2020年通用版小升初数学总复习同步拓展-第三讲.转化单位“1”(不含答案)全国通用
- 格式:docx
- 大小:22.91 KB
- 文档页数:6
2020年小升初数学专题复习训练—拓展与提高计算(1)知识点复习一.加减法中的巧算【知识点归纳】1、加法交换律:两个数相加交换两个加数的位置,和不变.形如:a+b=b+a2、加法结合律:三个数相加,先把前面两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变.形如:(a+b)+c=a+(b+c)3、减法的运算性质:在减法中,被减数减去若干个减数,可以减去这些减数的和,差不变.形如:a-b-c=a-(b+c)4、以上运算定律、性质同样适用于多个加数或减数的计算中5、添去括号原则:在加减法运算中,如果给加号后面的算式添上或去掉括号,原运算符号不变;如果给减号后面的算式添上或去掉括号,其添上或去掉括号部分的运算符号要改变.即“+”变“-”,“-”变“+”【命题方向】例1:1000+999-998-997+996+…+104+103-102-101=()A、225B、900C、1000D、4000分析:将算式四个分为一组,然后找一下共有几组这样的数,然后根据规律解答.解:1000+999-998-997+996+…+104+103-102-101,=(1000+999-998-997)+(996+995-994-993)+…+(104+103-102-101),=4×225,=900.故选:B.点评:此题也可这样理解:此算式除了1000和后三项103-102-101,其它每四个数字为一组,结果为0,因此此算式的结果为1000+103-102-101=1000+(103-102)-101=1000+1-101=900.例2:899999+89999+8999+899+89分析:四个加数都加1减1,化成整百、整千、整万、…的数,然后再计算;解:①899999+89999+8999+899+89,=(900000-1)+(90000-1)+(9000-1)+(900-1)+(90-1),=999990-5,=999985;点评:考查了简便运算,灵活运用所学的运算律简便计算.【解题方法点拨】加减法的巧算方法有以下几种:1、几个数相加,利用加法的交换律和结合律,将加数中能凑成整十、整百、整千等的一些加数交换左右顺序,先进行结合,然后再与其他的一些加数相加,得出结果.2、在加减法混合算式与连减算式中.运用“减法的运算性质”进行简算,在简算过程中一定要注意,“+”号和“-”号的使用.3、几个相近的数相加,可以选择其中一个数,最好是整十、整百的数为“基准数”,再把大于基准数的数写成基准数与一个数的和,小于基准数的数,写成基准数与一个数的差,将加法改为乘法计算.4、几个数相加减时,如不能直接“凑整”,我们可以利用加整减零,减整加零变更被减数用减数来间接“凑整”.二.乘除法中的巧算【知识点归纳】1.乘法中常用的几个重要式子2×5=10;4×25=100;8×125=1000;4×75=300;4×125=500;2.乘法的几个重要法则(1)去括号和添括号原则在只有乘除运算的算式里,如果括号的前面是“÷”,那么不论是去掉括号或添上括号,括号里面运算符号都要改变,即“×”号变“÷”,“÷”变“×”;如果括号的前面是“×”,那么不论是去掉括号或添上括号,括号里面运算符号都不改变.(2)带符号“搬家”在只有乘除运算的算式里,每个数前面的运算符号是这个数的符号.不论数移动到哪个位置,它前面的运算符号不变.(3)乘法交换律a×b=b×a(4)乘法结合律a×(b×c)=(a×b)×c(5)乘法分配律a×(b+c)=a×b+a×c;a×(b-c)=a×b-a×c(6)逆用乘法分配律a×b+a×c=a×(b+c);a×b-a×c=a×(b-c)3.除法的几个重要法则(1)商不变性质被除数和除数乘以(或除以)同一个非零的数,商不变,即a÷b=(a×n)÷(b×n)(n≠0)a÷b=(a÷m)÷(b÷m)(m≠0)(2)当n个数都除以同一个数后再加减时,可以将它们先加减之后再除以这个数;反之也成立(也可称为除法分配律).如:(a±b)÷c=a÷c±b÷c;a÷c±b÷c=(a±b)÷c.【命题方向】分析:通过观察,把扩内的除法变为分数,再把除法变为乘法,约分计算较简便.=50故答案为:50.点评:仔细观察算式特点,通过转化的数学思想,使复杂的问题简单化.例2:2006×2007200720072007-2007×2006200620062006=0.分析:分析:此算式较长,如果按常规来做,计算量很大,极易出错,因此要寻找简便的算法.把2007200720072007改写成2007×1000100010001,把2006200620062006改写成2007×2006×1000100010001,很容易看出减号前后的算式相同,于是得数为0.解:2006×2007200720072007-2007×2006200620062006,=2006×2007×1000100010001-2007×2006×1000100010001,=0;故答案为:0.点评:此题构思巧妙,新颖别致.要仔细观察,抓住特点,运用所学知识进行数字转化,巧妙解答.【解题方法点拨】1、在除法中,利用商不变的性质巧算,商不变的性质是:被除数和除数同时乘以或除以相同的数(零除外),商不变,利用这个性质巧算,使除数变为整十、整百、整千,再除.2、在乘除混合运算中,乘数和除数都可以带符号“搬家”.3、当n个数都除以同一个数后再加减后,可以将它们先加减之后再除以这个数.4、在乘除混合运算中“去括号”或添“括号”的方法:括号前面是乘号,去掉括号不变号乘号后面添括号,括号里面不变号括号前面是除号,去掉括号要变号除号后面添括号,括号里面要变号注:号指数字前面的运算符号.三.小数的巧算【知识点归纳】知识点:(1)灵活运用小数点的移位:两数相乘,两数中的小数点反向移动相同的位数,其积不变;两数相除,两数中的小数点同向移动相同的位数,其商不变.(2)补数:如果两数的和恰好能凑成10,100,1000,…,那么,就把其中一个数叫做另一个数的补数,且这两个数互为补数.例如:8和2互为补数,27.3和72.7互为补数.(3)某些特殊小数相乘化整,8×0.125=1;4×0.25=1;【命题方向】分析:利用加法交换律和减法的性质进行简算,把原式变为(796.75-96.75)-(4.72+5.28),计算即可.解:796.75-4.72-96.75-5.28,=(796.75-96.75)-(4.72+5.28),=700-10,=690.点评:关于巧算的题目,数字都有一定的特点,所以要注意审题,从数字特点出发,巧妙灵活地应用运算性质、定律得以简算.例2:计算:0.125×0.25×0.5×64=1.分析:根据算式,因0.125、0.25、0.5分别和8、4、2相乘可以得到整十数,所以可把64改写成8×4×2,然后在依据乘法交换律交换因数的位置,然后在进行计算即可得到答案.解:0.125×0.25×0.5×64=0.125×0.25×0.5×(8×4×2),=(0.125×8)(0.25×4)×(0.5×2),=1×1×1,=1.故答案为:1.点评:解答此题的关键是将64改写成8×4×2,然后在依据乘法交换律交换因数的位置,进行计算即可得到答案.【解题方法点拨】小数“巧”算的基本途径还是灵活应用小数四则运算的法则、运算定律,使题目中的数尽可能转化为整数.在某种意义上讲,“化整”是小数运算技巧的灵魂.常见方法(技巧):(1)交换、结合、分配等运算律;(2)加括号或去括号;(3)凑整;(4)找基准数;(5)拆数、(6)分组、(7)等差数列公式,平方差公式等方法.四.分数的巧算【知识点归纳】分数运算符合的定律.(1)乘法交换律a×b=b×a(2)乘法结合律a×(b×c)=(a×b)×c(3)乘法分配律a×(b+c)=a×b+a×c;a×(b-c)=a×b-a×c(4)逆用乘法分配律a×b+a×c=a×(b+c);a×b-a×c=a×(b-c)(5)互为倒数的两个数乘积为1.除法的几个重要法则(1)商不变性质被除数和除数乘以(或除以)同一个非零的数,商不变,即a÷b=(a×n)÷(b×n)(n≠0)a÷b=(a÷m)÷(b÷m)(m≠0)(2)当n个数都除以同一个数后再加减时,可以将它们先加减之后再除以这个数;反之也成立(也可称为除法分配律).如:(a±b)÷c=a÷c±b÷c;a÷c±b÷c=(a±b)÷c.【命题方向】分析:此题如果按部就班地进行计算,计算量可想而知,所以要寻求巧算的方法,此题可利用乘法结合律数化假分数、带分数拆分等方法达到巧算的目的.1、把同分母的分数凑成整数.a.先去括号;b.利用交换律把同分母分数凑在一起;c.利用减法性质把同分母分数凑在一起.2、分数乘法中,利用乘法交换律,交换数的位置,以达到约分的目的;利用乘法结合律,以达到约分的目的,从而简算.3、分数混合运算中有除法,先将除法转化为乘法,然后再利用乘法的分配律的方法来计算以达到凑整的目的.4、懂得拆分.五.四则混合运算中的巧算【知识点归纳】1.运用运算定律.2.商不变的性质:两个数相除,被除数和除数同时扩大(或缩小相同的倍数)商不变.利用这个性质也可以进行一些简便计算.3.从一个数里连续减去几个数,可以先把所有的减数加在一起,再一次减去.4.加数(减数)接近整十、整百、整千、…的可以把这个加数(减数)先看作整十、整百、整千的数进行计算,然后按照“多加要减,少加要加,多减要加,少减要减”的原则进行调整.【命题方向】例1:99999×77778+33333×66666=9999900000.分析:根据算式可将666666改写成3×22222,然后用乘法结合律计算3×33333等于99999,再利用乘法分配律进行计算即可得到答案.解:99999×77778+33333×66666,=99999×77778+33333×(3×22222),=99999×77778+(33333×3)×22222,=99999×77778+99999×22222,=99999×(77778+22222),=99999×100000,=9999900000;故答案为:9999900000.点评:此题主要考查的是乘法结合律和乘法分配律再整数计算中的运算.例2:已知从12+22+…+102=385,那么1×2+2×3+…+10×11=440.分析:先把1×2+2×3+…+10×11进行拆项,变为1×(1+1)+2×(2+1)+3×(3+1)+4×(4+1)+…+10×(10+1),然后把从12+22+…+102=385代入,计算即可.解:1×2+2×3+…+10×11=1×(1+1)+2×(2+1)+3×(3+1)+4×(4+1)+…+10×(10+1)=(12+22+...+102)+(1+2+3+ (10)=385+(1+10)×5=440故答案为:440.点评:把1×2+2×3+…+10×11转化为1×(1+1)+2×(2+1)+3×(3+1)+4×(4+1)+…+10×(10+1),是解答此题的关键.【解题方法点拨】在加减混合运算中,常常利用改变运算顺序进行巧算,其中利用两数互补关系进行凑整巧算、借数凑数巧算、选择合适的数作为基数巧算等,还可以利用加法的交换律和结合律进行巧算.在乘除法的速算与巧算,一条最基本的原则就是“凑整”,要达到“凑整”的目的,就要对一些数分解、变形,再运用乘法的交换律、结合律、分配律以及四则运算中的一些规则,把某数组合到一起,使复杂的计算过程简单化.同步测试一.选择题(共10小题)1.已知a=4322×1233,b=4321×1234;下列结论正确的是()A.a<b B.a=b C.a>b2.++++++…的结果()A.等于1B.小于1C.大于13.算式2007×20082008﹣2008×20072007的正确结果()A.2007B.2008C.1007D.04.9999×1222﹣3333×666的值是多少.()A.9990000B.99990000C.9999900D.99990005.利用排除法,的计算结果应是下面的()A.B.C.D.6.算式82+86+90+94+……+150+154+158的计算结果是()A.4800B.4720C.4560D.24007.与1+3+5+7+9+5+3+1表示相同结果的算式是()A.5+3B.42C.52+32D.52﹣328.已知A=0.96,B=0.3,则A÷B=()A.0.032B.0.32C.3.2D.329.计算:1.1+2.2+3.3+4.4+5.5+6.6+7.7+8.8+9.9=()A.47.5B.48.5C.49.510.×=()A.1B.4C.2017D.8068二.填空题(共8小题)11.552+553+554+555+556+557+558=555×=.12.在1×2×3×4×5×…×99×100的积中,从右边数第20个数字是.13.++++……=;1+3+5+…+21=.14.(1﹣)×(1﹣)×(1﹣)×(1﹣)×(1﹣)×(1﹣)×(1﹣)×(1﹣)=15.根据运算定律,在横线里填入合适的数,使等式成立.67.5×+×1.8=67.5×1016.=.17.计算=.18.计算这组相邻奇数的和,1+3+5+7+9+ (21)三.判断题(共5小题)19.0+1+2+3+4+5+6+7+8+9=0(判断对错)20.÷=4036.(判断对错)21.约分后等于..(判断对错)22.56×99+43×99+99的简便算法是(56+43)×99.(判断对错)23.2.3×0.9÷2.3×0.9=1..(判断对错)四.计算题(共1小题)24.计算.(1)9(2)[22.5+(3+1.8﹣1.21×)]÷40%(3)(4)五.解答题(共6小题)25.数20082008×2009与数20092009×2008相差多少?为什么?26.填上合适的数.(1)101+102+103+104+105+106+107=×=.(2)是2个27.A=301 B=5求A+B,B﹣A,A×B的值.28.“数形结合”是一种数学思想方法,通过数与形之间的对应关系,体现抽象思维与形象思维的结合.下面的图形表示不同的算理,请你把图形与对应的算式用线连起来.29.和13+23+33+…+20033+20043的个位数是多少?30.你能很快说出下面两个算式哪个得数大吗?1+2+3+4+5+6+7+8+9+01×2×3×4×5×6×7×8×9×0参考答案与试题解析一.选择题(共10小题)1.【分析】分别把4322变成(4321+1),1234变成(1233+1),再根据乘法分配律,进行运算,据此解答.【解答】解:a=4322×1233=(4321+1)×1233=4321×1233+1233b=4321×1234=4321×(1233+1)=4321×1233+43214321×1233+1233<4321×1233+4321,故选:A.【点评】本题考查了学生灵活运用乘法分配律的能力.2.【分析】根据极限思想,通过观察发现,前一个分数是后一个分数的2倍,可把每个分数拆分为两个分数相减的形式,通过加减相互抵消,求得结果.【解答】解:++++++…=1﹣+﹣+﹣+﹣+﹣+﹣+…=1﹣+…=1.故选:A.【点评】根据分数特点,通过合理拆分,进行简算.3.【分析】此题数字较大,若按常规来做,计算量较大,并容易出错,所以仔细观察,并经过试探,把原式变为2007×(2008×10001)﹣2008×(2007×10001),这样计算比较简便.【解答】解:2007×20082008﹣2008×20072007,=2007×(2008×10001)﹣2008×(2007×10001),=2007×2008×10001﹣2007×2008×10001,=0.故选:D.【点评】此题构思巧妙,新颖别致.要仔细观察,抓住数字特点,进行巧妙解答.4.【分析】根据数字特点,把原式变为3333×3×1222﹣3333×666,运用乘法分配律简算.【解答】解:9999×1222﹣3333×666,=3333×3×1222﹣3333×666,=3333×(3×1222﹣666),=3333×3000,=9999000.故选:D.【点评】仔细审题,根据数字特点,进行数字转化,运用所学定律灵活解答.5.【分析】分母:7×9=63,个位为3,所以B选项可以直接排除;另外,两个分数都是真分数,所以,积也应该是真分数,所以,C、D选项错误;所以本题应该选A.【解答】解:根据两个分数的特点:两个真分数相乘的积一定是真分数,所以选项B、C、D都是错误的.本题应该选A.故选:A.【点评】本题主要考查分数的巧算,关键根据真分数相乘的积的规律来做题.6.【分析】根据题意,应用凑整法即82+158=86+154+…即共有10项的和是240,进而解决问题.【解答】解:82+86+90+94+…+150+154+158=(82+158)×[(158﹣82)÷(86﹣82)+1]÷2=240×[76÷4+1]÷2=240×[19+1]÷2=240×20÷2=4800÷2=2400故选:D.【点评】解决此题的关键是求出首尾相加和相等的式子的个数.7.【分析】根据高斯求和公式得到1+3+5+7+9+5+3+1的结果,再分别计算各个选项中算式的结果,依此即可求解.【解答】解:1+3+5+7+9+5+3+1=(1+9)×5÷2+(5+1)×3÷2=25+9=345+3=842=1652+32=25+9=3452﹣32=25﹣9=16故与1+3+5+7+9+5+3+1表示相同结果的算式是选项C.故选:C.【点评】考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算定律简便计算.8.【分析】在除法里,被除数和除数同时扩大或缩小相同的倍数(0除外),商不变,所以把A、B的小数点同时向右移动2016位,求出A÷B的值是多少即可.【解答】解:A÷B=0.96÷0.3=96÷300=0.32故选:B.【点评】此题主要考查了乘除法中的巧算问题,要熟练掌握,注意商不变的性质的应用.9.【分析】因为每一项都含有1.1,因此原式变为(1+2+3+4+5+6+7+8+9)×1.1,括号内运用分组的方法,或用高斯求和公式求出结果,原式变为45×1.1,进一步计算即可.【解答】解:1.1+2.2+3.3+4.4+5.5+6.6+7.7+8.8+9.9=(1+2+3+4+5+6+7+8+9)×1.1=[(1+9)+(2+8)+(3+7)+(4+6)+5]×1.1=(10+10+10+10+5)×1.1=45×1.1=49.5故选:C.【点评】仔细观察题目中数字构成的特点和规律,运用运算定律或运算技巧,进行简便计算.10.【分析】用2017个0.25乘2017个4得2017个1相乘,2017个1相乘,积等于1,再用1乘一个4即可解答.【解答】解:×=×4=×4=1×4=4故选:B.【点评】关于巧算的题目,数字都有一定的特点,所以要注意审题,从数字特点出发,巧妙灵活地应用运算性质、定律得以简算.二.填空题(共8小题)11.【分析】根据552+558=553+557=554+556=1110=555×2,可得552+553+554+555+556+557+558的和相当于7个555的和,所以552+553+554+555+556+557+558=555×7=3885,据此解答即可.【解答】解:552+553+554+555+556+557+558=555×7=3885.故答案为:7、3885.【点评】此题主要考查了四则混合运算中的巧算问题,要熟练掌握,解答此题的关键是判断出552+558=553+557=554+556=1110=555×2.12.【分析】要知道,这个乘积的结果最后是许多0,只须计算有多少个0,这个问题也就解决了.在1﹣﹣100中,能被5整除的有100÷5=20(个),能被25整除的有100÷25=4(个),而能被2整除的至少有100÷2=50(个),一个2与一个5相乘,结果就会在后面多一个0,所以1×2×3×…×99×100 的最后有20+4=24个0,那么从右边数第20个数字肯定是0.【解答】解:在1﹣﹣100中,能被5整除的有100÷5=20(个),能被25整除的有100÷25=4(个),而能被2整除的至少有100÷2=50(个),一个2与一个5相乘,结果就会在后面多一个0,所以1×2×3×…×99×100 的最后有20+4=24个0,那么从右边数第20个数字肯定是0.故答案为:0.【点评】此题解答的但关键是推出这个乘积的结果最后有多少个0.13.【分析】(1)根据分数的拆项公式进行简算;(2)首项判断出1、3、5、7、…、17、19、21构成了以1为首项,以2为公差的等差数列,项数为11;然后根据等差数列的前n项和=(首项+末项)×项数÷2,用1加上21,求出首项和末项的和是多少,再用所得的和乘以项数,再除以2,求出算式1+3+5+…+21的值是多少即可.【解答】解:(1)++++……=……=2×(+……)=2×(+﹣+……)=2×=1(2)1+3+5+…+21=(1+21)×()÷2=22×11÷2=121.故答案为:1;121.【点评】此题主要考查了分数的拆项公式和等差数列的求和方法,要熟练掌握,解答此题的关键是要明确:等差数列的前n项和=(首项+末项)×项数÷2.14.【分析】根据题意,先计算括号内的减法,再约分最后算出乘积即可.【解答】解:(1﹣)×(1﹣)×(1﹣)×(1﹣)×(1﹣)×(1﹣)×(1﹣)×(1﹣)=××××=故答案为:.【点评】解决此题的关键是先计算括号内的减法,再约分,最后算出乘积.15.【分析】乘法分配律的概念为:两个数的和乘另一个数,等于把这个数分别同两个加数相乘,再把两个积相加,得数不变,用字母表示:(a+b)c=ac+bc.【解答】解:因为10﹣1.8=8.2所以,67.5×8.2+67.5×1.8=67.5×10故答案为:8.2;67.5.【点评】本题利用具体的算式考查了学生对于乘法分配律的理解.16.【分析】根据运算顺序,先算小括号内的乘法和除法,再算加法,最后算外面的除法.【解答】解:=(×+)÷=×=4故答案为:4.【点评】计算四则混合运算时,要注意按照运算顺序计算;不要错用运算定律.17.【分析】根据商不变的规律,把中的被除数和除数的小数点同时向右移动2020位,则原来算式变成2.012÷4,2.012÷4=0.503,所以原来算式的得数也是0.503.【解答】解:=2.012÷4=0.503故答案为:0.503.【点评】本题考查了商不变的规律,被除数和除数同时扩大或缩小相同的倍数(0除外),商不变.18.【分析】根据等差数列求和公式S=(首项+尾项)×个数÷2,代入数据计算即可求解.【解答】解:1+3+5+7+9+……+21=(1+21)×11÷2=121故答案为:121.【点评】考查了加减法中的巧算,关键是熟练掌握等差数列的求和公式.三.判断题(共5小题)19.【分析】根据高斯公式计算即可求解.【解答】解:0+1+2+3+4+5+6+7+8+9=(0+9)×5=9×5=45.故答案为:×.【点评】考查了整数的加法,注意灵活运用运算定律简便计算.20.【分析】根据题意可知,将被除数和除数的小数点同时向右移动8位,变成整数除法再计算.【解答】解:÷═2.018÷5=0.4036原题计算错误.故答案为:×.【点评】本题考查了利用商不变规律进行计算的方法,注意被除数和除数要同时乘或除以相同的数(0除外),商才不变.21.【分析】根据乘法的分配律把分数的分子和分母变形,然后约分化成最简分数,看得数是否等于即可判断.【解答】解:===所以,所以原题说法正确.故答案为:√.【点评】本题关键是根据乘法的分配律把分数的分子和分母变形.22.【分析】56×99+43×99+99把最后一个99分解成99×1,再根据乘法分配律简算,由此判断.【解答】解:56×99+43×99+99=(56+43+1)×99=100×99=9900(56+43+1)×99≠(56+43)×99原题计算错误.故答案为:×.【点评】乘法分配律是最常用的简便运算的方法,要熟练掌握,灵活运用.23.【分析】根据乘法的交换律简算,然后按从左到右的运算顺序解答即可.【解答】解:2.3×0.9÷2.3×0.9=2.3÷2.3×0.9×0.9=1×0.9×0.9=0.81≠1故答案为:×.【点评】此题考查了学生对小数四则混合运算题的计算能力,以及灵活巧算的能力.四.计算题(共1小题)24.【分析】(1)根据乘法分配律进行简算;(2)把分数化成小数,根据四则混合运算的运算顺序计算即可:先算乘除,再算加减,有括号的要先算括号里面的,同级运算按从左到右的顺序计算.(3)利用乘法分配律对进行变形,化为+×(×+),然后按照四则混合运算的运算顺序计算即可.(4)把分子和分母分别进行计算化简求解.【解答】解:(1)9×4.75+4×=4×(9+)=4×10=47(2)[22.5+(3+1.8﹣1.21×)]÷40%=[22.5+(3.6+1.8﹣0.55)]÷0.4=[22.5+4.85]÷0.4=27.35÷0.4=68.375(3)×+×+×3=+×(×+)=+×=+==(4)===2【点评】考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算定律进行简便计算.五.解答题(共6小题)25.【分析】根据题意,利用拆分思想,20082008×2009=2008×10001×2009;20092009×2008=2009×10001×2008,所以:20082008×2009﹣20092009×2008=2008×10001×2009﹣2008×10001×2009=0.【解答】解:20082008×2009=2008×10001×2009;20092009×2008=2009×10001×2008;所以:20082008×2009﹣20092009×2008=0答:数20082008×2009与数20092009×2008相差0.【点评】本题主要考查乘除法中的巧算,关键利用拆分思想解题.26.【分析】根据题意:(1)101+102+103+104+105+106+107,可以将101+107看作104×2,102+106=104×2,103+105=104×2,即一共有7个104,即104×7,进而完成填空.(2)阴影部分的面积可以用分数表示为:,即有两个,进而完成填空即可.【解答】解:(1)101+102+103+104+105+106+107=104×7=728.(2)是2个.故答案为:104,7,728;,.【点评】此题重点考查分数的应用以及分数单位的应用.27.【分析】根据A=301 B=5,可得:A、B分别是十位小数、八位小数,据此分别求出A+B,B﹣A,A×B的值是多少即可.【解答】解:因为A=301 B=5,所以A+B=301+5=801B﹣A=5﹣301=199A×B=301×5=1505【点评】此题主要考查了小数的巧算,要熟练掌握,解答此题的关键是注意小数的位数.28.【分析】根据图形表示不同的算理,可知第1个图形是后面的数是前面数的,再把它们相加;第2个图形是后面的数是前面数的,再把它们相加;第3个图形是后面的数是前面数的,再把它们相加;根据图形由分数的意义可得和,再把图形与对应的算式用线连起来即可求解.【解答】解:根据分析连线如下:【点评】考查了分数巧算,本题关键是熟练掌握“数形结合”的数学思想方法.29.【分析】从1开始的自然数的立方和公式:[n(n+1)÷2]2,由此公式求得原式=20291052,很容易看出个位数是5.据此解答.【解答】解:13+23+33+…+20033+20043=[2014×(2014+1)÷2]2=[1007×2015]2=20291052因此,个位数字为5.【点评】此题解答的关键在于运用公式:[n(n+1)÷2]2,表示出原式的和,进而解决问题.30.【分析】根据0 在四则运算中的特性,任何数加0还等于原数,0乘任何数都得0.由此得:1+2+3+4+5+6+7+8+9+0=45;1×2×3×4×5×6×7×8×9×0=0;据此解答.【解答】解:因为,1+2+3+4+5+6+7+8+9+0=45;1×2×3×4×5×6×7×8×9×0=0;所以,1+2+3+4+5+6+7+8+9+0比1×2×3×4×5×6×7×8×9×0的得数大.【点评】此题考查的目的是理解掌握0 在四则运算中的特性及应用.。
专题——转化单位一温故知新:1、同学们参观天文馆,六年级去了154人,五年级去的人数是六年级的1110,四年级去的人数是五年级的54。
四年级去了多少人?2、某水果店上午卖出15千克香蕉,下午卖出的香蕉比上午的多51。
该水果店下午卖出多少千克香蕉?3、丽丽收集了80张邮票,欢欢收集的邮票张数比丽丽的少81。
欢欢比丽丽少收集了多少张邮票?4、妈妈种了45盆兰花,种的兰花的盆数相当于茉莉花的53。
妈妈种了多少盆茉莉花?5、育才小学五(1)班男生有36人,男生人数比女生人数多51。
育才小学五(1)班女生有多少人?6、学校举行跳绳比赛,参加比赛的一共有70人,其中男生人数是女生人数的95。
参加比赛的男生和女生分别有多少人?新授课:例题1:晶晶三天看完一本书,第一天看了全书的41,第二天看了余下的52,第二天比第一天多看了15页,这本书共有多少页?举一反三:1、有一批货物,第一天运了这批货物的41,第二天运的是第一天的53,还剩下90吨没有运。
这批货物有多少吨?2、修路队在一条公路上施工。
第一天修了这条公路的41,第二天修了余下的32,已知这两天共修路1200米,这条公路全长多少米?3、加工一批零件,甲先加工了这批零件的52,接着乙加工了余下的94。
已知乙加工的个数比甲少200个。
这批零件共有多少个?例题2:两筐苹果一共140个,甲筐苹果个数的83等于乙筐苹果个数的21。
甲、乙两筐各有多少个苹果?举一反三:1、六(4)班共有学生58人,已知女生人数的74等于男生人数的158。
六(4)班男、女生各有多少人?2、甲、乙两个仓库共存粮840吨,已知甲仓库存粮的41等于乙仓库的31。
甲、乙两个仓库各存粮多少吨?3、有两袋大米,第二袋比第一袋重6千克,已知第一袋大米质量的31等于第二袋的72,两袋大米各重多少千克?巩固练习:1、某班共有学生51人,男生人数的43等于女生人数的32。
这个班男、女生各有多少人?2、图书馆买来科技书和文艺书共340本,文艺书本数的31等于科技书本数的54。
拔高奥数之转化单位转化单位“1”(一)一、知识要点:我们必须重视转化训练。
通过转化训练,既可理解数量关系的实质,又可拓展我们的解题思路,提高我们的思维能力。
二、精讲精练:【例题1】甲数是乙数的2/3,乙数是丙数的3/4,甲、乙、丙的和是216,甲、乙、丙各是多少?解法一:把丙数看所单位“1”那么甲数就是丙数的3/4×2/3=1/2,丙:216÷(1+3/4+3/4×2/3)=96 乙:96×3/4=72 甲:72×2/3=48解法二:可将“乙数是丙数的3/4”转化成“丙数是乙数的4/3”,把乙数看作单位“1”。
乙:216÷(2/3+1+4/3)=72 甲:72×2/3=48丙:72÷3/4=96解法三:将条件“甲数是乙数的2/3”转化为“乙数是甲数的3/2”,再将条件“乙数是丙数的3/4”转化为“丙数是乙数的4/3”,以甲数为单位“1”。
甲:216÷(1+3/2+3/2×4/3)=48乙:48×3/2=72丙:72×4/3=96答:甲数是48,乙数是72,丙数是96。
【练习1】下面各题怎样计算简便就怎样计算:1、甲数是乙数的5/6,乙数是丙数的3/4,甲、乙、丙三个数的和是152,甲、乙、丙三个数各是多少?2、橘子的千克数是苹果的2/3,香蕉的千克数是橘子的1/2,香蕉和苹果共有220千克,橘子有多少千克?3、某中学的初中部三个年级中,初一的学生数是初二学生数的9/10,初二的学生数是初三学生数的1又1/4倍,这个学校里初三的学生数占初中部学生数的几分之几?【答案】:1、甲数是40,乙数是48,丙数是64。
2、解:设橘子有x千克。
1/2x+3/2x=2202x=220x=110答:橘子有110千克。
3、8/27【例题2】红、黄、蓝气球共有62只,其中红气球的3/5等于黄气球的2/3,蓝气球有24只,红气球和黄气球各有多少只?解法一:将条件“红气球的3/5等于黄气球的2/3”转化为“黄气球的只数是红气球的(3/5÷2/3)=9/10”。
2020年小升初数学专题复习训练—拓展与提高数论(3)知识点复习一.约数个数与约数和定理【知识点归纳】约数个数与约数和定理设自然数n的质因子分解式如n=p1×p2×…×p k 那么:n的约数个数公式:d(n)=(a1+1)(a2+1)…(a k+1)n的所有约数和:f(n)=(p10+p11+p12+…p1a1)(p20+p21+p22+…p2a2)…(p k0+p k1+p k2+…p k a k)【命题方向】例1:105可以分解成105=3×5×7,它的约数共有()A、4个B、6个C、8个D、10个分析:根据求一个数约数的个数的计算方法:所有相同质因数的个数加1连乘的积就是这个数约数的个数,即(1+1)×(1+1)×(1+1)=8个,然后解答可得出答案.解:105=3×5×7,共有(1+1)×(1+1)×(1+1)=8(个)约数,答:它的约数共有8个.故选:C.点评:此题主要考查一个合数的约数个数的计算公式:a=pα×qβ×rγ(其中a为合数,p、q、r是质数),则a的约数共有(α+1)(β+1)(γ+1)个约数.例2:恰有20个因数的最小自然数是()A、120B、240C、360D、432分析:首先把20拆成几个数的乘积,利用求约数个数的方法,从最小的质因数2考虑,依次增大,找出问题的答案即可.解:20=20=2×10=4×5=2×2×5;四种情况下的最小自然数分别为:219、29×3、24×33、24×3×5,其中最小的是最后一个24×3×5=240.故选:B.点评:此题巧用求一个数约数的方法,从最小的质因数着手,分析不同的情形,得出结论.二.同余定理【知识点归纳】所谓的同余,顾名思义,就是许多的数被一个数d去除,有相同的余数.d数学上的称谓为模.如a=6,b=1,d=5,则我们说a和b是模d同余的.因为他们都有相同的余数1.【命题方向】例1:一个两位数,除以3余1,除以5余3,这个两位数最大是()A、78B、88C、98D、90分析:除以3余1,除以5余3,那么这个数不是3和5的倍数;由此用排除法求解.解:除以3余1,除以5余3,那么这个数不是3和5的倍数;A、7+8=15;15是3的倍数,所以78是3的倍数,故A错误;D、5的倍数的个位数都是0或5的整数,90的个位数字是0,那么是5的倍数,故D错误;BC、而这个数的末尾应是3或8;B和C都符合,只要再看哪个数除以3余1即可.88÷3=29…1;98÷3=32…2;88除以3余1,所以88符合要求.故选:B.点评:本题先根据余数的特点,找出这个数的可能性,再利用排除法进行求解.例2:有一整数,除300,262,205得到的余数相同,这个整数是19.分析:这个数除300、262,得到相同的余数,所以这个数整除300-262=38,同理,这个数整除262-205=57以及300-205=95,因此,求出38、57、95的最大公约数1即是所求结论.解:300-262=38,262-205=57,300-205=95.38,57,95的最大公约数是19.这个整数是19.故答案为:19.点评:此题考查了学生最大公约数的知识,以及整除的性质.同余式定律6的应用,我们知道一个数的各个位数之和如果能被3整除那么这个数也能被3整除,如12,因为1+2=3能被3整除,所以12也能被3整除.如果我们利用定律6,就可以找出任何一个数能被另一个数整除的表达式来.如我们用11来试试,11可以表示为10+1,所以有同余式:10≡-1 (mod 11)把上式两边都乘以各自,即:10×10≡(-1)(-1)=1 (mod 11)10×10×10≡(-1)(-1)(-1)=-1 (mod 11)10×10×10×10≡1 (mod 11)我们可以发现,任何一个(在十进制系统中表示的)整数如果它的数码交替到变号之和能被11整除,这个数就能被11整除,如1353这个数它的数码交替变号之和为:1+(-3)+5+(-3)=0,因为0能被11整除,所以1353也能被11整除.其他的数的找法也一样,都是两边都乘以各自的数,然后找出右边的数的循环数列即可.三.完全平方数性质【知识点归纳】1.完全平方数定义:完全平方即用一个整数乘以自己例如1×1,2×2,3×3等等,依此类推.若一个数能表示成某个自然数的平方的形式,则称这个数为完全平方数.2.性质:性质1:完全平方数的末位数只能是0,1,4,5,6,9.性质2:奇数的平方的个位数字为奇数,十位数字为偶数.性质3:如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数.性质4:偶数的平方是4的倍数;奇数的平方是4的倍数加1.性质5:奇数的平方是8n+1型;偶数的平方为8n或8n+4型.性质6:平方数的形式必为下列两种之一:3k,3k+1.性质7:不能被5整除的数的平方为5k±1型,能被5整除的数的平方为5k型.性质8:平方数的形式具有下列形式之一:16m,16m+1,16m+4,16m+9.性质9:完全平方数的数字之和只能是0,1,4,7,9.【命题方向】例1:一个整数a与1080的乘积是一个完全平方数.则a的最小值是()A、30B、20C、120D、60分析:一个整数a与1080的乘积是一个完全平方数,所以将1080×a的乘积分解质因数后,其质数的指数一定全为偶数,据此分析解答即可.解:因为1080×a是一个完全平方数,所以乘积分解质因数后,各质因数的指数一定全是偶数;而1080=23×33×5的质因数分解中各质因数的指数都是奇数,所以,a必含质因数2、3、5,因此a最小为2×3×5=30.故选:A.【知识点归纳】1.孙子定理的含义:也叫中国剩余定理.《孙子算经》中“物不知数”问题说:“今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”即被三除余二,被五除余三,被七除余二的最小整数.这个问题称作孙子问题,俗称韩信点兵.其正确解法叫做孙子剩余定理.2.中国剩余定理的结论:令任意固定整数为M,当M/A余a,M/B余b,M/C余c,M/D余d,…,M/Z余z时,这里的A,B,C,D,…,Z为除数,除数为任意自然数(如果为0,没有任何意义,如果为1,在孙子定理中没有计算和探讨的价值,所以,不包括0和1)时;余数a,b,c,d,z为自然整数时.1.当命题正确时,在这些除数的最小公倍数内有解,有唯一的解,每一个最小公倍数内都有唯一的解;当命题错误时,在整个自然数范围内都无解.2.当M在两个或两个以上的除数的最小公倍数内时,这两个或两个以上的除数和余数可以定位M在最小公倍数内的具体位置,也就是M的大小.3.正确的命题,指没有矛盾的命题:分别除以A,B,C,D,…,Z不同的余数组合个数=A,B,C,D,…,Z的最小公倍数=不同的余数组合的循环周期.【命题方向】例1:设ɑ是一个满足下列条件的最大的正整数:使得用ɑ除64的余数是4;用ɑ除155的余数是5;用ɑ除187的余数是7,则ɑ=()A、10B、15C、30D、60分析:根据题意可知,a一定能整除(64-4)、(155-5)、(187-7),即a一定是60、150、180的最大公因数,只要用短除法即可求出最大公因数.解:64-4=60155-5=150187-7=180所以60、150、180的最大公因数是:5×3×2=30因此,a=30.故选:C.点评:本题考查了孙子定理,由于本题是求的最大的“模”,所以可以简单地用求最大公因数的方法解答.例2:某小学的六年级有一百多名学生.若按三人一行排队,则多出一人;若按五人一行排队,则多出二人;若按七人一行排队,则多出一人.该年级的人数是127.分析:此题属于孙子定理,又叫同余定理,中国剩余定理,分组时,只要余数相同,求总数,就可以先求出分组时组员数目的最小公倍数,然后再加上余数;本题有两个余数,可分部求解.解:因为按3人和7人一行排队都多出1人,所以总人数应该是3和7的公倍数多1人,即22、43、64、85、106、127、148、169、190、211、…其中符合题意一百多名的只有106、127、148、169、190这五个数同理,又因为按5人一行排队多2人,所以总人数应该是5的倍数多2,所以总人数的最后一位数字应该是2或7最终符合题意的是127.答:该年级的人数是127.故答案为:127.点评:此题考查了孙子定理,根据已知条件,只要分组时余数相同,就求最小公倍数,然后加上余数,明白同余定理是解决此题的关键.五.辗转相除法【知识点归纳】1.什么是辗转相除法,又名欧几里德算法(Euclidean algorithm)乃求两个正整数之最大公因子的算法.2.原理:两个整数的最大公约数等于其中较小的数和两数的相除余数的最大公约数.3.举例子:有定理:已知a,b,c为正整数,若a除以b余c,则(a,b)=(b,c).(证明过程请参考其它资料)例:求 15750 与27216的最大公约数.解:∵27216=15750×1+11466∴(15750,27216)=(15750,11466)∵15750=11466×1+4284∴(15750,11466)=(11466,4284)∵11466=4284×2+2898∴(11466,4284)=(4284,2898)∵4284=2898×1+1386∴(4284,2898)=(2898,1386)∵2898=1386×2+126∴(2898,1386)=(1386,126)∵1386=126×11∴(1386,126)=126所以(15750,27216)=216.【命题方向】例1:从一张长2109毫米,宽627毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形,按照上面的过程,不断地重复,最后剪得的正方形的边长是57毫米.分析:因为2109=627×3+228(也就是第1~3次剪下的正方形的边长为627毫米); 627=228×2+171; 228=171×1+57;171=57×3.由以上算式可以看出,这种方法就是用大数除以小数,再用上次运算中的除数除以余数,如此反复除,直到余数为零.最后一个除数就是两数的最大公约数.这是因为:两个数的最大公约数,同时是两个数的约数,也就是余数的约数.拿此题来讲,2109和627的公约数,也就是627和228的公约数.由于171是57的倍数,所以它们的最大公约数就是57,即2109与627的最大公约数.解:2109=627×3+228;627=228×2+171;228=171×1+57;171=57×3.故答案为:57.点评:此题考查了求最大公约数的另一个办法--辗转相除法.例2:用辗转相减法求:1008,1260,882,1134这四个数的最大公因数.分析:用辗转相除法求出其中任意两个数的最大公因数,再求出这个公因数与另外两个数公因数的最大公因数;据此解答.解因为1008=252×4,1260=252×5,所以:(1008,1260)=252,又因为882=126×7,1134=126×9,所以:(882,1134)=126,又因为252=126×2,126=126×1,所以:(252,126)=126,所以:(1008,1260,882,1134)=126.点评:对任意整数a,b,b>0,存在唯一的整数q,r,使a=bq+r,其中0≤r<b,这个事实称为带余除法定理,若c|a,c|b,则称c是a,b的公因数.若d是a,b的公因数,且d可被a,b的任意公因数整除则称d是a,b的最大公因数.当d≥0时,d是a,b公因数中最大者.若a,b的最大公因数等于1,则称a,b互素.累次利用带余除法可以求出a,b的最大公因数,这种方法常称为辗转相除法.同步测试一.选择题(共10小题)1.(北京市第一实验小学学业考)一个两位数,除以3余1,除以5余3,这个两位数最大是()A.78B.88C.98D.902.一堆彩色玻璃球,二个二个一数余1个,三个三个一数余1个,五个五个一数也余1个,则这一堆玻璃球至少有()个.A.11B.16C.21D.313.有一堆草莓,比40个多,比50个少,分的份数与每份的个数同样多,这堆草莓有()个.A.42B.45C.494.已知69,90,125分别除以一个大于1的自然数N,它们的余数相同,那么81除以N的余数为()A.3B.4C.5D.75.6的因数有1、2、3、6,这几个因数之间的关系是:1+2+3=6.像这样的数叫完全数.下面的数中,()是完全数.A.8B.18C.286.32的所有约数之和是()A.62B.63C.647.将数A分解质因数是A=2×3×5,那么因数有()个.A.3B.5C.6D.88.一个两位数是由3个不同的质数相乘得到的,它的因数共有()个.A.8B.6C.5D.39.一个数,除50余2,除65余5,除91余7,求这个数是()A.10B.11C.12D.1310.对于一个正整数,如果小于这个数的所有正因数之和恰等于这个数,那么这个数是完全数.例如6,小于6的正因数共有1,2,3,因为6=1+2+3,所以6是一个完全数.下列数中是完全数的是()A.4B.15C.28D.31二.填空题(共10小题)11.(北京市第一实验小学学业考)有四个不同的自然数,其中任意两个数的和是2的倍数,任意三个数的和是3的倍数.为使这四个数的和尽可能地小,这四个数分别是.12.2310的所有约数的和是.13.4018和3239的最大公约数为.14.1、4、9完全平方数,18、27完全立方数,2、3、5、7、10、11、12…非平方也非立方数列,数列中第99个是.15.一个完全平方数有5个约数,那么这个数的立方有个约数.16.22003与20032的和除以7的余数是.17.一个自然数除以7余5,除以11余1,除以9余3,这个数最小是.18.一个两位数,用2,3,5去除都余1,这个两位数最小是,最大是.19.有一个三位数,其中个位上的数是百位上的数的3倍,且这个三位数除以5余4,除以11余3.这个三位数是.20.甲、乙两人合买了n个篮球,每个篮球n元,付钱时,甲先乙后,10元,10元地轮流付钱,当最后要付的钱不足10元时,轮到乙付,付完全款后,为了使两人所付的钱数同样多,则乙应给甲元三.判断题(共5小题)21.如果一个完全平方数可以被5整除,则其末两位一定是25.(判断对错)22.一个数被4除余1,被5除余2,被6除余3,这个数最小是117..(判断对错)23.三(1)班有39名学生,做操时能排成正方形队伍.(判断对错)24.能同时被3、5、7除,都余2的最小三位数是107..(判断对错)25.自然数a只有两个因数,那么5a最多有3个因数..(判断对错)四.应用题(共5小题)26.(北京市第一实验小学学业考)不满千人的士兵等分为4队,每队排成14人或12人一排都余8人,后来改为8人一排则无剩余.求一共有多少人?27.某个大于1的整数除41、11得到的余数相等,那么这个整数可能是几?28.一堆苹果不少于10个,三个三个的数,四个四个的数,五个五个的数都多两个,这堆苹果最少有多少个?29.李老师买回一袋苹果,7个7个地数余3个,5个5个地数又多4个,3个3个地数正好数完.这袋苹果至少有多少个?30.下面是一个算式:1+1×2+1×2×3+1×2×3×4+1×2×3×4×5+1×2×3×4×5×6这个算式的得数能否是某个数的平方?参考答案与试题解析一.选择题(共10小题)1.【分析】除以3余1,除以5余3,那么这个数不是3和5的倍数;由此用排除法求解.【解答】解:除以3余1,除以5余3,那么这个数不是3和5的倍数;A、7+8=15;15是3的倍数,所以78是3的倍数,故A错误;D、5的倍数的个位数都是0或5的整数,90的个位数字是0,那么是5的倍数,故D错误;BC、而这个数的末尾应是3或8;B和C都符合,只要再看哪个数除以3余1即可.88÷3=29…1;98÷3=32…2;88除以3余1,所以88符合要求.故选:B.【点评】解决本题也可以这样想:这个两位数是3和5的公倍数减2,由此得这个两位数是3×5×6﹣2=88.2.【分析】“二个二个一数余1个,三个三个一数余1个,五个五个一数也余1个”,说明这堆玻璃球的个数是2、3、5的公倍数加1,求这堆玻璃球最少有多少个,先求出2、3、5的最小公倍数,然后加上1,由此解决问题即可.【解答】解:2、3、5是互质数,它们的最小公倍数是:2×3×5=30;玻璃球的个数就是30+1=31(个);答:这一堆玻璃球至少有31个.故选:D.【点评】此题主要考查求三个数的最小公倍数的方法:三个数互质,它们的最小公倍数是它们的积,并用此决解实际问题.3.【分析】根据乘法口诀可知,七七四十九,由于这堆草莓,比40个多,比50个少,分的份数和每一份的个数同样多,只有49合适,所以这堆草莓有49个.【解答】解:由分析可知,比40个多,比50个少,分的份数和每一份的个数同样多,这堆草莓有49个.故选:C.【点评】此题考查了乘法口诀在数学中的运用.4.【分析】可设69=x+aa是余数,90=y+a,125=z+a,x,y,z能被这个自然数整除,相减之后即90﹣69=x﹣y能被这个自然数整除,所以得到这个结论:这个数能同时整除它们的差,然后求出公约数即可解答.【解答】解:90﹣69=21,125﹣69=56,125﹣90=35,21,56,35能同时被这个数整除,21,56,35大于1的公约数为7.81÷7=11 (4)故选:B.【点评】本题主要考查了公约数的概念,通过同余得出他们的差能够整除这个自然数是解答本题的关键.5.【分析】分别写出8、18、28的因数然后依题意判断即可.【解答】解:8的因数有:1、2、4、8,1+2+4=7,8不是完全数;18的因数有:1、2、3、6、9、18,1+2+3+6+9=21,18不是完全数;28的因数有:1、2、4、7、14、28,1+2+4+7+14=28,28是完全数;故选:C.【点评】本题可采用排除法注意判断作答.6.【分析】先找出32的约数有1,2,4,8,16,32,然后把它们相加即可.【解答】解:32的约数有1,2,4,8,16,32,1+2+4+8+16+32=63;答:32的所有约数之和是63;故选:B.【点评】此类题做题的关键是先找出32的约数,然后根据题意,相加即可得出结论.7.【分析】先求出A的乘积,再求这个数的约数,解决问题.【解答】解:A=2×3×5=30,30的自因数有:1、2、3、5、6、10、15、30,计8个.答:A的因数有8个.故选:D.【点评】也可以这样解答:2、3、5各一次,还有2×3,2×5,3×5,2×3×5,再加上1,共8个.8.【分析】设这个数=a×b×c,则这个数的因数为:1、a、b、c、ab、ac、bc、abc,共有8个;据此解答即可.【解答】解:设这个数=a×b×c,则这个数的因数有:1、a、b、c、ab、ac、bc、abc,共有8个.答:一个两位数是由3个不同的质数相乘得到的,它的因数共有8个.故选:A.【点评】解决本题的关键是将所有因数写出,再计数.9.【分析】根据题意可得,50减去2,65减去5,91减去7,得到的差都是这个数倍数,然后求出它们的公因数即可.【解答】解:50﹣2=4865﹣5=6091﹣7=84在三个选项中只有12是48、60、84的公因数;所以这个数是12.故选:C.【点评】本题考查了余数问题与公因数问题的综合应用,关键是明确一个数减去它除以某个数的余数,得到的差一定是某数的倍数.10.【分析】先将数4,15,28,31分解正因数,再求其小于它本身的所有正因数的和,最后判断是否等于这个数,即可得出结论.【解答】解:4,小于4的正因数共有1,2,因为4≠1+2,所以4不是一个完全数;15,小于15的正因数共有1,3,5,因为15≠1+3+5,所以15不是一个完全数.28,小于28的正因数共有1,2,4,7,14,因为28=1+2+4+7+14,所以28是一个完全数.31,小于31的正因数共有1,因为31≠1,所以31不是一个完全数,综上所述,4,15,28,31中,只有28是完全平方数,故选:C.【点评】此题主要考查了一个数分解正因数的方法,新定义,找出一个整数的所有正因数是解本题的关键.二.填空题(共10小题)11.【分析】据题意可知,四个不同的自然数中其中任意两个数的和是2的倍数,根据数和的奇偶性可知,这四个自然数同为奇数,或同为偶数;由任意3 个数的和都是3的倍数可知:全是3的倍数,如果全是偶数,四数全是6的倍数即可;如果全是奇数,必须满足任意两数的差是6的倍数.总而言之,只要任意两数的差是6的倍数,即可满足题目要求如:1,7,13,190、6,12,18,等.使这4个数的和尽可能少,则取0,6,12,18.【解答】解:因为四个数中任意两个数之和是2的倍数,所以这四个数同奇、同偶;由任意3 个数的和都是3的倍数可知:如果全是偶数,四数全是6的倍数最小为:0,6,12,18;如果全是奇数,必须满足任意两数的差是6的倍数.最小为:1,7,13,19所以应取:0,6,12,18.故答案为:0,6,12,18.【点评】完成本题要在了解数的奇偶性及同余性质的基础上进行.12.【分析】先把2310分解质因数,即2310=2×3×5×7×11,然后根据求因数和的方法计算即可.【解答】解:因为2310=2×3×5×7×11,所以2310所有约数和为:(1+2)×(1+3)×(1+5)×(1+7)×(1+11)=3×4×6×8×12=6912故答案为:6912.【点评】约数个数与约数和定理:设自然数n的质因子分解式如n=p1×p2×…×p k那么:n的约数个数公式:d(n)=(a1+1)(a2+1)…(a k+1)n的所有约数和:f(n)=(p10+p11+p12+…p1a1)(p20+p21+p22+…p2a2)…(p k0+p k1+p k2+…p k ak).13.【分析】两个数较大,用辗转相除法求出两个数的最大公因数即可.【解答】解:4018÷3239=1 (779)3239÷779=4 (123)779÷123=6…41123÷41=3所以,4018和3239的最大公因数为41;故答案为:41.【点评】两个整数的最大公因数等于其中较小的数和两数的相除余数的最大公因数.14.【分析】首先考虑1﹣99的完全平方数有10个1、4、9、25、36、49、64、81,且立方数有4个分别为1、8、27、64,去掉重复的还有99﹣9﹣4+2=88个数,进一步考虑下一个完全平方数是121,完全立方数是125,所以从100开始,再数出12个数就可以得出答案为111.【解答】解:1﹣99的完全平方数有9个1、4、9、25、36、49、64、81,完全立方数有4个分别为1、8、27、64,去掉两种数剩下99﹣9﹣4+2=88个,下一个完全平方数是121,完全立方数是125,88+11=99,所以既没有完全平方数,又没有完全立方数,那么,这样的数的第99个数是111.答:数列中第99个是111.故答案为:111.【点评】解决此题的关键,是理解题意,找出在一定范围内完全平方数以及完全立方数的个数.15.【分析】根据完全平方数的性质,先求出约数有5个的完全平方数是16,再利用约数和定理,求出这个数的立方的约数个数即可.【解答】解:22=4,有1、2、4三个约数,32=9,有1、3、9三个约数,42=16,有1、2、4、8、16五个约数,所以这个完全平方数是16,这个数的立方是:163=212,12+1=13(个),答:这个数的立方有13个约数.故答案为:13.【点评】此题主要考查一个合数的约数个数的计算公式:a=pα×qβ×rγ(其中a为合数,p、q、r是质数),则a的约数共(α+1)(β+1)(γ+1)个约数,关键是根据题干先求出这个约数有五个的完全平方数.16.【分析】2的次方÷7其实是有规律可循的,2÷7余2,4÷7余4,8÷7余1,16÷7余2,32除以7余4,64÷7余1,2的次方÷7的余数是2,4,1循环的.2003÷3余2,那么就是循环中第2个数,也就是4,2003×2003=4012009.4012009÷7余1,两个余数相加就是4+1=5;由此得出2的2003次方与2003的2次方的和除以7的余数是5.【解答】解:由2的次方÷7的余数是2,4,1循环的可得:2003÷3=667…2,所以22003÷7的余数是4;因为2003×2003=4012009,4012009÷7余1,即20032÷7余1,所以22003与20032的和除以7的余数是1+4=5,故答案为:5.【点评】解答此题的关键是根据2的次方÷7余数发现规律,求出22003÷7的余数是4.17.【分析】一个自然数除以7余5,那么符合这一条件的最小的自然数是1×7+5=12,然后再验证是否符合后两个条件,据此解答即可.【解答】解:符合“除以7余5”的最小的自然数是1×7+5=12,12÷11=1…1,符合要求,12÷9=1…3,符合要求,所以,这个数最小是12.故答案为:12.【点评】本题考查了简单的孙子定理问题,也可分别列举出符合每个条件的数,然后找到最小的共同的数即可.18.【分析】根据一个两位数,除以2,3,5去除都余1,通过分析可以发现,这个两位数比2、3、5的公倍数多1,先求出这几个数的最小公倍数再加上1,求出最小的,然后再求出最大的即可.【解答】解:2×3×5=30这个两位数最小是:30+1=31最大是:30×3+1=91答:这个两位数最小是31,最大是91.故答案为:31;91.【点评】此题巧用求几个数的最小公倍数,去解决问题.19.【分析】因为个位数是百位数的三倍,那么个位数和百位数只有这几种可能9或3,6或2,3或1,而它除以5余4,那么个位数必然是9,则百位数则是3.由于除以11要余3,而只有当11×36+3的时候个位数才会出现9,并且满足百位数是3,因此可以算出该三位数是399.【解答】解:由“个位上的数是百位上的数的3倍”,可知个位数和百位数只有这几种可能9,3或6,2或3,1.而它除以5余4,那么个位数必然是9,则百位数则是3.由“除以11余3”,而只有当11×36+3的时候个位数才会出现9,并且满足百位数是3,因此可以算出该三位数是399.故答案为:399.【点评】此题有一定难度,考查学生的分析推理能力.20.【分析】篮球的总价为n2.由题意“首先由甲付10元,然后乙付10元,甲再付10元,乙再付10元,…直到某次甲付10元后,乙只需要再付不足10元“可知,每轮他们付20元,最后一轮甲付了10元后乙没付够10元,所以他们支付的总价格的十位上必定是奇数.由下面可以推出十位上是奇数个位必定是6:假设一个数为n=10x+y,其中x和y是整数,且0<y≤9,于是,我们有:n*n=100x*x+20xy+y*y.=20x(5x+y)+y*y如果n*n的十位数字是奇数,那么y的平方十位数字是奇数,由此推得y的平方等于16或36所以n的平方个位数字是6所以最后乙付得钱肯定是6元,由此可以作答.【解答】解:总价为n2,由题意的,总价的十位数上为奇数,所以个位数上必定为6.所以最后一轮乙支付了6元,甲支付了10元.所以乙需要给甲(10+6)÷2﹣6=2(元)答:按照约定,乙需要再给甲2元.故答案为:2.【点评】本题考差了平方数的一些规律,灵活运用即可作答.三.判断题(共5小题)21.【分析】本题可以举反例证明,如果一个完全平方数可以被5整除,那么它一定是25的倍数,比如102=100,100可以被5整除,但其末两位不是25;据此解答即可.【解答】解:可以举反例证明:102=100,100是一个完全平方数,100可以被5整除,但其末两位不是25,所以原题说法错误;故答案为:×.【点评】掌握完全平方数的特征和能被5整除的数的特征是解答本题的关键.22.【分析】因为这个数被4、5、6除余数不相同,所以可以转化为:一个数被4除差4﹣1=3,被5除差5﹣2=3,被6除差6﹣3=3,然后求出4、5、6的最小公倍数,然后再减去3即可判断.【解答】解:4=2×2,6=2×3,4、5、6的最小公倍数:2×2×3×5=60,60﹣3=57,所以一个数被4除余1,被5除余2,被6除余3,这个数最小是57,而不是117,所以原题说法错误.故答案为:×.【点评】本题考查了孙子定理,这道题如果按孙子定理去解答的话比较麻烦,本题通过转化表述方法使问题变得简单.23.【分析】正方形队伍应使每边人数相等,但是39不是某个自然数的完全平方数,所以39人做操时不能排成方队.【解答】解:因为39不是某个自然数的完全平方数,所以39人做操时不能排成方队.故答案为:×.【点评】本题考查了实心方阵的有关知识,计算公式是:总点数=每边点数×每边点数;总点数÷4+1=每边点数.24.【分析】通过分析题意可知:3、5、7的最小公倍数为3×5×7=105所以这样的数可以表示成:105×k+2然后确定k的最小值,且满足这个数是三位数,据此解答即可.【解答】解:3、5、7的最小公倍数为3×5×7=105所以这样的数可以表示成:105×k+2当k=1时,105×k+2=105×1+2=107,107是满足条件的最小三位数.故答案为:√.【点评】本题考查了带余数的除法和最小公倍数的综合应用,属于中档型题目,有一定难度.25.【分析】根据找一个数的因数的方法进行解答即可.【解答】解:因为a只有两个约数,那么a为质数,那么5a最多有4个约数:1、a、5、5a;故答案为:×.【点评】解答此题应根据题意,进行认真分析,找出5a的所有约数,进而得出结论.四.应用题(共5小题)26.【分析】1000÷4=250人,不满千人,每队就是不满250人;每队排成14人或12人一排都余8人,那么每排的人数就比14和12的公倍数多8,先找出250以内比14和12的公倍数多8的数,再满足最后一个条件,就是这个数是8的倍数,从而得出每队的人数,再乘4,就是总人数.【解答】解:1000÷4=250(人),不满千人,每队就是不满250人;14=2×712=2×614和12的最小公倍数是:2×6×7=8484+8=9292÷8=11…4,92不是8的倍数,不合题意;84×2+8=176176÷8=22,符合要求;84×3+8=260>250,不合题意.所以每队的人数是176人176×4=704(人)答:一共有704人.【点评】解决本题关键是明确每队的人数是比14和12的公倍数多8的数,且是8的倍数的数,从而讨论求解.27.【分析】因为这个数除41、11得到的余数相等,那么这个整数是41﹣11=30的因数,然后找到大于1的30的因数即可.【解答】解:因为这个数除41、11得到的余数相等,那么这个整数是41﹣11=30的因数,30大于1的因数,即这个整数可能是:2、3、5、6、10、15、30.答:这个整数可能是:2、3、5、6、10、15、30.【点评】本题考查了因数与倍数的问题,关键是明确41和11两个数的差是这个数的倍数.28.【分析】“三个三个的数,余2个,四个四个的数,余2个,五个五个的数,余2个”,说明这堆苹果的个数是3、4、5的公倍数加2;3、4、5的最小公倍数是3×4×5=60,又知这堆苹果不少于10个,。
六年级重点内容转化单位“1”总复习(一)专题简析:把不同的数量当作单位“1”,得到的分率可以在一定的条件下转化。
如果甲是乙的a b ,乙是丙的c d ,则甲是丙的ac bd ;如果甲是乙的a b ,则乙是甲的b a;如果甲的a b 等于乙的c d ,则甲是乙的c d ÷a b =bc ad ,乙是甲的a b ÷a b =ad bc。
例题1。
乙数是甲数的23 ,丙数是乙数的45,丙数是甲数的几分之几? 23 ×45 =815练习11. 乙数是甲数的34 ,丙数是乙数的35,丙数是甲数的几分之几? 2. 一根管子,第一次截去全长的14 ,第二次截去余下的12,两次共截去全长的几分之几? 3. 一个旅客从甲城坐火车到乙城,火车行了全程的一半时旅客睡着了。
他醒来时,发现剩下的路程是他睡着前所行路程的14。
想一想,剩下的路程是全程的几分之几?他睡着时火车行了全程的几分之几?例题2。
修一条8000米的水渠,第一周修了全长的14 ,第二周修的相当于第一周的45,第二周修了多少米?解一:8000×14 ×45=1600(米) 解二:8000×(14 ×45)=1600(米) 答:第二周修了1600米。
练习2用两种方法解答下面各题:1. 一堆黄沙30吨,第一次用去总数的15 ,第二次用去的是第一次的114倍,第二次用去黄沙多少吨?2. 大象可活80年,马的寿命是大象的12 ,长颈鹿的寿命是马的78,长颈鹿可活多少年? 3. 仓库里有化肥30吨,第一次取出总数的15 ,第二次取出余下的13,第二次取出多少吨?例题3。
晶晶三天看完一本书,第一天看了全书的14 ,第二天看了余下的25,第二天比第一天多看了15页,这本书共有多少页?解: 15÷【(1-14 )×25 - 14】=300(页) 答:这本书有300页。
练习31. 有一批货物,第一天运了这批货物的14 ,第二天运的是第一天的35,还剩90吨没有运。
2022-2023学年小学六年级思维拓展专题 转化单位“1”知识精讲把不同的数量当作单位“1”,得到的分率可以在一定的条件下转化。
如果甲是乙的ab,乙是丙的cd,则甲是丙的acbd;如果甲是乙的ab,则乙是甲的ba;如果甲的ab等于乙的cd,则甲是乙的cd÷ab=bcad,乙是甲的ab÷ab=adbc。
我们必须重视转化训练。
通过转化训练,既可理解数量关系的实质,又可拓展我们的解题思路,提高我们的思维能力。
典例分析【典例01】甲数是乙数的23,乙数是丙数的34,甲、乙、丙的和是216,甲、乙、丙各是多少?解法一:把丙数看所单位“1”那么甲数就是丙数的34×23=12,丙:216÷1+34+34×23=96乙:96×34=72甲:72×23=48解法二:可将“乙数是丙数的34”转化成“丙数是乙数的43”,把乙数看作单位“1”。
乙:216÷23+1+43=72甲:72×23=48丙:72÷34=96解法三:将条件“甲数是乙数的23”转化为“乙数是甲数的32”,再将条件“乙数是丙数的34”转化为“丙数是乙数的43”,以甲数为单位“1”。
甲:216÷1+32+32×43=48乙:48×32=72丙:72×43=96答:甲数是48,乙数是72,丙数是96。
【典例02】红、黄、蓝气球共有62只,其中红气球的35等于黄气球的23,蓝气球有24只,红气球和黄气球各有多少只?解法一:将条件“红气球的35等于黄气球的23”转化为“黄气球的只数是红气球的35÷23=910”。
先求红气球的只数,再求出黄气球的只数。
红气球:(62-24)÷1+35÷23=20(只)黄气球:62-24-20=18(只)解法二:将条件“红气球的35等于黄气球的23”转化为“红气球的只数是黄气球的23÷35= 109”。
2020年小升初数学专题复习训练—拓展与提高几个特殊的专题(1)知识点复习一.最大与最小【知识点归纳】研究某种量(或几种量)在一定条件下取得最大值或最小值的问题,我们称为最大和最小问题.在日常生活、科学研究和生产实践中,存在大量的最大与最小问题.如,把一些物资从一个地方运到另一个地方,怎样运才能使路程尽可能短,运费最省;一项(或多项)工作,如何安排调配,才能使工期最短、效率最高等等,都是最大与最小问题.这里贯穿了一种统筹的数学思想-最优化原则.概括起来就是:要在尽可能节省人力、物力和时间的前提下,争取获得在可能范围内的最佳效果.这一原则在生产、科学研究及日常生活中有广泛的应用.【命题方向】例1:用一块长12米、宽8米的长方形铁皮剪成半径是1.5米的小圆(不能剪拼),至多能做()个.A、11B、8C、10D、13分析:因为从边长是3米的正方形里最大可以剪出半径是1.5米的圆,剪出半径为1.5米的圆,就相当于要剪边长是3米的正方形.分别求出长方形的长和宽各自能放几个这样的正方形,就可以求出至多能做多少个圆了.解:8÷(1.5×2)=2(个)…2(米);12÷(1.5×2)=4(个);4×2=8(个);故选:B.点评:注意:因为不能剪拼,所以本题不能用面积来计算.二.钱币问题【知识点归纳】1.钱币的组成:硬币的面值有1分、2分、5分、l角、5角和1元;纸币的面值有l角、2角、5角、1元、2元、5元、1O元、2O元、5O元和100元.2.钱币这样设置的理由:看一看1、2、5如何组成3、4、6、7、8、9,就可以知道原因了.3=l+2=1+l+14=1+1+2=2+2=1+1+1+16=1+5=1+l+2+2=l+l+l+1+2=l+1+l+1+l+l=2+2+27=1+1+5=2+5=2+2+2+1=1+1+1+2+2=1+1+1+1+1+2=1+1+1+1+1+1+18=1+2+5=1+1+1+5=1+1+2+2+2=1+1+1+1+2+2=1+1+1+1+1+1+2=1+1+1+1+1+1+1+1=2+2+2+29=2+2+5=1+1+2+5=1+1+1+1+5=1+1+1+1+1+1+1+2=1+1+1+2+2+2=1+1+1+1+1+2+2=1+2+2+2+2 从以上这些算式中就可知道,用1、2和5这几个数就能以多种方式组成l~9的所有数.这样,我们就可以明白一个道理,人民币作为大家经常使用的流通货币,自然就希望品种尽可能少,但又不影响使用.【命题方向】例1:175元人民币至少由()张纸币组成.A、3B、4C、5D、6分析:因为我国现有的人民币的面值是,100元,50元,20元,10元,5元,2元,1元…要用最少的纸币组成175元,就尽量用大面值的纸币.解:因为,175=100+50+20+5,所以,175元人民币至少由4张纸币组成,故选:B.点评:解答此题的关键是,理解题意,知道我国现有的人民币的面值,由此即可解答.三.时间与钟面【知识点归纳】1、时间:时针:是用来表示“时”的,时针走1大格的时间是1时.分针:是用来表示“分”的,分针走1小格的时间是1分,走1大格的时间是5分钟.秒针走一圈,分针走1小格,分针走一圈,时针走1大格.2、时间有两种表示方法:第一种是中文表示方法,是几时几分,就写成几时几分;第二种是像电子表那样,用两个小圆点把左边的时和右边的分隔开.有几时就写几再打两个小圆点写右边的分.表示分的数要占两个位置,不满10分的要用0来占位.比如,9时5分,不满10分,我们就先写0再写5,即9:05.时针从一个数走到下一个数经过的时间是1时.【命题方向】例1:一只手表每小时慢5分钟,照这样计算,早上6时对准标准时间后,当手表指示下午5时整时,标准时间是()A、16:05B、17:55C、18:00D、18:05分析:本题中的相等关系是:这只手表慢的时间-手表每小时比准确时间慢5分钟×标准时间经过的时间=0,设标准时间经过了x小时,根据等量关系列方程求解即可.解:5+12=17时,设标准时间经过了x小时,则(6+x-17)×60-5x=0,60(x-11)-5x=0,60x-660-5x=0,55x=660,x=12;6:00+12=18:00;所以准确时间应该是18:00.故选C.点评:考查了时间与钟面,此类问题应结合方程思想求解,解题的关键是找准相等关系.四.逻辑推理【知识点归纳】基本方法简介:①条件分析-假设法:假设可能情况中的一种成立,然后按照这个假设去判断,如果有与题设条件矛盾的情况,说明该假设情况是不成立的,那么与他的相反情况是成立的.例如,假设a 是偶数成立,在判断过程中出现了矛盾,那么a一定是奇数.②条件分析-列表法:当题设条件比较多,需要多次假设才能完成时,就需要进行列表来辅助分析.列表法就是把题设的条件全部表示在一个长方形表格中,表格的行、列分别表示不同的对象与情况,观察表格内的题设情况,运用逻辑规律进行判断.③条件分析--图表法:当两个对象之间只有两种关系时,就可用连线表示两个对象之间的关系,有连线则表示“是,有”等肯定的状态,没有连线则表示否定的状态.例如A和B两人之间有认识或不认识两种状态,有连线表示认识,没有表示不认识.④逻辑计算:在推理的过程中除了要进行条件分析的推理之外,还要进行相应的计算,根据计算的结果为推理提供一个新的判断筛选条件.⑤简单归纳与推理:根据题目提供的特征和数据,分析其中存在的规律和方法,并从特殊情况推广到一般情况,并递推出相关的关系式,从而得到问题的解决.【命题方向】例1:有A,B,C,D,E五名同学进行象棋比赛,规定每两个人之间要赛一场,到现在为止,A已经赛了4场,B已经赛了3场,C已经赛了2场,D已经赛了1场,那么E赛了()场.A、1 B、2 C、3 D、4分析:5个人两两之间比赛,那么每个人要和另外4人比赛,每人赛4场,再根据ABCD四人赛的场次进行推算.解:每人最多赛4场;A已经赛了4场,说明它和另外的四人都赛了一场,包括D和E;E赛了1场,说明他只和A进行了比赛,没有和其它选手比赛;B赛了3场,他没有和E比赛,是和另外另外的三人进行了比赛,包括C和E;C赛了2场,是和A、B进行的比赛,没有和E比赛;所以E只和A、B进行了比赛,一共是2场.故选:B.点评:本题根据每个人最多只能比赛4场作为突破口,进行逐个推理,找出E进行比赛的场次.同步测试一.选择题(共8小题)1.有172元人民币,如果都是纸币,请你算一算,至少用()张不同的币组成.A.4B.5C.6D.72.用0、4、5、6、7组成三位数乘两位数的乘法算式,乘积最大是()A.765×40B.740×65C.540×763.晓晓有10元和5元面值的人民币各4张.如果要买40元的书包,有几种恰好付40元的方式?()A.2种B.3种C.4种4.5时半,钟面上的时针和分针所成的角是()A.直角B.钝角C.锐角5.钟面上,时针的速度是分针速度的()A.B.C.D.6.三个不同的质数x、y、z,满足x+y=z,则x×y×z的最小值是()A.6B.15C.20D.307.甲、乙、丙三人,一个是歌手,一个是演员,一个是运动员,甲和乙经常去听歌手的演唱会,乙偶尔和运动员一起体验生活,甲的职业是()A.歌手B.演员C.运动员8.编号为1,2,3,4,5的5个学生参加乒乓球比赛,每两个人要比赛一场,到现在为止,1号已经赛了4场,2号赛了3场,3号赛了2场,4号赛了1场.5号赛了()场.A.2B.3C.4二.填空题(共8小题)9.有一个两位数,它是2的倍数,同时它的各个数位上的数字的乘积是12,这个两位数最小是.10.将99分拆成19个质数之和,要求最大的质数尽可能大,那么这个最大质数是.11.小刚有5元、10元和20元的人民币各1张.从中选一张或几张,一共能组成种不同的币值.12.王老师、李老师、张老师分别教美术、科学、体育中的一门学科,王老师经常和美术老师在一起,李老师经常在操场上课.请认真分析,填写下表.美术科学体育王老师李老师张老师13.甲、乙、丙、丁四个学生坐在同一排的相邻座位上,座号是1号至4号,一个专说谎话的人说:“乙坐在丙旁边,甲坐在乙和丙的中间,乙的座位不是3号.”那么坐在2号位置上的学生是.14.口袋中有1分、2分、5分三种硬币,甲从袋中数出3枚,乙从袋中取出2枚,取出的5枚硬币中,仅有两种面值,并且甲取出的三枚硬币面值的和比乙取出的两枚硬币面值的和少3分,那么取出的钱数的总和最多是.15.钟面上显示现在的时刻是5点整,过分钟分针和时针第一次重合.16.4点24分,分针与时针所成的锐角是度.三.判断题(共5小题)17.甲、乙两数是正整数,如果甲数的恰好是乙数的,则甲、乙两数和的最小值是13..(判断对错)18.当5个整数按从小到大的顺序排列后,中位数为4,唯一的一个众数为6,那么这5个数的和最大是21.(判断对错)19.买一些4分、8分、1角的邮票共15张,用去100分.最多可买10张1角的邮票..(判断对错)20.3时15分的时候,时针和分针重合在一起..(判断对错)21.图中,A→B表示数A比数B小,那么A、B、C、D四个数中最大的是C.(判断对错)四.应用题(共4小题)22.小冬、小雨和小伟三人分别在一、二、三班,小伟是三班的,小雨下课后去一班找小冬玩.小冬和小雨各是几班的?23.有一个比50要小的数,它比3的倍数少1,比5的倍数多2.这个数最大是多少,最小是多少?24.现有1元、2元和5元的邮票各若干枚,如果每种信函的邮资等于其中4枚邮票的总价,一共有多少种不同邮资的信函?25.小明家有两个旧钟,一个每小时快12分钟,另一个每小时慢20分钟.在标准时间早上6点,两钟与标准时间对准.当快钟显示的时间是下午3点时让它停摆,等到慢钟显示的时间是下午3点时,才让快钟继续走动.问快钟停摆了多长时间(标准时间)?五.操作题(共2小题)26.六个同学体检测量了身高,得知:(1)A比B高11厘米:(2)C比D矮1厘米;(3)E比B高2厘米;(4)F比B矮4厘米,比D矮2厘米;(5)六人中最矮的身高是159厘米.根据上面的条件,你知道身高最高的是谁吗?他的身高是多少厘米?你知道这个小组六个同学的高矮顺序吗?27.6时整,欢欢看到钟面突然产生了一个疑问,分针顺时针旋转多少度才能与时针重合?请你帮她解决这问题,并在钟面上画一画.六.解答题(共2小题)28.王大叔准备了12根1米长的木条,他靠墙围一个长方形(或正方形)羊圈.一共有几种不同的围法?请完成下表,面积最大是多少平方米?你有什么发现?长方形的一条边/m108长方形的另一条边/m12面积/m21016我发现:29.淘淘、依依、壮壮三人中有一个人给李爷爷送了一筐苹果,为了弄清楚是谁送的,李爷爷询问了他们三人,他们的回答如下.淘淘说:“不是我送的,也不是依依送的.”依依说:“不是我送的,也不是壮壮送的.”壮壮说:“不是我送的,我也不知道是谁送的.”在李爷爷的再三追问下,他们承认,每人说的都有半句真话,半句假话.参考答案与试题解析一.选择题(共8小题)1.【分析】本题根据人民币的面额进行分析即可,人民币的整元面额分为:100面值、50元面值,20元面值,10元面值,5元面值,1元面值.要求至少用几张不同的纸币组成,应尽量选择面值大的组成.据此完成.【解答】解:172=100+50+20+1+1.即至少用5张不同的纸币组成.故选:B.【点评】明确人民币的面额是完成本题的关键.2.【分析】在求乘积最大的算式时,用最大的数作为三位数的百位,第二大的数作为两位数的十位,第三大的数作为两位数的个位,第四大的数作为三位数的十位,最小的数作为三位数的个位.据此即可解决问题.【解答】解:乘积最大的算式:740×65=48100;故选:B.【点评】明确数的高位的数字越大,其值就越大这一规律是完成本题的关键.3.【分析】可用列表法分别求出10元人民币分别为4、3、2、1、0张时,5元人民币的张数,据此解答.【解答】解:表格如下:付钱方案10元5元总钱数张数4040张数3240张数2440张数1640张数0840所以总共付40元钱,共有5种付钱的方式,分别为:付4张十元的;付3张十元的2张五元的;付2张十元的4张五元的;付1张10元的6张五元的;付8张五元的.但晓晓有10元和5元面值的人民币各4张,所以10元和4元的人民币不能超过4张,所以付8张5元的排除,符合题意的有4种付钱的方式;故选:C.【点评】本题考查了钱币问题,列表法解决此类问题是常用的方法之一.4.【分析】根据钟表钟面的特征,5时半时,时针指向5、6的中间,分针指向6,判断出时针和分针所成的角是多少即可.【解答】解:因为5时半,时针指向5、6的中间,分针指向6钟表上每相邻两个数字之间的夹角为30°因为30°×0.5=15°所以5时半时,时针与分针的夹角正好是15度,是锐角.故选:C.【点评】此题主要考查了钟表时针与分针的夹角问题,解答此题的关键是要明确:钟表上每相邻两个数字之间的夹角为30°.5.【分析】钟面分成60个小格,可以看作60个单位长度;时针走1小时,走了一个大格,也就是5小格,那么时针的速度是5÷60=;分针走1小时,走了60个小格,那么分针的速度是60÷60=1;然后再用时针速度除以分针速度即可.【解答】解:钟面分成60个小格,可以看作60个单位长度;时针速度是:5÷60=;分针的速度是:60÷60=1;÷1=答:钟面上,时针的速度是分针速度的.故选:C.【点评】此题考查了钟面的认识,钟面上分针走的速度是时针的12倍,秒针的速度是分针的速度的60倍.6.【分析】因为x,y,z同为质数,而且x+y=z,质数中除了2之外的所有质数都为奇数,根据数和的奇偶性可知,偶数个奇数相加的和为偶数,大于2的偶数都为合数,而z为质数,所以x,y中一定有一个偶数,既为质数又为偶数的数只有2,根据质数的定义可知,最小的质数也是2,因此三个质数中最小的数是2;然后即可得到另两个数最小为3和5;然后求出x×y×z的最小值即可.【解答】解:因为x,y,z同为质数,而且x+y=z,所以x,y中一定有一个偶数,既为质数又为偶数的数只有2,那么另两个数质数最小为3和5;所以x×y×z的最小值是:2×3×5=30.故选:D.【点评】自然数中,2是一个既为偶数又为质数的比较特殊的数.明确这一点然后解答就容易了.7.【分析】甲和乙经常去听歌手的演唱会,说明甲和乙都不是歌手,那么丙就是歌手;乙偶尔和运动员一起体验生活,说明乙不是运动员,只能是演员;那么剩下的甲一定是运动员;据此解答即可.【解答】解:甲和乙经常去听歌手的演唱会,说明甲和乙都不是歌手,那么丙就是歌手;乙偶尔和运动员一起体验生活,说明乙不是运动员,只能是演员;那么剩下的甲一定是运动员;答:甲的职业是运动员.故选:C.【点评】本题考查了逻辑推理问题,关键是根据已知条件和逻辑关系确定丙就是歌手,从而进一步解答即可解决问题.8.【分析】共5个学生参赛,每两个人都要比赛一场,则每个同学都要与其他四位各赛一场,共赛四场.1号赛了4场,则1号分别与2,3,4,5各赛了一场;由于4号只赛了一场,所以这场是和1号赛的;2号赛了3场,所以2号分别与1、3、5号各赛了一场,所以此时五号与1号和2号各赛了一场即2场.【解答】解:1号赛了4场,则1号分别与2,3,4,5各赛了一场;由于4号只赛了一场,所以这场是和1号赛的;2号赛了3场,所以2号分别与1、3、5号各赛了一场,所以此时五号与1号和2号各赛了一场,共2场.答:5号赛了2场.故选:A.【点评】根据赛制及每人比赛的场数之间的逻辑关系进行分析是完成本题的关键.二.填空题(共8小题)9.【分析】这个两位数,它是2的倍数,说明该两位数的个位可能是0、2、4、6、8;又因为它的各个数位上的数字的积是12,所以如果个位是0、8不成立,舍去;如果个位是2,则十位是6,则两位数为62;如果个位是4,十位是3,两位数为34;如果个位是6,十位是2,两位数为26;据此解答即可.【解答】解:是2的倍数,说明该两位数的个位可能是0、2、4、6、8;它的各个数位上的数字的积是12,所以如果个位是0,因为0乘任何数都等于0,不成立;如果个位是8,因为8×1.5=12,1.5是小数,不成立;如果个位是2,因为2×6=12,则十位是6,则两位数为62;如果个位是4,因为4×3=12,则十位是3,两位数为34;如果个位是6,因为6×2=12,则十位是2,两位数为26;26<34<62;答:这个两位数最小是26.故答案为:26.【点评】解答此题应根据能被2整除的数的特征,先判断出个位上可能出现的数字,进而根据它的各个数位上的数字的积是12,推断出十位上的数,然后求出这个两位数.10.【分析】(北京市第一实验小学学业考)因为若使其中一个质数最大,那么其余的18个质数应最小,2是最小的质数,但当18个质数都是2时,最大数是99﹣18×2=63,不符合题意;如果有17个2,另外两个质数的和是99﹣17×2=65,不符合题意;然后以此类推即可得出结论.【解答】解:2是最小的质数,当18个质数都是2时,最大数是99﹣18×2=63,不符合题意;如果有17个2,另外两个质数的和是99﹣17×2=65,65是奇数,不符合题意;如果有16个2,另外三个质数的和是99﹣16×2=67,67=3+5+59,都是质数,符合题意;所以,这个最大质数是59.故答案为:59.【点评】本题考查了整数的拆分与质数合数问题的综合应用,关键是明确要使其中一个质数最大,那么其它的质数就应当最小.11.【分析】把取1张、2张、3张可以组成的币值全部写出,从而解决问题.【解答】解:当取1张时,可以是:5元,10元,20元,3种币值;当取2张时可以是:5+10=15(元)5+20=25(元)10+20=30(元)3种币值;当取3张时:5+10+20=35(元)1种币值3+3+1=7(种)答:一共能组成7种不同的币值.故答案为:7.【点评】解决本题采用列举的方法,把所有的可能按照一定的顺序找出,做到不重复,不遗漏.12.【分析】根据已知条件,符合要求的打“√”,不符合要求的打“×”,然后填表推断即可.【解答】解:填写下表.美术科学体育王老师×√×李老师××√张老师√××所以,张老师教美术;李老师教体育;王老师教科学.【点评】条件分析﹣列表法:当题设条件比较多,需要多次假设才能完成时,就需要进行列表来辅助分析.列表法就是把题设的条件全部表示在一个长方形表格中,表格的行、列分别表示不同的对象与情况,观察表格内的题设情况,运用逻辑规律进行判断.13.【分析】根据这一个专说谎话的人的表述,结合矛盾关系和甲、乙、丙、丁四个学生坐的位置关系推断即可.【解答】解:乙的座位不是3号;反之乙的座位一定是3号;又因为“乙坐在丙旁边”是假话,所以丙只能坐在1号位置;同理,“甲坐在乙和丙的中间”也是假话,所以甲只能坐在4号位置;那么剩下的丁只能坐在2号位置;答:坐在2号位置上的学生是丁.故答案为:丁【点评】本题属于简单的归纳与推理:根据题目提供的特征和数据,分析其中存在的规律、矛盾关系和方法,从而得到问题的解决.14.【分析】(北京市第一实验小学学业考)甲取出的三枚硬币面值的和比乙取出的两枚硬币面值的和少3分,也就是说乙取出的两枚硬币面值的和比甲取出的三枚硬币面值的和多3分,乙取出的两枚硬币面值5,5就是最大了,那么乙也只有5,1,1 符合;进而得出答案.【解答】解:乙取2枚(5分),甲取1枚(5分)、2枚(1分);5×2+5+1×2=17(分);答:取出的钱数的总和最多是17分;故答案为:17分.【点评】此题应结合题意,进行分析,先得出乙取出的两枚硬币的面值,然后根据题中给出的条件,得出甲取出的三枚硬币的面值,进而计算得出结论.15.【分析】解决这个问题就要弄清楚时针与分针转动速度的关系:每一小时,分针转动360°,而时针转动30°,即分针每分钟转动6°,时针每分钟转动0.5°,5点时,时针与分针之间的夹角是30°×5=150°,当时针和分针第一次重合时,实际上是分针比时针多走150°,依据这一关系列出方程即可求解.【解答】解:设从5点开始,经过x分钟,时针和分针第一次重合,由题意得:6x﹣0.5x=30×55.5x=150x=27答:再经过27分钟时针与分针第一次重合.故答案为:27.【点评】钟表上的分钟与时针的转动问题本质上与行程问题中的两人追及问题非常相似,行程问题中的距离相当于这里的角度,行程问题中的速度相当于这里时(分)针的转动速度.16.【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份也就是一大格是30°;分针转12小格,时针转1小格,分针走一小格也就是1分钟转6°,时针每分钟转0.5°,借助表图,时针指着3和4之间,分针指着4和5之间,然后求出时针和分针以4点整为起点分别旋转的度数,再作差即可.【解答】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上4点24分时,时针从4点过24分钟后;转动了:0.5°×24=12°,同时分钟转动了:6°×24=144°,那么超过数字“4”:144°﹣30°×4=24°,此时分针与时针的夹角是:24°﹣12°=12°,答:4点24分,分针与时针所成的锐角是12度;故答案为:12.【点评】在钟表问题中,常利用时针与分针转动的度数关系:分针每转动12°时针转动1°,并且利用起点时间时针和分针的位置关系建立角的图形.三.判断题(共5小题)17.【分析】把乙数看做单位“1”,则甲数是÷=,所以甲乙两个数的和是1+=,因为甲、乙两数是自然数,要使甲乙两数之和也是自然数,让它最小,乙只能是10,从而甲数是3,和为13.【解答】解:把乙数看做单位“1”,则甲数是÷=,所以甲乙两个数的和是1+=,因为甲、乙两数是自然数,要使甲乙两数之和也是自然数,让它最小,乙只能是10,从而甲数是3,和为13.答:甲、乙两数和的最小值是13.故答案为:√.【点评】此题考查了最大与最小.化成甲数用乙数来表示,甲乙都是自然数,让分数乘以一个自然数得到一个最小的自然数,只能是这个自然数就是分数的分母.18.【分析】根据“把5个整数从小到大排列,中位数是4”,可知此组数据的第三个数是4,第四个和第五个数都是6,据此当第一个数是0,第二个数是1时,这5个整数的和最小;当第一个数是2,第二个数是3时,这5个整数的和最大.【解答】解:根据分析可知,当这5个整数分别是2、3、4、6、6时,和最大,和最大是2+3+4+6+6=21.故答案为:√.【点评】本题考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.19.【分析】设4分、8分、1角的邮票分别买了x张,y张和z张,根据买一些4分、8分、1角的邮票共15张,得出x+y+z=15,再根据总共是100分,得出4x+8y+10z=100,由此解不定方程即可.【解答】解:设4分、8分、1角的邮票分别买了x张,y张和z张,根据题意列方程为:(1)x+y+z=15,(2)4x+8y+10z=100,(2)式﹣(1)式×4得,4y+6z=40y=(20﹣3z)÷2因为,y≥0,所以,(20﹣3z)÷2≥0,20﹣3z≥0,3Z≤20,即,z≤,又因为,y=(20﹣3z)÷2是整数,所以,z最大是6,即1角的邮票最多可买6张,原题错误.故答案为:×.【点评】解答此题的关键是,根据题意,设出未知数,再根据数量关系等式,列出不定方程,最后根据不定方程中未知数的取值受限,解不定方程即可.20.【分析】当3时,分针指向12,时针指向3,分针每分钟走1个小格,时针每分钟要走5÷60=个小格,当时针和分针重合时,分针就要比时针多走15个小格.据此可求出时针和分针重合在一起走的时间.【解答】解:15÷(1﹣),=15,=16(分钟),3时+16分钟=3时16分.即3时16分,时针和分针重合在一起.所以3时15分的时候,时针和分针不在一起.故答案为:×.【点评】本题的关键是根据钟面上的追及问题,求得3点多少分时针和分针重合在一起,再进行判断.21.【分析】因为A→B,表示A比B小,观察图形可知,A<B,B<C,D<B,据此即可推理判断.【解答】解:根据题干分析可得:A<B,B<C,所以A<B<C,又因为D<B,所以D<C,所以这四个数中,C是最大的.故答案为:√.【点评】解答此题的关键是根据图示,得出这四个数之间的大小关系,再推理判断即可.四.应用题(共4小题)22.【分析】小伟是三班的,小雨下课后去一班找小冬玩,说明小冬是一班的,剩下的小雨就是二班的.【解答】解:已知:小伟是三班的;小雨下课后去一班找小冬玩,说明小冬是一班的,剩下的小雨就是二班的.答:小冬在一班,小雨在二班.【点评】本题属于简单的逻辑推理,题目中给出已知条件比较明显,解答较容易.23.【分析】把这个数比3的倍数少1,比5的倍数多2,看作这个数比3的倍数多2,比5的倍数也多2,这样求出3和5的最小公倍数,再加上2,然后求出比50要小的数即可.【解答】解:3×5=1515+2=17,15×2+2=32,15×3+2═47所以,这个数最大是47,最小是17.答:这个数最大是47,最小是17.【点评】本题考查了求两个数的最小公倍数方法和同余问题的灵活应用,关键是转化表述方法,使这个数除以3和5的余数相同,变成同余问题解答就容易了.24.【分析】找出4枚邮票的每一枚的可能性,每一枚都有3种可能,利用乘法原理求出总的种数,然后减去重复的种数,即可求解.【解答】解:4枚邮票,第一枚有3种可能,因为可以相同,所以第二枚也有3种可能,同理,第三枚有3种可能,第四枚有3种可能.所以根据乘法原理:3×3×3×3=81(种)但是这里面有重复,重复的有8=5+1+1+1=2+2+2+2,5=1+1+1+2=5+0,所以再去掉2种故有81﹣2=79(种)答:一共有79种不同邮资的信函.【点评】掌握乘法原理是解答本题的关键.25.【分析】快钟一个小时快12分钟,它显示的1小时,是标准时间的60﹣12=48(分钟).从早上标准时刻6点到快钟显示的下午3点,虽然该钟经过的是12﹣6+3=9(小时),是标注时间48×9=432(分。
祝同学们小升初考出好成绩!欢迎同学们下载,希望能帮助到你们!2020小升初数学专题总复习讲义(含考试题及答案)专题一数的运算考点扫描1.四则运算的意义(1)整数加法、小数加法、分数加法的意义:把两个数合成一个数的运算;(2)整数减法、小数减法、分数减法的意义:已知两个数的和与其中的一个加数,求另一个加数的运算;(3)整数乘法的意义:求几个相同加数的和的简便运算;(4)小数乘法的意义:小数乘整数与整数乘法的意义相同;一个数乘小数,就是求这个数的十分之几、百分之几……是多少;(5)整数乘分数的意义:一个数乘分数,就是求这个数的几分之几是多少;(6)分数乘整数的意义:分数乘整数,就是求几个相同分数的和的简便运算;(7)整数除法、小数除法、分数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
2.四则运算的计算方法(1)加减法的计算方法①整数的加法:相同数位对齐,从低位加起,哪一位上的数相加满十,就要向前一位进一;②整数的减法:相同数位对齐,从低位减起,哪一位上的数不够减要从前一位上退一,在本位上加上10再减;③小数的加减法:计算小数加减法时,先把小数点对齐(也就是相同的数位对齐),再按照整数加减法的法则进行计算,最后在得数里对齐横线上的小数点,点上小数点;④分数的加减法:同分母的分数相加减,分母不变,只把分子相加减;异分母的分数相加减,先通分,然后按照同分母分数加减法的法则进行计算。
(2)乘法的计算方法①整数的乘法:从低位到高位分别用因数的每一位去乘另一个因数;用一个因数的哪一位去乘,求得的数的末位就要和那一位对齐;然后把几次求得的积加起来;②小数乘法:先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位点上小数点;③分数乘法:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
(3)除法的计算方法①整数的除法:从被除数的高位除起,除数有几位就先看被除数的前几位,如果前几位比除数小,就多取一位再除,除到哪一位,商就写在那一位的上面;每次除得的余数必须比除数小;在求出商的最高位以后,如果被除数的哪一位上不够商1,就在那一位上写0;②小数除法:除数是整数时,按照整数除法进行计算,商的小数点要与被除数的小数点对齐。
2020年小升初数学专题复习训练—拓展与提高计算(3)知识点复习一.比较大小【知识点归纳】【命题方向】大小,下列结果正确的是哪一个?()所以丙数>甲数>乙数;故选:D.1.加法的估算:先将两个(或多个)加数分别估计成他们最接近的整十,整百,整千…的数,然后将估计的结果相加,最后用“≈”把算式和结果连接起来.“≈”约等号,读作约等于.如:206+292大约等于多少?206元接近200元,292元接近300元,200+300=500(元),所以大约需要500元.2.减法的估算:先将两个(或多个)数分别估计成他们最接近的整十,整百,整千…的数,然后将估计的结果相减,最后用“≈”把算式和结果连接起来.如98-17大约等于多少?98接近100,17接近20,100-20=80,所以98-17≈803.乘法的估算:一计:(把因数0前面的数相乘)二数:数一数两个因数末尾一共有几个0.三添:在乘得的积后面添上几个0.4.除法的估算:(1)除数是一位数的除法估算,可以把被除数估成整百、整十或几百几十的数,再进行口算,有时也要看被除数想口诀,把被除数看作是乘法口诀中的积来估算比较简便;(2)除数是两位数的除法估算:先求除数的近似数--省略除数十位后面的尾数,再去除被除数的近似数--被除数最高位如果比除数的最高位上的数大,则省略被除数最高位后面的尾数;如果比除数最高位上的数小,则省略被除数前两位后面的尾数.【命题方向】例1:105.7×95.7×997.8约等于()A、一百万B、1千万C、九百万分析:先将各因数取近似数为整百、整千的数,再相乘即可求解.解:105.7×95.7×997.8,≈100×100×1000,=10000000.故选:B.【知识点归纳】定义新运算是指用一个符号和已知运算表达式表示一种新的运算.注意:(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算.(2)我们还要知道,这是一种人为的运算形式.它是使用特殊的运算符号,如:*、▲、★、◎、△、◆、■等来表示的一种运算.(3)新定义的算式中,有括号的,要先算括号里面的.【命题方向】例1:规定:a△b=3a-2b.已知x△(4△1)=7,那么x△5=()A、7B、17C、9D、19分析:根据所给出是等式,知道a△b等于3与a的积减去2与b的积,由此用此方法计算4△1的值,再求出x的值,进而求出x△5的值.解:4△1=3×4-2×1,=10,x△(4△1)=7,x△10=7,3x-2×10=7,3x-20=7,3x=20+7,3x=27,x=27÷3,x=9;x△5=9△5,=3×9-2×5,=27-10,=17,故选:B.点评:解答此题的关键是,根据所给出的等式找出新的运算方法,再根据新的运算方法解决问题.例2:定义新运算aVb=a+b-1,aWb=ab-1,若xV(xW4)=30,那么这个式子中x的值为()A、4.3B、3.2C、6.4 D、12.8分析:由所给算式得出新运算方法为:aVb等于两个数的和减去1,aWb等于两个数的乘积减去1,据此计算xV(xW4)=30即可解出x的值.解:xV(xW4)=30,xV(x×4-1)=30,xV(4x-1)=30,x+4x-1-1=30,5x-2=30,5x=32,x=32÷5,x=6.4.故选:C.点评:解决本题的关键是找出新运算方法,根据这个方法计算.【解题方法点拨】(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算.(2)我们还要知道,这是一种人为的运算形式.它是使用特殊的运算符号,如:*、▲、★、◎、△、◆、■等来表示的一种运算.(3)新定义的算式中,有括号的,要先算括号里面的.四.高斯取整【知识点归纳】①不超过实数x的最大整数称为x的整数部分,记作[x]或INT(x).②x-[x]称为x的小数部分,记作{x}.③需要注意的是,对于负数,[x]指的并不是x小数点左边的部分,{x}指的不是x小数点右边的部分,例如对于负数-3.7,[-3.7]=-4,而不是-3,此时{x}=-3.7-(-4)=0.3,而不是-0.7.性质1:对任意x∈R,均有x-1<[x]≤x<[x]+1.【命题方向】例1:[x]表示取数x的整数部分,比如[6.28]=6,若x=9.42,则[x]+[2x]+[3x]= 55.分析:完成本题只要先算出2x,3x的值是多少,然后再据取整的意义求出[x]+[2x]+[3x]的值即可.解:因为2x=9.42×2=18.84,3x=28.26则:[x]+[2x]+[3x]=[9.42]+[18.4]+[28.26]=9+18+28,=55.故答案为:55.点评:完成本题要注意取整并不是据四舍五入取近似值,而是直接将小数部分舍去,只取整数部分.例2:用{x}表示数x的小数部分,[x]表示x的整数部分.如{2,3}=0.3,[2,3]=2.若a+[b]=15.3,{a}+b=7.8,则()A、a=7.5,b=8.3B、a=8.3,b=7.5C、a=8.5,b=7.3D、a=7.3,b=8.5分析:由于{x}表示数x的小数部分,[x]表示x的整数部分,又a+[b]=15.3,则[b]为整数,所以a的小数部分为0.3,所以,{a}=0.3;而{a}+b=7.8,所以b=7.8-0.3=7.5,[b]=7,所以,a=15.3-7=8.3.解:由a+[b]=15.3可知a的小数部分为0.3,所以{a}=0.3;而{a}+b=7.8,则b=7.8-0.3=7.5,[b]=7,所以,a=15.3-7=8.3.即a=8.3,b=7.5.故选:B.点评:完成本题的关键是要注意分析题意,弄清不同符号所表示的意义.五.乘积的个位数【知识点归纳】1.进位原则:同一数字,由于所在数位不同,表示的数值是不相同的.2.被9、11整除数的特征.一个自然数,各个数位上的数字和能被9整除,此数可被9整除.一个自然数若奇数上数位的和与偶数位数字和的差,能被11整除,这个数就能被11整除.3.要看末尾有几个零,必须要看它能被多少个10整除.而10的质因数是2和5,也就是在连乘积中,2和5这两个因数出现几对,连乘积就能被几个10整除,积的末尾也就有几个零.4.任意五个连续自然数的积的个位数字都是0.【命题方向】例1:1988个3的个位数字是()A、0B、8C、2D、6分析:通过分析与试探,发现3相乘积的规律:个位特征是9、7、1、3、9、7、1、3…,从第二个3开始每4个一个循环,所以(1988-1)÷4,求出结果看余数,判断即可出乘积的个位数字,再减去1即可.解:积的个位数字具有以下特征:9、7、1、3循环,从第二个3开始每4个一个循环,所以(1988-1)÷4,=1987÷4,=496…3,故所得结果的个位数字是1.1-1=0,答:所得结果的个位数字是0.故选:A.点评:此题属于规律性问题,先找出结果的个位数字的规律,据规律解题.例2:36×26×25×35×48×55×125乘积末尾有连续的7个0.分析:分别把这些因数进行分解质因数,看一共有多少组因数2×5即可.解:36=2×2×3×3;26=2×13;25=5×5;35=5×7;48=2×2×2×2×3;55=5×11;125=5×5×5;36×26×25×35×48×55×125一共有7个因数2,7个因数5;就是一共有7组因数2×5,所以乘积的末尾有7个连续的0.故答案为:7.点评:质因数中有多少组2×5,那么乘积的末尾就有多少个连续的0.【解题方法点拨】(1)一个数的乘积的个位,一般是有规律的,先找出规律即可判断(2)找末尾有几个连续0,先把每个因数质因数分解,有几对2与5相乘末尾就有几个0.同步测试一.选择题(共10小题)1.不笔算,估计下面结果比300大的算式是()A.17.5÷0.5 B.445.1×0.5 C.35.4×11 D.9.8×52.一辆汽车第一小时行了52.7千米,第二小时行了60千米,第三小时行了62.5千米,估计平均每小时行了多少千米.正确的取值范围应()A.在50~52.7之间B.在52.7~60之间C.在62.5~70之间3.用{x}表示数x的小数部分,[x]表示x的整数部分.如{2.3}=0.3,[2.3]=2.若a+[b]=15.3,{a}+b=7.8,则()A.a=7.5,b=8.3 B.a=8.3,b=7.5C.a=8.5,b=7.3 D.a=7.3,b=8.54.设[a]表示不超过a的最大整数,例如[1]=1,[0.1]=0,则[9.7×[4.3]]=()A.36 B.37 C.38 D.395. +++++……的结果()A.比1小B.等于1 C.比1大6.如果甲数×0.35=乙数÷0.3(甲、乙两数均不为0),那么甲数与乙数之间的关系是()A.甲数>乙数B.甲数=乙数C.甲数<乙数7.观察下列等式:3=3,3×3=9,3×3×3=27,3×3×3×3=81,3×3×3×3×3=243,..则3×3×3×3×…×3(共2014个3)的末位数字是()A.3 B.9 C.7 D.18.规定一种新运算“*”,a*b=a b=,例如3*2=32=9,那么()*4=()A.2 B.C.D.89.1250×125×12.5×1.25×8×8×8×8末尾有()个0.A.6 B.8 C.10 D.1210.定义新运算:○与?已知A○B=A+B﹣1,A?B=A×B﹣1.x○(x?4)=30,求x.()A.B.C.二.填空题(共10小题)11.在1,,,,…,中选出若干个数,使得它们的和大于3,至少要选个数.12.求1357111517192÷5232129171513的十分位到千分位的数字为..13.已知S=,那么S的整数部分是14.计算乘积的末尾的个位数字是.15.假设a★b=(a+b)÷a,如:1★2=(1+2)÷1=3,则2★3=.16.规定运算符号&表示:x&y=3x+2y+1,那么&(&1).17.1×3×5×7×……×27×29的积的末尾0.(填“有”或“没有”)18.有五个分数、、、、,按从大到小的顺序排列第四个数是.19.将数,,,用“<”连接起来为:.20.( +++…+)×5的整数部分是.三.判断题(共4小题)21.a×3.5=b×1.4(a、b均不为0),a大于b.(判断对错)22.假设a*b=4×a﹣(a+b)÷2,那么4*6=11.(判断对错)23.□4×□8的积的个位上的数字一定是2.(判断对错)24.1×2×3×4×5×6×7×8×9×10,积的末尾有两个0..(判断对错)四.计算题(共3小题)25.算式计算结果的整数部分是多少?26.定义新运算:已知:a3+b3=(a+b)×(a2﹣ab+b2)a3﹣b3=(a﹣b)×(a2+ab+b2)求:(1)133+73;(2)193﹣9327.计算:已知A=×××…××,B=×××…××,C=,试求A、B、C 三者大小关系.五.解答题(共5小题)28.求32009+22009+12009的个位数.29.规定新运算:a⊕b=a2﹣b,a⊗b=(a+b)(a﹣b),若m是大于10的最小的合数,n是最小的质数,求m⊕(m⊗n)的值.30.a表示两个相邻整数的平均数的平方,b表示这两个相邻整数平方和的平均数,试比较a与b的大小.(数学方法:作差法)31.已知一个小数在3到4之间,a为这个小数的整数部分,b为这个小数的小数部分,且t=3(a+b)+4(1﹣b),则t的整数部分为多少?32.第一个木箱里有303只螺帽,第二个木箱里的螺帽是全部螺帽的,第三个木箱里的螺帽占全部螺帽的(n是整数)问:三个木箱中的螺帽共有多少个?参考答案与试题解析一.选择题(共10小题)1.解:选项A,可按20÷0.5估算,17.5÷0.5≈40;选项B,可按500÷0.5计算,445.1×0.5≈225;选项C,可按40×10进行估算,35.4×11≈400;选项D,可按10×5进行估算,9.8×5≈50.400>300.故选:C.2.解:因为一辆汽车第一小时行了52.7千米,第二小时行了60千米,第三小时行了62.5千米,所以估计平均每小时行了52.7~62.5千米,只有选项B在这个范围.故选:B.3.解:由a+[b]=15.3可知a的小数部分为0.3,所以{a}=0.3;而{a}+b=7.8,则b=7.8﹣0.3=7.5,[b]=7,所以,a=15.3﹣7=8.3.即a=8.3,b=7.5.故选:B.4.解:[9.7×[4.3]]=[9.7×4]=[38.8]=38.故选:C.5.解: +++++……=(1﹣)+(﹣)+(﹣)+(﹣)+(﹣)+……=1﹣+﹣+﹣+﹣+﹣+……=1﹣…,所以比1小;故选:A.6.解:如果甲数×0.35=乙数÷0.3(甲、乙两数均不为0),甲数×0.35<甲数,乙数÷0.3>乙数即乙数<甲数×0.35=乙数÷0.3<甲数,所以乙数<甲数,即甲数>乙数.故选:A.7.解:2014÷4=503 (2)所以和第2个算式的乘积的个位相同,是9.故选:B.8.解:()*4=()4=故选:C.9.解:1250×125×12.5×1.25×8×8×8×8=1250×8×125×8×12.5×8×1.25×8=10000×1000×100×104+3+2+1=10,共有10个0.故选:C.10.解:x○(x?4)=30x○(4x﹣1)=30x+4x﹣1﹣1=305x=32x=.故选:B.二.填空题(共10小题)11.解:1++++…+=1+(+)+,=1+1+,=2+≈2.93;1++++…+=2+≈3.01.所以至少要选11个数.故答案为:11.12.解:1357111517192÷5232129171513≈1357100000000÷5232100000=13571÷52321≈0.259;所以商的十分位到千分位的数字为259;故答案为:259.13.解:分母的加数如果全是,那么结果是=≈71.1如果全是,那么结果是=≈72.07所以71.1<S<72.07应该更接近71.1和72.07的平均数为71.58,于是S的整数部分是71.故答案为:71.14.解:由31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561…,即其乘积的个位数每3、9、7、1四个数为一组进行循环,2016÷4=504,所以乘积的末尾的个位数字是1.故答案为:1.15.解:2★3=(2+3)÷2=5÷2=2.5答:2★3=2.5.故答案为:2.5.16.解: &(&1)=&(3×+2×1+1)=&═3×+2×+1=故答案为:.17.解:根据:奇数乘以奇数结果还是奇数1×3×5×7×……×27×29的积的末尾没有0.故答案为:没有.18.解:因为=、=、=、=,>>>>,所以按从大到小的顺序排列第四个数是.故答案为:.19.解:﹣1==,﹣1==,﹣1=因为<<,所以<<;又因为负数小于一切正数,所以﹣<<<;故答案为:﹣<<<.20.解:( +++…+)×5≈(0.048+0.045+0.043+0.042+0.04+0.038+0.037+0.036+0.034+0.033+0.032+0.031+0.03+0.029+0.029+ 0.028+0.027+0.026+0.026+0.025)×5=0.679×5=3.395答:( +++…+)×5的整数部分是3.故答案为:3.三.判断题(共4小题)21.解:a×3.5=b×1.4(a、b均不为0),因为3.5>1.4,所以a<b;原题说法错误.故答案为:×.22.解:根据a*b=4×a﹣(a+b)÷2,可得4*6=4×4﹣(4+6)÷2=16﹣5=11,所以题中说法正确.故答案为:√.23.解:4×8=32,32的个位上是2;所以□4×□8的积的个位上的数字一定是2.故答案为:√.24.解:由于1×2×3×4×5×6×7×8×9×10中共含有:1+1=2个因数5,则1×2×3×4×5×6×7×8×9×10乘积的末尾有两个0.故答案为:√.四.计算题(共3小题)25.解:因为、……,共10个;=10×=1所以:<所以:<1即其整数部分为0.答:算式计算结果的整数部分是0.26.解:(1)133+73=(13+7)×(132﹣13×7+72)=20×{(13﹣7)×13+49}=20×(6×13+49)=20×(78+49)=20×127=2540(2)193﹣93=(19﹣9)×(192+19×9+92)=10×{(19+9)×19+81}=10×(532+81)=613027.解:A=∧×.B=∧×.比较发现A和B的前49项,A的每一项都比B的每一项小,A的第五十项又小于1,因此得出A<B.C×.得:A<C<B.答:A、B、C三者大小关系为:A<C<B..五.解答题(共5小题)28.解:3n的个位数字以3、9、7、1四个数字一循环,2n的个位数字以2、4、8、6四个数字一循环,2009÷4=502…1,所以32009个位数字是3,22009的个位数字2,而12009的个位数是1,故32009+22009+12009的个位数是3+2+1=6.29.解:根据题意可得,m=12,n=2;m⊕(m⊗n)=12⊕(12⊗2)=12⊕[(12+2)(12﹣2)]=12⊕[14×10]=12⊕140=122﹣140=144﹣140=430.解:设两个相邻整数为n,n+1,则a=()2,b=,所以a﹣b=()2﹣=﹣=﹣﹣<0所以a<b.31.解:已知一个小数在3到4之间,a为这个小数的整数部分,即a=3,b为这个小数的小数部分,即0<b<1,t=3(a+b)+4(1﹣b)=3(3+b)+4(1﹣b)=13﹣b=12+(1﹣b)所以,t的整数部分为12.答:t的整数部分为12.32.解:当n=5时,303÷[1﹣(+)],=303÷,=3535(个);答:这三个木箱的螺帽共有3535个.。
转化单位“1”我们是这样定义单位“1”的:单位“1”也称整体“1”。
把一个完整的量(比如一段路程、一项工程、一筐苹果、一本书、一段时间等)或一个数(正数)视为一个整体或一个单位,并赋予自然数1的特性,可记为“1”。
根据这点我们不难总结出寻找单位“1”的方法: 1、提到“谁”的几分之几,“谁”就是单位“1”比如在语句“乙的21”中,分明说“乙”的21,所以乙是单位1。
2、在比较语句中,比“谁”,“谁”是单位“1”比如在语句“甲比乙大21”中,说的是比“乙”,因此“乙”是单位1。
3、一个带单位的分数量,一个单位就是它的单位“1”比如:语句“21千克”中,量21千克的单位是千克,因此1千克就是该量的单位1。
教学目标知识与技能:使学生理解单位1的概念并判断单位1的量,并能正确、灵活地解答分数乘除法应用题;过程与方法:通过对比练习、归类整理、探讨交流,加深学生对分数三类应用题的数量关系和内在联系的认识,提高学生的分析能力和解答应用题的能力;学会用‘转化单位1的方法解答分数应用题。
灵活应用所学的方法解应用题。
情感、态度与价值观:培养学生比较、分析、归纳、转化的逻辑思维能力,感悟数学的知识魅力。
教学重点:理解分数乘除法应用题的异同点,并能正确解答。
教学难点:归纳总结分数三类应用题的解题方法和规律艺海拾贝*同学们已经在知识的海洋里搜集了五颜六色的贝壳,下面老师展示的这些贝壳你拾到了吗?1、如果甲是乙ab,则乙是甲的 。
2、如果甲是乙的a b ,乙是丙的cd,则甲是丙的 。
3、如果甲的a b 等于乙的c d ,则甲是乙的c d ÷a b =bcad ,乙是甲的 。
既然我们已经理解了单位“1”,现在我们就在例题中具体讲述解决这一类问题的有关方法。
一、找准单位“1”正确找准单位“1”,是解答分数(百分数)应用题的关键,每一道分数应用题中总是有关键句(含有分率的句子)。
如何从关键句中找准单位“1”,可以从以下这些方面进行考虑。
2020年小升初数学专题复习训练—拓展与提高计算(1)知识点复习一.加减法中的巧算【知识点归纳】1、加法交换律:两个数相加交换两个加数的位置,和不变.形如:a+b=b+a2、加法结合律:三个数相加,先把前面两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变.形如:(a+b)+c=a+(b+c)3、减法的运算性质:在减法中,被减数减去若干个减数,可以减去这些减数的和,差不变.形如:a-b-c=a-(b+c)4、以上运算定律、性质同样适用于多个加数或减数的计算中5、添去括号原则:在加减法运算中,如果给加号后面的算式添上或去掉括号,原运算符号不变;如果给减号后面的算式添上或去掉括号,其添上或去掉括号部分的运算符号要改变.即“+”变“-”,“-”变“+”【命题方向】例1:1000+999-998-997+996+…+104+103-102-101=()A、225B、900C、1000D、4000分析:将算式四个分为一组,然后找一下共有几组这样的数,然后根据规律解答.解:1000+999-998-997+996+…+104+103-102-101,=(1000+999-998-997)+(996+995-994-993)+…+(104+103-102-101),=4×225,=900.故选:B.点评:此题也可这样理解:此算式除了1000和后三项103-102-101,其它每四个数字为一组,结果为0,因此此算式的结果为1000+103-102-101=1000+(103-102)-101=1000+1-101=900.例2:899999+89999+8999+899+89分析:四个加数都加1减1,化成整百、整千、整万、…的数,然后再计算;解:①899999+89999+8999+899+89,=(900000-1)+(90000-1)+(9000-1)+(900-1)+(90-1),=999990-5,=999985;点评:考查了简便运算,灵活运用所学的运算律简便计算.【解题方法点拨】加减法的巧算方法有以下几种:1、几个数相加,利用加法的交换律和结合律,将加数中能凑成整十、整百、整千等的一些加数交换左右顺序,先进行结合,然后再与其他的一些加数相加,得出结果.2、在加减法混合算式与连减算式中.运用“减法的运算性质”进行简算,在简算过程中一定要注意,“+”号和“-”号的使用.3、几个相近的数相加,可以选择其中一个数,最好是整十、整百的数为“基准数”,再把大于基准数的数写成基准数与一个数的和,小于基准数的数,写成基准数与一个数的差,将加法改为乘法计算.4、几个数相加减时,如不能直接“凑整”,我们可以利用加整减零,减整加零变更被减数用减数来间接“凑整”.二.乘除法中的巧算【知识点归纳】1.乘法中常用的几个重要式子2×5=10;4×25=100;8×125=1000;4×75=300;4×125=500;2.乘法的几个重要法则(1)去括号和添括号原则在只有乘除运算的算式里,如果括号的前面是“÷”,那么不论是去掉括号或添上括号,括号里面运算符号都要改变,即“×”号变“÷”,“÷”变“×”;如果括号的前面是“×”,那么不论是去掉括号或添上括号,括号里面运算符号都不改变.(2)带符号“搬家”在只有乘除运算的算式里,每个数前面的运算符号是这个数的符号.不论数移动到哪个位置,它前面的运算符号不变.(3)乘法交换律a×b=b×a(4)乘法结合律a×(b×c)=(a×b)×c(5)乘法分配律a×(b+c)=a×b+a×c;a×(b-c)=a×b-a×c(6)逆用乘法分配律a×b+a×c=a×(b+c);a×b-a×c=a×(b-c)3.除法的几个重要法则(1)商不变性质被除数和除数乘以(或除以)同一个非零的数,商不变,即a÷b=(a×n)÷(b×n)(n≠0)a÷b=(a÷m)÷(b÷m)(m≠0)(2)当n个数都除以同一个数后再加减时,可以将它们先加减之后再除以这个数;反之也成立(也可称为除法分配律).如:(a±b)÷c=a÷c±b÷c;a÷c±b÷c=(a±b)÷c.【命题方向】分析:通过观察,把扩内的除法变为分数,再把除法变为乘法,约分计算较简便.=50故答案为:50.点评:仔细观察算式特点,通过转化的数学思想,使复杂的问题简单化.例2:2006×2007200720072007-2007×2006200620062006=0.分析:分析:此算式较长,如果按常规来做,计算量很大,极易出错,因此要寻找简便的算法.把2007200720072007改写成2007×1000100010001,把2006200620062006改写成2007×2006×1000100010001,很容易看出减号前后的算式相同,于是得数为0.解:2006×2007200720072007-2007×2006200620062006,=2006×2007×1000100010001-2007×2006×1000100010001,=0;故答案为:0.点评:此题构思巧妙,新颖别致.要仔细观察,抓住特点,运用所学知识进行数字转化,巧妙解答.【解题方法点拨】1、在除法中,利用商不变的性质巧算,商不变的性质是:被除数和除数同时乘以或除以相同的数(零除外),商不变,利用这个性质巧算,使除数变为整十、整百、整千,再除.2、在乘除混合运算中,乘数和除数都可以带符号“搬家”.3、当n个数都除以同一个数后再加减后,可以将它们先加减之后再除以这个数.4、在乘除混合运算中“去括号”或添“括号”的方法:括号前面是乘号,去掉括号不变号乘号后面添括号,括号里面不变号括号前面是除号,去掉括号要变号除号后面添括号,括号里面要变号注:号指数字前面的运算符号.三.小数的巧算【知识点归纳】知识点:(1)灵活运用小数点的移位:两数相乘,两数中的小数点反向移动相同的位数,其积不变;两数相除,两数中的小数点同向移动相同的位数,其商不变.(2)补数:如果两数的和恰好能凑成10,100,1000,…,那么,就把其中一个数叫做另一个数的补数,且这两个数互为补数.例如:8和2互为补数,27.3和72.7互为补数.(3)某些特殊小数相乘化整,8×0.125=1;4×0.25=1;【命题方向】分析:利用加法交换律和减法的性质进行简算,把原式变为(796.75-96.75)-(4.72+5.28),计算即可.解:796.75-4.72-96.75-5.28,=(796.75-96.75)-(4.72+5.28),=700-10,=690.点评:关于巧算的题目,数字都有一定的特点,所以要注意审题,从数字特点出发,巧妙灵活地应用运算性质、定律得以简算.例2:计算:0.125×0.25×0.5×64=1.分析:根据算式,因0.125、0.25、0.5分别和8、4、2相乘可以得到整十数,所以可把64改写成8×4×2,然后在依据乘法交换律交换因数的位置,然后在进行计算即可得到答案.解:0.125×0.25×0.5×64=0.125×0.25×0.5×(8×4×2),=(0.125×8)(0.25×4)×(0.5×2),=1×1×1,=1.故答案为:1.点评:解答此题的关键是将64改写成8×4×2,然后在依据乘法交换律交换因数的位置,进行计算即可得到答案.【解题方法点拨】小数“巧”算的基本途径还是灵活应用小数四则运算的法则、运算定律,使题目中的数尽可能转化为整数.在某种意义上讲,“化整”是小数运算技巧的灵魂.常见方法(技巧):(1)交换、结合、分配等运算律;(2)加括号或去括号;(3)凑整;(4)找基准数;(5)拆数、(6)分组、(7)等差数列公式,平方差公式等方法.四.分数的巧算【知识点归纳】分数运算符合的定律.(1)乘法交换律a×b=b×a(2)乘法结合律a×(b×c)=(a×b)×c(3)乘法分配律a×(b+c)=a×b+a×c;a×(b-c)=a×b-a×c(4)逆用乘法分配律a×b+a×c=a×(b+c);a×b-a×c=a×(b-c)(5)互为倒数的两个数乘积为1.除法的几个重要法则(1)商不变性质被除数和除数乘以(或除以)同一个非零的数,商不变,即a÷b=(a×n)÷(b×n)(n≠0)a÷b=(a÷m)÷(b÷m)(m≠0)(2)当n个数都除以同一个数后再加减时,可以将它们先加减之后再除以这个数;反之也成立(也可称为除法分配律).如:(a±b)÷c=a÷c±b÷c;a÷c±b÷c=(a±b)÷c.【命题方向】分析:此题如果按部就班地进行计算,计算量可想而知,所以要寻求巧算的方法,此题可利用乘法结合律数化假分数、带分数拆分等方法达到巧算的目的.1、把同分母的分数凑成整数.a.先去括号;b.利用交换律把同分母分数凑在一起;c.利用减法性质把同分母分数凑在一起.2、分数乘法中,利用乘法交换律,交换数的位置,以达到约分的目的;利用乘法结合律,以达到约分的目的,从而简算.3、分数混合运算中有除法,先将除法转化为乘法,然后再利用乘法的分配律的方法来计算以达到凑整的目的.4、懂得拆分.五.四则混合运算中的巧算【知识点归纳】1.运用运算定律.2.商不变的性质:两个数相除,被除数和除数同时扩大(或缩小相同的倍数)商不变.利用这个性质也可以进行一些简便计算.3.从一个数里连续减去几个数,可以先把所有的减数加在一起,再一次减去.4.加数(减数)接近整十、整百、整千、…的可以把这个加数(减数)先看作整十、整百、整千的数进行计算,然后按照“多加要减,少加要加,多减要加,少减要减”的原则进行调整.【命题方向】例1:99999×77778+33333×66666=9999900000.分析:根据算式可将666666改写成3×22222,然后用乘法结合律计算3×33333等于99999,再利用乘法分配律进行计算即可得到答案.解:99999×77778+33333×66666,=99999×77778+33333×(3×22222),=99999×77778+(33333×3)×22222,=99999×77778+99999×22222,=99999×(77778+22222),=99999×100000,=9999900000;故答案为:9999900000.点评:此题主要考查的是乘法结合律和乘法分配律再整数计算中的运算.例2:已知从12+22+…+102=385,那么1×2+2×3+…+10×11=440.分析:先把1×2+2×3+…+10×11进行拆项,变为1×(1+1)+2×(2+1)+3×(3+1)+4×(4+1)+…+10×(10+1),然后把从12+22+…+102=385代入,计算即可.解:1×2+2×3+…+10×11=1×(1+1)+2×(2+1)+3×(3+1)+4×(4+1)+…+10×(10+1)=(12+22+...+102)+(1+2+3+ (10)=385+(1+10)×5=440故答案为:440.点评:把1×2+2×3+…+10×11转化为1×(1+1)+2×(2+1)+3×(3+1)+4×(4+1)+…+10×(10+1),是解答此题的关键.【解题方法点拨】在加减混合运算中,常常利用改变运算顺序进行巧算,其中利用两数互补关系进行凑整巧算、借数凑数巧算、选择合适的数作为基数巧算等,还可以利用加法的交换律和结合律进行巧算.在乘除法的速算与巧算,一条最基本的原则就是“凑整”,要达到“凑整”的目的,就要对一些数分解、变形,再运用乘法的交换律、结合律、分配律以及四则运算中的一些规则,把某数组合到一起,使复杂的计算过程简单化.同步测试一.选择题(共10小题)1.已知a=4322×1233,b=4321×1234;下列结论正确的是()A.a<b B.a=b C.a>b2.++++++…的结果()A.等于1B.小于1C.大于13.算式2007×20082008﹣2008×20072007的正确结果()A.2007B.2008C.1007D.04.9999×1222﹣3333×666的值是多少.()A.9990000B.99990000C.9999900D.99990005.利用排除法,的计算结果应是下面的()A.B.C.D.6.算式82+86+90+94+……+150+154+158的计算结果是()A.4800B.4720C.4560D.24007.与1+3+5+7+9+5+3+1表示相同结果的算式是()A.5+3B.42C.52+32D.52﹣328.已知A=0.96,B=0.3,则A÷B=()A.0.032B.0.32C.3.2D.329.计算:1.1+2.2+3.3+4.4+5.5+6.6+7.7+8.8+9.9=()A.47.5B.48.5C.49.510.×=()A.1B.4C.2017D.8068二.填空题(共8小题)11.552+553+554+555+556+557+558=555×=.12.在1×2×3×4×5×…×99×100的积中,从右边数第20个数字是.13.++++……=;1+3+5+…+21=.14.(1﹣)×(1﹣)×(1﹣)×(1﹣)×(1﹣)×(1﹣)×(1﹣)×(1﹣)=15.根据运算定律,在横线里填入合适的数,使等式成立.67.5×+×1.8=67.5×1016.=.17.计算=.18.计算这组相邻奇数的和,1+3+5+7+9+ (21)三.判断题(共5小题)19.0+1+2+3+4+5+6+7+8+9=0(判断对错)20.÷=4036.(判断对错)21.约分后等于..(判断对错)22.56×99+43×99+99的简便算法是(56+43)×99.(判断对错)23.2.3×0.9÷2.3×0.9=1..(判断对错)四.计算题(共1小题)24.计算.(1)9(2)[22.5+(3+1.8﹣1.21×)]÷40%(3)(4)五.解答题(共6小题)25.数20082008×2009与数20092009×2008相差多少?为什么?26.填上合适的数.(1)101+102+103+104+105+106+107=×=.(2)是2个27.A=301 B=5求A+B,B﹣A,A×B的值.28.“数形结合”是一种数学思想方法,通过数与形之间的对应关系,体现抽象思维与形象思维的结合.下面的图形表示不同的算理,请你把图形与对应的算式用线连起来.29.和13+23+33+…+20033+20043的个位数是多少?30.你能很快说出下面两个算式哪个得数大吗?1+2+3+4+5+6+7+8+9+01×2×3×4×5×6×7×8×9×0参考答案与试题解析一.选择题(共10小题)1.【分析】分别把4322变成(4321+1),1234变成(1233+1),再根据乘法分配律,进行运算,据此解答.【解答】解:a=4322×1233=(4321+1)×1233=4321×1233+1233b=4321×1234=4321×(1233+1)=4321×1233+43214321×1233+1233<4321×1233+4321,故选:A.【点评】本题考查了学生灵活运用乘法分配律的能力.2.【分析】根据极限思想,通过观察发现,前一个分数是后一个分数的2倍,可把每个分数拆分为两个分数相减的形式,通过加减相互抵消,求得结果.【解答】解:++++++…=1﹣+﹣+﹣+﹣+﹣+﹣+…=1﹣+…=1.故选:A.【点评】根据分数特点,通过合理拆分,进行简算.3.【分析】此题数字较大,若按常规来做,计算量较大,并容易出错,所以仔细观察,并经过试探,把原式变为2007×(2008×10001)﹣2008×(2007×10001),这样计算比较简便.【解答】解:2007×20082008﹣2008×20072007,=2007×(2008×10001)﹣2008×(2007×10001),=2007×2008×10001﹣2007×2008×10001,=0.故选:D.【点评】此题构思巧妙,新颖别致.要仔细观察,抓住数字特点,进行巧妙解答.4.【分析】根据数字特点,把原式变为3333×3×1222﹣3333×666,运用乘法分配律简算.【解答】解:9999×1222﹣3333×666,=3333×3×1222﹣3333×666,=3333×(3×1222﹣666),=3333×3000,=9999000.故选:D.【点评】仔细审题,根据数字特点,进行数字转化,运用所学定律灵活解答.5.【分析】分母:7×9=63,个位为3,所以B选项可以直接排除;另外,两个分数都是真分数,所以,积也应该是真分数,所以,C、D选项错误;所以本题应该选A.【解答】解:根据两个分数的特点:两个真分数相乘的积一定是真分数,所以选项B、C、D都是错误的.本题应该选A.故选:A.【点评】本题主要考查分数的巧算,关键根据真分数相乘的积的规律来做题.6.【分析】根据题意,应用凑整法即82+158=86+154+…即共有10项的和是240,进而解决问题.【解答】解:82+86+90+94+…+150+154+158=(82+158)×[(158﹣82)÷(86﹣82)+1]÷2=240×[76÷4+1]÷2=240×[19+1]÷2=240×20÷2=4800÷2=2400故选:D.【点评】解决此题的关键是求出首尾相加和相等的式子的个数.7.【分析】根据高斯求和公式得到1+3+5+7+9+5+3+1的结果,再分别计算各个选项中算式的结果,依此即可求解.【解答】解:1+3+5+7+9+5+3+1=(1+9)×5÷2+(5+1)×3÷2=25+9=345+3=842=1652+32=25+9=3452﹣32=25﹣9=16故与1+3+5+7+9+5+3+1表示相同结果的算式是选项C.故选:C.【点评】考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算定律简便计算.8.【分析】在除法里,被除数和除数同时扩大或缩小相同的倍数(0除外),商不变,所以把A、B的小数点同时向右移动2016位,求出A÷B的值是多少即可.【解答】解:A÷B=0.96÷0.3=96÷300=0.32故选:B.【点评】此题主要考查了乘除法中的巧算问题,要熟练掌握,注意商不变的性质的应用.9.【分析】因为每一项都含有1.1,因此原式变为(1+2+3+4+5+6+7+8+9)×1.1,括号内运用分组的方法,或用高斯求和公式求出结果,原式变为45×1.1,进一步计算即可.【解答】解:1.1+2.2+3.3+4.4+5.5+6.6+7.7+8.8+9.9=(1+2+3+4+5+6+7+8+9)×1.1=[(1+9)+(2+8)+(3+7)+(4+6)+5]×1.1=(10+10+10+10+5)×1.1=45×1.1=49.5故选:C.【点评】仔细观察题目中数字构成的特点和规律,运用运算定律或运算技巧,进行简便计算.10.【分析】用2017个0.25乘2017个4得2017个1相乘,2017个1相乘,积等于1,再用1乘一个4即可解答.【解答】解:×=×4=×4=1×4=4故选:B.【点评】关于巧算的题目,数字都有一定的特点,所以要注意审题,从数字特点出发,巧妙灵活地应用运算性质、定律得以简算.二.填空题(共8小题)11.【分析】根据552+558=553+557=554+556=1110=555×2,可得552+553+554+555+556+557+558的和相当于7个555的和,所以552+553+554+555+556+557+558=555×7=3885,据此解答即可.【解答】解:552+553+554+555+556+557+558=555×7=3885.故答案为:7、3885.【点评】此题主要考查了四则混合运算中的巧算问题,要熟练掌握,解答此题的关键是判断出552+558=553+557=554+556=1110=555×2.12.【分析】要知道,这个乘积的结果最后是许多0,只须计算有多少个0,这个问题也就解决了.在1﹣﹣100中,能被5整除的有100÷5=20(个),能被25整除的有100÷25=4(个),而能被2整除的至少有100÷2=50(个),一个2与一个5相乘,结果就会在后面多一个0,所以1×2×3×…×99×100 的最后有20+4=24个0,那么从右边数第20个数字肯定是0.【解答】解:在1﹣﹣100中,能被5整除的有100÷5=20(个),能被25整除的有100÷25=4(个),而能被2整除的至少有100÷2=50(个),一个2与一个5相乘,结果就会在后面多一个0,所以1×2×3×…×99×100 的最后有20+4=24个0,那么从右边数第20个数字肯定是0.故答案为:0.【点评】此题解答的但关键是推出这个乘积的结果最后有多少个0.13.【分析】(1)根据分数的拆项公式进行简算;(2)首项判断出1、3、5、7、…、17、19、21构成了以1为首项,以2为公差的等差数列,项数为11;然后根据等差数列的前n项和=(首项+末项)×项数÷2,用1加上21,求出首项和末项的和是多少,再用所得的和乘以项数,再除以2,求出算式1+3+5+…+21的值是多少即可.【解答】解:(1)++++……=……=2×(+……)=2×(+﹣+……)=2×=1(2)1+3+5+…+21=(1+21)×()÷2=22×11÷2=121.故答案为:1;121.【点评】此题主要考查了分数的拆项公式和等差数列的求和方法,要熟练掌握,解答此题的关键是要明确:等差数列的前n项和=(首项+末项)×项数÷2.14.【分析】根据题意,先计算括号内的减法,再约分最后算出乘积即可.【解答】解:(1﹣)×(1﹣)×(1﹣)×(1﹣)×(1﹣)×(1﹣)×(1﹣)×(1﹣)=××××=故答案为:.【点评】解决此题的关键是先计算括号内的减法,再约分,最后算出乘积.15.【分析】乘法分配律的概念为:两个数的和乘另一个数,等于把这个数分别同两个加数相乘,再把两个积相加,得数不变,用字母表示:(a+b)c=ac+bc.【解答】解:因为10﹣1.8=8.2所以,67.5×8.2+67.5×1.8=67.5×10故答案为:8.2;67.5.【点评】本题利用具体的算式考查了学生对于乘法分配律的理解.16.【分析】根据运算顺序,先算小括号内的乘法和除法,再算加法,最后算外面的除法.【解答】解:=(×+)÷=×=4故答案为:4.【点评】计算四则混合运算时,要注意按照运算顺序计算;不要错用运算定律.17.【分析】根据商不变的规律,把中的被除数和除数的小数点同时向右移动2020位,则原来算式变成2.012÷4,2.012÷4=0.503,所以原来算式的得数也是0.503.【解答】解:=2.012÷4=0.503故答案为:0.503.【点评】本题考查了商不变的规律,被除数和除数同时扩大或缩小相同的倍数(0除外),商不变.18.【分析】根据等差数列求和公式S=(首项+尾项)×个数÷2,代入数据计算即可求解.【解答】解:1+3+5+7+9+……+21=(1+21)×11÷2=121故答案为:121.【点评】考查了加减法中的巧算,关键是熟练掌握等差数列的求和公式.三.判断题(共5小题)19.【分析】根据高斯公式计算即可求解.【解答】解:0+1+2+3+4+5+6+7+8+9=(0+9)×5=9×5=45.故答案为:×.【点评】考查了整数的加法,注意灵活运用运算定律简便计算.20.【分析】根据题意可知,将被除数和除数的小数点同时向右移动8位,变成整数除法再计算.【解答】解:÷═2.018÷5=0.4036原题计算错误.故答案为:×.【点评】本题考查了利用商不变规律进行计算的方法,注意被除数和除数要同时乘或除以相同的数(0除外),商才不变.21.【分析】根据乘法的分配律把分数的分子和分母变形,然后约分化成最简分数,看得数是否等于即可判断.【解答】解:===所以,所以原题说法正确.故答案为:√.【点评】本题关键是根据乘法的分配律把分数的分子和分母变形.22.【分析】56×99+43×99+99把最后一个99分解成99×1,再根据乘法分配律简算,由此判断.【解答】解:56×99+43×99+99=(56+43+1)×99=100×99=9900(56+43+1)×99≠(56+43)×99原题计算错误.故答案为:×.【点评】乘法分配律是最常用的简便运算的方法,要熟练掌握,灵活运用.23.【分析】根据乘法的交换律简算,然后按从左到右的运算顺序解答即可.【解答】解:2.3×0.9÷2.3×0.9=2.3÷2.3×0.9×0.9=1×0.9×0.9=0.81≠1故答案为:×.【点评】此题考查了学生对小数四则混合运算题的计算能力,以及灵活巧算的能力.四.计算题(共1小题)24.【分析】(1)根据乘法分配律进行简算;(2)把分数化成小数,根据四则混合运算的运算顺序计算即可:先算乘除,再算加减,有括号的要先算括号里面的,同级运算按从左到右的顺序计算.(3)利用乘法分配律对进行变形,化为+×(×+),然后按照四则混合运算的运算顺序计算即可.(4)把分子和分母分别进行计算化简求解.【解答】解:(1)9×4.75+4×=4×(9+)=4×10=47(2)[22.5+(3+1.8﹣1.21×)]÷40%=[22.5+(3.6+1.8﹣0.55)]÷0.4=[22.5+4.85]÷0.4=27.35÷0.4=68.375(3)×+×+×3=+×(×+)=+×=+==(4)===2【点评】考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算定律进行简便计算.五.解答题(共6小题)25.【分析】根据题意,利用拆分思想,20082008×2009=2008×10001×2009;20092009×2008=2009×10001×2008,所以:20082008×2009﹣20092009×2008=2008×10001×2009﹣2008×10001×2009=0.【解答】解:20082008×2009=2008×10001×2009;20092009×2008=2009×10001×2008;所以:20082008×2009﹣20092009×2008=0答:数20082008×2009与数20092009×2008相差0.【点评】本题主要考查乘除法中的巧算,关键利用拆分思想解题.26.【分析】根据题意:(1)101+102+103+104+105+106+107,可以将101+107看作104×2,102+106=104×2,103+105=104×2,即一共有7个104,即104×7,进而完成填空.(2)阴影部分的面积可以用分数表示为:,即有两个,进而完成填空即可.【解答】解:(1)101+102+103+104+105+106+107=104×7=728.(2)是2个.故答案为:104,7,728;,.【点评】此题重点考查分数的应用以及分数单位的应用.27.(北京市第一实验小学学业考)【分析】根据A=301 B=5,可得:A、B分别是十位小数、八位小数,据此分别求出A+B,B﹣A,A×B的值是多少即可.【解答】解:因为A=301 B=5,所以A+B=301+5=801B﹣A=5﹣301=199A×B=301×5=1505【点评】此题主要考查了小数的巧算,要熟练掌握,解答此题的关键是注意小数的位数.28.【分析】根据图形表示不同的算理,可知第1个图形是后面的数是前面数的,再把它们相加;第2个图形是后面的数是前面数的,再把它们相加;第3个图形是后面的数是前面数的,再把它们相加;根据图形由分数的意义可得和,再把图形与对应的算式用线连起来即可求解.【解答】解:根据分析连线如下:【点评】考查了分数巧算,本题关键是熟练掌握“数形结合”的数学思想方法.29.【分析】从1开始的自然数的立方和公式:[n(n+1)÷2]2,由此公式求得原式=20291052,很容易看出个位数是5.据此解答.【解答】解:13+23+33+…+20033+20043=[2014×(2014+1)÷2]2=[1007×2015]2=20291052因此,个位数字为5.【点评】此题解答的关键在于运用公式:[n(n+1)÷2]2,表示出原式的和,进而解决问题.30.【分析】根据0 在四则运算中的特性,任何数加0还等于原数,0乘任何数都得0.由此得:1+2+3+4+5+6+7+8+9+0=45;1×2×3×4×5×6×7×8×9×0=0;据此解答.【解答】解:因为,1+2+3+4+5+6+7+8+9+0=45;1×2×3×4×5×6×7×8×9×0=0;所以,1+2+3+4+5+6+7+8+9+0比1×2×3×4×5×6×7×8×9×0的得数大.【点评】此题考查的目的是理解掌握0 在四则运算中的特性及应用.。
小升初数学总复习知识总结之单位换算方法单位换算是数学中非常重要的一个知识点,能够帮助我们在日常生活
和学习中进行各种不同单位之间的转换。
下面是小升初数学总复习知识总
结之单位换算方法。
一、长度单位换算
1. 厘米(cm)、分米(dm)、米(m)之间的换算关系为:1m=100cm,1m=10dm,1dm=10cm。
2. 千米(km)、米(m)之间的换算关系为:1km=1000m。
二、重量单位换算
1. 克(g)、千克(kg)、吨(t)之间的换算关系为:1kg=1000g,
1t=1000kg。
三、时间单位换算
1. 秒(s)、分(min)、小时(h)之间的换算关系为:1h=60min,
1min=60s。
四、面积单位换算
五、体积单位换算
1. 毫升(ml)、立方厘米(cm³)之间的换算关系为:1ml=1cm³。
六、温度单位换算
1.摄氏度(℃)和华氏度(℉)之间的换算关系为:℃=(℉-32)
/1.8,℉=℃*1.8+32
七、速度单位换算
1. 速度的单位可以用米/秒(m/s)、千米/小时(km/h)表示。
2. 速度的换算关系为:1m/s=
3.6km/h。
八、货币单位换算
1.中国人民币(CNY)和美元(USD)之间的换算关系为:
1CNY=0.14USD,1USD=7CNY。
九、容量单位换算
1. 厘升(cl)、毫升(ml)、升(L)之间的换算关系为:
1L=1000ml,1L=100cl,1cl=10ml。
十、功力单位换算
1.瓦(W)、千瓦(kW)之间的换算关系为:1kW=1000W。
小升初数学专项复习之单位换算
常用单位换算:
1.长度单位换算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
2.面积单位换算
1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
3.体(容)积单位换算
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升
1立方厘米=1毫升 1立方米=1000升
4.重量单位换算
1吨=1000 千克 1千克=1000克 1千克=1公斤
5.人民币单位换算
1元=10角 1角=10分 1元=100分
6.时间单位换算
1世纪=100年 1年=12月大月(31天)有:135781012月小月(30天)的
有:46911月
平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天 1日=24小时
1时=60分 1分=60秒 1时=3600秒
【小升初数学专项复习之单位换算】
1。
转化单位“1”(一)
【知识、方法梳理】
把例外的数量当作单位“1”,得到的分率可以在一定的条件下转化。
如果甲是乙的a/b,乙是丙的c/d,则甲是丙的ac/bd;如果甲是乙的a/b,则乙是甲的b/a;如果甲的a/b等于乙的c/d,则甲是乙的c/d÷a/b=bc/ad,乙是甲的a/b÷a/b=ad/bc。
我们必须重视转化训练。
通过转化训练,既可理解数量关系的实质,又可拓展我们的解题思路,提高我们的思维能力。
【典例精讲】
【例题1】乙数是甲数的,丙数是乙数的,丙数是甲数的几分之几?×=
练习1:
1.乙数是甲数的,丙数是乙数的,丙数是甲数的几分之几?2.一根管子,第一次截去全长的,第二次截去余下的,两次共截去全长的几分之几?
3.一个旅客从甲城坐火车到乙城,火车行了全程的一半时旅客睡着了。
他醒来时,发现剩下的路程是他睡着前所行路程的。
想一想,剩下的路程是全程的几分之几?他睡着时火车行了全程的几分之几?
【例题2】修一条8000米的水渠,第一周修了全长的,第二周修的相当于第一周的,第二周修了多少米?
解一:8000××=1600(米)
解二:8000×(×)=1600(米)
答:第二周修了1600米。
练习2:用两种方法解答下面各题:
1.一堆黄沙30吨,第一次用去总数的,第二次用去的是第一次的1又倍,第二次用去黄沙多少吨?
2.大象可活80年,马的寿命是大象的,长颈鹿的寿命是马的,长颈鹿可活多少年?
3.仓库里有化肥30吨,第一次取出总数的,第二次取出余下的,第二次取出多少吨?
【例题3】晶晶三天看完一本书,第一天看了全书的,第二天看了余下的,第二天比第一天多看了15页,这本书共有多少页?
解:15÷【(1-)×-】=300(页)
答:这本书有300页。
练习3:
1.有一批货物,第一天运了这批货物的,第二天运的是第一天的,还剩90吨没有运。
这批货物有多少吨?
2.修路队在一条公路上施工。
第一天修了这条公路的,第二天修了余下的,已知这两天共修路1200米,这条公路全长多少米?
3.加工一批零件,甲先加工了这批零件的,接着乙加工了余下的。
已知乙加工的个数比甲少200个,这批零件共有多少个?
【例题4】男生人数是女生人数的,女生人数是男生人数的几分之几?解:把女生人数看作单位“1”。
1÷=
把男生人数看作单位“1”。
5÷4=
练习4:
1.停车场里有小汽车的辆数是大汽车的,大汽车的辆数是小汽车的几分之几?
2.如果山羊的只数是绵羊的,那么绵羊的只数是山羊的几分之几?3.如果花布的单价是白布的1又倍,则白布的单价是花布的几分之几?
【例题5】甲数的等于乙数的,甲数是乙数的几分之几,乙数是甲数的几倍?
解:÷=÷=1又
答:甲数是乙数的,乙数是甲数的1又。
练习5:
1.甲数的于乙数的,甲数是乙数的几分之几?乙数是甲数的几分之几?
2.甲数的1又倍等于乙数的,甲数是乙数的几分之几?乙数是甲乙两数和的几分之几?
3.甲数是丙数的,乙数是丙数的,甲数是乙数的几分之几?乙数是甲数的几分之几?(想一想:这题与第一题有什么例外?)
【例题6】甲数是乙数的,乙数是丙数的,甲、乙、丙的和是216,甲、乙、丙各是多少?
解法一:把丙数看所单位“1”那么甲数就是丙数的×=,丙:216÷(×)=96乙:96×=72甲:72×=48解法二:可将“乙数是丙数的”转化成“丙数是乙数的”,把乙数看作单位“1”。
乙:216÷()=72甲:72×=48丙:72÷=96
解法三:将条件“甲数是乙数的”转化为“乙数是甲数的”,再将条件“乙数是丙数的”转化为“丙数是乙数的”,以甲数为单位“1”。
甲:216÷(×)=48乙:48×=72丙:72×=96答:甲数是48,乙数是72,丙数是96。
练习1:下面各题怎样计算简易就怎样计算:
1.甲数是乙数的,乙数是丙数的,甲、乙、丙三个数的和是152,甲、乙、丙三个数各是多少?
2.橘子的千克数是苹果的,香蕉的千克数是橘子的,香蕉和苹果共有220千克,橘子有多少千克?
3.某中学的初中部三个年级中,初一的学生数是初二学生数的,初二的学生数是初三学生数的1又倍,这个学校里初三的学生数占初中部学生数的几分之几?
【例题7】红、黄、蓝气球共有62只,其中红气球的等于黄气球的,蓝气球有24只,红气球和黄气球各有多少只?
解法一:将条件“红气球的等于黄气球的”转化为“黄气球的只数是红气球的(÷)=”。
先求红气球的只数,再求出黄气球的只数。
红气球:(62-24)÷(÷)=20(只)黄气球:62-24-20=18(只)
解法二:将条件“红气球的等于黄气球的”转化为“红气球的只数是黄气球的(÷)=”。
先求黄气球的只数,再求出红气球的只数。
黄气球:(62-24)÷(÷)=18(只)红气球:62-24-18=20(只)
答:红气球有20只,黄气球有18只。
练习2:
1.甲数的等于乙数的,甲、乙两数的和是162,甲、乙两数各是多少?
2.今年8月份,甲所得的奖金比乙少200元,甲得的奖金的凑巧是乙得奖金的,甲、乙两人各得奖金多少元?
3.商店运来香蕉、苹果和梨子共900千克,香蕉重量的等于苹果重量的,梨子的重量是200千克。
香蕉和苹果各多少千克?
【例题8】已知甲校学生数是乙校学生数的,甲校的女生数是甲校学生数的,乙校的男生数是乙校学生数的,那么两校女生总数占两校学生总数的几分之几?
解法一:把乙校学生数看作单位“1”。
【×(1-)】÷()=
解法二:把甲校学生数看作单位“1”。
(-×)÷()=
答:甲、乙两校女生总数占两校学生总数的。
练习3:
1.在一座城市中,中学生数是居民的,大学生是中学生数的,那么占大学生总数的的理工科大学生是居民数的几分之几?
2.某人在一次选举中,需的选票才能当选,计算的选票后,他得到的选票已达到当选票数的,他还要得到剩下选票的几分之几才能当选?3.某校有的学生是男生,男生的想当医生,全校想当医生的学生的是男生,那么全校女生的几分之几想当医生?
【例题9】仓库里的大米和面粉共有2000袋。
大米运走,面粉运作后,仓库里剩下大米和面粉凑巧相等。
原来大米和面粉各有多少袋?
解法一:将大米的袋数看作单位“1”
(1-)÷(1-)=÷()=1200(袋)2000-1200=800(袋)
解法二:将面粉的袋数看作单位“1”
(1-)÷(1-)=÷()=800(袋)2000-800=1200(袋)
答:大米原有1200袋,面粉原有800袋。
练习4:
1.甲、乙两人各准备加工零件若干个,当甲完成自己的、乙完成自己的时,两人所剩零件数量相等,已知甲比乙多做了70个,甲、乙两人各准备加工多少个零件?
2.一批水果四天卖完。
第一天卖出180千克,第二天卖出余下的,第
三、四天共卖出这批水果的一半,这批水果有多少千克?
3.甲、乙两人合打一篇书稿,共有10500字。
如果甲增加他的任务的20%,乙减少他的任务的20%,那么甲打的字数就是乙的2倍,问两人原来的任务各是多少?
【例题10】400名学生参加植树活动,计划每个男生植树20棵,每个女生植树15棵。
除抽出25%的男生搞卫生外,其他的同学都按计划完成了植树任务。
问共植树多少棵?
解:20×(1-25%)×400
=20×0.75×400
=6000(棵)
答:共植树6000棵。
练习5:
1.有一块菜地和一块麦地,菜地的一半和麦地的放在一起是13公顷,麦地的一半和菜地的放在一起是12公顷,那么,菜地有多少公顷?2.师徒两人加工同样多的零件,师傅要10分钟,徒弟要18分钟。
两人共同加工零件168个,如果要在相同的时间内完成,两人各应加工零件多少个?3.有5元和2元的人民币若干张,其金额之比为15:4。
如果5元人民币减少6张,则两种人民币的张数相等。
求原来两种人民币的张数各是多少?。