小学六年级数学《百分数》单元知识归纳整理
- 格式:doc
- 大小:45.50 KB
- 文档页数:5
第四单元百分数知识点1:百分数的认识1.百分数是一个分率而不是一个具体的数量,所以百分数不带单位;2.百分号前面的数可以是整数,也可以是小数;3.百分数只表示两个数的倍比关系。
知识点2:合格率1.合格率就是合格产品数占产品总数的百分之几;2.小数化百分数,先将小数点向右移动两位,再添百分号;3.分数化百分数,先将分数化成小数,再化成百分数。
4. 百分率一般是指部分量占总量的百分之几,如:合格率是合格的产品数量占产品总数量的百分之几;发芽率是发芽种子数占种子总数的百分之几。
知识点3:营养含量-求一个数的百分之几是多少1.求一个数的百分之几用乘法计算;2.打几折就是按原价的百分之几十销售;3.一个数添上百分号,相当于把这个数缩小到原数的1 100。
知识点4:这月我当家-解决有关百分数的实际问题1.解答“已知一个数的百分之几是多少,求这个数”的问题,可以列方程解答,也可以直接用除法解答。
2.解决这类问题的关键是求出总支出,然后根据已知信息计算并将表格填写完整,最后对所求的结果进行检验。
【易错典例1】(宁津县)李老师在把18000元存入银行,定期3年.如果年利率是2.7%,应缴20%的利息税,到期后他得本金和税后利息共多少元?【思路引导】在本题中,本金是18000元,利率是2.7%,时间是3年,利息税是20%,求本金和税后利息,根据关系式:本息=本金+本金×利率×时间×(1﹣20%),解决问题.【完整解答】解:18000+18000×2.7%×3×(1﹣20%)=18000+18000×0.027×3×0.8=18000+1166.4=19166.4(元);答:到期后他得本金和税后利息共19166.4元.【易错注意点】此题属于利息问题,考查了关系式:本息=本金+本金×利率×时间×(1﹣20%),此题应注意扣除利息税.【易错典例2】(苍溪县)小明的爸爸得到一笔5000元的劳务费,其中800元是免税的,其余部分要按20%的税率缴税.这笔劳务费爸爸实际得到多少元?【思路引导】此题应先求出缴纳个人所得税的部分,即(5000﹣800)元,这部分钱按20%缴纳个人所得税,那么爸爸应缴纳个人所得税:(5000﹣800)×20%,然后用5000元减去缴纳的个人所得税,即为税后应领取的钱数,【完整解答】解:(5000﹣800)×20%=4200×0.2=840(元)5000﹣840=4160(元)答:这笔劳务费爸爸最终能拿4160元.【易错注意点】本题解答的依据是求一个数的百分之几是多少,用乘法计算;由此先求出爸爸应缴纳个人所得税,进一步解决问题.【易错典例3】(•汉南区期末)出勤率、出油率、发芽率、合格率中,不可能达到100%的是()A.出勤率B.出油率C.发芽率D.合格率【思路引导】因为出勤率、合格率、发芽率,在理想情况下可以等于100%,而出油率无论如何都不会是100%,因为还有渣的质量;进而得出结论.【完整解答】解:因为出油率=×100%,不可能全部都成为油,因为还有渣滓,故出油的质量只能小于总质量,所以出油率不能达到100%;当出勤人数与总人数相等时,出勤率可以达到100%;当发芽的种子数与种子总数相等时,发芽率可以达到100%;当合格的数量与总数量相等时,合格率可以达到100%.故选:B.【易错注意点】正确理解出勤率、合格率、发芽率、出油率的含义,是解题关键.【易错典例4】(临朐县)希望小学六年级共有103名学生,今天到校100人,学生的出勤率是100%.×(判断对错)【思路引导】出勤率是出勤人数占总人数的百分之几,计算方法是:出勤人数÷总人数×100%;据此列式计算后判断即可.【完整解答】解:100÷103×100%≈0.971×100%=97.1%97.1%≠100%故原题说法错误;故答案为:×.【易错注意点】此题属于百分率问题,计算的结果最大值为100%,都是用一部分数量(或全部数量)除以全部数量乘百分之百,解题的时候不要被表面数字困惑.考点1:百分数的认识1.(·成都期中)给7.5添上百分号,这个数将()。
六年级上册数学《百分数》百分数知识点整理六年级上册数学《百分数》百分数-知识点整理百分率一、知识要点1.百分比的含义:它意味着一个数字是另一个数字的百分比。
百分比指的是两个数字的比率,所以也称为百分比或百分比。
百分数通常不写成分数形式,而采用百分号“%”,百分数后面不能带单位名称。
2、百分数和分数的主要联系与区别(1)连接:两者都可以表示两个量的倍数关系。
(2)区别:①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位。
② 和百分比的分子可以是整数或小数,例如2.5%;分数的分子不能是小数,而是0以外的自然数。
③、百分数的读法和分数的读法大体相同,也是先读分母,后读分子,但要注意读百分数的分母时,不能读成一百分之几,而只能读作“百分之几”3.百分比的书写方法:通常不以分数形式书写,而是在原分子后加“%”表示。
例如,5%20%4、百分比、分数和小数点是相互改变的(1)、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。
如:0.2350.026三个数字化成百分数是:23%,500%,2.6%(2)、百分数化成小数:把小数点向左移动两位,同时去掉百分号。
如:20%,56%,3.7%三个数字化成小数是:0.20.560.037(3) . 百分比转换为分数:首先将百分比转换为分数,然后首先将百分比改写为分母是否为100的分数,这可以将报价减少为最简单的分数。
如:25%40%化成分数是:25%?(4)、分数化成百分数:① 利用分数的基本性质,展开或缩小分数的分母,然后以百分比的形式写出分母为100的分数。
例如:251402?40%??10041005222?2040??40%;化成百分数形式:?555?2021033化成百分数形式:×?0.75=75%44②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
期末备考—人教版六年级上册数学优选题单元复习讲义第六单元《百分数(一)》一、百分数1、表示一个数是另一个数的百分之几的数叫做百分数。
百分数又叫百分比或百分率,百分数不能带单位。
注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。
2、百分数和分数的区别和联系(1)联系:都可以用来表示两个量的倍比关系。
(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。
分数不仅表示倍比关系,还能带单位表示具体数量。
百分数的分子可以是小数,分数的分子只可以是整数。
3、小数、分数、百分数之间的互化(1)百分数化小数:小数点向左移动两位,去掉“%”。
(2)小数化百分数:小数点向右移动两位,添上“%”。
(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。
(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。
(5)小数化分数:把小数成分母是10、100、1000等的分数再化简。
(6)分数化小数:分子除以分母。
二、百分数应用题1、求常见的百分率如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。
2、求一个数比另一个数多(或少)百分之几实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几:(甲-乙)÷乙求乙比甲少百分之几:(甲-乙)÷甲3、求一个数的百分之几是多少一个数(单位“1”)×百分率4、已知一个数的百分之几是多少,求这个数部分量÷百分率=一个数(单位“1”)5、折扣、打折的意义几折就是十分之几也就是百分之几十折扣、成数=几分之几、百分之几、小数八折=八成=十分之八=百分之八十=0.8八五折=八成五=十分之八点五=百分之八十五=0.85五折=五成=十分之五=百分之五十=0.5=半价6、利率(1)存入银行的钱叫做本金。
六年级数学上册《百分数意义和读写法》知识点+练习知识点百分数的意义:百分数表示一个数是另一个数的百分之几。
百分数也叫做百分比或百分率。
1.百分数中,百分号前面的数可以是整数、小数,但不能是分数。
2.百分数表示的是两个数之间的倍比关系,不能表示具体数量,不能带单位名称。
表示具体数量且分母是100的分数也不能用百分数表示。
3.百分数的写法:写百分数时,先写分子,再在分子后面加上百分号“%”。
4.百分数的读法:读百分数时,先读百分号“%”,读作“百分之”,再读百分号前面的数。
同步练习题1.读一读下面的百分数。
45% 读作:百分之四十五121.7% 读作:百分之一百二十一点七140% 读作:百分之一百四十0.6% 读作:百分之零点六100% 读作:百分之一百2.猜百分数。
百发百中(100%) 十拿九稳(90%)百里挑一(1%) 半壁江山(50%) 一分为二(50%)3.判断题。
(对的画“√”错的画“×”)(1)分母是100的分数叫做百分数。
(×)(2)小红的身高是147%m。
(×)(3) 34%读作百分之三四。
(×)(4)一袋饼干重50%kg。
(×)(5)女生的人数占全班人数的45%。
(√)(6)分母是100的分数叫做百分数。
(×)(7)百分号前面的数可以是整数,也可以是小数。
(√)(8)一袋饼干重65%kg。
(×)3.生产车间上个月制造零件1280个,本月比上月超产15%,本月制造零件多少个?1280×(1+15%)=1280×1.15=1472(个)答:本月制造零件1472个。
4.生产车间本月制造零件1472个,比上个月超产15%,上个月制造零件多少个?1472÷(1+15%)=1472÷1.15=1280(个)答:上个月制造零件1280个。
5.小丽身高126厘米,正好是父亲身高的70%,父亲身高多少厘米?126÷70%=126÷0.7=180(厘米)答:父亲身高180厘米。
三百分数一、百分数的意义及读、写方法1.百分数的意义..:表示一个数是另一个数的百分之几的数,叫作百分数。
百分数又叫作百分比或百分率.......。
2.百分数的写法..:百分数通常不写成分母是100的分数形式,而是在原来分子的后面添上百分号“%”来表示。
写百分数时,百分号前面的数按整数、小数的写法来写,在写出的数的后面加百分号。
3.百分数的读法..:读百分数时,百分号前面的数按整数、小数的读法来读,只是在前面加“百分之”。
二、百分数和分数的联系与区别1.百分数和分数的联系:都可以表示两个数之间的倍数关系。
2.百分数和分数的区别。
(1)意义不同,百分数只表示两个数之间的倍数关系,不能带单位名称;分数既可以表示具体的数,又可以表示两个数之间的倍数关系,表示具体的数时可以带单位名称。
(2)百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0以外的自然数;百分数不可以约分,分数一般要约分成最简分数。
(3)应用范围不同,百分数在生产和生活中常用于调查、统计、分析和比较,分数常常在计算、测量中得不到整数结果时使用。
拓展提高1.表示一个数是另一个数的千分之几的数,叫作千分数,千分数也叫作千分率。
与百分数一样,千分数也有千分号,千分号用“‰”表示。
“%”的书写:两个小圈写得要小些,以免与数字0混淆。
易错点:读百分数时,当百分号前是小数时,易漏读小数点前面的0,把小数读成整数。
写百分数时,易把分子写错。
举例:读、写出下面各百分数。
0.645%读作: ,百分之五百写作: 。
错解:百分之六百四十五5%正解:百分之零点六四五500%易错点:百分数只能表示两个数之间的倍数关系,不能表示具体数量,不能带单位名称。
举例:再把能约分的约成最简分数。
.............分子是小数的百分数化成分数,先用分数的基本性质,把百分数化成分子是整数的分数,再化简。
如12.5%===。
四、生活中的百分数1.求一个数是另一个数的百分之几的实际问题。
期末知识大串讲人教版数学六年级上册期末章节考点复习讲义第六单元百分数(一)知识点一:百分数的意义和读、写法1.叫做百分数。
百分数指的是,因此百分数也叫做。
2.2.任何一个百分数都不能表示,不能带;表示具体数量且分母是的分数也不能用百分数表示。
知识点二:小数、分数和百分数之间的关系及其转化1.百分率的意义和求法(分数、小数化成百分数)(1)求百分率实质就是去“”,用比较量除以的量。
(2)把小数化成百分数:先把小数改写成,再化成百分数。
或者把小数点,再在后面添上,位数不够用补足。
(3)把分数化成百分数:先把分数化成,然后再写成。
还可以把分数化成,再化成。
2. 求一个数的百分之几是多少(百分数化成分数和小数)(1)求和,意义相同,都是用计算,用单位“1”的量乘分率就得到部分量。
(2)百分数化成小数、分数的方法:百分数化成小数:百分数化成的分数,再化成;小数点向左移动两位,同时去掉百分号即可。
百分数化成分数:先写成的分数,再化成。
3. 求一个数比另一个数多(或少)百分之几方法一:先求一个数比另一个数多(少)多少,然后除以另一个数(即)求出百分之几。
方法二:先求出一个数是另一个数的百分之几,然后减去或用减去求出百分之几。
4. 求比一个数多(或少)百分之几的数是多少方法一:先求出,再与相加(减);方法二:先求出的百分之几,再用乘这个百分数。
5. 用百分数知识解决有关变化幅度的问题解决涨幅(或降幅)问题的一般方法:解决涨幅(或降幅)问题时,一定要找准单位“1”,可以假设原来的价格是一个具体的数,也可以假设为“1”,根据求比一个数多(或少)百分之几的数是多少的解答方法,用乘法计算出结果。
考点01:百分数的意义和读写1.(2021六上·福田期末)下面四句语句中,正确的有()句。
①晚上人在路灯下走,离路灯越近,影子越长;②4m的35和3m的45一样长;③35小时=0.6小时=60%小时;④1吨煤,用去37吨后,还剩全部的47。
六年级下册数学第二单元百分数知识点整理1500字数学六年级下册第二单元是关于百分数的知识点。
以下是对该知识点的整理:一、百分数的定义:百分数是以100为基数的百分之一的分数形式,用%表示。
二、百分数的转化:1. 百分数转化为小数:将百分数去掉百分号,除以100。
例如:45% = 45 ÷ 100 = 0.452. 小数转化为百分数:将小数乘以100,加上百分号。
例如:0.6 = 0.6 × 100% = 60%3. 分数转化为百分数:将分数的分子除以分母,再乘以100加上百分号。
例如:⅓ = 1 ÷ 3 = 0.333... ≈ 33.3%4. 百分数和小数之间的转化是等价的。
三、百分数的比较:1. 百分数大小比较:可以通过将百分数转换成小数进行比较。
例如:40% < 50% (0.4 < 0.5)2. 对于整数相同的两个百分数,分母越小,百分数越大。
例如:25% > 20%。
3. 对于小数部分相同的两个百分数,整数部分越大,百分数越大。
例如:28.5% > 15.5%。
四、百分数的应用:1. 百分之几的相当于几分之一:将百分数的百分号去掉,分母为100。
例如:50% = 50 ÷ 100 = 1/22. 几分之一的百分数:将几分之一变为分数形式,分子为1,分母为几,然后乘以100加上百分号。
例如:1/5 = 1 ÷ 5 = 0.2 × 100% = 20%3. 百分数的计算:(1) 用倍数乘法计算:将百分数转化为小数,与数相乘再转化为百分数。
(2) 用倍数除法计算:将数除以百分数转化为小数再与100相乘。
五、百分数的问题解决方法:1. 百分数的加减法:首先将百分数转化为小数,然后进行数学运算。
2. 百分数的乘法:将原数与百分数转化为小数相乘,然后将结果转化为百分数。
3. 百分数的除法:将原数除以百分数转化为小数,然后将结果转化为百分数。
六年级数学上册第四单元《百分数》期
末复习要点
(一)百分数的基本概念
.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。
百分数表示两个数之间的比率关系,不表示具体的数量,所以百分数不能带单位。
2.百分数的意义:表示一个数是另一个数的百分之几。
例如:2%的意义:表示一个数是另一个数的2%。
3.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。
分子部分可为小数、整数,可以大于100,小于100或等于100。
4.小数与百分数互化的规则:
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
.百分数与分数互化的规则:
把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
第四单元百分数(讲义)小学数学六年级上册专项训练(知识梳理+典例精讲+专项训练)1.百分数的意义。
百分数的意义:表示一个数是另一个数的百分之几,百分数也叫百分率、百分比。
2.百分数的读、写法。
百分数的读法:先读百分号,再读百分号前面的数。
注意:“%”读作“百分之”而不是“一百分之”。
百分数的写法:把分母写成百分号“% ”,分子写在百分号前面。
3.常见的百分率的计算方法。
及格率=(及格人数÷考试总人数)×100%出勤率=(出勤人数÷应出勤的人数)×100%发芽率=(发芽种子数÷试验种子总数)×100%合格率=(合格的产品数÷产品总数)×100%树苗的成活率=(成活的棵数÷植树的总棵数)×100%小麦的出粉率=(磨出面粉的质量÷小麦的总质量)×100%4.小数化成百分数。
把小数点向右移动两位,并在后面添上百分号。
5.分数化成百分数。
通常先把分数化成小数(除不尽时,通常保留三位小数),然后把小数化成百分数。
6.百分数化成小数。
先把百分号去掉,然后把小数点向左移动两位,位数不够时用“0”补足。
7.百分数化成分数。
百分数化成分数:先把百分数写成分母是100的分数,然后能约分的要约成最简分数。
8.求一个数是另一个数的百分之几的问题的解法。
与求一个数是另一个数的几分之几的解题方法基本相同,即用“比较量÷标准量”来计算,其最后结果要化成百分数。
9.求一个数的百分之几是多少的问题的解法。
一个数(单位“1”)×百分率=所求的数10.已知一个数的百分之几是多少,求这个数的实际问题的解法。
方法一:算术法。
多少÷百分之几=这个数。
方法二:方程法。
这个数(x)×百分之几=多少。
【典例一】说出句中百分数所表示的意义。
第五次全国人口普查结果表明,目前我国男性人口约占52%,女性人口约占48%。
第四单元《百分数》知识点1、百分数的意义像84%,28%,2.5%……这样的数叫作百分数,表示一个数是另一个数的百分之几。
百分数也叫百分比、百分率。
百分数只表示两个数之间的关系,不能带单位名称,它表示的是一个比值。
2、百分数的读法和写法①百分数的读法:百分数的读法与分数的读法相同,但百分数读作“百分之几”,不读作“一百分之几”。
②百分数的写法:百分数相当于分母是100的分数,但百分数不能写成分数的形式,而是在分子的后面加上百分号(%)来表示。
3、百分数和分数的区别①意义不同百分数只表示一个数是另一个数的百分之几。
它只能表示两个数之间的倍数关系,并不是表示某一个具体数量,所以百分数不能带单位。
分数不仅可以表示两个数之间的倍数关系,还可以表示一定的数量,所以分数表示数量时可以带单位。
②写法不同百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
分数的最后结果中的分子只能是整数,计算结果不是最简分数的要化成最简分数。
百分数的最后结果中的分子可以是整数,也可以是小数。
如:18%,16.7%,180%4、小数、分数、百分数的互化①把小数化成百分数的方法:先把小数点向右移动两位,再在数的后面直接添上“%”,如0.25=25% ②把分数化成百分数的方法:可以先把分数化成分母是100的分数,再改写成百分数,如53=0.6=60%(除不尽的保留三位小数)。
③把百分数化成小数的方法:先把“%”去掉,同时把小数点向左移动两位,当移动的位数不够时,要添0补位。
④把百分数化成分数的方法:先把百分数改写成分母是100的分数,能约分的要约分成最简分数。
当百第7页分数的分子是小数时,要要根据分数的基本性质把分子和分母同时扩大相同的倍数,把分子变成整数后能约分的再约分。
5、求一个数是另一个数的百分之几的方法求一个数是另一个数的百分之几的方法与求一个数是另一个数的几分之几的方法相同,就是用这个数除以另一个数,除不尽时通常保留三位小数,然后把小数点向右移动两位,再在数的后面加上%6、求百分率的方法:百分率一般是指部分占总体的百分之几。
爽爽文库汇编之新课标人教版六年级数学上册第六单元百分数知识点归纳一、百分数的意义和写法(一)、百分数的意义:表示一个数是另一个数的百分之几。
百分数是指的两个数的比,因此也叫百分率或百分比。
(二)、百分数和分数的主要联系与区别:联系:都可以表示两个量的倍比关系。
区别:①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,乂可以表示两个数的关系,表示具体数时可以带单位。
②、百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除。
以外的自然数。
3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示, 读作百分之。
二、百分数和分数、小数的互化(一)百分数与小数的互化:1、小数化成白分数:把小数点向右移动两位(数位不够用0补足),同时在后面添上百分号。
2.白分数化成小数:把小数点向左移动两位(数位不够用。
补足),同时去掉仃分号。
(二)百分数的和分数的互化1、百分数化成分数:先把白分数改写成分母是100的分数,能约分要约成最简分数。
2、分数化成百分数:①用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。
②先把分数化成小数(除不尽时.,通常保留三位小数),再把小数化成百分数。
(建议用这种方法)(三)常见分数小数百分数之间的互化:三、用有分数解决问题(一)一般应用题1、常见的白分率的计算方法:一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率 达不到100%,完成率、增长了百分之儿等可以超过100%。
2、求一个数是另一个数的白分之几用一个数除以另一个数,结果写为百分数形 式。
例如:例如:男生有20人,女生有15人,女生人数占男生人数的百分之几。
列式是:154-20=15/20=75 %3、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题,数量 关系式和分数乘法解决问题中的关系式相同:⑴百分率前是“的”:单位“1”的量X 百分率二百分率对应量 (2百分率前是“多或少”的数量关系: 单位“1”的量义(1 土百分率)二百分率对应量4、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。
小学数学百分数知识点
小学数学百分数的主要知识点包括:
1. 百分数的概念:百分数是指以百为单位的分数,通常用百分数符号“%”表示。
2. 百分数的转化:把一个分数转化为百分数,可以把分子乘以100,再加上百分号。
例如,将分数1/4转化为百分数,先将1/4乘以100,得到25,然后加上百分号,表示为25%。
3. 百分数的表示方法:在数字后面加上百分号,表示为一个数的百分之几。
例如,表示80%就是表示80的百分之80。
4. 百分数的关系:百分数和小数之间有相互转化的关系。
可以把一个数的百分数转化为小数,方法是除以100;也可以把一个小数转化为百分数,方法是乘以100,再加上百分号。
5. 百分数的应用:百分数在实际生活中有很多应用,如表示比例、表示增长和减少、表示概率等。
6. 百分数的计算:对于两个百分数的运算,可以先将其转化为小数,然后进行相应的运算,最后再把结果转化为百分数。
这些是小学数学百分数的主要知识点,通过理解和掌握这些知识,可以正确使用百分数,进行相关的计算和应用。
作品编号:91855558874563331258学校:元明壮市文银汉镇便家蚕小学*教师:青稞酒*班级:飞鸟参班*新课标人教版六年级数学上册第六单元百分数知识点归纳一、百分数的意义和写法(一)、百分数的意义:表示一个数是另一个数的百分之几。
百分数是指的两个数的比,因此也叫百分率或百分比。
(二)、百分数和分数的主要联系与区别:联系:都可以表示两个量的倍比关系。
区别:①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位。
②、百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0以外的自然数。
3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。
二、百分数和分数、小数的互化(一)百分数与小数的互化:1、小数化成百分数:把小数点向右移动两位(数位不够用0补足),同时在后面添上百分号。
2. 百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。
(二)百分数的和分数的互化1、百分数化成分数:先把百分数改写成分母是100的分数,能约分要约成最简分数。
2、分数化成百分数:①用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。
②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
(建议用这种方法)(三)常见分数小数百分数之间的互化;三、用百分数解决问题(一)一般应用题1、常见的百分率的计算方法:一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。
2、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。
例如:例如:男生有20人,女生有15人,女生人数占男生人数的百分之几。
列式是:15÷20=15/20=75﹪3、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题,数量关系式和分数乘法解决问题中的关系式相同:(1)百分率前是“的”:单位“1”的量×百分率=百分率对应量(2百分率前是“多或少”的数量关系:单位“1”的量×(1±百分率)=百分率对应量4、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。
六年级数学上册第四单元《百分数》期末复习要点一、百分数的概念与表示方法1. 百分数的定义百分数是指以百为基数的分数,百分号(%)表示。
百分数可以用分数的形式、小数的形式或百分数的形式来表示。
2. 百分数的表示方法•分数的形式:百分数的百分号(%)前的数作为一个分数的分子,分母为100。
•小数的形式:将百分数的百分号(%)去掉,然后将数除以100,得到的小数即为百分数的小数表示。
•百分数的形式:直接写百分号(%)。
二、百分数的计算1. 百分数转化为分数或小数将百分数转化为分数或小数的方法是将百分号(%)前的数作为分子,分母为100。
例题1:将80%转化为分数。
解:80%可以表示为80/100,所以80%转化为分数为80/100。
例题2:将80%转化为小数。
解:80%可以表示为80/100,所以80%转化为小数为0.8。
2. 分数或小数转化为百分数将分数或小数转化为百分数的方法是将分数或小数乘以100,并在后面加上百分号(%)。
例题3:将2/5转化为百分数。
解:2/5乘以100得到40,所以2/5转化为百分数为40%。
例题4:将0.6转化为百分数。
解:0.6乘以100得到60,所以0.6转化为百分数为60%。
3. 百分数之间的比较百分数之间的比较可以通过比较其原数实际大小来判断。
例题5:比较25%和30%的大小。
解:25%可以表示为25/100,30%可以表示为30/100,由于25/100 < 30/100,所以25%小于30%。
例题6:比较0.36和0.4的大小。
解:0.36乘以100得到36,0.4乘以100得到40,由于36 < 40,所以0.36小于0.4。
三、百分数的应用1. 百分数的增加与减少增加百分数的方法是将原数加上其对应的百分数的百分数形式,减少百分数的方法是将原数减去其对应的百分数的百分数形式。
例题7:将150增加30%。
解:将150加上150的30%,即150 + 150 × 30% = 150 + 150 × 0.3 = 150 + 45 = 195。
六年级下册数学第二单元百分数知识点整理(一)、折扣和成数1、折扣:用于商品,现价是原价的百分之几,叫做折扣。
通称“打折”。
几折就是十分之几,也就是百分之几十。
例如:八折=8/10=80﹪,六折五=6.5/10=65/100=65﹪解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
商品现在打八折:现在的售价是原价的80﹪商品现在打六折五:现在的售价是原价的65﹪2、成数:几成就是十分之几,也就是百分之几十。
例如:一成=1/10=10﹪八成五=8.5/10=85/100=80﹪解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪(二)、税率和利率1、税率(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
(2)纳税的意义:税收是国家财政收入的主要来源之一。
国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。
(3)应纳税额:缴纳的税款叫做应纳税额。
(4)税率:应纳税额与各种收入的比率叫做税率。
(5)应纳税额的计算方法:应纳税额=总收入×税率收入额=应纳税额÷税率2、利率(1)存款分为活期、整存整取和零存整取等方法。
(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。
(3)本金:存入银行的钱叫做本金。
(4)利息:取款时银行多支付的钱叫做利息。
(5)利率:利息与本金的比值叫做利率。
(6)利息的计算公式:利息=本金×利率×时间利率=利息÷时间÷本金×100%(7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)税后利息=本金×利率×时间×(1-利息税率)购物策略:估计费用:根据实际的问题,选择合理的估算策略,进行估算。
六年级数学下册期末总复习《2单元百分数》必记知识点如下:一、百分数的定义与理解1.百分数表示一个数是另一个数的百分之几。
2.百分数由数字和百分号(%)组成,如25%读作百分之二十五。
二、百分数的计算1.百分数转化为小数:将百分数除以100。
例如,25% = 25 ÷ 100 = 0.25。
2.小数转化为百分数:将小数乘以100,并在后面加上百分号。
例如,0.25 =0.25 × 100% = 25%。
3.分数转化为百分数:先将分数转化为小数,再将小数转化为百分数。
例如,1/4= 0.25 = 25%。
三、百分数的应用1.折扣:商品打折时,“几折”就表示十分之几或百分之几十。
例如,打九折就是按原价的90%出售。
1.现价= 原价× 折扣2.原价= 现价÷ 折扣3.折扣= 现价÷ 原价2.成数:表示一个数是另一个数的十分之几,通称“几成”。
例如,三成五就是十分之三点五(或35%)。
1.实际应用时,需将成数转化成百分数。
3.税率:1.应纳税额= 应纳税部分× 税率2.应纳税部分= 应纳税额÷ 税率3.税率= 应纳税额÷ 应纳税部分× 100%4.本金、利率、存期与利息:1.利息= 本金× 利率× 存期2.利率= (利息÷ 存期) ÷ 本金× 100%3.本金= (利息÷ 存期) ÷ 利率四、百分数常考题型1.折扣问题:涉及现价、原价和折扣之间的关系。
2.税率问题:涉及应纳税额、税率和应纳税部分之间的关系。
3.利息问题:涉及本金、利率、存期和利息之间的关系。
4.利润问题:涉及售价、成本和利润之间的关系。
五、百分数应用题解题策略1.理解题意:仔细阅读题目,理解题目的要求和条件。
2.确定关系:根据题意,确定已知条件和未知量之间的数学关系。
3.列出方程:根据确定的关系,列出相应的数学方程。
六年级下册数学第二单元百分数知识点整理六年级下册数学第二单元百分数知识点整理(一)、折扣和成数1、折扣:用于商品,现价是原价的百分之几,叫做折扣。
通称“打折”。
几折就是十分之几,也就是百分之几十。
例如:八折=8/10=80﹪,六折五=6.5/10=65/100=65﹪解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
商品现在打八折:现在的售价是原价的80﹪商品现在打六折五:现在的售价是原价的65﹪2、成数:几成就是十分之几,也就是百分之几十。
例如:一成=1/10=10﹪八成五=8.5/10=85/100=80﹪解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪(二)、税率和利率1、税率(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
(2)纳税的意义:税收是国家财政收入的主要来源之一。
国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。
(3)应纳税额:缴纳的税款叫做应纳税额。
(4)税率:应纳税额与各种收入的比率叫做税率。
(5)应纳税额的计算方法:应纳税额=总收入×税率收入额=应纳税额÷税率2、利率(1)存款分为活期、整存整取和零存整取等方法。
(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。
(3)本金:存入银行的钱叫做本金。
(4)利息:取款时银行多支付的钱叫做利息。
(5)利率:利息与本金的比值叫做利率。
(6)利息的计算公式:利息=本金×利率×时间利率=利息÷时间÷本金×100%(7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)税后利息=本金×利率×时间×(1-利息税率)购物策略:估计费用:根据实际的问题,选择合理的估算策略,进行估算。
六、比例1、比例的意义:表示两个比相等的式子叫做比例。
如:2:1=6:32、组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
3、比例的性质:在比例里,两个外项的积等于两个两个内向的积。
这叫做比例的基本性质。
例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2: 1.5。
(利用比例的意义和比例的基本性质可以判断两个比是否成比例)4、解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
例如:3:x = 4:8,内项乘内项,外项乘外项,则:4x =3×8,解得x=6。
5 、正比例和反比例:(1)、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示y/x=k(一定)例如:①、速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。
②、圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。
③、圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。
④、y=5x,y和x成正比例,因为:y÷x=5(一定)。
⑤、每天看的页数一定,总页数和天数成正比例,因为:总页数÷天数=每天看页数(一定)。
(2)、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
用字母表示x×y=k(一定)例如:①、路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。
②、总价一定,单价和数量成反比例,因为:单价×数量=总价(一定)。
小学六年级数学《百分数》单元知识归纳整理
1、意义:表示一个数是另一个数的百分之几。
2、百分数和分数的区别:
①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;
分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。
②、百分数的分子可以是整数,也可以是小数; 12.5% 分数的分子不能是小数,只能是除0以外的自然数。
12%
3、百分数与小数的互化:
(1)小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。
0.2=20%
(2) 百分数化成小数:把小数点向左移动两位,同时去掉百分号 35%=0.35
4、百分数的和分数的互化
(1)百分数化成分数:先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分 25%=10025=4
1 (2)分数化成百分数:
① 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。
21=100
50=50%
②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
21=0.5=50% 3
1=0.333=33.3% 常见的百分率公式
5、用百分数解决问题
百分率=分量÷单位“1” ×100%
1、求一个数是另一个数的百分之几。
一个数÷另一个数×
100% ① 甲是50,乙是40,甲是乙的百分之几?(50是40的百分之几?)50÷40=125%
② 甲是50,乙是40,乙是甲的百分之几?(40是50的百分之几?)40÷50=80%
2、求一个数比另一个数多百分之几。
(一个数-另一个数)÷另一个数×100% 可概括为:(大数-小数)
÷小数×100% 3、求一个数比另一个数少百分之几。
(另一个数-一个数)÷另一个数×100% 可概括为:(大数-小数)
÷大数×100%
⑦甲是50,乙是40,甲比乙多百分之几?(50比40多百分之几?)(50-40)÷40×100%=25%
⑧甲是50,乙是40,乙比甲少百分之几?(40比50少百分之几?)(50-40)÷50×100%=20%
分量=单位“1”×百分率
4、求一个数的百分之几是多少。
单位“1”的量×百分之几=百分之几对应量
③乙是40,甲是乙的125%,甲数是多少?(40的125%是多少?)40×125%=50
④甲是50,乙是甲的80%,乙数是多少?(50的80%是多少?)50×80%=40
5、求比一个数多百分之几的数是多少。
单位“1”的量×(1+百分之几)=(1+百分之几)对应量
6、求比一个数少百分之几的数是多少。
单位“1”的量×(1-百分之几)=(1-百分之几)对应量
⑬乙是40,甲比乙多25%,甲数是多少?(什么数比40多25%?)40×(1+25%)=50
⑭甲是50,乙比甲少20%,乙数是多少?(什么数比50多25%?)50×(1-20%)=40
单位“1” =分量÷百分率
7、已知一个数的百分之几是多少,求这个数。
百分之几对应量÷百分之几=单位“1”的量
⑤乙是40,乙是甲的80%,甲数是多少?(一个数的80%是40,这个数是多少?)40÷80%=50
假设法:解:设甲为X X×80%=40 X=50
⑥甲是50,甲是乙的125%,乙数是多少?(一个数的125%是50,这个数是多少?)50÷125%=40
假设法:解:设乙为X X×125%=50 X=40 8、另外还有“已知比一个数多(少)百分之几的数是多少,求这个数”,⑮乙是40,比甲少20%,甲数是多少?(40比什么数少20%?)40÷(1-20%)=50
假设法:解:设甲为X X×(1-20%)=40
X=50
⑯甲是50,比乙多25%,乙数是多少?(50比什么数多25%?)50÷(1+25%)=40
假设法:解:设乙为X X×(1+20%)=50
X=40
8、另外还有“已知比一个数多(少)百分之几,多(少)多少的数已知,求这个数”,
⑨甲比乙多25%,多10,乙是多少?10÷25%=40
假设法:解:设乙为X X×25%=10 X=40 ⑩甲比乙多25%,多10,甲是多少?10÷25%+10=50
假设法:解:设乙为X X×25%=10 X=40 40+10=50
⑪乙比甲少20%,少10,甲是多少?10÷20%=50
假设法:解:设甲为X X×20%=10 X=50 ⑫乙比甲少20%,少10,乙是多少?10÷20%-10=40
假设法:解:设甲为X X×20%=10 X=50 50-10=40。