初二数学最新教案-八年级数学分式方程6 精品
- 格式:doc
- 大小:117.18 KB
- 文档页数:4
新北师大版八年级数学下册第5章《分式与分式方程》教案教学目标学习分式及分式的概念、性质和运算法则,并掌握简单分式的变形和分式方程的解法。
教学重难点重点•分式的概念、性质和运算法则•分式的变形•分式方程的解法难点•分式方程的解法教学过程导入(10分钟)1.调查课前练习,询问学生对分式的了解和学习情况。
2.引入分式的概念,让学生举例说明分式的实际应用。
提高课堂参与度(10分钟)1.通过多项式的例子,引入分式。
2.分小组讨论分式与多项式的联系和区别,并展示讨论成果。
理论课(30分钟)1.分式的定义和性质。
2.分式的约分、通分和加减法。
3.分式与整式的加减法。
实践课(50分钟)1.分式的变形:分解、合并及简化。
2.分式方程的概念及解法。
3.通过实例让学生掌握分式方程的解法。
课堂总结(10分钟)1.小结本节课的重点内容。
2.引导学生对本节课的学习成果进行分享。
作业布置1.抄写本节课的重点内容以及实例。
2.完成课后练习。
教学方法1.演示法2.分组讨论3.实践操作4.个别指导教学资源1.教材:新北师大版八年级数学下册2.PPT:分式与分式方程参考文献1.《初中数学》2.《分式与分式方程教育同行》教学反思本节课通过实例和讨论等方式,激发了学生的学习兴趣,真正意义上实现了知识与实践相结合。
在教学过程中,我进一步提高了自己的教学能力,尤其是关注学生的理解进程,帮助学生掌握分式方程的解法,提高其数学素养。
八年级数学下册分式方程教案一、教学目标:1. 让学生理解分式方程的定义及其表示方法。
2. 培养学生解决实际问题,提高学生运用分式方程解决实际问题的能力。
3. 培养学生独立思考、合作交流的能力,提高学生的数学素养。
二、教学重点与难点:重点:理解分式方程的定义及其表示方法。
难点:解决实际问题,运用分式方程求解。
三、教学准备:1. 教师准备PPT,展示分式方程的定义、表示方法及求解步骤。
2. 准备一些实际问题,用于引导学生运用分式方程解决。
四、教学过程:1. 导入:通过复习分数的概念,引导学生思考分数与方程的关系,从而引入分式方程。
2. 讲解:a. 讲解分式方程的定义:含未知数的分数方程叫分式方程。
b. 讲解分式方程的表示方法:一般形式为\( \frac{A}{B} = \frac{C}{D} \),其中A、B、C、D为表达式,且B、D不为0。
c. 讲解求解分式方程的步骤:i. 去分母:将分式方程两边同乘以B和D的最小公倍数。
ii. 去括号:根据分配律,去掉方程中的括号。
iii. 移项:将未知数项移至方程的一边,常数项移至方程的另一边。
iv. 合并同类项:将方程中的同类项合并。
v. 求解:解得未知数的值。
3. 练习:让学生独立解决PPT上展示的一些简单分式方程问题,教师进行个别指导。
4. 应用:让学生分组讨论,合作解决一些实际问题,运用分式方程求解。
5. 总结:对本节课的内容进行总结,强调分式方程的定义、表示方法和求解步骤。
五、课后作业:1. 请完成PPT上的练习题。
2. 请选择一道实际问题,运用分式方程解决,并将解题过程写下来。
3. 预习下一节课的内容。
六、教学拓展:1. 引导学生思考分式方程在实际生活中的应用,例如:比例问题、利润问题等。
2. 引导学生探讨分式方程与其他类型方程的关系,例如:一元一次方程、一元二次方程等。
七、教学评估:1. 通过课堂练习和课后作业,评估学生对分式方程的理解和运用能力。
人教版八年级上册数学《分式方程》(优质教案)一. 教材分析人教版八年级上册数学《分式方程》这一章节是在学生已经掌握了分式的基础知识,如分式的概念、分式的运算等基础上进行讲解的。
本章主要内容是让学生了解分式方程的定义、解法以及应用。
通过本章的学习,学生应能理解分式方程的概念,掌握解分式方程的基本方法,并能够将分式方程应用于解决实际问题。
二. 学情分析学生在学习本章内容之前,已经掌握了分式的基本知识,具备了一定的逻辑思维能力和问题解决能力。
但学生在解分式方程时,可能会遇到理解上的困难,如分式方程的转化、求解过程中的运算等。
因此,在教学过程中,教师需要关注学生的学习情况,及时进行引导和帮助。
三. 教学目标1.了解分式方程的定义,理解分式方程与一般方程的区别。
2.掌握解分式方程的基本方法,能够熟练地求解分式方程。
3.能够将分式方程应用于解决实际问题,提高解决实际问题的能力。
四. 教学重难点1.分式方程的定义及其与一般方程的区别。
2.分式方程的解法及其应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索,从而掌握分式方程的知识;通过案例分析,让学生了解分式方程在实际问题中的应用;通过小组合作学习,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.教学PPT:制作有关分式方程的PPT,内容包括:分式方程的定义、解法及应用。
2.案例材料:收集一些实际问题,用于教学过程中的案例分析。
3.练习题:准备一些分式方程的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)利用PPT展示分式方程的定义,引导学生思考:什么是分式方程?分式方程与一般方程有什么区别?2.呈现(15分钟)通过PPT呈现分式方程的解法,主要包括:去分母、去括号、移项、合并同类项、化简等步骤。
同时,结合实际问题,让学生了解分式方程在生活中的应用。
3.操练(15分钟)让学生独立完成PPT上的练习题,教师巡回指导,解答学生的疑问。
八年级数学教案之分式方程一、教学目标1. 让学生理解分式方程的定义及其特点。
2. 培养学生掌握解分式方程的基本方法。
3. 提高学生运用分式方程解决实际问题的能力。
二、教学内容1. 分式方程的定义及例题解析。
2. 分式方程的解法及步骤。
3. 分式方程在实际问题中的应用。
三、教学过程1. 引入:通过复习分数和代数方程的知识,引导学生过渡到分式方程的学习。
2. 讲解:讲解分式方程的定义,分析其特点,举例说明分式方程的解法及步骤。
3. 练习:让学生独立解决一些简单的分式方程,巩固所学知识。
4. 应用:选取一些实际问题,让学生运用分式方程进行解答。
四、教学方法1. 采用讲解法,讲解分式方程的定义、解法及应用。
2. 运用示例法,展示分式方程的解题过程。
3. 运用练习法,让学生通过独立练习巩固知识。
4. 运用情境教学法,选取实际问题,培养学生的应用能力。
五、教学评价1. 课堂练习:检查学生对分式方程知识的掌握程度。
2. 课后作业:布置一些分式方程题目,检验学生的学习效果。
3. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评估学生的学习积极性。
六、教学拓展1. 讲解分式方程的变形技巧,如去分母、去括号等。
2. 引导学生探索分式方程的解与系数的关系。
3. 介绍分式方程在数学竞赛中的应用。
七、课堂小结2. 强调分式方程在实际问题中的应用价值。
八、课后作业1. 完成教材上的相关练习题。
2. 选取一道实际问题,运用分式方程进行解答。
九、教学反思2. 根据学生的反馈,调整教学策略,提高教学效果。
十、教学延伸1. 讲解分式方程的进一步拓展知识,如高次方程、多变量方程等。
2. 引导学生研究分式方程与函数的关系。
3. 推荐一些分式方程相关的学习资源,鼓励学生自主学习。
重点和难点解析一、教学目标补充和说明:在教学过程中,要让学生充分理解分式方程的概念,掌握其与整式方程的区别。
要引导学生掌握解分式方程的基本方法,如去分母、移项、合并同类项等。
初中数学《分式》优秀教案〔通用12篇〕篇1:初中数学分式教案初中分式教案初中数学分式教学反思经历了三周多的学习,学生已根本掌握了分式的有关知识(分式的概念、分式的根本性质、约分、通分、分式的运算、分式方程和能化为一元一次方程的分式方程的应用题等),并且获得了学习代数知识的常用方法,感受到代数学习的实际应用价值。
但是,“分式运算”教学中,学生在课堂上感觉不差,做作业或测试时却错处百出,尤其在分式的混合运算更是出错多、空白多、究其根,均属于运算才能问题,因此在教学中应特别关注这一深层根,并根据学生的实际情况寻找相应对策。
下面是我在教学中的几点体会:一、教学中的发现1、本章可以让学生通过观察、类比、猜测、尝试等活动学习分式的运算法那么,开展他们的合情推理才能,所以教学时重点应放在对法那么的探究过程上。
一定要让学生充分活动起来。
在观察、类比、猜测、尝试当一系列思想活动中发现法那么、理解法那么、应用法那么,同时还要关注学生对算理的理解,以培养学生的代数表达才能、运算才能和有理的考虑问题才能。
可是我在知识的传授上并没有注重探究、类比法那么,而重在对分式四那么运算法那么的运用和分式方程的运用上,没有抓住教学的关键环节恰当的选择教学方法。
今后要防止类似事情的发生。
2、问题(1) 分式的运算错的较多。
分式加减法主要是当分子是屡次式时,假如不把分子这个整体用括号括上,容易出现符号和结果的错误。
所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。
其次,分式概念运算应按照先乘方、再乘除,最后进展加减运算的顺序进展计算,有括号先做括号里面的。
(2)分式方程也是错误重灾区。
一是增根定义模糊,对此,我对增根的概念进展深化浅出的阐述,⑴增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;⑵增根能使最简公分母等于0;二是解分式方程的步骤不标准,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的形式中跳出来;(3)列分式方程错误百出。
人教版数学八年级上册教学设计15.3《分式方程》一. 教材分析《分式方程》是人教版数学八年级上册的教学内容,本节课主要让学生掌握分式方程的定义、解法以及应用。
通过学习,学生能够理解和掌握分式方程的概念,能够熟练运用解法求解分式方程,并能够将分式方程应用于实际问题中。
二. 学情分析学生在七年级时已经学习了分式的相关知识,对分式的概念、性质和运算有一定的了解。
但是,对于分式方程的概念和解法,学生可能还没有完全掌握。
因此,在教学过程中,需要引导学生复习和巩固分式的知识,并通过例题和练习题帮助学生理解和掌握分式方程的解法。
三. 教学目标1.理解分式方程的定义,掌握分式方程的解法。
2.能够将分式方程应用于实际问题中,提高解决问题的能力。
3.培养学生的逻辑思维能力和运算能力。
四. 教学重难点1.分式方程的定义和解法。
2.将分式方程应用于实际问题中。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过提出问题,引导学生思考和探索;通过案例分析和练习题,让学生理解和掌握分式方程的解法;通过小组合作学习,培养学生的合作意识和团队精神。
六. 教学准备1.PPT课件。
2.练习题和案例。
3.黑板和粉笔。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生复习和巩固分式的知识。
例如:“我们已经学习了分式的哪些知识?分式有哪些性质和运算规则?”2.呈现(15分钟)通过PPT课件展示分式方程的定义和解法,让学生理解和掌握。
同时,通过案例教学法,让学生了解分式方程在实际问题中的应用。
3.操练(15分钟)让学生分组合作,解决一些简单的分式方程问题。
教师巡回指导,解答学生的问题,并给予鼓励和表扬。
4.巩固(10分钟)让学生独立完成一些分式方程的练习题,巩固所学知识。
教师选取部分题目进行讲解和分析,解答学生的问题。
5.拓展(10分钟)让学生思考和探索分式方程在实际问题中的应用,提出一些实际问题,引导学生运用分式方程进行解决。
15.3 分式方程第1课时分式方程及其解法一、教学目标1.使学生理解分式方程的意义.2.使学生掌握可化为一元一次方程的分式方程的一般解法.3.了解解分式方程解的检验方法.从而渗透数学的转化思想.二、教学重点和难点1.教学重点:可化为一元一次方程的分式方程的解法.2.教学难点:检验分式方程解的原因三、教学过程(一)复习及引入新课提问:什么叫方程?什么叫方程的解?(二)新课板书:分式方程的定义.分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程.练习:判断下列各式哪个是分式方程.解:两边同乘以最简公分母2(x+5)得2(x+1)=5+x 2x+2=5+x x=3.检验:把x=3代入原方程左边=右边 ∴x=3是原方程的解.例2:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v 千米/时, 可列方程v 20100+=v 2060-解方程得:v =5检验:v =5为方程的解。
所以水流速度为5千米/时。
(三)课堂练习:(四)小结:谈谈你的收获(五)布置作业(六)板书设计第1课时 分式方程及其解法1、分式方程的定义 例:2、分式方程的解法 练习:解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根.让学生在学习中讨论从而理解、掌握.启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法.作者留言:非常感谢!您浏览到此文档。
为了提高文档质量,欢迎您点赞或留言告诉我文档的不足之处,以便于对该文档进行完善优化,在此本人深表感谢!祝您天天快乐!---------------------学习小技巧---------------小学生制定学习计划的好处小学生想要成绩特别的突出学习计划还是不能少的。
第十章分式一、单元教学目标:知识目标1、了解分式的概念。
2、会利用分式的基本性质进行约分和通分。
3、会进行简单的分式加、减、乘、除运算。
4、会解可化为一元一次方程的分式方程序正确性方程中的分式不超过两个)。
5、能够根据具体问题中的数量关系,列出可化为一元一次方程的分式方程,并能根据具体问题的实际意义,检验结果是否合理。
能力目标:1、经历通过观察、归纳、类比、猜想,获得分式的基本性质、分式乘除运算法则、分式加减运算法则的过程,培养学生的推理能力与恒等变形能力.2、鼓励学生进行探索和交流,培养他们的创新意识和合作精神.3.发展学生的求同求异思维,使他们能在复杂环境中明辨是非.。
4、能列可化为一元一次方程的分式方程解简单的应用题,能解决一些与分式、分式方程有关的实际问题,提高分析问题、解决问题的能力和应用意识情感目标:1. 进一步培养学生的自学能力、思维能力,渗透类比的思想方法.激发学生联系实际问题体验数学知识产生的过程以及热爱数学的情感.2、通过学生在学习中互相帮助、相互合作,并能对不同概念进行区分,培养大家的团队精神,以及认真仔细的学习态度,为学生将来走上社会而做准备,使他们能在工作中保持严谨的态度,正确处理好人际关系,成为各方面的佼佼者.3、发展学生的个性,培养他们学习的养成教育,善于独立思考,敢于克服困难和创新精神二、单元教学重点、难点:1、重点是探索和理解有关的分式概念、分式的基本性质和分式的运算法则;解可化为一元一次方程的分式方程;2、难点是解可化为一元一次方程的分式方程及运用分式方程解简单的应用题。
三、单元教学课时:本章教学时间大约需10课时,具体分配如下第1节分式 1课时第2节分式的基本性质 3课时第3节分式的加减运算 1课时第4节分式的的乘除运算 2课时第5节分式方程 3课时课题:10.1 分式第1课时共1课时一、教学目标:知识目标:1、了解分式的概念,会判断一个代数式是否是分式。
2、能用分式表示简单问题中数量之间的关系,能解释简单分式的实际背景或几何意义。
八年级《分式方程》优秀教案15.3 分式方程第1课时分式方程及其解法1.了解分式方程的概念.2.会解分式方程,体会化归思想和程序化思想.3.了解需要对分式方程的解进行检验的原因.利用去分母的方法解分式方程.了解产生增根的原因.一师一优课一课一名师(设计者:)一、创设情景,明确目标一艘轮船在静水中的最大航速为30 km/h,它沿江以最大航速顺流航行90 km所用时间,与以最大航速逆流航行60 km所用时间相等,江水的流速为多少?分析:设江水的流速为v km/h,根据“两次航行所用时间相同”这一等量关系,得到方程=.类似这样的方程是什么方程呢,如何解此方程呢?这就是本课所学习的主要内容.二、自主学习,指向目标1.自学教材第149至151页.2.学习至此:请完成《学生用书》相应部分.三、合作探究,达成目标分式方程的概念活动一:方程=有何特征,你能说说和整式方程的区别吗?展示点评:分式方程的概念;像这样____________________________________叫分式方程.小组讨论:分式方程与整式方程有何区别?反思小结:分母中含有未知数的方程叫分式方程.针对训练:见《学生用书》相应部分分式方程的解法活动二:阅读课本:解方程:=.(1)解这个方程的基本思想是:____________________,具体做法是____________________.(2)其步骤是:____________________________________(3)此方程有根吗?阅读课本:解方程:=.展示点评:(1)此方程在检验根的时候出现了什么问题?此时解出的x的值还是方程的根吗?(2)在解分式方程时,能否和解整式方程一样,验根的步骤可省略不写?例1 解方程=.解:x=9例2 解方程-1=.解:无解小组讨论:解分式方程的一般步骤是什么?与解一元一次方程有什么区别?反思小结:解分式方程和解一元一次的方程有相同的地方,同样可理解为:去分母,去括号,移项,合并同类项,系数化为1,但多了一步检验,是必须的步骤.针对训练:见《学生用书》相应部分四、总结梳理,内化目标1.知识小结——(1)了解分式方程的概念,会解分式方程;(2)了解产生增根的原因.区分解分式方程与整式方程过程的异同.2.解分式方程基本思路是什么?应注意什么问题.3.思想方法小结——转化等数学思想.五、达标检测,反思目标1.下列关于x的方程是分式方程的是( D )A.-3=B.=3-xC.-=-D.=12.解分式方程=2+,去分母后的结果是( B )A.x=2+3 B.x=2(x-2)+3C.x(x-2)=2+3(x-2) D.x=3(x-2)+23.已知x=,用x的代数式表示y,则y=____.4.解下列方程:(1)=解:无解(2)+=解:x=31.上交作业课本第154页第1题(1)、(2)、(7)、(8)题.2.课后作业见《学生用书》.第2课时分式方程的应用(一)1.会根据实际问题,分析题意找出等量关系.2.列出分式方程解决有关工作量的问题.列分式方程解应用题.会根据实际问题,分析题意找出等量关系.一师一优课一课一名师(设计者:)一、创设情景,明确目标1.列方程(组)解应用题的一般步骤是什么?2.20XX年春季我国西南五省持续干旱,旱情牵动着全国人民的心.“一方有难.八方支援”,某厂计划生产1800 t纯净水支援灾区人民,为尽快把纯净水发往灾区,工人把每天的工作效率提高到原计划的1.5倍,结果比原计划提前3天完成了生产任务.求原计划每天生产多少吨纯净水?①设原计划每天生产x t纯净水,根据题意可列出方程:②这是一个什么方程?并解这个方程,解完后应注意什么?如何应用分式方程解应用题,这就是本课所学习的主要内容.二、自主学习,指向目标1.自学教材第152页.2.学习至此:请完成《学生用书》相应部分.三、合作探究,达成目标工程问题活动一:阅读课本P152例3展示点评:(1)工程问题中有哪几个基本量,其关系是什么?通常把工作总量看作多少?(2)由题意可知,甲队的工作效率是多少?若设乙队独做x天完成,则乙队的工作效率是多少?(3)此题中的等量关系是什么?你能用题中的一句话或一个等式来表示吗?小组讨论:工程类问题常用的等量关系是什么?反思小结:工程问题,若没有告诉总工作量,通常设总工作量为1;工程问题的等量关系通常根据“各分工作量之和等于总工作量”来找.针对训练:见《学生用书》相应部分工作量问题活动二:在争创全国卫生城市的活动中,某市一“青年突击队”决定义务清运一堆重达100吨的垃圾,开工后附近居民主动参加到义务劳动中,使清运垃圾的速度比原计划提高了一倍,结果提前4小时完成,“青年突击队”原计划每小时清运垃圾多少吨?分析:此题和上例的区别是明确告诉了工作总量,如何根据等量关系设未知数列方程呢?展示点评:设原计划每小时清运x吨-=4 x=12.5针对训练:见《学生用书》相应部分小组讨论:列分式方程应用题的一般步骤是什么?关键是什么?反思小结:列分式方程应用题一般步骤为:审题、设元、列方程、解方程、检验、作答.解应用题的关键在于找出等量关系,而等量关系就是题目的一句话或几句话的浓缩.四、总结梳理,内化目标1.自主学习时,你的疑问是否得到解决?2.知识小结——(1)列方程解决实际问题的关键是:分析题意找出等量关系.(2)列出分式方程解决有关工作量的问题.3.思想方法小结——方程建模思想解决实际问题.五、达标检测,反思目标1.一个数与6的和的倒数,与这个数的倒数互为相反数,设这个数为x,列方程得( D )A.=B.=-xC.++x=0D.+=02.某化肥厂计划在x天内生产化肥120 t,由于采用了新技术,每天多生产化肥3 t,实际生产180 t与原计划生产120 t的时间相等,根据题意列出方程__=x__.3.近几年高速公路建设有较大的发展,有力地促进了经济建设.欲修建的某高速公路要招标.现有甲.乙两个工程队,若甲.乙两队合作,24天可以完成,费用为120万元;若甲单独做20天后剩下的工程由乙做,还需40天才能完成,这样所需费用110万元,问:(1)甲、乙两队单独完成此项工程,各需多少天?(2)甲、乙两队单独完成此项工程,各需多少万元?解:(1)设甲单独完成要x天+(-)·40=1 x=30∴甲独做要30天,乙独做要120天.(2)设甲独做1天要a元,乙独做要b元∴30a=30×4.5=135(万元) 120b=120×0.5=60(万元)∴甲完成要135万元,乙完成要60万元1.上交作业课本第154-155页第3、5题.2.课后作业见《学生用书》.第3课时分式方程的应用(二)运用分式方程解决行程问题、收费问题、销售问题.运用分式方程解决行程问题、收费问题、销售问题.能熟练的运用分式方程解决行程问题、收费问题、销售问题.一师一优课一课一名师(设计者:)一、创设情景,明确目标某单位将沿街的一部分房屋出租,每间房屋的租金第二年比第一年多500元,所有房屋出租金第一年为9.6万元,第二年为10.2万元.(你能找出这一情境中的等量关系吗?根据这一情境你能提出哪些问题?你利用方程求出这两年每间房屋的租金各是多少?)二、自主学习,指向目标1.自学教材第153页.2.学习至此:请完成《学生用书》相应部分.三、合作探究,达成目标行程问题活动一:阅读课本P153例4展示点评:1.完成课本中的填空.2.此题的等量关系是什么?小组讨论:表达题目中的数量关系时,字母表示的意义?反思小结:表达问题时,用字母不仅可以表示未知数(量),也可表示已知数(量),根据它们所表示的实际意义可知,它们是正数.针对训练:见《学生用书》相应部分收费与销售问题活动二:某市今年1月1日起调整居民用水价格,每立方米水上涨25%.小明家去年12月份的水费是18元,而今年3月份的水费是36元,已知小明家今年3月份比去年12月份多6 m3,求该市今年居民用水价格是多少元/m3?思考:此题的等量关系是什么?如何设未知数列方程?展示点评:设去年居民用水价格是x元/m3,则有-=6解得:x=1.8.(1+25%)x=1.25×1.8=2.25答:今年居民用水价格是2.25元/m3.小组讨论:列分式方程解决实际问题的关键是什么?一般步骤是什么?反思小结:列分式方程解决实际问题的关键是找出题目中的相等数量关系,其一般步骤可概括为:审、找、设、列、解、检验、作答.四、总结梳理,内化目标1.自主学习时,你的疑问是否得到解决?2.知识小结——能熟练的运用分式方程解决行程问题、收费问题、销售问题.3.思想方法小结——方程建模的数学思想.五、达标检测,反思目标1.某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为( B )A.-=20B.-=20C.-=0.5D.-=0.52.小明买软面笔记本共用去12元,小丽买硬面笔记本共用去21元,已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同本数的笔记本吗?不能解:设小明和小丽买到的笔记本均为x本=-1.2解得x=7.5,x不为正整数∴不能3.某校九年级两个班各为玉树地震灾区捐款1800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%.请你根据上述信息,就这两个班级的“人数”或“人均捐款”提出一个用分式方程解决的问题,并写出解题过程.问题:1班人均捐款为多少元?解:设1班人均捐款x元(1-10%)=x=36答:1班人均捐36元.1.上交作业课本第155页第6、7题.2.课后作业见《学生用书》.15.3分式方程(二)一、教学目标:1.会分析题意找出等量关系.2.会列出可化为一元一次方程的分式方程解决实际问题.二、重点、难点1.重点:利用分式方程组解决实际问题.2.难点:列分式方程表示实际问题中的等量关系.三、例、习题的意图分析本节的例3不同于旧教材的应用题有两点:(1)是一道工程问题应用题,它的问题是甲乙两个施工队哪一个队的施工速度快?这与过去直接问甲队单独干多少天完成或乙队单独干多少天完成有所不同,需要学生根据题意,寻找未知数,然后根据题意找出问题中的等量关系列方程.求得方程的解除了要检验外,还要比较甲乙两个施工队哪一个队的施工速度快,才能完成解题的全过程(2)教材的分析是填空的形式,为学生分析题意、设未知数搭好了平台,有助于学生找出题目中等量关系,列出方程.例 4是一道行程问题的应用题也与旧教材的这类题有所不同(1)本题中涉及到的列车平均提速v km/h,提速前行驶的路程为s km.用字母表示已知数(量)在过去的例题里并不多见,题目的难度也增加了;(2)例题中的分析用填空的形式提示学生用已知量v、s和未知数x,表示提速前列车行驶s km所用的时间,提速后列车的平均速度设为未知数x km/h,以及提速后列车行驶(x+50) km所用的时间.这两道例题都设置了带有探究性的分析,应注意鼓励学生积极探究,当学生在探究过程中遇到困难时,教师应启发诱导,让学生经过自己的努力,在克服困难后体会如何探究,教师不要替代他们思考,不要过早给出答案.教材中为学生自己动手、动脑解题搭建了一些提示的平台,给了设未知数、解题思路和解题格式,但教学目标要求学生还是要独立地分析、解决实际问题,所以教师还要给学生一些问题,让学生发挥他们的才能,找到解题的思路,能够独立地完成任务.特别是题目中的数量关系清晰,教师就放手让学生做,以提高学生分析问解决问题的能力.四、例题讲解例3 分析:本题是一道工程问题应用题,基本关系是:工作量=工作效率×工作时间.这题没有具体的工作量,工作量虚拟为1,工作的时间单位为“月”.等量关系是:甲队单独做的工作量+两队共同做的工作量=1例4 分析:是一道行程问题的应用题, 基本关系是:速度=.这题用字母表示已知数(量).等量关系是:提速前所用的时间=提速后所用的时间五、随堂练习1. 学校要举行跳绳比赛,同学们都积极练习.甲同学跳180个所用的时间,乙同学可以跳240个;又已知甲每分钟比乙少跳5个,求每人每分钟各跳多少个.2. 一项工程要在限期内完成.如果第一组单独做,恰好按规定日期完成;如果第二组单独做,需要超过规定日期4天才能完成,如果两组合作3天后,剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多少天?3. 甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度.六、课后练习1.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快,结果于下午4时到达,求原计划行军的速度。
一、教学目标1. 让学生理解分式方程的定义和特点,掌握分式方程的解法。
2. 培养学生运用分式方程解决实际问题的能力。
3. 提高学生的数学思维能力和解决问题的能力。
二、教学内容1. 分式方程的定义和特点2. 分式方程的解法3. 分式方程在实际问题中的应用三、教学重点与难点1. 重点:分式方程的解法及应用。
2. 难点:分式方程的解法,特别是含未知数的分母和分式方程的转化。
四、教学方法1. 采用问题驱动法,引导学生主动探究分式方程的解法。
2. 运用案例分析法,让学生学会将实际问题转化为分式方程。
3. 采用合作学习法,培养学生的团队协作能力。
五、教学过程1. 导入:通过复习分式的知识,引导学生了解分式方程的定义和特点。
2. 新课讲解:讲解分式方程的解法,举例说明解题步骤。
3. 案例分析:分析实际问题,引导学生将问题转化为分式方程,并解决问题。
4. 课堂练习:布置练习题,让学生巩固所学知识。
5. 总结与拓展:总结本节课的重点内容,布置课后作业,鼓励学生拓展学习。
一、教学目标1. 让学生理解分式方程的定义和特点,掌握分式方程的解法。
2. 培养学生运用分式方程解决实际问题的能力。
3. 提高学生的数学思维能力和解决问题的能力。
二、教学内容1. 分式方程的定义和特点2. 分式方程的解法3. 分式方程在实际问题中的应用三、教学重点与难点1. 重点:分式方程的解法及应用。
2. 难点:分式方程的解法,特别是含未知数的分母和分式方程的转化。
四、教学方法1. 采用问题驱动法,引导学生主动探究分式方程的解法。
2. 运用案例分析法,让学生学会将实际问题转化为分式方程。
3. 采用合作学习法,培养学生的团队协作能力。
五、教学过程1. 导入:通过复习分式的知识,引导学生了解分式方程的定义和特点。
2. 新课讲解:讲解分式方程的解法,举例说明解题步骤。
3. 案例分析:分析实际问题,引导学生将问题转化为分式方程,并解决问题。
4. 课堂练习:布置练习题,让学生巩固所学知识。
新课教学录入多少字?(一)一起探究1.请找出上述问题中的等量关系。
2.试列出方程,求出方程的解。
3.写出问题的答案,将结果与同学交流。
参考1.(1)小红录入9 000字所用时间=小丽录入7 500字所用时间。
(2)小红每分钟录入的字数+小丽每分钟录入的字数=220字。
2.解:设小红每分钟录入x字,则解得x=120。
经检验x=120是原方程的根。
220一x=100。
答:小红每分钟录入120字,小丽每分钟录入100字。
例题教学例1 某工程队承建一所希望学校。
在施工过程中,由于改进了工作方法,工作效率提高了20%,因此,比原定工期提前1个月完工。
这个工程队原计划用几个月建成这所希望学校?分析:如果设工程队原计划用x个月建成这所学校,那么,改进工作方法前的工作效率为,改进工作方法后的工作效率为。
根据等量关系“改进工作方法前的工作效率×(1+20%)=改进工作方法后的工作效率”,可列出方程。
论。
根据题意,分析相等关系,设出未知数,从而列方程。
分组讨论交流,给出分时方程的定义。
各抒己见,经历探索过程根据题意独立完成教学过程教学内容教学环节教师活动学生活动教学媒体使用预期效果(批注)总结探究拓展提高课堂小结布置作业探究问题:请试着说说列分式方程解决实际问题的一般步骤它与列整式方程(组)解决实际问题的—般步骤有什么相同点和不同点?与同学交流。
对用方程解决实际问题进行归纳总结,突出类比的思想。
某项工作,甲、乙两人合作3天后,剩下的工作由乙单独来做,用1天即可完成。
已知乙单独完成这项工作所需天数是甲单独完成这项工作所需天数的2倍。
甲、乙单独完成这项工作各需多少天?如何解分式方程应用题?A组:课本P42随堂练习B组:课本P42习题3准确解答积极参与认真思考积极回顾踊跃发言课题:分式方程(4)教学目标1经历用分式方程解决实际问题的过程,对用方程解决实际问题的过程进行归纳总结。
2、感受分式方程的模型思想。
教学重点分式方程的应用教学难点分式方程的应用教学方法自主探索课型新授课教具设置电子白板教学过程教学内容教学环节教师活动学生活动教学媒体使用预期效果(批注)创设情境导入新课今年父亲的年龄是儿子年龄的3倍,再过5年,父亲与儿子的年龄的比是22:9。
八年级数学教案之分式方程一、教学目标:1. 让学生理解分式方程的定义及特点。
2. 培养学生掌握解分式方程的基本方法。
3. 提高学生解决实际问题的能力,培养学生的逻辑思维能力。
二、教学内容:1. 分式方程的定义及例题解析。
2. 分式方程的解法:去分母、去括号、移项、合并同类项、化系数为1。
3. 分式方程的应用:解决实际问题。
三、教学重点与难点:1. 重点:分式方程的解法及应用。
2. 难点:分式方程的解法,特别是如何消去分母和分式中的括号。
四、教学方法:1. 采用案例分析法,让学生通过例题解析,理解分式方程的解法。
2. 采用问题驱动法,引导学生运用所学知识解决实际问题。
3. 利用多媒体辅助教学,提高学生的学习兴趣。
五、教学过程:1. 导入新课:通过引入实际问题,引发学生对分式方程的兴趣。
2. 讲解分式方程的定义及特点,让学生明确分式方程的基本概念。
3. 分析例题,引导学生掌握分式方程的解法。
4. 课堂练习:让学生独立解决一些简单的分式方程问题,巩固所学知识。
5. 应用拓展:让学生运用所学知识解决实际问题,提高学生的应用能力。
教案仅供参考,具体实施时可根据学生实际情况进行调整。
六、教学评估:1. 课堂练习:通过课堂练习,检测学生对分式方程解法的掌握情况。
2. 课后作业:布置与课堂内容相关的课后作业,巩固学生所学知识。
3. 小组讨论:组织学生进行小组讨论,培养学生的合作能力及解决问题的能力。
4. 课堂提问:通过课堂提问,了解学生对分式方程的理解程度。
七、教学资源:1. PowerPoint课件:制作精美的课件,辅助教学。
2. 练习题库:准备一定量的分式方程练习题,供课堂练习及课后作业使用。
3. 教学视频:寻找相关的教学视频,为学生提供更多学习资源。
4. 实际问题案例:收集一些与分式方程相关的实际问题,用于课堂讲解及应用拓展。
八、教学进度安排:1. 第1周:介绍分式方程的定义及特点。
2. 第2周:讲解分式方程的解法,分析例题。
2.分式的乘除法一、教学目标:1、知识与技能目标:1、分式的乘除运算法则2、会进行简单的分式的乘除法运算2、过程与方法目标:1、类比分数的乘除运算法则,探索分式的乘除运算法则。
2、能解决一些与分式有关的简单的实际问题。
3、情感态度与价值观目标:1、通过师生讨论、交流,培养学生合作探究的意识和能力。
2、培养学生的创新意识和应用意识。
二、教学重点:分式乘除法的法则三、教学难点:分式乘除法的法则四、课时安排1课时五、教具学具准备小黑板一块六、教学方法类比方法七、教学过程活动一:黑板展示1442225599⎧⎪⎨⨯÷⨯÷⎪⎩、复习小学分数乘除法法则;2255、计算下列各题:,,,3377活动二:联想猜测:黑板背面展示:a d a db c b c?,a d a cb c b d−−→÷⨯←−−?阅读课本74p至例1——例2结束(除“做一做”外),仔细观察各步运算,通过小组讨论交流,并与分数的乘除法的法则类比,总结出分式的乘除法的法则。
(分式的乘除法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.)活动三:当堂训练1、根据题意,列出分式,完成“做一做”2、76p随堂练习,习题3.3知识技能第1题八、课堂小结:1.分式的乘除法的法则2.分式运算的结果通常要化成最简分式或整式.3. 学会类比的数学方法九、巩固练习课本P77习题3.3第2、4题3.分式的加减法 一、教学目标:1、知识与技能目标:1、同分母的分式的加减法的运算法则及其应用;2、简单的异分母的分式的加减法的运算;2、过程与方法目标:根据学生已有的经验,通过一些问题的提出。
诱发学生积极思考,或通过合作交流,引导学生自己解决问题,从而总结出规律。
3、情感态度与价值观目标:1、经历从现实情境中提出问题,提出“用数学”的意识。
2、结合已有的教学经验,解决新问题,获得成就感以及克服困难的方法和勇气。
八年级数学教案:分式方程以下是查字典数学网为您推荐的分式方程,希望本篇文章对您学习有所帮助。
分式方程教学目标1.经历分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用.2.经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。
3.在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.教学重点:将实际问题中的等量关系用分式方程表示教学难点:找实际问题中的等量关系教学过程:情境导入:有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000 kg和15000 kg。
已知第一块试验田每公顷的产量比第二块少3000 kg,分别求这两块试验田每公顷的产量。
你能找出这一问题中的所有等量关系吗?(分组交流)如果设第一块试验田每公顷的产量为kg,那么第二块试验田每公顷的产量是________kg。
根据题意,可得方程___________________二、讲授新课从甲地到乙地有两条公路:一条是全长600 km的普通公路,另一条是全长480 km的高速公路。
某客车在高速公路上行驶的平均速度比在普通公路上快45 km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半。
求该客车由高速公路从甲地到乙地所需的时间。
这一问题中有哪些等量关系?如果设客车由高速公路从甲地到乙地所需的时间为h,那么它由普通公路从甲地到乙地所需的时间为_________h。
根据题意,可得方程_ _____________________。
学生分组探讨、交流,列出方程.三.做一做:为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。
已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。
如果设第一次捐款人数为人,那么满足怎样的方程?四.议一议:上面所得到的方程有什么共同特点?要练说,得练听。
人教版八年级上册数学《分式方程》(优质说课稿)一. 教材分析人教版八年级上册数学《分式方程》这一章节,是在学生已经掌握了分式的概念、性质、运算的基础上进行教学的。
本章主要让学生了解分式方程的定义、解法以及应用。
分式方程是初中数学中的重要内容,也是高中数学的基础。
通过学习本章,学生可以培养解决实际问题的能力,提高逻辑思维和运算能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对分式的概念和性质有一定的了解。
但是,学生在解决实际问题时,往往会因为对分式方程的理解不深而遇到困难。
因此,在教学过程中,教师需要关注学生的学习需求,引导学生深入理解分式方程的内涵,提高解题能力。
三. 说教学目标1.知识与技能目标:让学生掌握分式方程的定义、解法,能熟练运用分式方程解决实际问题。
2.过程与方法目标:通过自主学习、合作探讨,培养学生解决数学问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心和团队协作精神。
四. 说教学重难点1.教学重点:分式方程的定义、解法以及应用。
2.教学难点:分式方程在实际问题中的运用,以及解分式方程的技巧。
五. 说教学方法与手段1.教学方法:采用自主学习、合作探讨、教师引导的教学方法,让学生在探究中掌握知识。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学手段,结合数学软件和网络资源,提高教学效果。
六. 说教学过程1.导入新课:通过生活中的实际问题,引导学生进入分式方程的学习。
2.自主学习:让学生自主探究分式方程的定义、解法,总结解题规律。
3.合作探讨:学生分组讨论,分享解题心得,教师巡回指导。
4.课堂讲解:教师针对学生的讨论情况进行讲解,重点讲解分式方程的解法和解题技巧。
5.巩固练习:布置练习题,让学生巩固所学知识,并及时给予解答和反馈。
6.拓展应用:让学生运用分式方程解决实际问题,提高学生的应用能力。
7.课堂小结:教师引导学生总结本节课所学内容,加深对分式方程的理解。
15.3分式方程第1课时分式方程及其解法一、新课导入1.导入课题:前面我们探讨了分式的有关性质及其运算,在分式的研究中,还有一个重要的内容就是分式方程,今天我们一起走进分式方程.2.学习目标:(1)知道分式方程的概念,(2)会解分式方程.3.学习重、难点:重点:分式方程及其解法.难点:分式方程产生增根的原因.二、分层学习1.自学指导:(1)自学内容:教材第149页到第150页的内容.(2)自学时间:5分钟.(3)自学方法:对照自学提纲,认真阅读课本.重点词句或不理解的地方做上记号.(4)自学参考提纲:①什么样的方程叫分式方程?分母中含有未知数的方程叫分式方程.②解分式方程的基本思路是什么?将分式方程化为整式方程.③将分式方程化成整式方程的关键步骤是什么?去分母,即方程两边乘最简公分母.2.自学:请同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否认识分式方程的特点和分式方程的解法.②差异指导:指导个别学生正确找出最简公分母.(2)生助生:学生之间相互交流帮助.4.强化:(1)判断分式方程的方法是:看分母是否含有未知数.(2)分式方程的关键步骤是去分母,难点是找最简公分母.(3)下列方程哪些是分式方程?④⑤.(4)指出下列方程中各分母的最简分母,并写出去分母后得到的整式方程.解:①最简公分母2x(x+3),去分母得x+3=4x;②最简公分母x2-1,去分母,得2(x+1)=4;③最简公分母3x+3,去分母,得3x=2x+3x+3.1.自学指导:(1)自学内容:教材第150页“思考”到第151页的内容.(2)自学时间:8分钟.(3)自学方法:认真阅读课本,思考去分母后化成的整式方程的解,为什么有的是原分式方程的解,有的不是?对照课本中的例子想想理由.归纳解分式方程的基本步骤.(4)自学参考提纲:①说说为什么解分式方程一定要检验?因为得到的解可能会导致最简公分母为0,即分母为0.②说说解分式方程的检验方法.将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解③解分式方程的一般有哪些步骤? 去分母,解整式方程,检验.④某生在解例2时去分母得x(x+2)-1=3,你认为他错在哪里? 漏乘了最简公分母. ⑤试解方程23511x x =--; 解:去分母,得3(x+1)=5x=53-1=23检验:当x=23时,(x+1)(x-1)≠0, 所以,原分式方程的解为x=23. 32122x x x =--- 解:去分母,得2x=3-2(2x-2) 去括号得2x=3-4x+4 移项6x=7 系数化为1,x=76检验:当x=76时,2(x-1)≠0. 所以原分式方程的解为x=762.自学:同学们结合自学指导进行自学.3.助学: (1)师助生:①明了学情:观察学生在解分式方程过程中易产生错误的环节或步骤. ②差异指导:对学生出现的错误进行分类指导. (2)生助生:交流提纲④,对⑤互相批改、纠错. 4.强化:(1)解分式方程的一般步骤. (2)分式方程的验根方法.(3)分式方程无解的条件.检验:当x=12时,4x2-1=0,因此x=12不是原分式方程的解.所以,原分式方程无解.三、评价1.学生的自我评价(围绕三维目标):学生代表交流自己的学习收获和学后体验.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、情感、方法、成果及不足进行归纳点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):在本课的教学过程中,应从这样的几个方面入手:(1)分式方程和整式方程的区别:分清楚分式方程必须满足的两个条件:①方程式里必须有分式,②分母中含有未知数.这两个条件是判断一个方程是否为分式方程的必要条件.同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就是原方程的增根.正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验.(2)分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分渗透这种化归思想.(3)解分式方程时,如果分母是多项式,应先写出将分母进行因式分解的步骤,从而让学生准确无误地找出最简公分母.另外,对分式方程可能产生增根的原因,要启发学生认真思考和讨论.一、基础巩固(每题10分,共60分)1.下列式子是分式方程的是(C)2.把分式方程两边同乘(x-1),约去分母后,得(D)3.分式方程的解是(D)A.x=1B.x =-1C.x=-14D.无解解:(1)去分母,3x-6+4(x+2)=16去括号,合并同类项7x=14系数化为1,x=2检验:当x=2时,(x+2)(x-2)=0,因此x=2不是原分式方程的解.所以,原分式方程无解.(2)去分母得,(x+1)(x+2)=x(x+4)去括号,合并同类项,得3x+2=4x移项,x=2检验:当x=2时,x(2+x)≠0,所以,原分式方程的解为x=2.二、综合应用(20分)7.已知关于x的方程有增根,求该方程的增根和k的值.解:去分母,得3x+3-(x-1)=x2+kx,整理,得x2+(k-2)x-4=0.因为有增根,所以增根为x=0或x=1.当x=0时,代入方程得-4=0,所以x=0不是方程的增根;当x=1时,代入方程,得k=5,所以k=5时方程有增根x=1.三、拓展延伸(20分)8.解方程:学习小提示同学们,通过这节课的学习,你们学到了哪些知识?明白什么道理?时间就像日历一样,撕掉一张就不会再回来。
第八课时
●课题
§3.4.3 分式方程(三)
●教学目标
(一)教学知识点
1.用分式方程的数学模型反映现实情境中的实际问题.
2.用分式方程来解决现实情境中的问题.
(二)能力训练要求
1.经历运用分式方程解决实际问题的过程,发展抽象概括、分析问题和解决问题的能
力.
2.认识运用方程解决实际问题的关键是审清题意,寻找等量关系,建立数学模型.
(三)情感与价值观要求
1.经历建立分式方程模型解决实际问题的过程,体会数学模型的应用价值,从而提高学习数学的兴趣.
2.培养学生的创新精神,从中获得成功的体验.
●教学重点
1.审明题意,寻找等量关系,将实际问题转化成分式方程的数学模型.
2.根据实际意义检验解的合理性.
●教学难点
寻求实际问题中的等量关系,寻求不同的解决问题的方法.
●教具准备
实物投影仪
投影片三张
第一张:做一做,(记作§3.4.3 A)
第二张:例3,(记作§3.4.3 B)
第三张:随堂练习,(记作§3.4.3 C)
●教学过程
Ⅰ.提出问题,引入新课
[师]前两节课,我们认识了分式方程这样的数学模型,并且学会了解分式方程.
接下来,我们就用分式方程解决生活中实际问题.
Ⅱ.讲授新课
[生]第二年每间房屋的租金
=第一年每间房屋的租金+500元.
(1)
[生]还有一个等量关系:
第一年租出的房屋间数=第二年租出的房屋的间数.
[师]根据“做一做”的情境,你能提出哪些问题呢?在我们的数学学习中,提出问题比解决问题更重要.
同学们尽管提出符合情境的问题.
[生]问题可以是:每年各有多少间房屋出租?
[生]问题也可以是:这两年每年房屋的租金各是多少?
[师]下面我们就来先解决第一个问题:每年各有多少间房屋出租?
[师生共析]解:设每年各有x 间房屋出租,那么第一年每间房屋的租金为
x 96000元,第二年每间房屋的租金为x
102000元,根据题意,得 x 102000=x
96000+500 解这个方程,得x =12
经检验x =12是原方程的解,也符合题意.
所以每年各有12间房屋出租.
[师]我们接着再来解决第二个问题:这两年每间房屋的租金各是多少?
[生]根据第一问的答案可计算,得: 第一年每间房屋的租金为
12
96000=8000(元), 第二年每间房屋的租金为12102000=8500(元). [师]如果没有第一问,该如何解答第二问?
[生]解:设第一年每间房屋的租金为x 元,第二年每间房屋的租金为(x +500)元.第一年租出的房间为x 96000间,第二年租出的房间为500
102000+x 间,根据题意,得 x 96000= 500
102000+x 解,得x =8000
x +500=8500(元)
经检验:x =8000是原分式方程的解,也符合题意.
所以这两年每间房屋的租金分别为8000元,8500元.
[师]我们利用分式方程解决了实际问题.现在我们再来看一个例题,我们可以从中感受到节约用水是每个公民应该关心的事情.
[生]审清题意,找出题中的等量关系.
[生]此题主要的等量关系是:1月份张家用水量是李家用水量的3
2. [师]怎样表示出张家1月份的用水量和李家1月份的用水量呢?
[生]根据自来水公司水费计算的办法,用水量可以用水费除以单价得出,但计算时要将水费分成两部分:5 m 3的水费与超出5 m 3部分的水费.
[师]下面我们就来用等量关系列出方程.
[师生共析]设超出5 m 3部分的水,每立方米收费设为x 元,则1月份,
张家超出 5 m 3的部分水费为(17.5-1.5×5)元,超出 5 m 3的用水量为
x 55.15.17⨯-m 3,总用水量为5+x
55.15.17⨯-; 李家超出 5 m 3部分的水费为(27.5-1.5×5)元,超出 5 m 3的用水量为x 55.15.27⨯-m 3,总用水量为(5+x
55.15.27⨯-) m 3 根据等量关系,得
x 55.15.17⨯-+5=(x 55.15.27⨯-+5)×3
2 解这个方程,得x =2.
经检验x =2是所列方程的根.
所以超出5 m 3部分的水,每立方米收费2元.
Ⅲ.随堂练习
[生]题中的等量关系有两个: 15元钱买的软皮本的本数=15元钱买的硬皮本的本数+1本.
硬皮本的价格=软皮本的价格×(1+2
1) [师]我们找到了等量关系,接下来请同学们在练习本上完成第1题. [生]解:设软皮本的价格为x 元,则硬皮本的价格为(1+
21)x 元,那么15元钱可买软皮本x 15本,硬皮本x )2
11(15+本.根据题意,得, x 15= x )2
11(15++1 解,得x =5 经检验x =5是原方程的根,也符合题意,所以(1+
21)x =23×5=7.5(元) 故这种软皮本和硬皮本的价格各为5元、7.5元.
Ⅳ.课时小结
列方程解决实际情境中的具体问题,是数学实用性最直接的体现,而解决这一问题是如何将实际问题建立方程这样的数学模型,关键则在于审清题意,找出题中的等量关系,找到它就为列方程指明了方向.
Ⅴ.课后作业
习题3.8
图3-4
Ⅵ.活动与探究
如图,小明家、王老师家、学校在同一条路上.小明家到王老师家路程为3 km ,王老师家到学校的路程为0.5 km,由于小明父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少?(2003年吉林省中考题)
[过程]分析题目中的等量关系:
王老师骑车速度=王老师步行速度×3;
王老师从家出发骑车接小明所用的时间=平时步行上学所用时间+20分钟.
[结果]设王老师步行速度为x km/h ,则骑自行车的速度为3x km/h. 依题意,得x 35.032+⨯=x 5.0+60
20 解得x =5
经检验x =5是原方程的根,这时3x =15
答:王老师步行速度为5 km/h,骑自行车的速度为15 km/ h.。