201X年秋九年级数学上册第21章二次根式21.2二次根式的乘除第2课时二次根式的除法习题课件新版华
- 格式:ppt
- 大小:2.12 MB
- 文档页数:27
九年级上册数学21章22章知识点一、二次根式(第 21 章)(一)二次根式的概念形如\(\sqrt{a}(a\geq 0)\)的式子叫做二次根式。
其中\(a\)叫做被开方数。
要理解二次根式,需要注意以下几点:1、二次根式必须含有二次根号“\(\sqrt{}\)”。
2、被开方数\(a\)必须是非负数,即\(a\geq 0\)。
例如,\(\sqrt{5}\),\(\sqrt{20}\),\(\sqrt{x^2 +1}\)(\(x\)为任意实数)都是二次根式;而\(\sqrt{-5}\)就不是二次根式,因为被开方数\(-5\)是负数。
(二)二次根式的性质1、\(\sqrt{a^2} =|a|\)当\(a\geq 0\)时,\(\sqrt{a^2} = a\);当\(a < 0\)时,\(\sqrt{a^2} = a\)。
例如,\(\sqrt{4^2} = 4\),\(\sqrt{(-3)^2} = 3\)。
2、\(\sqrt{ab} =\sqrt{a}\cdot\sqrt{b}\)(\(a\geq 0\),\(b\geq 0\))times\sqrt{3} = 2\sqrt{3}\)3、\(\dfrac{\sqrt{a}}{\sqrt{b}}=\sqrt{\dfrac{a}{b}}\)(\(a\geq 0\),\(b > 0\))例如,\(\dfrac{\sqrt{18}}{\sqrt{2}}=\sqrt{\dfrac{18}{2}}=\sqrt{9} = 3\)(三)二次根式的运算1、二次根式的加减法先将二次根式化为最简二次根式,然后把被开方数相同的二次根式合并。
例如,\(\sqrt{8} +\sqrt{18} = 2\sqrt{2} + 3\sqrt{2} =5\sqrt{2}\)2、二次根式的乘除法乘法:\(\sqrt{a}\cdot\sqrt{b} =\sqrt{ab}\)(\(a\geq0\),\(b\geq 0\))除法:\(\dfrac{\sqrt{a}}{\sqrt{b}}=\sqrt{\dfrac{a}{b}}\)(\(a\geq 0\),\(b > 0\))(四)二次根式的化简化简二次根式就是把被开方数中的完全平方数因子开出来。
初三上册数学知识点初三上册数学知识点第21-22章第21章二次根式先生曾经学过整式与分式,知道用式子可以表示实践效果中的数量关系。
处置与数量关系有关的效果还会遇到二次根式。
〝二次根式〞一章就来看法这种式子,探求它的性质,掌握它的运算。
在这一章,首先让先生了解二次根式的概念,并掌握以下重要结论:注:关于二次根式的运算,由于二次根式的乘除相关于二次根式的加减来说更易于掌握,教科书先布置二次根式的乘除,再布置二次根式的加减。
〝二次根式的乘除〞一节的内容有两条开展的线索。
一条是用详细计算的例子体会二次根式乘除法那么的合理性,并运用二次根式的乘除法那么停止运算;一条是由二次根式的乘除法那么失掉并运用它们停止二次根式的化简。
〝二次根式的加减〞一节先布置二次根式加减的内容,再布置二次根式加减乘除混合运算的内容。
在本节中,留意类比整式运算的有关内容。
例如,让先生比拟二次根式的加减与整式的加减,又如,经过例题说明在二次根式的运算中,多项式乘法法那么和乘法公式依然适用。
这些处置有助于先生掌握本节内容。
第22章一元二次方程先生曾经掌握了用一元一次方程处置实践效果的方法。
在处置某些实践效果时还会遇到一种新方程——一元二次方程。
〝一元二次方程〞一章就来看法这种方程,讨论这种方程的解法,并运用这种方程处置一些实践效果。
本章首先经过雕像设计、制造方盒、排球竞赛等效果引出一元二次方程的概念,给出一元二次方程的普通方式。
然后让先生经过数值代入的方法找出某些复杂的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,〝22.2降次——解一元二次方程〞一节引见配方法、公式法、因式分解法三种解一元二次方程的方法。
下面区分加以说明。
(1)在引见配方法时,首先经过实践效果引出形如的方程。
这样的方程可以化为更为复杂的形如的方程,由平方根的概念,可以失掉这个方程的解。
进而举例说明如何解形如的方程。
然后举例说明一元二次方程可以化为形如的方程,引出配方法。
第21章 二次根式21.1 二次根式1.a (a ≥0)表示非负数a 的算术平方根,也就是说,a (a ≥0)是一个非负数,它的平方等于a ,即有:(1)a __≥__0(a ≥0);(2)(a )2=__a __(a ≥0). 2.形如a __(a ≥0)__的式子叫做二次根式.3.a 2=|a |=⎩⎨⎧ a (a ≥0)-a (a <0)知识点1:(a )2=a (a ≥0) 1.计算:(2015)2=__2015__;(53)2=__53__. 2.把下列非负数写成一个非负数的平方的形式:(1)7=;(2)8.3=;(3)112=;(4)t =t ≥0). 知识点2:二次根式的概念3.下列式子:①4;②12;③-5;④38;⑤(-1)2.其中二次根式的个数有( C ) A .1个 B .2个 C .3个 D .4个 4.在下列式子中,一定是二次根式的有( C ) a ,-22,-x 2+1,(-13)2,3-2,32x 2,π.A .2个B .3个C .4个D .5个 知识点3:二次根式有意义的条件5.(2014·武汉)若x -3在实数范围内有意义,则x 的取值范围是( C ) A .x >0 B .x >3 C .x ≥3 D .x ≤3 6.(2014·巴中)要使式子m +1m -1有意义,则m 的取值范围是( D ) A .m >-1 B .m ≥-1C .m >-1且m ≠1D .m ≥-1且m ≠17.下列四个式子中,x 的取值范围为x ≥2的是( C )A.x -2x -2 B.1x -2C.x -2D.2-x8.使二次根式-(x -1)2有意义的x 的取值范围是__x =1__. 知识点4:二次根式的性质 9.计算(-3)2的结果是( B ) A .-3 B .3 C .-9 D .9 10.如果(3a -2)2=2-3a ,则( B ) A .a <23 B .a ≤23C .a >23D .a ≥2311.化简下列各式: (1)4; 解:2 (2)49; 解:7(3)2025; 解:45(4)(-5)2; 解:5 (5)-(13)2; 解:-13(6)4×10-4. 解:2×10-212.已知-1≤a ≤1,下列是二次根式的为( C ) A.a -12B.1-1aC.1-a 2D.a13.文文设计了一个关于实数运算的程序,按此程序,输入一个数后,输出的数比输入的数的平方小1,若输入7,则输出的结果为( B )A .5B .6C .7D .814.实数a 在数轴上的位置如图所示,则(a -4)2+(a -11)2化简后为( A )A .7B .-7C .2a -15D .无法确定15.已知点P (x ,y )在函数y =1x 2+-x 的图象上,那么点P 应在平面直角坐标系中的( B )A .第一象限B .第二象限C .第三象限D .第四象限16.(2014·张家界)若x -1+(y +2)2=0,则(x +y)2014等于( B ) A .-1 B .1 C .2014 D .-2014 17.使代数式2x -13-x有意义的x 的取值范围是__x ≥12且x ≠3__.18.(2014·德州)若y =x -4+4-x 2-2,则(x +y)y =__14__.19.x 取怎样的实数时,下列各式在实数范围内有意义? (1)x +1-2-x ; 解:-1≤x ≤2 (2)53-2x; 解:x<32(3)41-x . 解:x ≥0且x ≠120.(1)已知x ,y 为实数,且满足1+x -(y -1)1-y =0,试求x 2015-y 2015的值.(2)若a ,b 为实数,且a =b -7+14-2b +2,求a +b 的平方根.解:(1)由已知得1+x +(1-y )1-y =0,由于1+x ≥0,1-y ≥0,故根据非负数的性质可得:1+x =0,1-y =0,解得x =-1,y =1,代入则有x 2015-y 2015=(-1)2015-12015=-1-1=-2 (2)由于b -7≥0,14-2b ≥0,则有b ≥7,b ≤7,故b =7,所以a =2,所以a +b 的平方根为±321.甲、乙两位同学做一道相同的题目: 化简求值:1a +1a 2+a 2-2,其中a =15. 甲同学的解法是:原式=1a +(1a -a )2=1a +1a -a =2a -a =10-15=495. 乙同学的解法是:原式=1a+(a -1a )2=1a +a -1a =a =15.请问哪位同学的解法正确?请说明理由. 解:甲同学的解法是正确的,理由如下:∵1a2+a 2-2=(a -1a )2=|1a-a|,且a=15,即1a =5.∴1a >a.∴1a -a>0.∴|1a -a|=1a -a.乙同学在去绝对值时忽略了1a 与a 的大小关系,导致错误21.2 二次根式的乘除21.2.1 二次根式的乘法 21.2.2 积的算术平方根1.a ·b =a __≥__0,b __≥__0).即:两个算术平方根的积,等于它们被开方数的__积__的算术平方根.2.ab =a __≥__0,b __≥__0).即:积的算术平方根,等于各因式算术平方根的__积__.知识点1:二次根式的乘法 1.计算:(2014·河北)8×12=__2__;2×18=__6__;35×16920=__34__. 2.等式x +1·x -1=x 2-1成立的条件是( C ) A .x >1 B .x <-1C .x ≥1D .x ≤-13.下列各等式成立的是( D )A .45×25=8 5B .53×42=20 5C .43×32=7 5D .53×42=20 6 4.计算: (1)98×2; 解:14(2)52×10; 解:5(3)36×167;解:1242(4)6a 3×3a2(a ≥0). 解:3a 25.王老师想设计一个长方形的实验基地,便于同学们进行实地考察,为了考查一下同学们的数学应用能力,他把长方形的基地设计长为8020米,宽为345米,请同学们算出这块实验基地的面积.解:这块实验基地的面积为8020×345=240900=240×30=7 200(平方米)知识点2:积的算术平方根6.化简二次根式(-3)2×6得( B ) A .-3 6 B .3 6 C .±3 6 D .67.若等式9-x2=3-x·3+x成立,则x的取值范围是( A )A.-3≤x≤3 B.x>-3C.x<3 D.-3<x<38.化简:(1)48=;(2)-72=;(3)-135=.9.化简:(1)108;解:63(2)(-5)×(-90);解:152(3)292-212;解:20(4)18x2yz3(x≥0,y≥0,z≥0).解:3xz2yz10.下列化简正确的是( B )A.(-4)×(-9)=-4×-9=6B.12×27=4×81=18C.16+4=16+4=4+2=6D.414=4×14=2×12=111.若直角三角形两条直角边的边长分别为15 cm和12 cm,那么此直角三角形斜边长是( B )A.3 2 cm B.3 3 cmC .9 cmD .27 cm12.设2=a ,3=b ,用含a ,b 的式子表示54,则下列正确的是( A ) A .3ab B .2ab C .ab 2 D .a 2b 13.已知m =(-33)×(-221),则有( A ) A .5<m <6 B .4<m <5C .-5<m <-4D .-6<m <-514.若点P (x ,y )在第二象限内,化简x 2y 的结果是. 15.比较大小:(1)23__<__32;(2)-211__>__-3 5. 16.将根号外面的因数移到根号内:35=,212=;-656=,a -1a=. 17.若20n 是整数,则正整数n 的最小值是__5__. 18.计算: (1)15×60; 解:23 (2)6×1218; 解:33(3)3220×(-1215)×(-1324). 解:15219.化简: (1)3200;解:402 (2)-21×(-28); 解:143(3)43×92×5;解:725 (4)1327x 2y 3z 4(xy ≥0).解:xyz 23y20.小强在计算机课上设计了一幅长140π cm ,宽35π cm 的矩形图片,他还想设计一个面积与其相等的圆,请你帮助他求出该圆的半径.解:设圆的半径为r cm ,则140π×35π=πr 2,35×4×35π2=πr 2,∴70π=πr 2,∴r 2=70,∴r =70,即圆的半径为70 cm21.探究过程:观察下列各式及其验证过程. 338=3+38. 验证: 338=32×38=338=33-3+332-1=3(32-1)+332-1=3(32-1)32-1+332-1=3+38 同理可得:4415=4+415,5524=5+524,……通过上述探究你能猜测出:a aa 2-1=a >1),并验证你的结论. 解:a aa 2-1=a +a a 2-1,验证:a aa 2-1=a 2·a a 2-1=a 3a 2-1=a 3-a +aa 2-1=a 3-a a 2-1+aa 2-1=a (a 2-1)a 2-1+aa 2-1=a +aa 2-121.2.3 二次根式的除法1.a b=a __≥__0,b __>__0).即:两个算术平方根的商,等于它们被开方数的__商__的算术平方根.2.a b =a __≥__,b __>__0).即:商的算术平方根,等于被除式的算术平方根与除式的算术平方根的__商__.3.被开方数中不含__分母__,并且被开方数中所有因数(或因式)的幂的指数都小于__2__的二次根式称为最简二次根式.4.二次根式的除法,要化去分母中的根号,只要将分子,分母同乘以一个__恰当的二次根式__就可以了,这种化简过程称为分母有理化.知识点1:二次根式的除法 1.计算:10÷2=( A ) A.5 B .5 C.52 D.1022.菱形ABCD 的面积为27,对角线AC 的长为23,则对角线BD 的长为( D ) A.92 B .9 C.32D .3 3.等式x x -2=xx -2成立的条件为__x>2__.4.计算下列各题: (1)60÷5;解:23 (2)2423;解:2 (3)45÷215; 解:6 (4)2a 2bb(a ≥0).解:2a知识点2:商的算术平方根5.下列各式计算正确的是( C )A.-4-9=-4-9=-2-3=23B.429=213 2C.4×225=25 2D.1249=7126.(2014·济宁)如果ab>0,a+b<0,那么下面各式:①ab=ab,②ab·ba=1,③ab÷ab=-b,其中正确的是( B )A.①②B.②③C.①③D.①②③7.化简:(1)11549;(2)6316;(3)25a481b2(b>0).解:(1)87(2)374(3)5a29b知识点3:最简二次根式8.下列式子中,属于最简二次根式的是( B )A.9B.7C.20D.139.把下列各个二次根式化为最简二次根式.(1)8a2b3(a≥0);解:2ab2b(2)83;解:236(3) 4.8;解:2305(4)3y32x2(x>0).解:y 2x6y10.下列各式计算正确的是( C ) A.483=16 B.326=13C.3663=22D.698=27 11.下列二次根式中:12,12a ,30, 1.6,a 2-b 2,5a 3,a 2,a2,9x +18y ,最简二次根式有( B )A .2个B .3个C .4个D .5个12.在化简323时,甲、乙、丙三位同学化简的方法分别是:甲:原式=3×23=3×2×33×3=6;乙:原式=3×69=3×69=6;丙:原式=32×23= 6.其中解答正确的是( D )A .甲B .乙C .丙D .都正确13.设2=a ,3=b ,用含a ,b 的式子表示0.24,则下列表示正确的是( B ) A .2ab B .0.2ab C .0.1ab 2 D .0.1a 2b14.计算:(1)3850=__65__;(2)26315=15;(3)-3227=__3;(4)12+13=6.15.已知点A (x 1,-3),B (22,y 2)都在反比例函数y =-32x的图象上,则x 1=__,y 2=__-32__.16.把(a -b )1b -a的根号外的因式移到根号内的结果是. 17.计算: (1)18÷8×272;解:946(2)30×32223÷2212; 解:32 (3)945÷212×32223. 解:54318.先化简,再求值:xx 3-2x 2÷x -2x -2,其中x =8. 解:原式=1x,当x =8时,原式=2419.进行二次根式化简时,有时会碰到像53,23+1这样的式子,其实还可以将其进一步化简:53=5×33×3=533;23+1=2×(3-1)(3+1)(3-1)=2(3-1)(3)2-12=3-1. 以上这种化简的步骤叫做分母有理化.23+1还可以这样化简:23+1=3-13+1=(3)2-123+1=(3+1)(3-1)3+1=3-1.请选择适当的方法化简:(1)13-1;(2)25+3;(3)143-7.解:(1)13-1=3+1(3-1)(3+1)=3+12(2)25+3=(5)2-(3)25+3=(5+3)(5-3)5+3=5-3(3)143-7=43+7(43-7)(43+7)=43+7-1=-43-721.3二次根式的加减1.几个二次根式化成最简二次根式后,如果__被开方数相同__,这几个二次根式就叫做同类二次根式.2.二次根式相加减时,先把各个二次根式__化简__,再将__同类二次根式__合并.知识点1:同类二次根式1.(2014·孝感)下列二次根式中,不能与2合并的是( C )A.12 B.8 C.12 D.182.下列各式中与3是同类二次根式的是( C )A.24B.23 C.27 D.0.33.如果最简二次根式3a-8和17-2a是同类二次根式,那么a=__5__.知识点2:二次根式的加减4.下列计算正确的是( C )A.43-33=1 B.2+3= 5C.212= 2 D.3+22=5 25.(2014·哈尔滨)计算:12-3=.6.计算:(1)45-1480+515-53145;解:25(2)(30.5-613)-(218-20-2927). 解:2-433+25知识点3:二次根式的运算与乘法公式7.若x =a -b ,y =a +b ,则xy 的值是( D ) A .2a B .2b C .a +b D .a -b8.已知a =22+3,b =22-3,则:(1)a +b =; (2)a -b =__6__; (3)ab =__-1__; (4)a 2+b 2=__34__;(5)a 2-2ab +b 2=__36__. 9.计算:(1)(2+3)(2-3); 解:-1 (2)(2-12)2; 解:12(3)(5+32)2. 解:23+610知识点4:二次根式的混合运算 10.(2014·台湾)算式(6+10×15)×3之值为何?( D ) A .242 B .12 5 C .1213 D .18 211.计算:24-18×13=.12.计算:(1)(54-12+1)÷3; 解:32-2+33(2)45×35+3(5-2). 解:3+1513.计算412+313-8的结果是( B ) A.3+2 B.3 C.33D.3- 2 14.下列计算正确的是( D ) A .(22-3)(2+3)=-1 B .(2+5)(2-5)=1 C.6÷(2-3)=3- 2D.27-123=9-4=115.计算32×12+2×5的结果估计在( A ) A .7到8之间 B .8到9之间 C .9到10之间 D .10到11之间16.已知a =5+2,b =5-2,则a 2+b 2+7的值为( C ) A .3 B .4 C .5 D .617.计算:(26+5)2015×(26-5)2016=.18.工厂因实际需要,用钢材焊制三个面积分别为2 m 2,18 m 2,32 m 2的正方形铁框,则焊工师傅需用钢材的总长度为19.计算:(1)(212-6118+348)×52;解:806-10(2)(318+1550-412)÷32; 解:2(3)(2014·荆门)24×13-4×18×(1-2)0. 解:220.已知a =7+2,b =7-2,求下列代数式的值: (1)ab 2+a 2b ;解:原式=ab (b +a ).当a =7+2,b =7-2时,原式=67(2)a 2-2ab +b 2;解:原式=(a -b )2.当a =7+2,b =7-2时,原式=16(3)a 2-b 2.解:原式=(a +b )(a -b ).当a =7+2,b =7-2时,原式=8721.阅读下列解题过程:12+1=1×(2-1)(2+1)(2-1)=2-1, 13+2=1×(3-2)(3+2)(3-2)=3- 2.请回答下面的问题:(1)观察上面的解题过程,请直接写出1n +n -1的值;(2)利用上面的规律计算: (11+2+12+3+13+4+…+12013+2014+12014+2015)×(1+2015). 解:(1)1n +n -1=n -n -1 (2)原式=(2-1+3-2+4-3+…2014-2013+2015-2014)×(1+2015)=(2015-1)(2015+1)=(2015)2-12=2014综合练习 二次根式的化简与运算1.(2014·徐州)下列运算中错误的是( A ) A.2+3=5 B.2×3= 6 C.8÷2=2 D .(-3)2=3 2.计算48-913的结果是( B ) A .- 3 B. 3 C .-113 3 D.11333.估算50+232的值在( C ) A .5和6之间 B .6和7之间 C .7和8之间 D .8和9之间 4.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为( C ) A .9 B .±3 C .3 D .55.等式(4-x )2(6-x )=(x -4)6-x 成立的条件是( B ) A .x ≥4 B .4≤x ≤6 C .x ≥6 D .x ≤4或x ≥66.如果(2+2)2=a +b 2(a ,b 为有理数),那么a +b 等于( D ) A .2 B .3 C .8 D .107.若a =3-10,则代数式a 2-6a -2的值为( C ) A .0 B .1 C .-1 D.108.(2014·黔南州)实数a 在数轴上的位置如图,化简(a -1)2+a =__1__.9.化简:3×(2-3)-24-|6-3|=__-6__.10.已知等腰三角形的两边长为32和45,则此等腰三角形的周长为. 11.观察下列各式:32-1=2×4,42-1=3×5,52-1=4×6,…,请写出满足上述规律的用n (n 为任意自然数,且n ≥3)表示的等式:__.12.计算:(1)32-212-418+348; 解:22+83(2)(0.5-213)-(132-75); 解:382+1333(3)212÷1550×1234; 解:322(4)(548+12-627)÷3; 解:4(5)(3+2-5)(3-2-5). 解:6-21513.化简:18-92-3+63+(3-2)0+(1-2)2.解:原式=32-322-(1+2)+1+|1-2|=32-322-1-2+1+2-1=322-114.对于任意不相等的两个实数a,b,定义运算※如下:a※b=a+ba-b,如3※2=3+23-2=5.求8※12的值.解:8※12=8+128-12=20-4=25-4=-5215.已知x-1=3,求代数式(x+1)2-4(x+1)+4的值.解:原式=(x+1-2)2=(x-1)2,当x-1=3时,原式=(3)2=316.已知x,y为实数,且y=3-x+4x-12+1,化简(5-x)2|y-3|-y2-8y+16.解:∵3-x≥0,4x-12≥0,∴x=3,y=1,∴原式=(5-x)(3-y)-(y-4)2=(5-x)(3-y)-(4-y)=(5-3)×(3-1)-(4-1)=2×2-3=4-3=117.如图,在▱ABCD中,DE⊥AB,E点在AB上,DE=AE=EB= 5.求▱ABCD的周长和面积.解:∵DE ⊥AB ,DE =AE =5,∴AD =AE 2+ED 2=(5)2+(5)2=10.∵四边形ABCD 为平行四边形,∴BC =AD =10,DC =AB =2 5.∴▱ABCD 的周长为AD +DC +CB +AB =2(10+25)=210+4 5.▱ABCD 的面积为AB ×DE =25×5=1018.已知a -b =5+3,b -c =5- 3. (1)求a -c 的值;解:a -c =(a -b )+(b -c )=25(2)求a 2+b 2+c 2-ab -bc -ac 的值.解:a 2+b 2+c 2-ab -bc -ac =12[(a -b )2+(b -c )2+(a -c )2]=1819.已知等式|a -2014|+a -2015=a 成立,求a -20142的值. 解:∵a -2015≥0,∴a ≥2015.∴|a -2014|=a -2014.∴a -2014+a -2015=a.∴a -2015=2014.∴a -2015=20142.∴a -20142=201520.已知11-1的整数部分是a ,小数部分是b ,试求(11+a )(b +1)的值. 解:∵3<11<4,∴2<11-1<3,故11-1的整数部分是2,即a =2,∴11-1的小数部分是11-1-2=11-3,即b =11-3.∴(11+a )(b +1)=(11+2)(11-3+1)=第21页 (11+2)(11-2)=(11)2-22=721.观察下列等式及验证过程: 12-13=1223;12(13-14)=1338; 13(14-15)=14415. 验证:12-13=222×3=1223; 12(13-14)=12×3×4=32×32×4=1338. (1)请按照上述等式及验证过程的基本思想,猜想14(15-16)的变形结果及验证过程; (2)针对上述各式反映的规律,写出用n 表示的等式,并验证.(n 为自然数) 解:(1)14(15-16)=15524 验证:14(15-16)=14×5×6=54×52×6=15524(2)1n (1n +1-1n +2)=1n +1n +1(n +1)2-1 验证:1n (1n +1-1n +2)=1n ·(n +1)(n +2)=n +1n (n +1)2(n +2)=1n +1n +1n (n +2)=1n +1n +1(n +1)2-1。
华东师大版九年级数学上册教案全册目录21.1《二次根式》教案21.2.1《二次根式的乘法》教案21.2.2《积的算术平方根》教案21.2.3《二次根式的除法》教案21.3《二次根式的加减》教案22.1《一元二次方程》教案22.2.1《直接开平方法和因式分解法》教案22.2.2《配方法》教案22.2.3《公式法》教案22.2.4《一元二次方程根的判别式》教案22.2.5《一元二次方程的根与系数的关系》教案22.3《实践与探索》教案23.1.1《成比例线段》教案23.1.2《平行线分线段成比例》教案23.2《相似图形》教案23.3.1《相似三角形》教案23.3.2《相似三角形的判定(第1课时)》教案23.3.2《相似三角形的判定(第2课时)》教案23.3.3《相似三角形的性质》教案23.3.4《相似三角形的应用》教案23.4《中位线》教案23.5《位似图形》教案23.6.1《用坐标确定位置》教案23.6.2《图形的变换与坐标》教案24.1《测量》教案24.2《直角三角形的性质》教案24.3.1《锐角三角函数(第1课时)》教案24.3.1《锐角三角函数(第2课时)》教案24.3.2《用计算器求锐角三角函数值》教案24.4《解直角三角形(第1课时)》教案24.4《解直角三角形(第2课时)》教案24.4《解直角三角形(第3课时)》教案25.1《在重复试验中观察不确定现象》教案25.2.1《概率及其意义》教案25.2.2《频率与概率》教案25.2.3《列举所有机会均等的结果》教案第21章《二次根式》复习》教案第22章《一元二次方程》复习》教案第23章《图形的相似》复习》教案第24章《解直角三角形》复习》教案第25章《随机事件的概率》复习》教案第25章《随机事件的概率》复习教案二次根式21.1 二次根式【知识与技能】1.理解二次根式的概念,并利用a(a≥0)的意义解答具体题目.2.理解a(a≥0)是非负数和(a)2=a.3.理解2a=a(a≥0)并利用它进行计算和化简.【过程与方法】1.提出问题,根据问题给出概念,应用概念解决实际问题.2.通过复习二次根式的概念,用逻辑推理的方法推出a(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出(a)2=a(a ≥0),最后运用结论严谨解题.3.通过具体数据的解答,探究并利用这个结论解决具体问题.【情感态度】通过具体的数据体会从特殊到一般、分类的数学思想,理解二次根式的概念及二次根式的有关性质.【教学重点】1.形如a(a≥0)的式子叫做二次根式.2. a(a≥0)是一个非负数;(a)2=a(a≥0)及其运用.3.【教学难点】利用“a(a≥0)”解决具体问题.关键:用分类思想的方法导出a(a≥0)是一个非负数;用探究的方法导出一、情境导入,初步认识回顾:当a是正数时,a表示a的算术平方根,即正数a的正的平方根.当a是零时,a等于0,它表示零的平方根,也叫做零的算术平方根.当a是负数时,a没有意义.【教学说明】通过对算术平方根的回顾引入二次根式的概念.二、思考探究,获取新知概括:a(a≥0)表示非负数a的算术平方根,也就是说,a (a≥0)是一个非负数,它的平方等于a.即有:(1)a≥0;(2)(a)2=a(a≥0).形如a(a≥0)的式子叫做二次根式.注意:在a中,a的取值必须满足a≥0,即二次根式的被开方数必须是非负数.思考:2a等于什么?我们不妨取a的一些值,如2,-2,3,-3等,分别计算对应的2a的值,看看有什么规律.概括:当a≥0时,2a=a;当a<0时,2a=-a.三、运用新知,深化理解1.x取什么实数时,下列各式有意义?2.计算下列各式的值:【教学说明】可由学生抢答完成,再由老师总结归纳.四、师生互动,课堂小结1.师生共同回顾二次根式的概念及有关性质:(1)(a)2=a(a ≥0);(2)当a≥0时,2a=a;当a<0时,2a=-a.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.1.布置作业:从教材相应练习和“习题21.1”中选取.2.完成练习册中本课时练习的“课时作业”部分.本节课从复习算术平方根入手引入二次根式的概念,再通过特殊数据的计算,理解二次根式的有关性质,经历观察、归纳、分类讨论等思维过程,从中获得数学知识与技能,体验教学活动的方法.二次根式的乘除法1.二次根式的乘法【知识与技能】a•=ab(a≥b,b≥0),并利用它们进行计算和化理解b简.【过程与方法】a•=ab(a≥0,b≥0)并运由具体数据发现规律,导出b用它进行计算.【情感态度】a•=ab(a≥0,b≥0),培养特殊到一般的探究通过探究b精神,培养学生对事物规律的观察发现能力,激发学生的学习兴趣.【教学重点】a•=ab(a≥0,b≥0),及它的运用.b【教学难点】a•=ab(a≥0,b≥0).发现规律,导出b一、情境导入,初步认识1.填空:参照上面的结果,用“>”、“<”或“=”填空.2.利用计算器计算填空.【教学说明】由学生通过具体数据,发现规律,导出a•=ab(a≥0,b≥0).b二、思考探究,获取新知(学生活动)让3、4个同学上台总结规律.教师点评:(1)被开方数都是正数;(2)两个二次根式的积等于这样一个二次根式,它的被开方数等于前两个二次根式的被开方数的积.一般地,对二次根式的乘法规定为a•=ab(a≥0,b≥0).:b【教学说明】引导学生应用公式a•=ab(a≥0,b≥0).b三、运用新知,深化理解1.直角三角形两条直角边的长分别为15cm和12cm,那么此直角三角形斜边长是()A.32cmB.33cmC.9cmD.27cm【答案】1.B 2.C 3.A 4.D【教学说明】可由学生抢答完成,再由教师总结归纳.四、师生互动,课堂小结1.由学生小组讨论汇报通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.a•=ab(a≥0,b≥2.教师总结归纳二次根式的乘法规定b0).【教学说明】教师引发学习回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.1.布置作业:从教材“习题21.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.这节课教师引导学生通过具体数据,发现规律,导出ba•=ab(a≥0,b≥0),并学会它的应用,培养学生由特殊到一般的探究精神,培养学生对于事物规律的观察、发现能力,激发学生的学习兴趣.积的算术平方根【知识与技能】a•(a≥0,b≥0);1.理解ab=b2.运用ab=ba•(a≥0,b≥0).【过程与方法】a•(a≥0,b≥0),并运用它解利用逆向思维,得出ab=b题和化简.【情感态度】a•(a≥0,b≥0)以训练逆向思维,通过让学生推导ab=b严谨解题,增强学生准确解题的能力.【教学重点】a•(a≥0,b≥0)及其运用.ab=b【教学难点】a•(a≥0,b≥0)的理解与应用.ab=b一、情境导入,初步认识a•=ab(a≥0,b≥0).一般地,对二次根式的乘法规定为ba•(a≥0,b≥0).反过来,ab=b【教学说明】引导让学生通过复习上节课学习的二次根式的规a•(a≥0,b≥0).定,利用逆向思维,得出ab=b二、思考探究,获取新知例1化简:【教学说明】引导学生利用ab=ba•(a≥0,b≥0)直接化简即可.例2判断下列各式是否正确,不正确的请改正:【教学说明】注意引导学生理解并掌握积的算术平方根应用的条件:a≥0,b≥0.三、运用新知,深化理解1.化简:(1)20;(2)18;(3)24;(4)54.1gt2(g为重力加速度,它的值为2.自由落体的公式为s=210m/s2),若物体下落的高度为120m,则下落的时间是s.【教学说明】可由学生自主完成分组讨论,小组代表汇报,再由老师总结归纳.四、师生互动,课堂小结1.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.2.教师总结归纳积的算术平方根等于各因式算术平方根的积,即a•(a≥0,b≥0).ab=b【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.1.布置作业:从教材“习题21.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.本课时教学以“自主探究——合作交流”为主体形式,先给学生独立思考的时间,提供学生创新的空间与可能,再给不同层次的学生提供一个交流合作的机会,培养学生独立探究、合作学习的能力,训练逆向思维,通过严谨解题,增加学生准确解题的能力.二次根式的除法【知识与技能】 1.理解b a b a =(a ≥0,b >0)和bab a =(a ≥0,b >0),并运用它们进行计算.2.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.3.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.【过程与方法】1.先由具体数据,发现规律,导出b aba = (a ≥0,b >0),并用它进行计算.2.再利用逆向思维,得出bab a =(a ≥0,b >0),并运用它进行解题和化简.3.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.【情感态度】通过探究b aba =(a ≥0,b >0)培养学生由特殊到一般的探究精神;让学生推导bab a =(a ≥0,b >0)以训练逆向思维,通过严谨解题,增强学生准确解题的能力.【教学重点】 1.理解b a b a =(a ≥0,b >0),ba b a =(a ≥0,b >0)及利用它们进行计算和化简.2.最简二次根式的运用. 【教学难点】发现规律,归纳出二次根式的除法规定.最简二次根式的运用.一、情境导入,初步认识(学生活动)请同学们完成下列各题. 1.写出二次根式的乘法规定及逆向公式. 2.填空:3.利用计算器计算填空:【教学说明】每组推荐一名学生上台阐述运算结果,最后教师点评.二、思考探究,获取新知刚才同学们都练习得很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到:一般地,对二次根式的除法规定:b aba =(a ≥0,b >0) 反过来, bab a =(a ≥0,b >0) 下面我们利用这个规定来计算和化简一些题目. 例1 计算:【教学说明】直接利用b aba (a ≥0,b >0) 例2化简:观察上面各小题的最后结果,发现这些二次根式有这些特点: (1)被开方数中不含分母;(2)被开方数中所含的因数(或因式)的幂的指数都小于2. 【教学说明】利用二次根式的乘法、除法规定来化简,要求最后结果化成最简二次根式.三、运用新知,深化理解 1.化简:3.如图,在Rt △ABC 中,∠C=90°,AC=2.5cm,BC=6cm,求AB 的长.【教学说明】第1题可由学生自主完成,第2题、3题教师可给予相应的指导.四、师生互动,课堂小结请若干学生口述小结,老师再利用电子课件将小结放映在屏幕上.1.布置作业:从教材“习题21.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.本课时教学突出学生主体性原则,即通过探究学习,指导学生独立思考,通过具体数据得出规律,再让学生相互交流,或上台展示自己的发现,或表述个人的体验,从中获取成功的体验后,激发学生探究的激情.二次根式的加减法【知识与技能】1.掌握同类二次根式的概念,会判断同类二次根式,会合并同类二次根式.2.掌握二次根式加减乘除混合运算的方法.【过程与方法】通过二次根式的加减法运算培养学生的运算能力.【情感态度】形成良好的思维习惯,学会从数学的角度提出问题、理解问题,并能运用所学的知识解决问题.【教学重点】二次根式加减法的运算.【教学难点】探讨二次根式加减法的运算方法,快速准确进行二次根式加减法的运算.一、情境导入,初步认识1.合并同类项:(1)2x+3x;(2)2x2-3x2+5x2.解:(1)5x;(2)4x2.这几道题是你运用什么知识做的?加减法则.2.化简:3.如何进行二次根式的加减计算?先化简,再合并.4.同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,这些二次根式就称为同类二次根式,就是本书中所讲的被开方数相同的二次根式.如22与32;28、38与58.二、思考探究,获取新知例1计算:例2计算:【教学说明】进行二次根式的加减运算时,必须先将其化简,是同类二次根式才可合并.例3计算:【教学说明】在二次根式的运算中,多项式乘法法则和乘法公式仍然适用.三、运用新知,深化理解.1.下列计算是否正确?为什么?【教学说明】这类计算的简便方法是先变形,再代入求值.四、师生互动,课堂小结请学生分组讨论,小组代表汇报,教师展示本节课学习的知识要点.1.布置作业:从教材相应练习和“习题21.3”中选取.2.完成练习册中本课时练习的“课时作业”部分.本节课通过复习整式的加减法合并同类项,引入二次根式的概念及二次根式的合并方法,对法则的教学与整式的加减比较学习,在理解、掌握和运用二次根式的加减法运算法则的学习过程中,渗透了分析、概括、类比等数学思想方法,提高学生的思维品质和兴趣.一元二次方程22.1 一元二次方程【知识与技能】1.知道一元二次方程的意义,能熟练地把一元二次方程整理成一般形式ax2+bx+c=0(a≠0).2.在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.【过程与方法】通过解决实际问题,把实际问题转化为数学模型,引入一元二次方程的概念,让学生认识一元二次方程及其相关概念,提高学生利用方程思想解决实际问题的能力.【情感态度】通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.【教学重点】判定一个数是否是方程的根.【教学难点】由实际问题列出的一元二次方程解出根后,还要考虑这些根是否确定是实际问题的根.一、情境导入,初步认识问题1 绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?【分析】设长方形绿地的宽为x米,不难列出方程x(x+10)=900,整理可得x2+10x-900=0.(1)问题2 学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.解:设这两年的年平均增长率为x,我们知道,去年年底的图书数是5万册,则今年年底的图书数是5(1+x)万册,同样,明年年底的图书数又是今年年底的(1+x)倍,即5(1+x)·(1+x)=5(1+x)2万册.可列得方程5(1+x)2=7.2,整理可得5x2+10x-2.2=0(2)【教学说明】教师引导学生列出方程,解决问题.二、思考探究,获取新知思考、讨论问题1和问题2分别归结为解方程(1)和(2).显然,这两个方程都不是一元二次方程.那么这两个方程与一元二次方程的区别在哪里?它们有什么共同特点呢?共同特点:(1)都是整式方程(2)只含有一个未知数(3)未知数的最高次数是2【归纳总结】上述两个整式方程中都只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程.通常可写成如下的一般形式:ax2+bx+c=0(a、b、c是已知数,a≠0).其中ax2叫做二次项,a叫做二次项系数,bx叫做一次项系数,c叫做常数项.例1判断下列方程是否为一元二次方程:解:①是;②不是;③是;④不是;⑤不是;⑥是.【教学说明】(1)一元二次方程为整式方程;(2)类似⑤这样的方程要化简后才能判断.例2 将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数.一次项系数及常数项.解:2x2-13x+11=0;2,-13,11.【教学说明】将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.三、运用新知,深化理解1.将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.(1)5x2-1=4x(2)4x2=81(3)4x(x+2)=25(4)(3x-2)(x+1)=8x-3解:(1)5x2-4x-1=0;5,-4,-1;(2)4x2-81=0;4,0,-81(3)4x2+8x-25=0;4,8,-25(4)3x2-7x+1=0;3,-7,1.2.根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式.(1)4个完全相同的正方形的面积之和是25,求正方形的边长x;(2)一个长方形的长比宽多2,面积是100,求长方形的长x;(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x.解:(1)4x2=25;4x2-25=0;(2)x(x-2)=100;x2-2x-100=0;(3)x=(1-x)2;x2-3x+1=0.3.若x=2是方程ax2+4x-5=0的一个根,求a的值.解:∵x=2是方程ax2+4x-5=0的一个根.3.∴4a+8-5=0解得:a=-4四、师生互动,课堂小结1.只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的.3.在实际问题转化为数学模型(一元二次方程)的过程中,体会学习一元二次方程的必要性和重要性.1.布置作业:从教材相应练习和“习题22.1”中选取.2.完成练习册中本课时练习的“课时作业”部分.学习本课时,可让学生先自主探索再合作交流,小组内,小组之间充分交流后概括所得结论,从而强化学生对一元二次方程的有关概念的认识,掌握建模思想,利用一元二次方程解决实际问题.一元二次方程的解法1.直接开平方法和因式分解法【知识与技能】1.会用直接开平方法解形如a(x-k)2=b(a≠0,ab≥0)的方程.2.灵活应用因式分解法解一元二次方程.3.使学生了解转化的思想在解方程中的应用.【过程与方法】创设学生熟悉的问题情境,综合运用探究式、启发式、活动式等几种方法进行教学.【情感态度】鼓励学生积极主动的参与“教”与“学”的整个过程,激发求知的欲望,体验求知的成功,增强学习的兴趣和自信心.【教学重点】利用直接开平方法和因式分解法解一元二次方程.【教学难点】合理选择直接开平方法和因式分解法较熟练地解一元二次方程.一、情境导入,初步认识问:怎样解方程(x+1)2=256?解:方法1:直接开平方,得x+1=±16所以原方程的解是x1=15,x2=-17方法2:原方程可变形为:(x+1)2-256=0,方程左边分解因式,得(x+1+16)(x+1-16)=0即(x+17)(x-15)=0所以x+17=0或x-15=0原方程的解x1=15,x2=-17【教学说明】让学生说出作业中的解法,教师板书.二、思考探究,获取新知例1 用直接开平方法解下列方程(1)(3x+1)2=7;(2)y2+2y+1=24;(3)9n2-24n+16=11.【教学说明】运用开平方法解形如(x+m)2=n(n≥0)的方程时,最容易出现的错误是漏掉负根.例2 用因式分解法解下列方程:(1)5x2-4x=0(2)3x(2x+1)=4x+2(3)(x+5)2=3x+15【教学说明】解这里的(2)(3)题时,注意整体划归的思想.三、运用新知,深化理解1.用直接开平方法解下列方程(1)3(x-1)2-6=0(2)x2-4x+4=5(3)(x+5)2=25(4)x2+2x+1=42.用因式分解法解下列方程:3.把小圆形场地的半径增加5m得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为xm.则可列方程2πx2=π(x+5)2.解得x1=5+52,x2=5-52(舍去).答:小圆形场地的半径为(5+52)m.【教学说明】可由学生自主完成例题,分小组展示结果,教师点评.四、师生互动,课堂小结1.引导学生回忆用直接开平方法和因式分解法解一元二次方程的一般步骤.2.对于形如a(x-k)2=b(a≠0,b≥0)的方程,只要把(x-k)看作一个整体,就可转化为x2=n(n≥0)的形式用直接开平方法解.3.当方程出现相同因式(单项式或多项式)时,切不可约去相同因式,而应用因式分解法解.1.布置作业:从教材相应练习和“习题22.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.本节课教师引导学生探讨直接开平方法和因式分解法解一元二次方程,让学生小组讨论,归纳总结探究,掌握基本方法和步骤,合理、恰当、熟练地运用直接开平方法和因式分解法,在整个教学过程中注意整体划归的思想.2.配方法【知识与技能】1.使学生掌握配方法的推导过程,熟练地用配方法解一元二次方程.2.在配方法的应用过程中体会“转化”的思想,掌握一些转化的技能.【过程与方法】通过探索配方法的过程,让学生体会转化的数学思想方法.【情感态度】学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增加学生学习数学的兴趣.【教学重点】使学生掌握用配方法解一元二次方程.【教学难点】发现并理解配方的方法.一、情境导入,初步认识问题要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽分别是多少?设场地的宽为xm,则长为(x+6)m,根据矩形面积为16m2,得到方程x(x+6)=16,整理得到x2+6x-16=0.【教学说明】创设实际问题情境,让学生感受到生活中处处有数学,激发学生的主动性和求知欲.二、思考探究,获取新知探究如何解方程x2+6x-16=0?问题1 通过上节课的学习,我们现在会解什么样的一元二次方程?举例说明.【教学说明】用问题唤起学生的回忆,明确我们现在会解的一元二次方程的特点:等号左边是一个完全平方式,右边是一个非负常数,即(x+m)2=n(n≥0),运用直接开平方法可求解.问题2 你会用直接开平方法解下列方程吗?(1)(x+3)2=25(2)x 2+6x+9=25(3)x 2+6x=16(4)x 2+6x-16=0【教学说明】教师启发学生逆向思考问题的思维方式,将x 2+6x-16=0转化为(x+3)2=25的形式,从而求得方程的解.解:移项得:x2+6x=16,两边都加上9即(26)2,使左边配成x 2+bx+(b2)2的形式,得:x 2+6x+9=16+9,左边写成完全平方形式,得:(x+3)2=25,开平方,得:x+3=±5,(降次)即x+3=5或x+3=-5解一次方程得:x 1=2,x 2=-8.【归纳总结】将方程左边配成一个含有未知数的完全平方式,右边是一个非负常数,从而可以直接开平方求解,这种解一元二次方程的方法叫做配方法.例1填空:(1)x 2+8x+16=(x+4)2(2)x 2-x+41=(x-21)2 (3)4x 2+4x+1=(2x+1)2例2 列方程:(1)x2+6x+5=0 (2)2x2+6x+2=0 (3)(1+x)2+2(1+x)-4=0【教学说明】教师可让学生自主完成例题,小组展示,教师点评归纳.【归纳总结】利用配方法解方程应该遵循的步骤:(1)把方程化为一般形式ax2+bx+c=0;(2)把常数项移到方程的右边;(3)方程两边同时除以二次项系数a;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方形式,然后利用直接开平方法来解.三、运用新知,深化理解1.用配方法解下列方程:(1)2x2-4x-8=0(2)x2-4x+2=01x-1=0(3)x2-22.如果x2-4x+y2+6y+2 z+13=0,求(xy)z的值.【教学说明】学生独立解答,小组内交流,上台展示并讲解思路.四、师生互动,课堂小结1.用配方法解一元二次方程的步骤.2.用配方法解一元二次方程的注意事项.1.布置作业:从教材相应练习和“习题22.2”中选取.2.完成练习册中课时练习的“课时作业”部分.本节课先创设情境导入一元二次方程的解法,引导学生将要解决的问题转化为已学过的直接开平方法来解,从而探索出配方法的一般步骤,熟练运用配方法来解一元二次方程.公式法【知识与技能】1.理解一元二次方程求根公式的推导过程,了解公式法的概念.2.会熟练应用公式法解一元二次方程.【过程与方法】通过复习配方法解一元二次方程,引导学生推导出求根公式,使学生进一步认识特殊与一般的关系.【情感态度】经历探索求根公式的过程,培养学生抽象思维能力,渗透辩证唯物主义观点.【教学重点】求根公式的推导和公式法的应用.【教学难点】一元二次方程求根公式的推导.一、情境导入,初步认识用配方法解方程:(1)x2+3x+2=0 (2)2x2-3x+5=0解:(1)x1=-1,x2=-2 (2)无解二、思考探究,获取新知如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根?问题已知ax2+bx+c=0(a≠0),试推导它的两个根【分析】因为前面具体数字的题目已做得很多,现在不妨把a,b,c也当成具体数字,根据上面的解题步骤就可以推导下去.探究一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac ≥0时,将a,b,c 代入式子aac b b x 242-±-=就得到方程的根,当b 2-4ac <0时,方程没有实数根.(2)aac b b x 242-±-=叫做一元二次方程ax 2+bx+c=0(a ≠0)的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.【教学说明】教师可以引导学生利用配方法推出求根公式,体验获取知识的过程,体会成功的喜悦,可让学生小组展示.例1 用公式法解下列方程:①2x 2-4x-1=0 ②5x+2=3x 2③(x-2)(3x-5)=0 ④4x 2-3x+1=0解:①x 1=1+26,x 2=1-26 ②x 1=2,x 2=-31 ③x 1=2,x 2=35 ④无解【教学说明】(1)对②、③要先化成一般形式;(2)强调确定a,b,c 的值,注意它们的符号;(3)先计算b 2-4ac 的值,再代入公式.三、运用新知,深化理解1.用公式法解下列方程:(1)x2+x-12=0 (2)x2-2x-41=0 (3)x2+4x+8=2x+11 (4)x(x-4)=2-8x (5)x2+2x=0(6)x2+25x+10=0 解:(1)x1=3,x2=-4;(2)x1=232+,x2=232-;(3)x1=1,x2=-3;(4)x1=-2+6,x2=-2-6;(5)x1=0,x2=-2;(6)无解.【教学说明】用公式法解方程关键是要先将方程化为一般形式.四、师生互动,课堂小结1.求根公式的概念及其推导过程.2.公式法的概念.3.应用公式法解一元二次方程.1.布置作业:从教材相应练习和“习题22.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.。
第二■—章二次根式教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标1.知识与技能(1)理解二次根式的概念.(2)理解石(aNO)是一个非负数,(石)2=a(aNO),=a(aNO).(3)掌握石•\[b=-fab(aNO,bNO),\[ab=y/a,4b;Ja[a,*、[a Ja,、、——(aNO,b>0),.—=—;=(aNO,b>0).4b\b\b(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.(3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点1.二次根式石(aNO)的内涵.4a(aNO)是一个非负数;(4a)2=a(a^0);J/=a (aNO)•及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念.4.二次根式的加减运算.教学难点1.对西(aNO)是一个非负数的理解;对等式(E)2=a (aNO)及妒=a(aNO)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,•培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需11课时,具体分配如下:21.1二次根式3课时21.2二次根式的乘法3课时21.3二次根式的加减3课时教学活动、习题课、小结2课时21.1二次根式第一课时教学内容二次根式的概念及其运用教学目标理解二次根式的概念,并利用石(a>0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1.重点:形如、似(aNO)的式子叫做二次根式的概念;2.难点与关键:利用“石(aNO)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:3问题1:已知反比例函数y=一,那么它的图象在第一象限横、•纵坐标相等的点的坐标是•问题2:如图,在直角三角形ABC中,AC=3,BC=1,ZC=90°,那么AB边的长是问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=.老师点评:问题1:横、纵坐标相等,即x=y,所以x-3.因为点在第一象限,所以x=如,所以所求点的坐标(右,也).问题2:由勾股定理得AB=JI^问题3:由方差的概念得$=二、探索新知很明显后、面、R,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如石(aNO)•的式子叫做二次根式,“丁”称为二次根号.(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a<0,有意义吗?老师点评:(略)例1.下列式子,哪些是二次根式,哪些不是二次根式:后裁、G(x>0)、a/04/2>-皿、—-—、Jx+y(xNO,y・NO).x+y'分析:二次根式应满足两个条件:第一,有二次根号“、厂”;第二,被开方数是正数或0.解:二次根式有:、/^、Vx(x>0)、而、-、万、Jx+y(xNO,yNO);不是二次根式的有:也、->扼、」一.x x+y例2.当x是多少时,J3x-1在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-lN0,•J3x-1才能有意义.解:由3x-l》0,得:xN—3当x^-时,J3x-1在实数范围内有意义.3三、巩固练习教材P练习1、2、3.四、应用拓展例3.当x是多少时,V2x+3+—在实数范围内有意义?X+1分析:要使a/2x+3+—在实数范围内有意义,必须同时满足j2x+3中的NO和x+11〜心----中的x+1/O.X+12x+3>0解:依题意,得工+1/03由①得:X^--2由②得:xN-13_____]当xN-—且x尹-1时,j2x+3+----在实数范围内有意义.2x+1例4(1)已知y=j2-x+Jx-2+5,求三的值.(答案:2)y⑵若后I+序日=0,求/。
华师大版数学九年级上册第21章21.2 二次根式的乘除(3)二次根式的乘法教案课题二次根式的乘法1.掌握二次根式的乘法法则和积的算术平方根的性质.2.熟练进行二次根式的乘法运算及化简.掌握和应用二次根式的乘法法则和积的算术平方根的性质.正确依据二次根式的乘法法则和积的算术平方根的性质进行二次根式的化简.一、情景导入感受新知问题情境:你能解决下面的问题吗?如图,设长方形的面积为S,相邻两边长分别为a,b,已知a=2,b =,求S.二、自学互研生成新知【自主探究】自学课本P5-7的内容,完成下面问题:1.计算下列各式,观察计算结果,你发现什么规律?(1)×=__15__,=__15__.(2)×=__12__,=__12__.(3)×=__20__,=__20__.2.用计算器填空:(1)×__=__(2)×__=__(3)×__=__(4)×__=__【合作探究】探究1:二次根式乘法1.参考上面的结果,用“>”“<”或“=”填空.×__=__.×__=__.×__=__.2.总结归纳:你找出二次根式进行乘法运算的规律了吗?含字母的二次根式呢?结论:·=(a≥0,b≥0).探究2:积的算术平方根问题:把·=(a≥0,b≥0)反过来,仍然成立吗?积的算术平方根的性质:=·(a≥0,b≥0).思考:(1)a,b的取值范围有什么特点?(2)这个公式与二次根式乘法在用法上有什么区别和联系?【师生活动】①明了学情:关注学生对二次根式乘法和积的算术平方根的理解与掌握.②差异指导:巡视中发现个性问题及时点拨,共性问题及时引导.③生生互助:学生小组内交流讨论,相互释疑.三、典例剖析运用新知【合作探究】【例1】计算:(1)×;(2)×.分析:运用公式计算后,结果要进行化简.解:(1)×==;(2)×===4.【例2】化简,使被开方数不含完全平方的因数.分析:被开方数12=22×3,含有完全平方因数22,利用=a(a≥0)将这个因数开出来.解:==×=2.【变式迁移】计算:(1);(2)·.解:(1)原式=3;(2)原式=5.四、课堂小结回顾新知通过本节课的学习,你有哪些收获?还存在哪些疑惑?请谈谈你的想法和同学们分享。
华师大版九年级数学上册全册同步练习目录21.1二次根式第1课时二次根式的概念21.1二次根式第2课时二次根式的性质21.2二次根式的乘除1二次根式的乘法21.2二次根式的乘除2积的算术平方根21.2二次根式的乘除3二次根式的除法21.3二次根式的加减同步练习无答案华东师大版.doc22.1一元二次方程同步练习无答案华东师大版.doc22.2一元二次方程的解法22.2.1第1课时直接开平方法22.2一元二次方程的解法22.2.1第2课时因式分解法22.2一元二次方程的解法22.2.2配方法22.2一元二次方程的解法22.2.3公式法22.2一元二次方程的解法22.2.4一元二次方程根的判别式22.2一元二次方程的解法22.2.5一元二次方程的根与系数的关系22.3实践与探索第1课时用一元二次方程解决图形面积问题22.3实践与探索第2课时用一元二次方程解决平均变化率利润问题23.1成比例线段23.1.1成比例线段23.1成比例线段23.1.2平行线分线段成比例23.2相似图形23.3相似三角形23.3.1相似三角形23.3相似三角形23.3.2第1课时相似三角形的判定定理123.3相似三角形23.3.2第2课时相似三角形的判定定理23.3相似三角形23.3.3相似三角形的性质23.3相似三角形23.3.4相似三角形的应用23.4中位线23.5位似图形23.6图形与坐标23.6.1用坐标确定位置23.6图形与坐标23.6.2图形的变换与坐标24.1测量24.2直角三角形的性质24.3锐角三角函数24.3.1第1课时锐角三角函数的定义及关系应用24.3锐角三角函数24.3.1第2课时特殊角的三角函数值24.3锐角三角函数24.3.2用计算器求锐角三角函数值24.4解直角三角形第1课时解直角三角形24.4解直角三角形第2课时解直角三角形的应用_仰角俯角24.4解直角三角形第3课时解直角三角形的应用_坡度坡角25.1在重复试验中观察不确定现象第1课时不可能事件必然事件与随机事件25.1在重复试验中观察不确定现象第2课时用频率估计事件发生的机会大小25.2随机事件的概率25.2.1概率及其意义25.2随机事件的概率25.2.2频率与概率25.2随机事件的概率25.2.3列举所有机会均等的结果21.1 第1课时二次根式的概念知识点 1 二次根式的概念1.如果-x是二次根式,那么-x________0,则x________0.2.下列各式中,一定是二次根式的是( )A.35B.32 C.-2 D.x3.下列各式中,哪些是二次根式,哪些不是?为什么?3,35,-16,-7,x2(x≥0),||-8,a-2.知识点 2 二次根式有意义的条件4.如果二次根式3x-1在实数范围内有意义,那么必须使3x-1________0,所以当x________时,二次根式3x-1在实数范围内有意义.5.如果x-1无意义,那么字母x的取值范围是( )A.x≥1 B.x>1 C.x≤1 D.x<16.求使下列各式有意义的字母x的取值范围.(1)5-2x; (2)2x+1 2;(3)1x-1; (4)2x+1.7.当a为任意实数时,下列各式中是二次根式的是( ) ①a+1;②5a2;③|a|;④-a2-2;⑤(a-1)2. A.①②③ B.②③④ C.③④⑤ D.②③⑤8.[2017·绵阳]使代数式1x+3+4-3x有意义的整数x有( )A.5个 B.4个 C.3个 D.2个9.写出一个只含有字母x的二次根式,使它同时满足以下要求:(1)要使此式有意义,字母x必须取大于或等于2的实数;(2)此式的值恒为非正数.这个二次根式可以是__________ .10.[教材练习第2题变式]当x取何值时,下列各式有意义?(1)3-x+12x-1;(2)x+3|x|-4.11.若x,y为实数,且2x-1+1-2x+y=8,求xy的值.1.≥ ≤ 2.A3.解:3,-16,x2(x ≥0),|-8|是二次根式;35,-7,a -2不是二次根式.理由:3,-16,x 2(x ≥0),|-8|符合二次根式的概念,故是二次根式.35的根指数是3,故不是二次根式;-7的被开方数小于0,无意义,故不是二次根式;a -2的被开方数a -2的正负不能确定,故也不一定是二次根式.4.≥ ≥135.D 6.(1)x ≤52 (2)x ≥-12(3)x >1 (4)x >-1 7. D8.B 9.答案不唯一,如-x -210.解:(1)由原式有意义可得⎩⎪⎨⎪⎧3-x ≥0,2x -1>0,∴12<x ≤3. (2)根据题意,得⎩⎪⎨⎪⎧x +3≥0,①|x |-4≠0,②由①得x ≥-3,由②得x ≠±4,故当x ≥-3且x ≠4时,原式有意义.11.解:由已知可得⎩⎨⎧2x -1≥0,1-2x ≥0,∴x =12,∴y =8,∴xy =4.21.1 第2课时 二次根式的性质知识点 1 二次根式的非负性1.若x -1+(y +2)2=0,则(x +y )2018=( )A .-1B .1C .32018D .-320182.若|x -y |+y -2=0,则x y -3的值为________.知识点 2 二次根式的性质(a )2=a (a ≥0)3.计算(15)2的结果是( )A .225B .15C .±15D .-154.把414写成一个正数的平方的形式是( ) A .(212)2 B .(174)2 C .(±212)2 D .(±174)2 5.计算: (1)(11)2; (2)(- 20)2.知识点 3 二次根式的性质a 2=|a |6.计算:(-2)2=|________|=________.7.下列计算正确的是( ) A .(5)2=25 B .(-3)2=3C.(-3)2=-3D.02=08.计算:(1)916; (2)(-7)2.9.若x -2+3+y =0,则(x +y )2019的值为( ) A .5 B .-5 C .1 D .-110.若(x -3)2=3-x ,则x 的取值范围是________.11.[教材习题第2题变式]计算:(1)()32+⎝ ⎛⎭⎪⎫-232;(2)(a+3)2-a2(a>0).12.阅读材料,解答问题.例:若代数式(2-a)2+(a-4)2的值是常数2,求a的取值范围.分析:原式=|a-2|+|a-4|,因为|a-2|表示数a在数轴上对应的点到数2在数轴上对应的点的距离,|a-4|表示数a在数轴上对应的点到数4在数轴上对应的点的距离,所以我们可以借助数轴进行分析.图21-1-1解:原式=|a-2|+|a-4|.在数轴上看,应分三种情况讨论:①当a<2时,原式=2-a+4-a=6-2a;②当2≤a≤4时,原式=a-2+4-a=2;③当a>4时,原式=a-2+a-4=2a-6.通过分析可得a的取值范围是2≤a≤4.(1)此例题的解答过程中用了哪些数学思想?(2)化简:(3-a)2+(a-7)2.华东师大版2018年九年级数学上册同步练习含答案1.B 则原式=(-1)2018=1.2. 123.B4.B 5.(1)11 (2)20 6.-2 2 7.D8.(1)34 (2)79. D 10. x ≤311.解:(1)原式=3+23=323.(2)原式=a +3-a =3.12.解:(1)数形结合思想,分类讨论思想.(2)原式=|3-a |+|a -7|.①当a <3时,原式=3-a +7-a =10-2a ;②当3≤a ≤7时,原式=a -3+7-a =4;③当a >7时,原式=a -3+a -7=2a -10.21.2.1 二次根式的乘法知识点 1 ab =a ·b 成立的条件1.如果等式x +1·1-x =1-x 2成立,那么有x +1________0,1-x ________0,所以x 的取值范围是__________.2.若a ·b =ab 成立,则下列说法正确的是( )A .a ≥0,b ≥0B .a >0,b >0C .a ≤0,b ≤0D .a <0,b <0 知识点 2 二次根式的乘法法则的应用3.计算:8×12=____________. 4.下列计算正确的是( )A.2×5=7B.2×5=10C.5×6=11D.12×12= 2 5.[教材例1变式]计算: (1)3×5; (2)13×108;(3)68×(-32); (4)6×34×8.6.下列运算正确的是( )A .23×32=6 5 B.2a ·8a =4aC.(a 3)2=a 3D.5×920=327.阅读下列解答过程,在括号中填入恰当的内容. (-a )2=-a ×-a ①=(-a )×(-a ) ② =(-a )2 ③=a 2 ④=a . ⑤(1)由上述过程可知a 的取值范围为________;(2)上述解答过程有错误的是第________步,正确结果为________.8.王老师想设计一个长方形的实验基地,便于学生进行实地考察.为了考查学生的数学应用能力,他把长方形基地的长设计为8020米,宽设计为3 45米,让学生计算出这块实验基地的面积,你会计算吗?9.比较前后两个算式计算结果的大小(填“>”“<”或“=”):(1)2+12________2×2×12; (2)3+3________2×3×3;(3)9+16________2×9×16;…通过观察与归纳,写出其中的规律,并说明理由.教师详答1.≥ ≥ -1≤x ≤1 2. A 3. 8 124 24. B 5.(1)原式=3×5=15. (2)原式=13×108=36=6. (3)原式=6×(-3)×8×2=-18×4=-72. (4)原式=6×34×8=36=6. 6. D7. (1)a ≤0 (2)⑤ -a8.解:80 20×3 45=(80×3)×20×45=240×900=7200(米2). 9.解:(1)> (2)= (3)>规律:a +b ≥2 a ·b (a ≥0,b ≥0).理由:∵a =(a )2,b =(b )2(a ≥0,b ≥0),∴a +b -2 a ·b =(a )2-2 a ·b +(b )2=(a -b )2≥0, ∴a +b ≥2 a ·b (a ≥0,b ≥0).21.2.2 积的算术平方根知识点 1 ab=a·b成立的条件1.若等式a2-64=a+8·a-8成立,则有________≥0,________≥0,所以a的取值范围是________.2.若-ab=a·-b成立,则( )A.a≥0,b≥0 B.a≥0,b≤0C.a≤0,b≥0 D.ab≥0知识点 2 积的算术平方根的应用______.4( )A.125.计算:(1)30×6; (2)(-100)×(-4);(3)121169×81100; (4)(-5)2×(-7)2.6.[教材例2变式]化简:(1)-75;(2)a5.7.有下列各式:①54×12=32;②412-402=9;③(-3)×(-5)=-3×-5;④8=22;⑤(-3)2×(-5)2=15;⑥32+42=7.其中正确的有( )A.2个 B.3个 C.4个 D.5个8.若一个长方体的长为2 6 cm,宽为 3 cm,高为 2 cm,则它的体积为________ cm3.9.若20n是整数,则正整数n的最小值为________.10. 已知a=2,b=5,用只含a,b的代数式表示20,这个代数式是__________.11.计算下列各式:(1)2 4a3b2c(a>0,b>0);(2)a4+a6b2.12.已知m=(-33)×(-2 21),则有( )A.5.0<m<5.1 B.5.1<m<5.2C.5.2<m<5.3 D.5.3<m<5.413.[阅读思考]阅读探究:4×9×16=24,4×9×16=24;0.04×0.25×0.09×0.36=0.018,0.04×0.25×0.09×0.36=0.018.(1)根据上述具体数据,请你猜想:当a≥0,b≥0,c≥0时,a·b·c与a·b·c的关系是什么?(2)根据以上式子,请你猜想:当a≥0,b≥0,c≥0,…,f≥0时,a·b·c·…·f可以转化为什么?教师详答1.a+8 a-8 a≥82.B3.100 14101254. A5.解:(1)原式=5×6×6=5×62=6 5.(2)原式=100×4=100×4=10×2=20.(3)原式=121169×81100=1113×910=99130.(4)原式=25×49=25×49=5×7=35.6.解:(1)-75=-3×25=-5 3.(2)a5=a4·a=a4·a=a2a.7. B8.129.5 10.a2b11.解:(1)原式=2×2ab ac=4ab ac.(2)原式=a4(1+a2b2)=a4·1+a2b2=a21+a2b2.12.C [13.解:(1)a·b·c=a·b·c.(2)当a≥0,b≥0,c≥0,…,f≥0时,a·b·c·…·f=a·b·c·…·f.21.2.3 二次根式的除法知识点 1a b=ab 成立的条件 1.若x x +1=xx +1成立,则有x ________0,x +1________0,所以x 的取值范围是________.2.等式-ba=-ba成立的条件是( )A .a ,b 异号B .a >0,b >0C .a ≥0,b ≥0D .a >0,b ≤0 知识点 2 二次根式的除法 3.计算:483=( )( )=________.4.计算: (1)183; (2)328;(3)315÷135; (4)3ab 32ab2.知识点 3 商的算术平方根 5.计算:29=( )( )=________. 6.若3+x 3-x =3+x 3-x成立,则x 的取值范围是( ) A .-3≤x <3 B .x <3C .x >-3D .-3<x ≤3 7.化简: (1)916; (2)325;(3)549; (4)-11-36.知识点 4 最简二次根式 8.[2017·贵港]下列二次根式中,是最简二次根式的是( ) A .- 2 B.12 C.15D.a 29.下列二次根式中,不是最简二次根式的有______个. ①x 2; ②0.3; ③118; ④2x 2+1. 10.化简: (1)17; (2)113; (3)510; (4)438.11.如果ab >0,a +b <0,那么下面各式:①a b =a b,②ab ·ba =1,③ab ÷ab=-b 中,正确的是( )A .①②B .②③C .①③D .①②③12.若 2m +n -2和 33m -2n +2都是最简二次根式,则m n=________. 13.[教材习题21.2第2题变式]计算:(1)35×52÷47; (2)113÷223×135; (3)3 223÷1225×⎝ ⎛⎭⎪⎫-18 15.14.王聪学习了二次根式的除法公式ab=ab后,他认为该公式逆过来a b =ab也应该成立,于是这样化简了下面这道题:-27-3=-27-3=(-3)×9-3=-3×9-3=9=3.你认为他的化简过程对吗?若不对,请说明理由,并改正.15.请先化简x -1x -1÷1x 2-x,再选取两个你喜欢的数代入化简后的式子中分别求值.16.观察下面的式子:1+13=213,2+14=314,3+15=415,…. (1)类比上述式子,再写出几个同类型的式子(至少写3个);(2)请你将发现的规律用含自然数n (n ≥1)的等式表示出来,并给出证明.教师详答1.≥ > x ≥0 2. D3. 48 3 16 44.(1) 6 (2)2 (3) 2 (4)32 b 5.2 9 236.A 7.解:(1)916=916=34. (2)325=325=35. (3)549=499=499=73. (4)-11-36=1136=1136=116. 8.A 9.3 10.解:(1)17=77×7=77. (2)113=43=4×33×3=2 33. (3)510=5 1010×10=5 1010=102.(4)438=4 3×28×2=4 616=4 64= 6. 11. B12. 1 13.解:(1)原式=35×52÷47=352×28×2=3542. (2)原式=43÷83×85=45=4×55×5=255. (3)原式=9×83÷121025×⎝ ⎛⎭⎪⎫-18 15 =-24÷102×5×158=-2 6×1010×158=-2 6×10×158=-9004=-152. 14.解:不对. 理由:因为-27-3有意义,而-27-3中的二次根式无意义. 改正:-27-3=273=9=3. 15.解:由题意得x >1, 所以原式=x -1x -1·x ()x -1 =()x -12x x -1=x -1x -1x =x .代入求值答案不唯一,如:当x =4时,原式=2. 当x =9时,原式=3. 16.解:(1)答案不唯一,如4+16=5 16,5+17=6 17,6+18=7 18. (2)规律:n +1n +2=(n +1)1n +2. 证明:n +1n +2=n (n +2)+1n +2=n 2+2n +1n +2=(n +1)1n +2.21.3 二次根式的加减知识点 1 同类二次根式1.下面与2是同类二次根式的是( )A. 3B.12C.8D.202.[2016·巴中改编]下列二次根式中,能与3合并的是( )A.18B.13C.24D.0.33.下列二次根式中,属于同类二次根式的是( )A.2 3与 6 B. 13与23C. 18与12D. 4a与8a4.已知最简二次根式3a-8与17-2a是同类二次根式,求a的值.知识点 2 二次根式的加减5.计算:27+3=________+3=(________+________)3=________.6.计算8-612的结果是________.7.计算414+313-8的结果是__________.8.计算:(1)1048-627+312;(2)13-12+273;(3)45+45-8+4 2.知识点 3 二次根式的混合运算9.计算:(3+2)(3-2)=________.10.[教材练习第2题变式]计算:(1)(5+2)2; (2)(23-2)2.11.下列各数中,与2-3的积为有理数的是( ) A.2+ 3 B.2- 3C.-2+ 3 D. 312.若a,b为有理数,且4+18+18=a+b2,则ab的值为( )A.34B.134C.132D.213.已知a-b=2 3-1,ab=3,则(a+1)(b-1)的值为________.14.若等腰三角形的两边长分别为2 3和5 2,则这个等腰三角形的周长是__________.15.若a,b分别是6-13的整数部分和小数部分,则2a-b的值是________.16.计算:(1)20+55-13×12;(2)(3 2+4 3)(4 2-3 3);(3)(1048-624+412)÷6;(4)⎝⎛⎭⎪⎫5-5102-(-210).17.对于任意不相等的两个实数a ,b ,定义运算“※”如下:a ※b =a +b a -b ,例如:3※2=3+23-2= 5.求4※1+8※12的值.18.若a =3-10,求代数式a 2-6a -2的值.19.如图21-3-1,有一张边长为6 2 cm 的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为 2 cm.求:(1)剪掉四个角后,制作长方体盒子的纸板的面积; (2)长方体盒子的体积.图21-3-12 3x9x+y2xy3)-(x21x-5xyx)的值.20.已知4x2+y2-4x-6y+10=0,求(1.C 2. B 3. C4.解:由已知可得3a -8=17-2a ,解得a =5.5.3 3 3 1 4 3 6.- 27. 2+3-2 28.解:(1)原式=10×4 3-6×3 3+3×2 3=(40-18+6)3=28 3. (2)原式=33-2 3+3=-2 33. (3)原式=4 5+3 5-2 2+4 2=7 5+2 2.9.710.解:(1)原式=5+4 5+4=9+4 5. (2)原式=12-4 6+2=14-4 6. 11. A 12. C13.- 3 14.10 2+2 3 15.1316.解:(1)原式=2 5+55-13×12=3-2=1. (2)原式=3 2×4 2-3 2×3 3+4 3×4 2-4 3×3 3=24-9 6+16 6-36=7 6-12.(3)原式=10 486-6 246+4 126=10 8-6 4+4 2=20 2-12+4 2=24 2-12.(4)原式=5-2 5×510+2510+2 10=5-5 2+52+2 10=152-5 2+2 10. 17.解:4※1=4+14-1=53,8※12=8+128-12=-204=-52, 所以4※1+8※12=53-52=-56. 18.解:解法一:原式=(3-10)2-6×(3-10)-2=9-6 10+10-18+6 10-2=-1.解法二:因为a =3-10,所以a -3=-10,两边同时平方,得a 2-6a +9=10,所以a 2-6a =1,所以a 2-6a -2=-1.19.解:(1)制作长方体盒子的纸板的面积:(6 2)2-4×(2)2=64(cm 2). (2)长方体盒子的体积:(6 2-2 2)×(6 2-2 2)×2=32 2(cm 3).20.解:∵4x 2+y 2-4x -6y +10=0, ∴(2x -1)2+(y -3)2=0,∴x =12,y =3.⎝ ⎛⎭⎪⎫23x 9x +y 2x y 3-⎝⎛⎭⎪⎫x 21x-5xy x =()2x x +xy -(x x -5xy )=2x x +xy -x x +5xy =x x +6 xy .当x =12,y =3时,原式=1212+6 32=24+3 6.22.1~22.2一、选择题(每小题3分,共27分)1.下列方程中,是关于x 的一元二次方程的是( ) A.()x +82=x +8 B .x 2+18x=6C .ax 2+bx +c =0 D .x 2+x +1=x 22.一元二次方程4x 2+1=4x 的根的情况是( ) A .没有实数根 B .只有一个实数根 C .有两个相等的实数根 D .有两个不相等的实数根3. 用配方法解方程x 2-2x -1=0时,配方后所得的方程为( ) A .(x +1)2=0 B .(x -1)2=0 C .(x +1)2=2 D .(x -1)2=24.下面是四名同学在解方程x(x +3)=x 时的答案,结果正确的是( ) A .x =-2 B .x =0C .x =0或x =2D .x =0或x =-25.若关于x 的一元二次方程的两个根为x 1=1,x 2=2,则这个方程可能是( ) A .x 2+3x -2=0 B .x 2-3x +2=0 C .x 2-2x +3=0 D .x 2+3x +2=06.若关于x 的一元二次方程mx 2-2x +1=0无实数根,则一次函数y =(m -1)x -m 的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限7.若关于x 的一元二次方程(m -1)x 2+5x +m 2-3m +2=0有一个根为0,则m 的值为( ) A .0 B .1或2 C .1 D .28.若关于x 的一元二次方程(k -1)x 2-(2k +1)x +k =0有两个不相等的实数根,则k 的取值范围是( )A .k >-18B .k >-18且k≠1C .k <-18D .k ≥-18且k≠09.已知m ,n 是方程x 2+3x -2=0的两个实数根,则m 2+4m +n +2mn 的值为( ) A .1 B .3 C .-5 D .-9 二、填空题(每小题4分,共20分)10.若关于x 的方程ax 2+3x =2x 2+4是一元二次方程,则a 应满足的条件是________.11.已知一元二次方程x 2-6x +c =0有一个根为2,则另一个根为__________.12.若代数式4x 2+5x +6与-3x 2-2的值互为相反数,则x 的值为________.13.有一个数值转换机,其流程如图1-G -1所示.若输入a =-6,则输出的x 的值为________.图1-G-114.关于x的一元二次方程ax2+bx+1=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=________,b=________.三、解答题(共53分)15.(12分)解下列方程:(1)(x-2)2=4; (2)x2-2x=0;(3)(x+2)2-9x2=0; (4)x2-10x+21=0;(5)4x2+8x+1=0; (6)x2-2x=-4+2x.16. (10分)已知关于x的方程x2+2(2-m)x+3-6m=0.(1)若1是此方程的一个根,求m的值及方程的另一个根;(2)试说明:无论m取任何实数,此方程总有实数根.17.(10分)已知关于x的一元二次方程x2-ax+2=0的两实数根x1,x2满足x1x2=x1+x2-2.(1)求a的值;(2)求该一元二次方程的两实数根.18.(10分)已知关于x的一元二次方程x2+2x+2k-4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.19.(11分)已知关于x的一元二次方程tx2-(3t+2)x+2t+2=0(t>0).(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2(其中x1<x2),若y是关于t的函数,且y=x2-2x1,求这个函数的表达式,并画出函数图象;(3)观察(2)中的函数图象,当y≥2t时,写出自变量t的取值范围.1.A 2.C 3.D 4.D 5.B 6.B 7.D8.B 9.C 10.a ≠211.4 12.-1或-4 13.无解14.答案不唯一,如a =1,b =2 15.解:(1)∵x -2=±4, ∴x =2±2, ∴x 1=4,x 2=0.(2)原方程可化为x (x -2)=0, ∴x 1=0,x 2=2.(3)原方程可化为(x +2)2-(3x )2=0, ∴(x +2+3x )(x +2-3x )=0, ∴-4(2x +1)(x -1)=0, ∴x 1=-12,x 2=1.(4)移项,得x 2-10x =-21, ∴x 2-10x +25=-21+25, ∴(x -5)2=4,∴x -5=±4, ∴x =5±2, ∴x 1=7,x 2=3.(5)∵a =4,b =8,c =1, ∴b 2-4ac =82-4×4×1=48>0, ∴x =-8±482×4,∴x 1=-2+32,x 2=-2-32.(6)原方程可化为x 2-2x -2x +4=0, 即x 2-4x +4=0,∴(x -2)2=0, ∴x 1=x 2=2.16.解:(1)把x =1代入方程,得 1+4-2m +3-6m =0, ∴m =1.故方程为x 2+2x -3=0.设方程的另一个根是t ,则1·t =-3, ∴t =-3.故m =1,方程的另一个根为-3.(2)∵在关于x 的方程x 2+2(2-m )x +3-6m =0中, Δ=4(2-m )2-4(3-6m )=4(m +1)2≥0, ∴无论m 取任何实数,此方程总有实数根. 17.解:(1)∵x 1+x 2=a ,x 1x 2=2, 又x 1x 2=x 1+x 2-2, ∴2=a -2, ∴a =4.(2)原方程为x 2-4x +2=0,∴(x -2)2=2,∴x -2=±2,∴x 1=2+2,x 2=2- 2.18.解:(1)Δ=b 2-4ac =4-4(2k -4)=20-8k . ∵方程有两个不相等的实数根,∴20-8k >0, ∴k <52.(2)∵k 为正整数, ∴0<k <52且k 为整数,即k 的值为1或2.∵x 1,2=-1±5-2k ,且方程的根为整数, ∴5-2k 为完全平方数.当k =1时,5-2k =3,不是完全平方数; 当k =2时,5-2k =1,是完全平方数, ∴k =2.19.解:(1)证明:Δ=(3t +2)2-4t (2t +2)=(t +2)2.∵t >0,∴(t +2)2>0, 即Δ>0,∴方程有两个不相等的实数根. (2)x =3t +2±(t +2)2t ,∵t >0,∴x 1=1,x 2=2+2t,∴y =x 2-2x 1=2+2t -2×1=2t,即y =2t(t >0).函数图象如图:(3)当y ≥2t 时,0<t ≤1.22.1 一元二次方程知识点 1 一元二次方程的定义及一般形式 1.下列方程中是一元二次方程的是( )A .2x +1=0B .y 2+x =0 C .x 2-x =0 D. 1x+x 2=02.将下列一元二次方程化成一般形式,并写出方程的二次项系数、一次项系数和常数项.(1)2y 2=8; (2)3x 2-2=x ;(3)2y (4y +3)=13; (4)(3x -1)(x +2)=1.知识点 2 一元二次方程的解3.已知关于x 的一元二次方程2x 2-3mx -5=0的一个根是-1,把x =-1代入原方程得到关于m 的方程为____________,解得m =________.4.若关于x 的方程32x 2-2a =0的一个根是2,则2a -1的值是多少?知识点 3 根据实际问题列一元二次方程 5.[教材“问题2”变式题][2017·辽阳]共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x ,则所列方程正确的是( )A .1000(1+x )2=1000+440B .1000(1+x )2=440C .440(1+x )2=1000D .1000(1+2x )=1000+440 6.[2017·兰州]王叔叔从市场上买了一块长80 cm 、宽70 cm 的矩形铁皮,准备制作一个工具箱.如图22-1-1,他将矩形铁皮的四个角各剪掉一个边长为x cm 的正方形后,剩余的部分刚好能围成一个底面积为3000 cm 2的无盖长方形工具箱,根据题意列方程 _______________________________.图22-1-17.关于x的方程ax2+bx+c=0(a≠0),若a+b+c=0,则方程必有一根是( )A.-1 B.1 C.0 D.±18.已知m是一元二次方程x2+2x-1=0的一个根,则3m(m+2)-2的值为________.9.[教材习题22.1第2题变式]已知关于x的方程(k-3)x|k|-3-x-2=0是一元二次方程,求不等式kx-2k+6≤0的解集.10.已知关于x的方程(k2-1)x2+(k+1)x-2=0.(1)当k取何值时,此方程为一元一次方程?并求出此方程的根;(2)当k取何值时,此方程为一元二次方程?并写出这个方程的二次项系数、一次项系数和常数项.1.C2.解:(1)移项,得一元二次方程的一般形式为2y 2-8=0,其中二次项系数为2,一次项系数为0,常数项为-8.(2)移项,得一元二次方程的一般形式为3x 2-x -2=0,其中二次项系数为3,一次项系数为-1,常数项为-2.(3)整理,得一元二次方程的一般形式为8y 2+6y -13=0,其中二次项系数为8,一次项系数为6,常数项为-13.(4)整理,得一元二次方程的一般形式为3x 2+5x -3=0,其中二次项系数为3,一次项系数为5,常数项为-3.3.2+3m -5=0 14.解:因为关于x 的方程32x 2-2a =0的一个根是2,所以6-2a =0,解得a =3.当a =3时,2a -1=2×3-1=5.5.A6.(80-2x )(70-2x )=3000 [解析] 根据题意可知裁剪后的底面的长为(80-2x )cm ,宽为(70-2x )cm ,根据长方形的面积=长×宽,可以列出方程(80-2x )(70-2x )=3000.7. B8.1 [解析] 把x =m 代入方程x 2+2x -1=0中,得m 2+2m -1=0,变形得m 2+2m =1,所以3m (m +2)-2=3(m 2+2m )-2=3×1-2=1.9.解:∵关于x 的方程(k -3)x |k |-3-x -2=0是一元二次方程, ∴|k |-3=2且k -3≠0,解得 k =±5.①当k =5时,不等式kx -2k +6≤0可化为5x -2×5+6≤0,解得 x ≤45.②当k =-5时,不等式kx -2k +6≤0可化为-5x +2×5+6≤0,解得 x ≥165.10.解:(1)当k =1时,此方程为一元一次方程;方程的根为x =1.(2)当k ≠±1时,此方程为一元二次方程;方程的二次项系数为k 2-1,一次项系数为k +1,常数项为-2.22.2.1 第1课时 直接开平方法知识点 1 用直接开平方法解形如x 2=p (p ≥0)的一元二次方程1.解方程:x 2=25.因为x 是25的平方根,所以x =________.所以原方程的解为x 1=________,x 2=________.2.一元二次方程x 2-4=0的解是( ) A .x 1=2,x 2=-2 B .x =-2 C .x =2 D .x 1=2,x 2=0 3.[教材例1变式]用直接开平方法解下列方程:(1)x 2-5=0; (2)16x 2=81;(3)5x 2-125=0; (4)x 2-5=49.知识点 2 用直接开平方法解形如(mx +n )2=p (p ≥0)的一元二次方程4.将方程(2x -1)2=9的两边同时开平方, 得2x -1=________,即2x -1=________或2x -1=________, 所以x 1=________,x 2=________.5.下列方程中,不能用直接开平方法求解的是( )A .x 2-3=0B .(x -1)2-4=0C .x 2+2=0D .(x -1)2=(-2)26.用直接开平方法解下列方程:(1)(x +2)2=27; (2)(x -3)2-9=0;(3)(2x -8)2=16; (4)9(3x -2)2=64.7.若a ,b 为方程x 2-4(x +1)=1的两根,且a >b ,则a b=( )A .-5B .-4C .1D .38.[2016·深圳]给出一种运算:对于函数y =x n ,规定y ′=nx n -1.例如:若函数y =x 4,则y ′=4x 3.已知函数y =x 3,则方程y ′=12的根是( )A .x 1=4,x 2=-4B .x 1=2,x 2=-2C .x 1=x 2=0D .x 1=2 3,x 2=-2 39.若(x 2+y 2-1)2=4,则x 2+y 2=________.10.已知直角三角形的两边长x ,y 满足||x 2-16+y 2-9=0,求这个直角三角形第三边的长.11. [2017·河北]对于实数p ,q ,我们用符号min {}p ,q 表示p ,q 两数中较小的数,如min {}1,2=1.因此,min {}-2,-3=________;若min {}(x -1)2,x 2=1,则x =________.1.±5 5 -5 2.A3.解:(1)x 2=5,x =±5,即x 1=5,x 2=- 5. (2)∵x 2=8116,∴x =±8116, 即x 1=94,x 2=-94.(3)∵5x 2=125, ∴x 2=25,∴x =±5,即x 1=5,x 2=-5.(4)x 2-5=49,x 2=499,解得x 1=73,x 2=-73.4.±3 3 -3 2 -15.C [解析] x 2-3=0移项得x 2=3,可用直接开平方法求解;(x -1)2-4=0移项得(x -1)2=4,可用直接开平方法求解;(x -1)2=(-2)2=4,可用直接开平方法求解.故选C.6.解:(1)∵x +2=±27, ∴x =-2±3 3,∴x 1=-2+3 3,x 2=-2-3 3.(2)∵(x -3)2-9=0,∴(x -3)2=9, ∴x -3=±3, ∴x 1=6,x 2=0. (3)∵2x -8=±16, ∴2x =8±4, ∴x 1=6,x 2=2. (4)∵(3x -2)2=649,∴3x -2=83或3x -2=-83,解得x 1=149,x 2=-29.7.A [解析] x 2-4(x +1)=1, ∴x 2-4x -4=1,∴(x -2)2=9, ∴x 1=5,x 2=-1.∵a ,b 为方程x 2-4(x +1)=1的两根,且a >b , ∴a =5,b =-1,∴a b =5-1=-5. 故选A.8. B [解析] 由函数y =x 3得n =3,则y ′=3x 2,∴3x 2=12,则x 2=4,∴x =±2, ∴x 1=2,x 2=-2.故选B.9. 3 [解析] (x 2+y 2-1)2=4直接开平方得x 2+y 2-1=±2.解得x 2+y 2=3或x 2+y 2=-1. ∵x 2≥0,y 2≥0,∴x2+y2=3.10.解:根据题意,得x2-16=0,y2-9=0,所以x=±4,y=±3.因为三角形的边长是正数,所以x=4,y=3.若第三边为斜边,则第三边的长为32+42=5;若第三边为直角边,则第三边的长为42-32=7,所以这个直角三角形第三边的长为7或5.11.- 3 2或-1 [解析] min{-2,-3}=- 3.∵min{(x-1)2,x2}=1,当x=0.5时,x2=(x-1)2,不可能得出最小值为1,当x>0.5时,(x-1)2<x2,则(x-1)2=1,x-1=±1,即x-1=1或x-1=-1,解得x1=2,x2=0(不合题意,舍去);当x<0.5时,(x-1)2>x2,则x2=1,解得x1=1(不合题意,舍去),x2=-1.综上所述,x的值为2或-1.。
第21章二次根式章节复习(难点练)一、单选题1.(2021·四川省遂宁市第二中学校九年级月考)下列二次根式中,是最简二次根式的是( ).A.BCD【答案】A【详解】根据最简二次根式的意义,可知=,不是最简二次根式.故选A.2.(2021·上海九年级专题练习)当4x =-的值为( )A .1BC .2D .3【答案】A=--=1=.故选:A.【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.3.(2021·浙江九年级期末)如图1,矩形方框内是一副现代智力七巧板,它由两个半圆①和⑦、O e ⑥、等腰直角三角形②和都含45°角的角不规图形③、直角梯形④、圆不规图形⑤组成,已知2AB BC AI ==.如图2,在矩形PQMN 内,这个智力七巧板恰好能拼成一个滑滑梯,若O e 的直径是2,则矩形PQMN 的周长为( )A .32B .28+C .22+D .24+【答案】C【分析】根据勾股定理得出AI ,BG ,进而利用四边形的周长解答.【详解】解:如图,2AI ==Q ,2BG ==,2AB AI ==,4c \=,4a \==-28PQ a \=++=+,123PN =++=+,\四边形PQMN 的周长2()16622PQ PN =´+=+++=+,故选:C .【点睛】此题考查矩形的性质,关键是根据矩形的性质利用勾股定理解答.4.(2021·山东淄博市·九年级期中)如图,正方形ABCD 边长为2,从各边往外作等边三角形ABE 、BCF 、CDG 、DAH ,则四边形AFGD 的周长为( )A .4++B .2++C .4+D .2++【答案】A【分析】分别求出∠ABF 和∠FCG 的度数,再利用正方形与等边三角形的性质,证明△ABF ≌△FCG ,可得AF =FG ,同理AF =AG BG =,设AB 中点为K ,连接AG ,GK ,,BG GK 交CD 于,N 可得△AKG 为直角三角形,再利用由勾股定理求得AG ,然后即可求得四边形AFGD 的周长.【详解】解: Q 正方形ABCD 边长为2,等边三角形BCF 、CDG 、2,90,60,AB BC BF FC CD CG ABC FBC \======Ð=°Ð=° 150,15,ABF BAF BFA \Ð=°Ð=Ð=°同理可得:360906060150,FCG Ð=°-°-°-°=° 所以△ABF ≌△FCG ,∴AF =FG .设AB 中点为K ,连接AG ,GK ,,BG GK 交CD 于,N同理AF =AG ,BG = 则,GK AB ^ ,GK CD ^ 1,1,DN CN AK BK ==== 2,KN BC ==\ △AKG 为直角三角形,由三角形DCG 为等边三角形,则2,DG CG DC ===GN \==∴2KG =+由勾股定理得:AG ====+四边形AFGD 的周长为:AF +FG +GD +DA =2+2´故选:A .【点睛】本题主要考查勾股定理,全等三角形的判定与性质,等边三角形的性质,正方形的性质,二次根式的化简,二次根式的运算等知识点,此题有一定难度,属于难题.二、填空题5.(2021·湖北武汉市·九年级专题练习)化简并计算:...++=________.(结果中分母不含根式)【详解】解:原式=--==..【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观察.6.(2021·山东淄博市·九年级期中)如图,在△ABC 中,D 是AC 边的中点,连接BD ,把△BDC 沿BD 翻折,得到△BD C ¢,联结AC ¢.若AD =AC ¢=2,BD =3,则点D 到BC ¢的距离为 __________.【分析】连接CC ¢,交BD 于点M ,过点D 作DH BC ¢^于点H ,由翻折知,△BDC ≌△BDC ¢,BD 垂直平分CC ¢,证△ADC ¢为等边三角形,利用解直角三角形求出DM =1,C M ¢=,BM =2,在Rt △BMC ¢中,利用勾股定理求出BC ¢的长,在△BDC ¢中利用面积法求出DH 的长,则可得出答案.【详解】解:如图,连接CC ¢,交BD 于点M ,过点D 作DH BC ¢^于点H ,∵AD AC ¢==2,D 是AC 边上的中点, ∴DC =AD =2,由翻折知,△BDC ≌△BDC ¢,,,DC DC BC BC ¢¢\==\ BD 垂直平分CC ¢,∴2,,DC DC CM C M ¢¢===∴2AD AC DC ¢¢===, ∴△ADC ¢为等边三角形,∴60,ADC AC D C AC ¢¢¢Ð=Ð=Ð=° ∵DC DC ¢=, ∴16030,2DCC DC C ¢¢Ð=Ð=´°=° 在Rt △C DM ¢中, 30,2,DC C DC ¢¢Ð=°=∴1,DM C M ¢=== ∴BM =BD -DM =3-1=2,在Rt △BMC ¢中,BC ¢==∵11,22BDC S BC DH BD C M ¢¢¢==V g g3=∴DH =∴点D 到BC'.【点睛】本题考查了轴对称的性质,解直角三角形,勾股定理的应用,二次根式的乘除运算等,解题关键是会通过面积法求线段的长度.7.(2021·江苏南通市·九年级二模)如图,在边长为2的正方形ABCD 中,点M 在边AB 上,点N 在对角线AC 上,连接DM ,DN .若AM =CN ,则(DM +DN )2的最小值为____.【答案】8+【分析】过点C 作CH ⊥AC ,使得CH =AD ,连接NH ,由题意易得∠NCH =∠MAD =90°,进而可得△NCH ≌△MAD ,然后可得DM =NH ,要使()2DM DN +的值为最小,只需DM +DN 的值为最小,即NH +DN的值为最小,所以可得D 、N 、H 三点共线时最小,则过点H 作HE ⊥DC 于点E ,然后根据勾股定理可求解.【详解】解:过点C 作CH ⊥AC ,使得CH =AD ,连接NH ,如图所示:∵四边形ABCD 是正方形,AB =2,∴∠MAD =∠DCB =90°,∠DCA =45°,AD =CH =AB =CD =2,∴∠NCH =∠MAD =90°,∵AM =CN ,∴△NCH ≌△MAD (SAS ),∴DM =NH ,若使()2DM DN +的值为最小,只需DM +DN 的值为最小,即NH +DN 的值为最小,所以可得D 、N 、H 三点共线时最小,则过点H 作HE ⊥DC 于点E ,如图所示:∴∠DCA =∠ECH =45°,∴△CEH 为等腰直角三角形,∴CE EH ===,∴2DE DC CE =+=+,∴在Rt △DEH 中,()(22222228DH DM DN DE EH =+=+=+=+∴()2DM DN +的最小值为8+;故答案为8+.【点睛】本题主要考查正方形的性质、等腰直角三角形的性质与判定、勾股定理及二次根式的运算,熟练掌握正方形的性质、等腰直角三角形的性质与判定、勾股定理及二次根式的运算是解题的关键.三、解答题8.(2021·全国九年级专题练习)阅读下面的解答过程,然后作答:化简,若你能找到两个数 m 和n ,使m 2+n 2=a 且,则a+2可变为m 2+n 2+2mn ,即变成(m+n )2化简.例如:∵=2+)2=)2请你仿照上例将下列各式化简(1,(2.【答案】(1);(2-.【分析】参照范例中的方法进行解答即可.【详解】解:(1)∵22241(1+=++=+,1=(2)∵2227-=-=,==.9.(2021·广东九年级专题练习)先化简,再求值:24211326x x x x -+æö-¸ç÷++èø,其中1x =..【分析】根据分式的运算法则进行化简,再代入求解.【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+æöæö¸=×=ç÷ç÷+++--èøèø.将1x =+=【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.10.(2021·全国九年级专题练习)阅读材料,请回答下列问题材料一:我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:S …①(其中a ,b ,c 为三角形的三边长,S 为面积)而另一个文明古国古希腊也有求三角形面积的“海伦公式”;S p =2a b c++)材料二:对于平方差公式:a 2﹣b 2=(a +b )(a ﹣b )公式逆用可得:(a +b )(a ﹣b )=a 2﹣b 2,例:a 2﹣(b +c )2=(a +b +c )(a ﹣b ﹣c )(1)若已知三角形的三边长分别为3、4、5,请试分别运用公式①和公式②,计算该三角形的面积;(2)你能否由公式①推导出公式②?请试试.【答案】(1)三角形的面积为6;(2)见解析.【分析】(1)根据材料,代入公式即可求解;(2)根据平方差公式和完全平方公式即可推导.【详解】解:(1)设a =3,b =4,c =5,∵32+42=25,52=25,∴a 2+b 2=c 2,a 2b 2=144,∴S =3452++=6;∵p =2a b c++=3452++=6,p ﹣a =6﹣3=3,p ﹣b =6﹣4=2,p ﹣c =6﹣5=1,S=6.∴三角形的面积为6.(2)∵14[a 2b 2﹣(2222a b c +-)2]=14[2244a b ﹣2222()4a b c +-]=116[(a+b )2﹣c 2][c 2﹣(a ﹣b )2]=116(a+b+c )(a+b ﹣c )(a+c ﹣b )(b+c ﹣a )=116×2p•(2p ﹣2c )(2p ﹣2b )(2p ﹣2a )=p (p ﹣a )(p ﹣b )(p ﹣c )【点睛】本题考查了二次根式的应用、平方差公式和完全平方公式,解决本题的关键是熟练应用公式.11.(2021·上海九年级专题练习)请阅读下列材料,并完成相应的任务.古希腊几何学家海伦,在数学史上以解决几何测量问题而闻名.在他的著作《度量》一书中,给出了三角形面积的计算公式(海伦公式):如果一个三角形的三边长分别为,,a b c ,记2a b cp ++=,那么三角形的面积是S =.印度算术家波罗摩笈多和婆什迦罗还给出了四边形面积的计算公式:如果一个四边形的四边长分别为a b c d ,,,,记2a b c dp +++=,那么四边形的面积是S =其中,A 和C 表示四边形的一组对角的度数)根据上述信息解决下列问题:(1)已知三角形的三边是4,6,8,则这个三角形的面积是 (2)小明的父亲是工程师,设计的某个零件的平面图是如图的四边形ABCD ,已知8AB =,12AD =,10BC =10CD =+,75B °Ð=,45D °=∠.求出这个零件平面图的面积.【答案】(1);(2)【分析】(1)根据三角形的面积公式直接代入数据计算即可;【详解】(1)p=46892++=,∴三角形的面积是:S ====(2) 75,45B D °°Ð=Ð=Q ,∴2222754511coscos cos 60()2224B D Ð+а+°==°==,8,12,1010AB AD BC CD ===-=+Q ,∴20p ==,∴()()()()p p a p b p c p d ----20(208)(2012)(2010=---´(2010172800--=,又21cos812(10216024A C abcd +=´´´=,∴S ==,∴这个零件平面图的面积是.【点睛】本题主要考查了二次根式的应用,平方差公式的应用,解题的关键是熟练掌握二次根式的性质并根据题目给出的公式代入计算.还考查了计算能力.12.(2021·广东九年级专题练习)先化简,再求值:2222421121a a a a a a a ---¸+--+,其中1a =-.【答案】21a +【详解】解:原式222(2)21(1)(1)(1)a a a a a a a --=-¸++--222(2)(1)1(1)(1)2a a a a a a a --=-×++--22(1)11a a a a -=-++2=1a +,把1a =代入,原式==13.(2021·黄山市黄山第二中学九年级月考)如图,在△ABC 中,∠ACB=30°,将△ABC 绕点A 逆时针旋转60°,得到△ADE ,连接CD ,CE .(1)求证:AB=CD ;(2)若BC=10,∠ABC=45°,连接BE ,求△BCE 的面积.【答案】(1)证明见解析;(2)-50【分析】(1)结合题意,根据旋转的性质得AD=AB,AC=AE.∠CAE=60°,∠AED=∠ACB=30°,从而得到△ACE是等边三角形、∠AED=∠CED=30°;再通过证明△AED≌△CED,得AD=CD,结合AD=AB,即可完成证明;(2)过点A作AF⊥BC于点F,设BF=x,根据∠ABC=45°,AF⊥BC,得BF=AF=x;根据∠ACB=30°,∠ACE=60°,AF⊥BC得CF;根据BF+CF=BC=10,列方程并求解,即可得到CE,经计算从而得到答案.【详解】(1)∵将△ABC绕点A逆时针旋转60°,得到△ADE,∴AD=AB,AC=AE.∠CAE=60°,∠AED=∠ACB=30°,∴△ACE是等边三角形,∴AC=AE=CE,∠ACE=∠AEC=60°,∴∠AED=∠CED=30°又∵DE=DE,AE=CE,∴△AED≌△CED(SAS),∴AD=CD又∵AD=AB,∴AB=CD(2)如图,过点A作AF⊥BC于点F设BF=x∵∠ABC=45°,AF⊥BC,∴∠ABC=∠BAF=45°,∴BF=AF=x∵∠ACB=30°,∠ACE=60°,AF⊥BC,∴∠BCE=∠ACB +∠ACE =90°,AC=2x,∴==x∴CE=AC=2x.∵BF+CF=BC=10,∴x=10,∴,∴,∴△BCE的面积=12BC×CE=12´10´().【点睛】本题考查了旋转、等边三角形、全等三角形、勾股定理、直角三角形、一元一次方程、二次根式的知识;解题的关键是熟练掌握旋转、等边三角形、全等三角形、勾股定理、直角三角形、一元一次方程、二次根式的性质,从而完成求解.14.(======请回答下列问题:(1=______;(2)利用上面的解法,请化简:+++×××++(3【答案】(1-21-;(3>,见解析【分析】(1)把分子分母都乘以+,然后利用平方差公式计算;(2)先分母有理化,然后合并即可;(3)由(1-=-=<【详解】解:(1=(2+×××+)1=+++×××++1=-+++×××+1=-(3)由(1)的方法可得,-==<>>.【点睛】本题考查了分母有理化和二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.15.(2021·全国九年级专题练习)若三个实数x,y,z满足xyz≠0,且x+y+z=0,则有:=|1x+1y+1z|.|12+13+()15-|=1930请解决下列问题:(1的值.(2)设S S的整数部分.(3)已知x+y+z=0(xyz≠0,x>0),且y+z=3yz+|1x﹣1y﹣1z|取得最小值时,求x的取值范围.【答案】(1)712;(2)2019;(3)0<x≤13【分析】(1)根据范例中提供的计算方法进行计算即可;(2)将原式进行化简,再确定整数部分;(3)将原式化简为|13x+|+|13x-|,再根据|13x+|+|13x-|取最小值时,确定x的取值范围.【详解】解:(1=|12+14+16-|=712;(2)S,=|1+1﹣12|+|1+12﹣13|+…+|1+12019﹣12020|,=1+1﹣12+1+12﹣13+1+13﹣14+ (1)12019﹣12020,=2019+2019 2020,故整数部分为2019;(3)由题意得,+|1x﹣1y﹣1z|,=|1x+1y+1z|+|1x﹣1y﹣1z|,=|1y zx yz++|+|1y zx yz+-|,又y+z=3yz,原式=|13x+|+|13x-|,因为|13x+|+|13x-|取最小值,所以﹣3≤1x≤3,而x>0,因此,0<x≤13,答:x的取值范围为0<x≤13.【点睛】本题考查了分式的加减法、实数的运算、二次根式的运算,解题关键是掌握数字间的变化规律,准确计算.16.(2021·北京九年级专题练习)已知x =,y =,求22x y y x +的值.【答案】970【分析】首先把x 和y 进行分母有理化,然后将其化简后的结果代入计算即可.【详解】解:∵5x ===-,5y ===+∴原式===+245240245240=--++++970=.【点睛】本题主要考查二次根式的化简求值,解答本题的关键是对x 和y 进行分母有理化及掌握二次根式的运算法则.17.(2021·全国九年级专题练习)阅读下列解题过程:;;=;…解答下列各题:(1= ;(2= .(3+)×+1).-;(2+;(3)2020【答案】(13【分析】(1-,然后利用平方差公式和二次根式的性质计算,即可得到答案;(2到答案;(3)根据(1)和(2)的结论,先分母有理化,经加减运算后,再利用平方差公式计算,即可得到答案.-3-;3==++(3×+1)1+-)×+1)-)×+1)1-=20211=2020.【点睛】本题考查了二次根式和数字规律的知识:解题的关键是熟练掌握二次根式混合运算、数字规律、平方差公式的性质,从而完成求解.18.(2021·北京九年级二模)如图,在等腰直角△ABC 中,AB =AC ,∠BAC =90°,点D 是CA 延长线上一点,点E 是AB 延长线上一点,且AD =BE ,过点A 作DE 的垂线交DE 于点F ,交BC 的延长线于点G(1)依题意补全图形;(2)当∠AED =α,请你用含α的式子表示∠AGC ;(3)用等式表示线段CG 与AD 之间的数量关系,并写出证明思路【答案】(1)见解析;(2)45AGC Ð=°-a ;(3)CG =,见解析【分析】(1)根据题意补全图形即可;(2)先证45ABC ACB Ð=Ð=°,再根据90ADE AED Ð+Ð=°与90ADE DAF Ð+Ð=°可得DAF AED a Ð=Ð=,则DAF CAG a Ð=Ð=,又因为45ACB CAG AGC Ð=Ð+Ð=°可得45AGC Ð=°-a ;(3)在AE 上截取AM AD =,连接DM .先证BAC V 与ADM △是等腰直角三角形,接下来证ACG EMD △≌△,所以可得DM CG =,则可求CG DM ==.【详解】(1)根据题意补全图形如下:过点A 作DE 的垂线交DE 于点F ,交BC 的延长线于点G .(2)证明:当AED a Ð=时,45AGC Ð=°-a .推理如下:AB AC =Q ,90BAC Ð=°,45ABC ACB \Ð=Ð=°.90EAD Ð=°Q ,90ADE AED \Ð+Ð=°AF DE ^Q ,90DFA \Ð=°,90ADE DAF \Ð+Ð=°DAF AED a \Ð=Ð=,DAF CAG a \Ð=Ð=,45ACB CAG AGC Ð=Ð+Ð=°Q 45AGC a \Ð=°-.(3)CG =.证明:在AE 上截取AM AD =,连接DM .∵=AM AD ,90BAC а=∴ADM △是等腰直角三角形∴45AMD Ð=°∴180********DME AMD Ð=°-Ð=°-°=°∵=AB AC ,90BAC а=∴BAC V 是等腰直角三角形∴45ACB Ð=°∴180********ACG ACB Ð=°-Ð=°-°=°∴135ACG DME Ð=Ð=°∵=AD BE ∴=AM BE∴+=+AM BM BE BM 即=AB EM ∵=AB AC ∴=EM AC∵FG DE ^,90BAC а=∴90FAE E Ð+а=,90FAE CAG Ð+а=∴CAG EÐ=Ð又∵=AB EM ,135ACG DME Ð=Ð=°∴ACG EMD △≌△∴DM CG=又∵90BAC а= ,=AD AM∴利用勾股定理可得:DM ===∴DM CG ==.【点睛】此题是三角形综合题,主要根据等腰直角三角形的判定和性质,全等三角形的判定和性质,构造出全等三角形解答.。
第21章二次根式21.1 二次根式【知识与技能】1.理解二次根式的概念,并利用a(a≥0)的意义解答具体题目.2.理解a(a≥0)是非负数和(a)2=a.3.理解2a=a(a≥0)并利用它进行计算和化简.【过程与方法】1.提出问题,根据问题给出概念,应用概念解决实际问题.2.通过复习二次根式的概念,用逻辑推理的方法推出a(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出(a)2=a(a≥0),最后运用结论严谨解题.3.通过具体数据的解答,探究并利用这个结论解决具体问题.【情感态度】通过具体的数据体会从特殊到一般、分类的数学思想,理解二次根式的概念及二次根式的有关性质.【教学重点】1.形如a(a≥0)的式子叫做二次根式.2. a(a≥0)是一个非负数;(a)2=a(a≥0)及其运用.3.【教学难点】利用“a(a≥0)”解决具体问题.关键:用分类思想的方法导出a(a≥0)是一个非负数;用探究的方法导出一、情境导入,初步认识回顾:当a是正数时,a表示a的算术平方根,即正数a的正的平方根.当a是零时,a等于0,它表示零的平方根,也叫做零的算术平方根.当a是负数时,a没有意义.【教学说明】通过对算术平方根的回顾引入二次根式的概念.二、思考探究,获取新知概括:a(a≥0)表示非负数a的算术平方根,也就是说,a(a≥0)是一个非负数,它的平方等于a.即有:(1)a≥0;(2)(a)2=a(a≥0).形如a(a≥0)的式子叫做二次根式.注意:在a中,a的取值必须满足a≥0,即二次根式的被开方数必须是非负数.思考:2a等于什么?我们不妨取a的一些值,如2,-2,3,-3等,分别计算对应的2a的值,看看有什么规律.概括:当a≥0时,2a=a;当a<0时,2a=-a.三、运用新知,深化理解1.x取什么实数时,下列各式有意义?2.计算下列各式的值:【教学说明】可由学生抢答完成,再由老师总结归纳.四、师生互动,课堂小结1.师生共同回顾二次根式的概念及有关性质:(1)(a)2=a(a≥0);(2)当a≥0时,2a=a;当a<0时,2a=-a.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.1.布置作业:从教材相应练习和“习题21.1”中选取..本节课从复习算术平方根入手引入二次根式的概念,再通过特殊数据的计算,理解二次根式的有关性质,经历观察、归纳、分类讨论等思维过程,从中获得数学知识与技能,体验教学活动的方法.21.2 二次根式的乘除法1.二次根式的乘法【知识与技能】a•=ab(a≥b,b≥0),并利用它们进行计算和化简.理解b【过程与方法】a•=ab(a≥0,b≥0)并运用它进行计算.由具体数据发现规律,导出b【情感态度】a•=ab(a≥0,b≥0),培养特殊到一般的探究精神,培养通过探究b学生对事物规律的观察发现能力,激发学生的学习兴趣.【教学重点】a•=ab(a≥0,b≥0),及它的运用.b【教学难点】a•=ab(a≥0,b≥0).发现规律,导出b一、情境导入,初步认识1.填空:参照上面的结果,用“>”、“<”或“=”填空.2.利用计算器计算填空.a•=ab(a≥0,b 【教学说明】由学生通过具体数据,发现规律,导出b≥0).二、思考探究,获取新知(学生活动)让3、4个同学上台总结规律.教师点评:(1)被开方数都是正数;(2)两个二次根式的积等于这样一个二次根式,它的被开方数等于前两个二次根式的被开方数的积.一般地,对二次根式的乘法规定为ba•=ab(a≥0,b≥0).:【教学说明】引导学生应用公式a•=ab(a≥0,b≥0).b三、运用新知,深化理解1.直角三角形两条直角边的长分别为15cm和12cm,那么此直角三角形斜边长是()A.32cmB.33cmC.9cmD.27cm【答案】1.B 2.C 3.A 4.D【教学说明】可由学生抢答完成,再由教师总结归纳.四、师生互动,课堂小结1.由学生小组讨论汇报通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.a•=ab(a≥0,b≥0).2.教师总结归纳二次根式的乘法规定b1.布置作业:从教材“习题21.2”中选取.a•=ab(a≥0,b 这节课教师引导学生通过具体数据,发现规律,导出b≥0),并学会它的应用,培养学生由特殊到一般的探究精神,培养学生对于事物规律的观察、发现能力,激发学生的学习兴趣.2.积的算术平方根【知识与技能】a•(a≥0,b≥0);1.理解ab=ba•(a≥0,b≥0).2.运用ab=b【过程与方法】a•(a≥0,b≥0),并运用它解题和化简.利用逆向思维,得出ab=b【情感态度】a•(a≥0,b≥0)以训练逆向思维,通过严谨解题,让学生推导ab=b增强学生准确解题的能力.【教学重点】a•(a≥0,b≥0)及其运用.ab=b【教学难点】a•(a≥0,b≥0)的理解与应用.ab=b一、情境导入,初步认识a•=ab(a≥0,b≥0).反过来,一般地,对二次根式的乘法规定为ba•(a≥0,b≥0).ab=b【教学说明】引导让学生通过复习上节课学习的二次根式的规定,利用逆向a•(a≥0,b≥0).思维,得出ab=b二、思考探究,获取新知例1化简:【教学说明】引导学生利用ab =b a •(a ≥0,b ≥0)直接化简即可. 例2判断下列各式是否正确,不正确的请改正:三、运用新知,深化理解1.化简:(1)20;(2)18;(3)24;(4)54.2.自由落体的公式为s=21gt 2(g 为重力加速度,它的值为10m/s 2),若物体下落的高度为120m ,则下落的时间是 s.四、师生互动,课堂小结1.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.2.教师总结归纳积的算术平方根等于各因式算术平方根的积,即ab =b a •(a ≥0,b ≥0).1.布置作业:从教材“习题21.2”中选取.本课时教学以“自主探究——合作交流”为主体形式,先给学生独立思考的时间,提供学生创新的空间与可能,再给不同层次的学生提供一个交流合作的机会,培养学生独立探究、合作学习的能力,训练逆向思维,通过严谨解题,增加学生准确解题的能力.3.二次根式的除法【知识与技能】 1.理解b a b a =(a ≥0,b >0)和bab a =(a ≥0,b >0),并运用它们进行计算.2.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.3.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.【过程与方法】1.先由具体数据,发现规律,导出b aba = (a ≥0,b >0),并用它进行计算.2.再利用逆向思维,得出bab a =(a ≥0,b >0),并运用它进行解题和化简.3.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.【情感态度】 通过探究b aba =(a ≥0,b >0)培养学生由特殊到一般的探究精神;让学生推导bab a =(a ≥0,b >0)以训练逆向思维,通过严谨解题,增强学生准确解题的能力.【教学重点】 1.理解b a b a =(a ≥0,b >0),bab a =(a ≥0,b >0)及利用它们进行计算和化简.2.最简二次根式的运用. 【教学难点】发现规律,归纳出二次根式的除法规定.最简二次根式的运用.一、情境导入,初步认识(学生活动)请同学们完成下列各题. 1.写出二次根式的乘法规定及逆向公式. 2.填空:【教学说明】每组推荐一名学生上台阐述运算结果,最后教师点评. 二、思考探究,获取新知刚才同学们都练习得很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到:一般地,对二次根式的除法规定:b ab a =(a ≥0,b >0) 反过来,bab a =(a ≥0,b >0) 下面我们利用这个规定来计算和化简一些题目.例1 计算:【教学说明】 直接利用b aba (a ≥0,b >0) 例2化简:观察上面各小题的最后结果,发现这些二次根式有这些特点:(1)被开方数中不含分母;(2)被开方数中所含的因数(或因式)的幂的指数都小于2.【教学说明】利用二次根式的乘法、除法规定来化简,要求最后结果化成最简二次根式.三、运用新知,深化理解1.化简:3.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.【教学说明】第1题可由学生自主完成,第2题、3题教师可给予相应的指导.四、师生互动,课堂小结请若干学生口述小结,老师再利用电子课件将小结放映在屏幕上.1.布置作业:从教材“习题21.2”中选取.本课时教学突出学生主体性原则,即通过探究学习,指导学生独立思考,通过具体数据得出规律,再让学生相互交流,或上台展示自己的发现,或表述个人的体验,从中获取成功的体验后,激发学生探究的激情.21.3二次根式的加减法【知识与技能】1.掌握同类二次根式的概念,会判断同类二次根式,会合并同类二次根式.2.掌握二次根式加减乘除混合运算的方法.【过程与方法】通过二次根式的加减法运算培养学生的运算能力.【情感态度】形成良好的思维习惯,学会从数学的角度提出问题、理解问题,并能运用所学的知识解决问题.【教学重点】二次根式加减法的运算.【教学难点】探讨二次根式加减法的运算方法,快速准确进行二次根式加减法的运算.一、情境导入,初步认识1.合并同类项:(1)2x+3x;(2)2x2-3x2+5x2.解:(1)5x;(2)4x2.这几道题是你运用什么知识做的?加减法则.2.化简:3.如何进行二次根式的加减计算?先化简,再合并.4.同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,这些二次根式就称为同类二次根式,就是本书中所讲的被开方数相同的二次根式.如22与32;28、38与58.二、思考探究,获取新知例1计算:例2计算:【教学说明】进行二次根式的加减运算时,必须先将其化简,是同类二次根式才可合并.例3计算:【教学说明】在二次根式的运算中,多项式乘法法则和乘法公式仍然适用.三、运用新知,深化理解.1.下列计算是否正确?为什么?【教学说明】这类计算的简便方法是先变形,再代入求值.四、师生互动,课堂小结请学生分组讨论,小组代表汇报,教师展示本节课学习的知识要点.1.布置作业:从教材相应练习和“习题21.3”中选取.本章复习【知识与技能】掌握本章重要知识,能熟练运用二次根式的有关运算法则进行运算.【过程与方法】通过梳理本章知识,回顾解决问题中所涉及的类比思想,分类讨论思想的过程,加深对本章知识的理解.【情感态度】在运用本章知识解决具体问题的过程中,进一步体会数学与生活的密切联系,增强数学应用意识,感受数学的应用价值,激发学生兴趣.【教学重点】回顾本章知识点,构建知识体系.【教学难点】利用二次根式的有关运算法则、性质解决实际问题.一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,展示本章知识结构框图,使学生系统地了解本章知识及它们之间的关系,边回顾边建立结构图.二、释疑解感,加深理解1.二次根式的意义:形如a(a≥0)的式子叫做二次根式,注意二次根式有意义的条件是被开方数a≥0,a表示a的算术平方根,它具有双重非负性,即a ≥0(a ≥0).2.二次根式的性质:主要要理解公式的应用.①)(2a =a (a ≥0),3.二次根式的化简与运算:(1)掌握的应用.(2)掌握二次根式的乘法运算:ab b a =•(a ≥0,b ≥0). (3)掌握积的算术平方根的运算b a ab •=(a ≥0,b ≥0). (4)掌握二次根式的除法运算:b a b a =(a ≥0,b >0),反过来bab a =(a ≥0,b >0).(5)掌握二次根式的加减法运算:先化成最简二次根式再进行合并,在二次根式的运算过程中,多项式乘法法则和乘法公式仍然适用,最后结果一定要化成最简二次根式.三、典例精析,复习新知 例1 若21-+x x 在实数范围内有意义,则x 的取值范围是 . 【分析】1+x 有意义的条件为x+1≥0,同时注意分母x-2≠0这一条件,所以x 的取值范围为x ≥-1且x ≠2.例2若5-a +(b+2)2=0,则a+b 的值为 .四、复习训练,巩固提高五、师生互动,课堂小结本堂课你能完整地回顾本章所学的有关二次根式的知识吗?能熟练进行二次根式的有关运算吗?你还有哪些困惑与疑问?1.布置作业:从教材本章“复习题”中选取.本节课通过学习归纳本章内容,以二次根式的概念及其有意义的条件、二次根式的性质及应用、二次根式的化简与运算等知识点为支撑,力求以点带面,查漏补缺,,加强对重点知识的训练,使学生在全面掌握知识点的前提下抓住重点.。
21.2二次根式的乘法教学内容:21.2二次根式的乘法教学目标:1、 理解二次根式的乘法法则,会用二次根式的乘法法则进行二次根式的乘法运算;2、 理解积的算术平方根的法则,会用积的算术平方根的法则化简二次根式;3、 经过探索和发现的过程,培养学生创新能力。
教学重点:二次根式的乘法法则;教学难点:积的算术平方根法则;教学方法:探究学习教学准备:课件教学过程:一、复习与练习1、当x 为何值时,代数式xx 3652-+有意义。
2、已知y=633+-+-x x ,求的值. 3、若011=-++a a ,求20162016b a +的值.4、计算:22)7()53(--二、探究学习(一)二次根式的乘法1、 计算:(1)=⨯94 ;=36 ; (2)=⨯254 ; =100 ;(3)=⨯941 ; =49 ; (4)=⨯64149 ; =6449 ; (5)=⨯8101.0 ;=81.0 ; x y2、探索与发现(1)=⨯9436 (2)=⨯254100(3)=⨯94149 (4)=⨯641496449 (5)=⨯8101.081.0 3、总结规律(1)符号表述:)0,0(,≥≥=⨯b a ab b a(2)文字表述:二次根式乘法法则:二次根式相乘,把它们的被开方数相乘。
4、应用例1、计算:(1)812⨯ (2)4551⨯ 练习:课后练习第1题(二)积的算术平方根1、积的算术平方根的法则:(1)符号表述:)0,0(,≥≥⨯=b a b a ab(2)文字表述:积的算术平方根,等于每个因式的算术平方根的积。
2、积的算术平方根的应用例2、化简(1)12 (2)18解:(1)12=32323434=⨯=⨯=⨯ (2)18=23232929=⨯=⨯=⨯练习:课后练习第2题。
三、小结1、学生小结2、教师小结本节课学习了二次根式的乘法和积的算术平方根,重点是运用法则进行计算和化简。
四、作业设计习题21.2第1、2题。
人教版九年级上册数学教案第二^一章二次根式一、教材分析本章是在第13章的基础上,进一步研究二次根式的概念和运算。
在本章中, 学生将学习二次根式的概念、性质、运算法则和化简的方法,通过对二次根式的概念和性质的学习,学生将对实数的概念有更深刻的认识,通过对二次根式的加、减、乘、除运算的学习,学生将对实数的简单四则运算有进一步的了解。
学习本章的关键是理解二次根式的概念和性质,它们是学习二次根式的化简与运算的依据,重点是二次根式的化简和运算,难点是正确理解二次根式的性质和运算法则的合理性。
本章内容分为三节,第一节主要学习二次根式的概念和性质,本节既是第10章相关内容的发展,同时又是后面两节内容的基础,因此本节起承上启下的作用;第二节是二次根式的乘除运算,主要研究二次根式的乘除运算法则和二次根式的化简;第三节是二次根式的加减,主要研究二次根式的加减运算法则和进一步完善二次根式的化简。
在第21.1节“二次根式”中,教科书首先给出四个实际问题,要求学生利用已学的平方根和算术平方根的知写出这四个问题的答案,并分析所得答案的表达式的共同特点引出二次根式的概念。
在二次根式的概念中,重要的一点是理解被开方数是非负数的要求,教科书结合例题对此进行了较详细的分析。
接下去,教科书依次探讨了关于二次根式的结论:T"是一个非负数、-二二-匚、■「」•:;© M::。
对于“- -1是非负数”,教科书是利用算术平方根的概念得到的;对于• 1 ='''',教科书则采用由特殊到一般的方法归纳得出的。
在研究这个结论时,教科书首先设置“探究”栏目,要求学生利用算术平方根的概念进行几个具体的计算,并对运算过程和运算结果进行进一步的分析,最后归纳给出这条结论;对于结论’:匕亠二“—,教科书同样采用了让学生通过具体计算,分析运算过程和运算结果,最后归纳得出一般结论的方法进行研究。
第一节的内容是学习后两节内容的直接基础。