形成单链DNA2、模板与引物退火:当温度突然降低时,由于模板分子结构较引物要复杂得多,而且反应体系中引物DNA的量大大多于模板DNA,使引物和其互补的模板在局部形成杂交链,而模板DNA双链之间互补的机会较少。
3、引物延伸:在DNA聚合酶和4种脱氧核糖核苷三磷酸(dNTPmix)及Mg2+存在条件下,5`→3`的聚合酶催化以引物为起始点的DNA链延伸反应。
6、原核和真核生物基因组的特点答:真核生物基因组的特点:真核基因组庞大;真核基因组存在大量的重复序列;真核基因组的大部分为非编码序列;真核基因组的转录产物为单顺反子;真核基因是断裂基因;真核基因组存在大量的顺式作用元件;真核基因组中存在大量的DNA多态性;真核基因组具有端粒结构。
原核细胞基因组的特点:1、结构简炼。
原核DNA分子的绝大部分是用来编码蛋白质的,只有很小一部分控制基因表达的序列不转录。
2、存在转录单元。
原核生物DNA序列中功能相关的RNA和蛋白质基因,往往丛集在基因组的一个或几个特定部位,形成转录单元并转录产生含多个mRNA的分子,称为多顺反子mRNA。
3、有重叠基因。
同一段DNA能携带两种不同蛋白质的信息。
7、分子克隆中常用的工具酶以及良好载体的条件答:常用工具酶:(1)限制性核酸内切酶:识别并在特定位点切开DNA;(2)DNA连节酶:通过磷酸二酯键把两个或多个DNA片段连接成一个DNA分子;(3)DNA聚合酶Ι:按5’到3’方向加入新的核苷酸,补平DNA双链中的缺口;(4)反转录酶:按照RNA分子中的碱基序列,根据碱基互补原则合成DNA链;(5)多核苷酸激酶:把磷酸基团加到多聚核苷酸链的5’-OH末端;(6)末端转移酶:在双链核酸的3’末端加上多聚单核苷酸;(7)DNA外切酶Ⅲ:从DNA链的3’末端逐个切除单核苷酸;(8)λ噬菌体DNA外切酶:从DNA的5’末端逐个切除单核苷酸;(9)碱性磷酸酯酶:切除位于DNA链5’或3’末端的磷酸基团良好载体的条件:具有较高的自主复制和繁殖能力;容易进入宿主细胞,并在细胞中可以有较高的拷贝数;具有合适的限制性酶切位点,可容纳外源DNA片段的插入,并且不因为含外源片段而改变其本身基本特性;具有筛选标志和是否含有插入片段的识别标志8、核酸分子杂交的原理答:所谓DNA探针,实质上是一段已知的基因片段,应用这一基因片段即可与待测样品杂交。
如果靶基因和探针的核苷酸序列相同,就可按碱基配对原则进行核酸分子杂交,从而达到检查样品基因的目的。
在随机引物法标记反应液中,有随机合成的六聚体核昔酸(hexanucleotide)作为引物,dATP、dCTP、dGTP、dTTP和D1G-11-dUTP作为合成底物,以单链DNA作为模板,在Klenow酶的作用下,合成掺入地高辛的DNA链。
以地高辛标记的探针与靶基因DNA链杂交后,再通过免疫反应来进行检测。