【精选】七年级上册一元一次方程单元测试卷附答案

  • 格式:doc
  • 大小:850.00 KB
  • 文档页数:11

下载文档原格式

  / 11
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学一元一次方程解答题压轴题精选(难)

1.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,

(1)写出数轴上点B表示的数________;

(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x-3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.试探索:

①:若|x-8|=2,则x =________.②:|x+12|+|x-8|的最小值为________.

(3)动点P从O点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,A,P两点之间的距离为2;

(4)动点P,Q分别从O,B两点,同时出发,点P以每秒5个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.

【答案】(1)﹣12

(2)6或10;0

(3)1.2或2

(4)3.2或1.6

【解析】【解答】(1)数轴上B表示的数为8-20=﹣12;

(2)①因为互为相反数的两个数绝对值相同,所以由│x-8│=2可得x-8=2或﹣(x-8)=2,解得x=6或10;

②因为绝对值最小的数是0,所以│x+12│+│x-8│的最小值是0;

(3)根据│A点在数轴上的位置-t秒后P点在数轴上的位置│=A、P两点间的距离列式得│8-5t│=2,因为互为相反数的两个数绝对值相同,所以8-5t=2或﹣(8-5t)=2,解得t=1.2或2;

(4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离列式得│﹣12+10t-5t│=4,因为互为相反数的两个数绝对值相同,所以﹣12+10t-5t=4或﹣(﹣12+10t-5t)=4,解得t=3.2或1.6.

【分析】(1)抓住已知条件:B是数轴上位于点A左侧一点,且AB=20,且点A表示的数是8,就可求出OB的长,从而可得出点B表示的数。

(2)①根据|x-8|=2,可得出x-8=±2,解方程即可求出x的值;根据因为绝对值最小的数是0,因此可得出│x+12│+│x-8│的最小值是0。

(3)根据A,P两点之间的距离为2,可列出方程│8-5t│=2,再解方程求出t的值。(4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离,可得出方程│﹣12+10t-5t│=4,再利用绝对值等于4的是为±4,可列出﹣12+10t-5t=±4,解方程求出t的值即可。

2.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0.

(1)求A、B两点的对应的数a、b;

(2)点C在数轴上对应的数为x,且x是方程2x+1= x﹣8的解.

①求线段BC的长;

②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.【答案】(1)解:∵|a+3|+(b﹣2)2=0,

∴a+3=0,b﹣2=0,

解得,a=﹣3,b=2,

即点A表示的数是﹣3,点B表示的数是2 。

(2)解:①2x+1= x﹣8

解得x=﹣6,

∴BC=2﹣(﹣6)=8

即线段BC的长为8;

②存在点P,使PA+PB=BC理由如下:

设点P的表示的数为m,

则|m﹣(﹣3)|+|m﹣2|=8,

∴|m+3|+|m﹣2|=8,

当m>2时,解得 m=3.5,

当﹣3<m<2时,无解

当x<﹣3时,解得m=﹣4.5,

即点P对应的数是3.5或﹣4.5

【解析】【分析】(1)根据绝对值及平方的非负性,几个非负数的和为零则这几个数都为零从而得出解方程组得出a,b的值,从而得出A,B两点表示的数;

(2)①解方程2x+1= x﹣8 ,得出x的值,从而得到C点的坐标,根据两点间的距离得出BC的长度;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,根据两点间的距离公式列出方程|m﹣(﹣3)|+|m﹣2|=8,然后分类讨论:当m>2时,解得m=3.5,当﹣3<m<2时,无解,当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5 。

3.温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可

支援外地4台,现在决定给武汉8台,南昌6台,每台机器的运费如下表,设杭州厂运往南昌的机器为x台,

(1)用含x的代数式来表示总运费(单位:元)

(2)若总运费为8400元,则杭州厂运往南昌的机器应为多少台?

(3)试问有无可能使总运费是7800元?若有可能请写出相应的调动方案;若无可能,请说明理由.

【答案】(1)解:总费用为:400(6-x)+800(4+x)+300x +500(4-x)=200x+7600(2)解:由题意得200x+7600=8400,解得x=4,

答:杭州运往南昌的机器应为4台

(3)解:由题意得200x+7600=7800,

解得x=1. 符合实际意义,

答:有可能,杭州厂运往南昌的机器为1台.

【解析】【分析】(1)根据总费用=四条线路的运费之和(每一条线路的费用=台数×运费),列式后化简即可。

(2)根据(1)中的表达式等于8400,列方程并求解。

(3)根据(1)中的表达式等于7800,列方程并求解,若方程的解符合实际意义,则有可能,否则就不可能。

4.元旦假期,甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市当日累计购物超出了300元以后,超出部分按原价8折优惠;在乙超市当日累计购物超出200元之后,超出部分按原价8.5折优惠.设某位顾客在元旦这天预计累计购物x元(其中x>300).

(1)当x=400时,顾客到哪家超市购物优惠.

(2)当x为何值时,顾客到这两家超市购物实际支付的钱数相同.

【答案】(1)解:在甲超市购物所付的费用是:元,在乙超市购物所付的费用是:元;

当时,在甲超市购物所付的费用是:,

在乙超市购物所付的费用是:,

所以到乙超市购物优惠