1.3 反比例函数
- 格式:ppt
- 大小:2.50 MB
- 文档页数:16
湘教版数学九年级上册1.3《反比例函数的应用》教学设计一. 教材分析湘教版数学九年级上册1.3《反比例函数的应用》是本册教材中的一个重要内容,它是在学生已经掌握了反比例函数的定义、性质的基础上进行的学习。
本节课主要让学生了解反比例函数在实际生活中的应用,培养学生的数学应用意识,提高学生解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的函数知识,对反比例函数的定义和性质有一定的了解。
但是,对于反比例函数在实际生活中的应用,学生可能还存在一定的困难。
因此,在教学过程中,教师需要通过具体的例子,引导学生理解反比例函数在实际生活中的意义,提高学生解决实际问题的能力。
三. 教学目标1.知识与技能目标:使学生掌握反比例函数的应用,能够运用反比例函数解决实际问题。
2.过程与方法目标:通过实例分析,培养学生的数学建模能力,提高学生解决实际问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生对数学的应用意识。
四. 教学重难点1.教学重点:反比例函数的应用。
2.教学难点:如何将实际问题转化为反比例函数模型,以及如何运用反比例函数解决实际问题。
五. 教学方法本节课采用实例教学法、问题驱动法、合作学习法等教学方法。
通过具体的实例,引导学生理解反比例函数在实际生活中的应用;通过问题驱动,激发学生的思考,培养学生的数学建模能力;通过合作学习,提高学生的交流与合作能力。
六. 教学准备1.教学素材:反比例函数的应用实例、多媒体设备。
2.教学工具:黑板、粉笔、多媒体课件。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实际问题,如商场打折、药物浓度等,引导学生思考这些问题是否可以用反比例函数来解决。
从而引出本节课的主题——反比例函数的应用。
2.呈现(10分钟)教师通过多媒体课件,呈现几个反比例函数的应用实例,如商场打折问题、药物浓度问题等。
引导学生观察、分析这些实例,理解反比例函数在实际生活中的意义。
反比例函数是什么?反比例函数相关知识1:反比例函数是什么?反比例函数的定义域和值域因为x在分母上,所以x≠0,即自变量X的取值范围为非零实数。
而且常数k≠0,因此y≠0,即因变量y的`取值范围为非零实数。
反比例函数的图像及其性质形状:反比例函数的图象是两条双曲线,每一条曲线都无限向X轴Y轴延伸但不与坐标轴相交。
增减性:当k>0时,双曲线的两支分别位于第一、三象限,在每个象限内y随x的增大而减小;当k<0时,双曲线的两支分别位于第二、四象限,在每个象限内y随x的增大而增大。
对称性:反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x和y=-x,对称中心是坐标原点。
2:反比例函数知识点1、反比例函数的表达式X是自变量,Y是X的函数y=k/x=k?1/xxy=ky=k?x^(-1)(即:y等于x的负一次方,此处X必须为一次方)y=kx(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n2、函数式中自变量取值的范围①k≠0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。
解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数y=k/x=k?1/xxy=ky=k?x^(-1)y=kx(k为常数(k≠0),x不等于0)3、反比例函数图象反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。
4、反比例函数中k的几何意义是什么?有哪些应用?过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值_y的.绝对值=(x_y)的绝对值=|k|研究函数问题要透视函数的本质特征。
反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM?PN=|y|?|x|=|xy|=|k|。
湘教版数学九年级上册1.3《反比例函数的应用》教学设计一. 教材分析湘教版数学九年级上册1.3《反比例函数的应用》是本册教材中的一个重要内容,主要介绍了反比例函数的定义、性质及应用。
本节内容是在学生已经掌握了正比例函数的基础上进行学习的,对于学生来说,反比例函数的概念和性质相对较为抽象,因此,在教学过程中,需要通过具体实例让学生理解和掌握反比例函数的概念和性质,并能够运用反比例函数解决实际问题。
二. 学情分析九年级的学生已经具备了一定的函数知识,对于正比例函数的概念和性质有一定的了解。
但是,对于反比例函数的理解和应用还需要通过具体实例来进行引导和培养。
此外,学生的学习习惯和思维方式各有不同,因此在教学过程中,需要关注学生的个体差异,充分调动学生的积极性,激发学生的学习兴趣。
三. 教学目标1.理解反比例函数的定义和性质。
2.能够运用反比例函数解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.反比例函数的定义和性质。
2.运用反比例函数解决实际问题。
五. 教学方法1.实例教学法:通过具体实例让学生理解和掌握反比例函数的概念和性质。
2.问题驱动法:引导学生主动探究反比例函数的应用,培养学生的解决问题的能力。
3.分组合作法:分组讨论和解决问题,培养学生的团队合作能力和沟通能力。
六. 教学准备1.教学课件:制作反比例函数的定义、性质和应用的课件。
2.实例材料:准备一些实际问题,让学生运用反比例函数进行解决。
3.练习题:准备一些练习题,巩固学生对反比例函数的理解和应用。
七. 教学过程1.导入(5分钟)利用课件介绍反比例函数的背景知识,引导学生回顾正比例函数的概念和性质,为新课的学习做好铺垫。
2.呈现(15分钟)利用课件展示反比例函数的定义和性质,通过具体实例让学生理解和掌握反比例函数的概念和性质。
3.操练(15分钟)让学生分组讨论,运用反比例函数解决实际问题。
教师巡回指导,解答学生的问题,并给予鼓励和表扬。
鲁教版数学九年级上册1.3《反比例函数的应用》教学设计1一. 教材分析《反比例函数的应用》是鲁教版数学九年级上册1.3节的内容,主要介绍了反比例函数的概念及其应用。
本节内容是在学生已经掌握了函数的概念、正比例函数的性质等知识的基础上进行学习的,是进一步培养学生解决实际问题能力的重要环节。
二. 学情分析九年级的学生已经具备了一定的函数知识,对于正比例函数的理解和应用已经较为熟练。
但是,反比例函数作为一种新的函数形式,对学生来说还比较陌生,需要通过具体实例来引导学生理解和掌握。
三. 教学目标1.理解反比例函数的概念,掌握反比例函数的性质。
2.能够根据实际问题选择合适的反比例函数模型进行解答。
3.培养学生的逻辑思维能力和解决实际问题的能力。
四. 教学重难点1.反比例函数的概念和性质。
2.反比例函数在实际问题中的应用。
五. 教学方法采用问题驱动的教学方法,通过具体实例引导学生理解反比例函数的概念和性质,再通过实际问题让学生学会如何运用反比例函数进行解答。
六. 教学准备1.PPT课件。
2.相关实际问题。
3.反比例函数的例题和习题。
七. 教学过程1. 导入(5分钟)通过一个实际问题引入反比例函数的概念,例如:“一辆汽车以60km/h的速度行驶,行驶1小时,行驶的路程是多少?”引导学生思考,为什么路程和时间成反比?从而引出反比例函数的概念。
2. 呈现(10分钟)通过PPT课件,呈现反比例函数的定义和性质,让学生直观地理解反比例函数的形式和特点。
同时,通过具体实例,让学生了解反比例函数在实际问题中的应用。
3. 操练(10分钟)让学生通过解决实际问题,运用反比例函数进行解答。
例如:“一个长方形的面积是24cm²,长是8cm,求宽是多少?”引导学生运用反比例函数的知识进行解答。
4. 巩固(10分钟)通过一些练习题,让学生进一步巩固反比例函数的知识。
可以设置一些选择题和填空题,让学生在解答过程中加深对反比例函数的理解。
《1.3 反比例函数的应用》课时同步练习2020-2021年数学湘教版九(上)一.选择题(共10小题)1.《长沙晚报》对外发布长沙高铁西站设计方案.该方案以“三湘四水,杜鹃花开”为设计理念,塑造出“杜鹃花开”的美丽姿态.该高铁站建设初期需要运送大量土石方.某运输公司承担了运送总量为106m3土石方的任务,该运输公司平均运送土石方的速度v(单位:m3/天)与完成运送任务所需时间t(单位:天)之间的函数关系式是()A.v=B.v=106t C.v=t2D.v=106t22.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(单位:kPa)是气体体积V(单位:m3)的反比例函数,其图象如图所示.当气球内的气压大于144kPa 时,气球将爆炸,为了安全起见,气球的体积应()A.不大于m3B.不小于m3C.不大于m3D.不小于m3 3.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器的限制电流不能超过6A,那么用电器的可变电阻R应控制在()A.R≥2B.0<R≤2C.R≥1D.0<R≤14.已知蓄电池的电压为定值,使用电池时,电流I(A)与电阻R(Ω)是反比例函数关系,图象如图所示,如果以此蓄电池为电源的电器的限制电流不能超过bA,那么电器的可变电阻R(Ω)应控制在()A.R≥0B.R≥a C.0<R≤a D.0<R≤b5.已知某品牌显示器的使用寿命为定值.这种显示器可工作的天数y与平均每天工作的小时数x是反比例函数关系,图象如图所示.如果这种显示器至少要用2000天,那么显示器平均每天工作的小时数x应控制在()A.0<x≤10B.10≤x≤24C.0<x≤20D.20≤x≤24 6.为预防新冠病毒,某学校每周末用药熏消毒法对教室进行消毒,已知药物释放过程中,教室内每立方米空气中含药量y(mg)与时间t(h)成正比例;药物释放完毕后,y与t 成反比例,如图所示.根据图象信息,下列选项错误的是()A.药物释放过程需要小时B.药物释放过程中,y与t的函数表达式是y=tC.空气中含药量大于等于0.5mg/m3的时间为hD.若当空气中含药量降低到0.25mg/m3以下时对身体无害,那么从消毒开始,至少需要经过4.5小时学生才能进入教室7.为了响应“绿水青山就是金山银山”的号召,建设生态文明,德州市某工厂自2020年1月开始限产并进行治污改造,其月利润y(万元)与月份x之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的部分,下列选项错误的是()A.4月份的利润为50万元B.治污改造完成后每月利润比前一个月增加30万元C.9月份该厂利润达到200万元D.治污改造完成前后共有4个月的利润低于100万元8.如图,曲线表示温度T(℃)与时间t(h)之间的函数关系,它是一个反比例函数的图象的一支.当温度T≤2℃时,时间t应()A.不小于h B.不大于h C.不小于h D.不大于h 9.1888年,海因里希•鲁道夫•赫兹证实了电磁波的存在,这成了后来大部分无线科技的基础.电磁波波长λ(单位:米)、频率f(单位:赫兹)满足函数关系λf=3×108,下列说法正确的是()A.电磁波波长是频率的正比例函数B.电磁波波长20000米时,对应的频率1500赫兹C.电磁波波长小于30000米时,频率小于10000赫兹D.电磁波波长大于50000米时,频率小于6000赫兹10.如图,在某温度不变的条件下,通过一次又一次地对气缸顶部的活塞加压,测出每一次加压后气缸内气体的体积V(mL)与气体对气缸壁产生的压强P(kPa)的关系可以用如图所示的反比例函数图象进行表示,下列说法错误的是()A.气压P与体积V表达式为P=,则k>0B.当气压P=70时,体积V的取值范围为70<V<80C.当体积V变为原来的时,对应的气压P变为原来的D.当60≤V≤100时,气压P随着体积V的增大而减小二.填空题(共8小题)11.某物体对地面的压强P(Pa)与物体和地面的接触面积S(m2)成反比例函数关系(如图).当该物体与地面的接触面积为0.25m2时,该物体对地面的压强是Pa.12.根据某商场对一款运动鞋五天中的售价与销量关系的调查显示,售价是销量的反比例函数(统计数据见下表).已知该运动鞋的进价为180元/双,要使该款运动鞋每天的销售利润达到2400元,则其售价应定为元.售价x(元/双)200240250400销售量y(双)3025241513.在对物体做功一定的情况下,力F(N)与此物体在力的方向上移动的距离s(m)成反比例函数关系,其图象如图所示,点P(4,3)在图象上,则当力达到10N时,物体在力的方向上移动的距离是m.14.小玲家购买了一张面值600元的天然气使用卡,这些天然气所够使用的天数t与小玲家平均每天使用天然气的钱数m(元)之间的函数关系式为.15.如图所示,小华设计了一个探究杠杆平衡条件的实验:在一根匀质的木杆中点O左侧固定位置B处悬挂重物A,在中点O右侧用一个弹簧秤向下拉,改变弹簧秤与点O的距离x(cm),观察弹簧秤的示数y(N)的变化情况.实验数据记录如下:x(cm)…1015202530…y(N)…3020151210…猜测y与x之间的函数关系,并求出函数关系式为.16.某高科技开发公司从2008年起开始投入技术改进资金,经过技术改进后,其产品的生产成本不断降低,具体数据如下表:请你认真分析表中数据,写出可以表示该变化规律的表达式是年度2008200920102011投入技术改进资金x(万元) 2.534 4.5产品成本y(万元∕件)7.26 4.5417.某物体对地面的压强p(N/m2)物体与地面的接触面积S(m2)之间的变化关系如图所示(双曲线的一支).如果该物体与地面的接触面积为0.24m2,那么该物体对地面的压强是(N/m2).18.在照明系统模拟控制电路实验中,研究人员发现光敏电阻值R(单位:Ω)与光照度E (单位:lx)之间成反比例函数关系,部分数据如下表所示:光照度E/lx0.51 1.52 2.53光敏电阻阻值R/Ω603020151210则光敏电阻值R与光照度E的函数表达式为.三.解答题(共6小题)19.你吃过拉面吗?在做拉面的过程中渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的横截面积x(mm2)(x>0)的反比例函数,其图象如图所示.(1)请写出点P的实际意义;(2)求出y与x的函数关系式;(3)当面条的横截面积是1.6mm2时,求面条的总长度.20.南宁至玉林高速铁路已于去年开工建设.玉林良睦隧道是全线控制性工程,首期打通共有土石方总量为600千立方米,设计划平均每天挖掘土石方x千立方米,总需用时间y 天,且完成首期工程限定时间不超过600天.(1)求y与x之间的函数关系式及自变量x的取值范围;(2)由于工程进度的需要,实际平均每天挖掘土石方比原计划多0.2千立方米,工期比原计划提前了100天完成,求实际挖掘了多少天才能完成首期工程?21.已知蓄电池的电压为定值,使用蓄电池时,电流I(A)与电阻R(Ω)成反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式;(2)如果以此蓄电池为电源的用电器的电流不能超过10A,那么该用电器的可变电阻应控制在什么范围内?22.教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降.水温y(℃)和通电时间x(min)成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20℃,接通电源后,水温y(℃)和通电时间x(min)之间的关系如图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的函数关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前喝到不低于40℃的开水,则他需要在什么时间段内接水?23.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)恒温系统设定的恒定温度为;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,为避免蔬菜受到伤害,恒温系统最多可以关闭多少小时?24.为了预防“流感”,某学校对教室采取药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧完后,y与x成反比例(如图所示).现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.根据题中所提供的信息解答下列问题:(1)求药物燃烧时y关于x的函数关系式及其自变量x的取值范围;(2)药物燃烧后y关于x的函数关系式是;研究表明,①当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过多少分钟后,学生才能回到教室;②当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,你认为此次消毒有效吗?请说明理由.参考答案一.选择题(共10小题)1.解:∵运送土石方总量=平均运送土石方的速度v×完成运送任务所需时间t,∴106=vt,∴v=,故选:A.2.解:设球内气体的气压P(kPa)和气体体积V(m3)的关系式为P=∵图象过点(1.5,64)∴k=96,即P=在第一象限内,P随V的增大而减小,∴当P≤144时,V≥=.故选:B.3.解:设反比例函数关系式为:I=,把(2,3)代入得:k=2×3=6,∴反比例函数关系式为:I=,当I≤6时,则≤6,R≥1,故选:C.4.解:设反比例函数关系式为:I=,把(a,b)代入得:k=ab,∴反比例函数关系式为:I=,当I≤b时,则≤b,∴R≥a,故选:B.5.解:由题意可设,∵图象过点(20,1000),∴k=20000.∴.∴当y=2000时,x=10.观察图象可得:∴当y≥2000时,0<x≤10.故选:A.6.解:设正比例函数解析式是y=kt,反比例函数解析式是y=,把点(3,)分别代入反比例函数解析式得:=,解得:m=,∴反比例函数解析式是y=,当y=1时,代入上式得t=,把t=时,y=1代入正比例函数解析式是y=kt得:k=,∴正比例函数解析式是y=t,A.由图象知,y=1时,t=,即药物释放过程需要小时,故A不符合题意;B.药物释放过程中,y与t的成正比例,函数表达式是y=t,故B不符合题意;C.把y=0.5mg/m3分别代入y=t和y=得,0.5=t1和0.5=,解得:t1=和t2=3,∴t2﹣t1=,∴空气中含药量大于等于0.5mg/m3的时间为h;故C不符合题意;<0.25,解得t>6,所以至少需要经过6小时后,学生才能进入教室,故D符合题意,故选:D.7.解:A、设反比例函数的解析式为y=,把(1,200)代入得,k=200,∴反比例函数的解析式为:y=,当x=4时,y=50,∴4月份的利润为50万元,正确,不合题意;B、治污改造完成后,从4月到6月,利润从50万到110万,故每月利润比前一个月增加30万元,正确,不合题意;C、设一次函数解析式为:y=kx+b,则,解得:,故一次函数解析式为:y=30x﹣70,故y=200时,200=30x﹣70,解得:x=9,则治污改造完成后的第5个月,即9月份该厂利润达到200万元,正确,不合题意.D、当y=100时,则100=,解得:x=2,则只有3月,4月,5月共3个月的利润低于100万元,不正确,符合题意.故选:D.8.解:设函数解析式为T=,∵经过点(1,3),∴k=1×3=3,∴函数解析式为T=,当T≤2℃时,t≥h,故选:C.9.解:A、∵函数关系λf=3×108,∴电磁波波长是频率的反比例函数,故错误,不符合题意;B、当λ=20000米时,f==15000赫兹,故错误,不符合题意;C、∵f=,∴f随着λ的增大而减小,∴电磁波波长小于30000米时,频率大于10000赫兹,故错误,不符合题意;D、电磁波波长大于50000米时,频率小于6000赫兹,故正确,符合题意,故选:D.10.解:当V=60时,P=100,则PV=6000,A.气压P与体积V表达式为P=,则k>0,故不符合题意;B.当P=70时,V=>80,故符合题意;C.当体积V变为原来的时,对应的气压P变为原来的,不符合题意;D.当60≤V≤100时,气压P随着体积V的增大而减小,不符合题意;故选:B.二.填空题(共8小题)11.解:设P=,把(0.5,2000)代入得:k=1000,故P=,当S=0.25时,P==4000(Pa).故答案为:4000.12.解:由表中数据得:xy=6000,∴y=,则所求函数关系式为y=;由题意得:(x﹣180)y=2400,把y=代入得:(x﹣180)•=2400,解得:x=300,经检验,x=300是原方程的根,答:若计划每天的销售利润为2400元,则其单价应定为300元.故答案为:300.13.解:设函数的表达式F=,将点P的坐标代入上式得:3=,解得k=12,则反比例函数表达式为F=,当F=10时,即F==10,解得s=1.2(m),故答案为:1.2.14.解:∵tm=600,∴t=.故答案为:t=.15.解:由图象猜测y与x之间的函数关系为反比例函数,∴设y=(k≠0),把x=10,y=30代入得:k=300∴y=,将其余各点代入验证均适合,∴y与x的函数关系式为:y=.故答案为:y=.16.解:由题意可得此函数解析式为反比例函数解析式,其为解析式为y=.当x=2.5时,y=7.2,可得:7.2=,解得k=18∴反比例函数是y=.故答案为:y=.17.解:设p=,把(0.05,2400)代入得:F=2400×0.05=120,故P=,当S=0.24m2时,P==500(N/m2).故答案为:500.18.解:由题意可得:RE=30,则R=.故答案为:R=.三.解答题(共6小题)19.解:(1)由图象知,点P的实际意义是:当面条的横截面积是4mm2时,面条的总长度是32m;(2)设y与x的函数关系式为y=,∵反比例函数图象经过点(4,32),∴=32,解得k=128,∴y与x的函数关系式是y=(x>0);(3)当x=1.6时,y==80.答:面条的总长度是80m.20.解:(1)根据题意可得:y=,∵y≤600,∴x≥1;(2)设实际挖掘了m天才能完成首期工程,根据题意可得:﹣=0.2,解得:m=﹣600(舍)或500,检验得:m=500是原方程的根,答:实际挖掘了500天才能完成首期工程.21.解:(1)由于电流I是电阻R的反比例函数,设I=,∵图象经过(9,4),∴4=,解得:k=4×9=36,∴I=,∴这个反比例函数的解析式为I=;(2)∵I≤10,∴≤10,∵R>0,∴R≥3.6,即用电器可变电阻应控制在3.6欧以上的范围内.22.解:(1)当0≤x≤8时,设y=k1x+b,将(0,20),(8,100)的坐标分别代入y=k1x+b得,解得k1=10,b=20.∴当0≤x≤8时,y=10x+20.当8<x≤a时,设y=,将(8,100)的坐标代入y=,得k2=800∴当8<x≤a时,y=.综上,当0≤x≤8时,y=10x+20;当8<x≤a时,y=;(2)将y=20代入y=,解得x=40,即a=40;(3)当y=40时,x==20.∴要想喝到不低于40℃的开水,x需满足8≤x≤20,即李老师要在7:38到7:50之间接水.23.解:(1)设线段AB解析式为y=k1x+b(k≠0),∵线段AB过点(0,10),(2,14),代入得,解得,∴AB解析式为:y=2x+10(0≤x<5),∵B在线段AB上当x=5时,y=20,∴B坐标为(5,20),∴线段BC的解析式为:y=20(5≤x<10),设双曲线CD解析式为:y=(k2≠0),∵C(10,20),∴k2=200,∴双曲线CD解析式为:y=(10≤x≤24);∴y关于x的函数解析式为:y=;(2)由(1)恒温系统设定恒温为20℃,故答案为:20℃;(3)把y=10代入y=中,解得,x=20,∴20﹣10=10,答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.24.解:(1)药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,所以设y关于x的函数关系式是y=kx(k≠0),将点(8,6)代入,得;k=,即,自变量x的取值范围是0≤x≤8.(2)设药物燃烧后y关于x的函数关系式是y=,把(8,6)代入得:k=48,故y关于x的函数关系式是;①当y=1.6时,代入得x=30分钟,那么从消毒开始,至少需要经过30 分钟后,学生才能回到教室;②此次消毒有效,将y=3分别代入,得,x=4和x=16,那么持续时间是16﹣4=12>10分钟,所以有效杀灭空气中的病菌.故答案为:.。
初三数学:?反比例函数?知识点归纳
反比例函数的定义
定义:形如函数y=k/x(k为常数且k0)叫做反比例函数 ,其中k叫做比例系数 ,x是自变量 ,y是自变量x的函数 ,x的取值范围是不等于0的一切实数。
反比例函数的性质
函数y=k/x称为反比例函数 ,其中k0 ,其中X是自变量 ,
1.当k0时 ,图象分别位于第一、三象限 ,同一个象限内 ,y随x的增大而减小;当k0时 ,图象分别位于二、四象限 ,同一个象限内,y随x的增大而增大。
2.k0时 ,函数在x0上同为减函数、在x0上同为减函数;k0时 ,函数在x0上为增函数、在x0上同为增函数。
3.x的取值范围是:x
y的取值范围是:y0。
4..因为在y=k/x(k0)中 ,x不能为0 ,y也不能为0 ,所以反比例函数的图象不可能与x轴相交 ,也不可能与y轴相交。
但随着x无限增大或是无限减少 ,函数值无限趋近于0 ,故图像无限接近于x轴
5.反比例函数的图象既是轴对称图形 ,又是中心对称图形 ,它有两条对称轴y=x y=-x(即第一三 ,二四象限角平分线) ,对称中心是坐标原点。
反比例函数的一般形式
一般地 ,如果两个变量x、y之间的关系可以表示成
1 / 1。
变式1 如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 变式2 若函数11-=m xy (m 是常数)是反比例函数,则m =________,解析式为________.题型二:反比例函数解析式例3 已知A (﹣1,m )与B (2,m ﹣3)是反比例函数图象上的两个点.则m 的值 .例4 已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.变式3已知y 与x 成反比例,当x =2时,y =3.(1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.变式4 已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.1、反比例函数的图像(1)形状与位置:反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
(2)变化趋势:由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
2、反比例函数的性质(1)对称性:反比例函数的图像是关于原点对称的中心对称图形,同时也是轴对称图形,有两条对称轴,分别是一、三象限和二、四象限的角平分线,即直线y x =±。
(注:过原点的直线与双曲线的两个交点关于原点对称)(2)双曲线的位置:当k>0时,双曲线位于一、三象限(x ,y 同号);当k<0时,双曲线位于二、四象限(x ,y 同号异号),反之也成立。
(3)增减性: 当k>0时,双曲线走下坡路,在同一象限内,y 随x 的增大而减小;当k<0时,双曲线走上坡路,在同一象限内,y 随x 的增大而增大。
反比例函数的图象和性质知识点一:反比例函数的概念及其图象、性质关键点拨与对应举例1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下三种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况(1)判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k.失分点警示(2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断.k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.例:若(a,b)在反比例函数kyx=的图象上,则(-a,-b)在该函数图象上.(填“在"、"不在")4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x.知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-.6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按。